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1. Introduction 

The Thermodynamics of Irreversible Processes as a phenomenological theory 
describing processes in continua was initiated by ECKART [1] in 1940. Independently 
of ECKART'S work, MEIXNER proposed essentially the same theory in a series of 
papers between 1939 and 1943". Both authors introduce an equation of balance 
of entropy with positive production density. An important feature of this balance 
equation is that the entropy flux is assumed to be equal to the heat flux divided 
by the temperature, although this relation does not result from the theory; one 
can suggest possibly meaningful generalizations of this assumption [3]. 

The motivation for this relation rests upon the definition of entropy in thermo- 
statics and on an approximate calculation of the entropy flux based on the kinetic 
theory of gases. 

In recent years, COLEMAN & NOLL [4] have developed an improved method 
for exploiting the entropy balance. This method was applied to simple materials 
with fading memory by COLEMAN [5]. Here again the postulate is made that 
entropy flux and heat flux over temperature are equal. 

In the present paper this assumption is omitted. Instead, we introduce an 
independent entropy flux, subject to constitutive assumptions like those made for 
heat flux, internal energy, stress, and entropy. By evaluation of the entropy in- 
equality and application of a natural invariance principle, we are then able to 
derive a relation between entropy flux and heat flux which, for simple materials 
with fading memory, reduces to that usually postulated, except if these materials 
have uncommon symmetries. Calculations for a dipolar fluid, however, seem to 
indicate that the generalization of the entropy flux leads to alterations in the theory 
of multipolar materials. 

* See the survey by J. MEIXNER & H. G. REIK [2]. 
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In a recent publication GURTIN & WILLIAMS [6] have generalized the entropy 
balance in a different way, but in their work also the entropy flux is proportional 
to heat flux. However the kinetic theory of gases gives a motivation for the 
assumption of a more general entropy flux [3]. 

2. Basic Concepts* 

We consider a body ~ ,  whose particles are characterised by the material co- 
ordinates X a . We take the X a as coordinates of positions occupied by the particles 
in a reference configuration. 

The motion of the body is then described by the function x~(Xa, t), which 
gives the position of the particles at time t. We call the function x i ( X  A, t) the 
deformation and suppose that the deformation gradient 

is nonsingular, i.e. 

Fia(XB, t)= Oxi (2.1) 
OXA 

J = det {F/a } 4: 0. (2.2) 

Without loss of generality we may then assume: J > O. The mass density p is given 
by 

p(Xa , t)=-~- po(XA) , (2.3) 

where Po (Xa) is the mass density in the reference configuration. The deformation 
gradient may be expressed as the product  

FjB=Rj~ VkB, (2.4) 

where Rjk and UkB are components of a proper orthogonal tensor and a symmetric 
positive-definite tensor, respectively. 

We suppose that it is always possible to assign a positive temperature g (X , ,  t) 
to each Xae~B. 

For  any deformation of the body, the equations of balance of linear momentum, 
moment of momentum, and internal energy hold. Hence 

PXi Otij pbi=O,  (2.5) 
Oxj 

fi j = tj ~, (2.6) 

p s + - - ~ -  ti j - ~ i  - p r = v  , (2.7) 

where tij is the stress tensor, b i the specific body force, e the specific internal energy, 
q~ the heat flux vector, and r the specific energy supply from the external world, 
per unit time. The dot denotes the material time derivative. 

* Throughout this paper we employ Cartesian tensor notation. 
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Let t/(X a, t) be the specific entropy and pi(XA, t) the components of the en- 
tropy flux. We postulate that the entropy production is nonnegative and hence 
write the entropy balance in the form 

�9 Op~ r 
p q + --~x - p -ff > O . (2.8) 

Here we have assumed that the entropy supply from the external world is equal 
to the energy supply divided by the temperature. In the earlier works cited above 
it is also assumed that the entropy flux is equal to heat flux divided by tempera- 
ture. However, we here make no such assumption. 

Let us introduce the specific free energy ~ and a vector ki signifying the differ- 
ence between entropy flux and heat flux over temperature 

O - e - ` g t l  k i -P i  q~ (2.9) 
' `9 " 

If we insert these quantities into (2.8) and make use of (2.7), we are led to 

1 O~ci ,9 Oki 1 0`9 
-~-O~+Tt 'J77]  ~ p Ox~ 0`9 q'~-~xi >=0" (2.10) 

It is assumed that the histories of deformation and temperature within the 
body determine e, t/, tij ,  ql, and Pi or, equivalently, 0, t/, t~j, q,, and k~ as func- 
tions of XA and t. The functional relations which connect these functions with the 
histories of deformation and temperature are called constitutive equations; their 
form characterizes a material. 

We postulate that the constitutive equations and the balance equations (2.5) to 
(2.8) hold for every history of deformation and temperature in the body ~ ,  
provided of course det {Fia} > 0 and ,9 > 0. 

Then the possible constitutive functionals are subjected to the requirement 
that the entropy production be nonnegative, i.e. they are restricted by (2.8) or 
(2.10). The balance of momentum and of internal energy provide no further restric- 
tions on the constitutive equations; an arbitrary choice of xi (XA, Z) and ,9 (Xa, z) 
[ X a e ~  and - o o  < z < t] merely determines the body force and energy supply. 
The balance of moment of momentum is to be satisfied by requiring any constitu- 
tive equation for t~j to be symmetric in i andj .  

We wish to emphasize the contrast in the basic concept of this paper and the 
usual theory of nonequilibrium thermodynamics. We lay down a general constitu- 
tive equation for the entropy flux, or equivalently, for kl as well as for free energy, 
entropy, stress, and heat flux, whereas normally it is assumed that p ,=  qd& This 
amounts to postulating a very special constitutive equation for p, .  

To simplify later calculations, we introduce material components of heat flux, 
entropy flux, and of the vector k~: 

Q jOXA p j a X A  , aX4 k. 
a = - ~ q l ,  a = - ~ i  Pi K A = J  Ox i , (2.11) 
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where J is the determinant of the deformation gradient. It is easy to show that 

0 ( l  Oxi" ~ 
Ox, Q- ~2-2! =0. (2.12) 

We use (2.11) and (2.12) to transform (2.10) into a form which is appropriate for 
later use: 

S 1 0 K A  1 1 
p d c3Xa p,.9 d QA-~--f >=0" (2.13) 

t "  

In (2.13) we have also replaced &~j/Oxi by .#ja(F-~)Ai. 
The possible constitutive functionals are restricted not only by the entropy in- 

equality but also by the principle of invariance under superposed rigid motions. 
Let x* and xi be the positions of a particle in two motions which differ only by a 
superposed rigid motion. These positions are related by 

x* (Xa, t) = Oi j (t) xj (XA , t) + bi (t) , (2.14) 

where Oij(t) are the elements of any proper orthogonal matrix. For two such 
motions we assume the following: 

i) The scalars ,9, e, t/, and ~ are unaffected by this superposed rigid motion. 

ii) The transformations of the components qi, Pi, and k i are 

q*=Oijqj; p*=Oijpj; k*=OHkj; 

hence the material components Qa, Pa ,  and Ka are unaltered. 
iii) The components tij for the two motions are related by 

t* j=Oik  Oil  tkl . 

This principle is closely related to the principle of material frame indifference*. 
However, in the latter principle the above transformation properties are valid for 
all orthogonal matrices O~j instead of for all proper orthogonal ones. 

3. Homogeneous Simple Materials with Fading Memory 

Constitutive Equations 
In a simple material, the quantities ~, hi, ~, QA, and K A at the particle Xc 

and time t are determined by the histories 

F:R(s, Xc)=F~B(t-s, Xc) , ~t(s, Xc)=~(t-s ,  Xc) [O=<s<oo] 

of the deformation gradient and the temperature at Xc and by the present value 
of the temperature gradient at this particle. It will turn out to be convenient in 
later calculations to treat the present values FiB (t, Xc) and ~ (t, Xc) of the deforma- 
tion gradient and the temperature and their past values separately; let us therefore 
introduce the difference histories: 

F~Ba(S, Xc) =FIB(s, Xc) --FiB(t, Xc) 
g~ (s, Xc) = gt (s, Xc)-  ~ (t, Xc). (3.1) 

* See [7] for a review of the history of this principle. 



122 I. MOLLER: 

Then the constitutive functional relations for ~,, tit (= t t i), t/, QA and Ka are 

~b(Xc,t) ~= [FtBd(S, Xc),I)ta(s, Xc);FiB(t, Xc),oq(t, Xc),~Xc] 
~---s~O 

t . (Xc, t )= t .  Bd(S, Xc),S~(S, Xc);FiB(t, Xc),~9(t, Xc) ' O~ 
s = O  

b 
QA (Xc,t) = ~A F~Bd(S, Xc),S~(S, Xc); F~B(t, Xc),~ Xc), O~ 

s=O 

Ka(Xc,t)= RA F~Bd(s, Xc),g~(S, Xc); FiB(t, Xc),~(t, Xc), ~3~ . 
s = O  

We assume that the material is homogeneous. Then a reference configuration 
exists in which the functionals are independent of the particles; we may regard 
our coordinates Xc as the coordinates of the positions of the particles in this 
particular reference configuration. Then the functionals in (3.2) do not depend 
o n  S c .  

In formulating the constitutive equations (3.2) we have used the principle of 
equipresence [8], according to which the same independent variables should appear 
in all constitutive equations unless this contradicts the inequality (2.13), invariance 
under superposed rigid motions or some material symmetry. 

More Compact Notation 
Following COLEMAN [5], we  introduce the ten-dimensional vectors 

(fiA, 0). 

If F~A and ~ were completely unrestricted quantities, the collection of all these 
vectors would form a normed linear vector space ~r under the following definitions: 

1 1 2 2 1 2 1 2 

~(F~A, ~)+ fl(F~a,/)) = (~t F~A + fl F~A, ~t ~9+fl ~), (3.3) 

II (F~A, ~) II = 1//Fia F~a + ~2. (3.4) 

However, as is discussed by COLEMAN & MIZEL [9], the restrictions det {FiA}>0 
and/~ > 0 lead to the conclusion that 

A, = (F,a 0) (~ = 1, 2 . . . . .  10) (3.5) 

form a cone C c d .  We define 

and correspondingly the functional 
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Let us introduce also 
I~=(0,1) ,  (3.8) 

S~ and I~ are vectors e ~r 
Using this notation, we can write the constitutive equations (3.2) in the form 

o~ OA~ -I 
~k(Xc' t)=~=Po [Ataa(s'Xc); A"(t'Xc)'-~B Iv] 

[ ~A v _ 1 Z~(Xc ' t)=~=o ~;~ Ataa(s'Xc); Av(t'Xc)'-O-~B lv] 

oo [ (9A v 1 
QA (Xc, t) = ,=o f2a Ataa(s' Xc); A,(t, Xc), - ~ B  Iv] 

[ aAv _ 1 Ka(Xc, t)=~=o~a Ataa(s, Xc); Av(t, Xc),-~X-~B IQ . 

(3.9) 

These functionals must satisfy the inequality (2.13), which in the present compact 
notation has the form 

1 ,9 aKa 1 1 ?A, 
-~+2;~/i~-~---j--~-.0X A d p`9 QA-~AI~>O. (3.10) 

Fading Memory 
Let h (s) [0 < s < oo] denote a positive, monotone decreasing, square-integrable, 

continuous function. 

Let F, (s) [0_< s < oo] with F~ (0)= 0 be a vector ~ ~r such that its h-norm 

oo 

tl G lib--- j li F=(s)II 2 h2(s) ds (3.11) 
0 

is finite. The collection of all such F,'s forms a Hilbert space ,9' h. I[ F, l[h is called 
a fading-memory norm, because the recent past of F,(s) contributes more to [I F, [Ih 
than does the distant past. COLEMAN & MIZEL in a recent paper [9] thoroughly 
investigate the properties of the "influence function" h(s) in norms of the type 
(3.11), subject to physically reasonable hypotheses on the space. 

The principle of fading memory as laid down by COLEMAN in [5] states that 
the functionals (3.9) are Fr6chet-differentiable throughout their domain in 6ah 
with respect to the h-norm. 

Recently MIZEL & WAnG [10] have re-examined the assumption of fading 
memory, emphasizing the fact that the domain of the functionals (3.9) is only 
the cone C=~r They get the result that the chain rule is applicable for these 
functionals if the following conditions hold: 

i) A~a(s, Xa)=Apa(t-s, t, Xa) as a function of the argument (t-s) is 
smooth, i.e. Apa(t-s, t, Xa) is absolutely continuous, Apa(0+, t, Xa) exists, and 
A~a(t-s, t, Xa)c Seh. 
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ii) The functionals (3.9) are smooth for each A~ n (s, Xa), i.e., for all F~ (s, XA) ~ 
for which A~n (s, Xa)+ F a (s, XA)e C n 5an the following relation holds: 

Go 
[A~ ~ (s, x~)  + rp (s, x~)]  

.=o ~ ~ (*) 

= ~ [A~n (s, Xa)] + 6 ~ [A~ d(S, Xa) ] F r (s, Xa) ] + O (11Fp lib) 
$=0 s=O 

where 6 ~ [A~ a (s, XA)IFa (s, XA)] denotes a continuous functional in A~ a (s, XA) and 
a continuous linear functional in Fp (s, Xa). Continuous in both cases means con- 
tinuous with respect to the h-norm. 

MIZEL & WANG justify the application of the chain rule only for the time differ- 
entiation of functionals, but we must differentiate the functionals also with respect 
to XA. By following the proof of MIZEL in [10] we can easily see that the conditions 
i) and ii) of MIZEL & WANG allow the application of the chain rule also in Xa- 
differentiation, if we complete i) by requiring that smoothness of Ataa(s, Xa) in- 
eludes that 

OAtfl d (S, XA) ~ Sh ( n  = 1, 2,  3 ) .  
ox,, 

In using the chain rule, we do not wish to emphasize every time the mathema- 
tical refinement of COLEMAN'S assumption of fading memory by MIZEL & WANG. 
Therefore we shall call our functionals ~ Fr6chet-differentiable (and 6 ~ the 
Fr6chet-differential) if they and their argument functions satisfy the conditions i) 
and ii) which we assume. Furthermore we require that the functionals be continuous 
and differentiable in 

OA~ (t, XA) 
Aa(t, Xa) and OXc It" 

Then we obtain 

I" t A OAr A]a(S)] +OA~ ~ t OAr 

and 

OAr OAt~a(S) [Ataa(S); A,, oar - ] OA, O KA [A~d(s);Au ] +  Oa~"a 
O X A -- 3 R A ' -~c I~ ---~X-A-- -~c l r ] -~a + 

t OA, 02A~ (3.13) 
+O:A:, Ra [Aaa(s);Au,-~cI, ] OXAOX. I,. 

Here we have omitted the dependence of the argument functions on t and XA. 
6 p and 6 Ra are the Fr6chet-differentials of the functionals p and Ra. 

* For simplicity in notation, we have omitted here the dependence of ~ on A# (t, XA) and 
(OAr/OXc) I r. 
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4. Restrictions Imposed on the Constitutive Equation (3.9)4 by the 
Inequality (3.10) 

Let us introduce the constitutive equation (3.9) into the inequality (3.10). Then 
by (3.12) and (3.13) we obtain 

{~a ' OA, OAv _ "1) [AtJa(s);A,,~ccI,]-Oa, t~[A~a(s);A~,,-~cc',]~A,- 

+ 7  - .  a T q  > 
1 OA~ OAt~d(S) 

+-f ~ aRA [A~d(S); A~,-~cI, ~ ] -  (4.1) 

OA= 1 ( oa~' I" 
--OOAv l p [Atpd(s);au,-~cla] \~XA ] I.+ 

1 [ OA~ "1 02A~ 
+ - f  0---0ea, Ra [Ataa(s) ;Al"-~cI:]  OXaO~ Ia>O" 

This inequality must hold at every particle Xceg# for any history A}(s, Yc) with 
YceN. Hence it must hold in particular for any choice of 

A~(s, Xc)=(Ox:(s'Xc) St(s, Xc) ) 
OXB ' 

OA~(s, Xc) = [02 x~(s, Xa) OSt(s, Xc).'~ 
OXA \ OXa OXB ' OXA 1' 

02A~(s' Xc) I~ - Oz st(s' Xc) 
oxa ox~, oxa ox,, 

that does not violate the symmetry in the last two expressions. Hence the six 
independent quantities 

02A~ 02 o'9 
OXA OXB 1~- OXa OXB ' 

which appear only in the last term of the inequality, may be chosen arbitrarily. 
From the inequality and our constitutive assumptions we then obtain (with 
(aA,/OX~) I, = OSlOX~) 

0 0a R•+0 0a R~=0.  (4.2) 
OXB 

Similarly if we assign arbitrary values to 

aA~ 
aXA (6 = 1, 2 . . . . .  9), 
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i.e. to 
0F/B = _ _  
ax~ 

we see that the inequality requires that 

Let us introduce 

g2 Xi 

OXA ax,, ' 

OV~ B RA + OF,, RB = O . (4.3) 

( 0Ao \" 

arbitrarily yet change the term 

~ Aid(s); A., 

as little as desired. Hence we obtain 

O oa p [A~d(s); Au, OA~ ] oxa ~ - c I ~  = 0 .  

OA]d(S) 
Now the history 0X A 

the remaining terms in (4.1). Thus we have 

[A~ d(S); ._,,A JA~ [ [ 0A~d (S) ] 6RA ox~-,I ax~ j=0 [- 

(4.7) 

- -  can be assigned arbitrarily and independently of all 

OA~d(S) (4.8) 
for any OXA 

(AB'A~ 3 4 ( -~B)  " (4.4) ,AB,AB)= F1B,F2B,F3B, 08 

Then (4.2) and (4.3) can be expressed as 

Oa,~ Ra + OA,~ RB = O. 

Consequently it can easily be shown that KA must have the following form: 

4 4 
K A =  Z ( ' l i j k l  A i A J  A k A l ~ ( ) i j k  Aoi AcJ Aok + aaABCDEX'-B"e'xC -'~Dz'IE-I- E aaABCD 

i , j , k , l = l  i , j , k = l  
i<j<k<!  i<j<k  

,* 4 (4.5) 
+ E f2A~cABAJc + E s �9 

i , j = l  /=i 
i< j  

Here the f2-tensors are functionals of A~d(S) and functions of 0. They are anti- 
symmetric with respect to permutation of any of the lower indices, e.g. 

K2~B= ~ (4.6) --  ~'~BA �9 

The main implication of (4.5) is that KA must depend linearly on the components 
of each vector A~B ( i= 1, 2, 3, 4). 

Let us go back to the inequality (4.1). By use of the assumed continuity of 
6 ~a  with respect to the h-norm, it can be shown possible to choose 
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Equations (4.5), (4.6), and (4.8) represent restrictions imposed on the constitutive 
functional for K a by the inequality. 

The inequality itself is reduced to the form (note that p is independent of 

OA r 0.9 
OXc Ir = OXc 

according to (4.7)) 

. OA, I,] --Oa.P[At~,(s); A~]} A,-bpEAtt,(s); A.Izi~,(s)] + {Z6 [ A;"(s); Au -~c 

OA r _ ] + l d  _Sp {da~a [A;,(s);  A~,,-~c Iv]- (4.9) 

0A r _ ~_~__~a [A,aa(s);Au,__~cclr] } 08 

COLEMAN* obtains this same form short of the term 

OAr ] 08 
Oa ~a A~ d(s); Av, -~c Iv OXA " 

COLEMAN'S reasoning following his equation (6.17) is not affected by this difference, 
and we finally obtain the inequality 

1 0'9 (4.1o) 

in the same way as COLEMAN finds his inequality (6.29). 
a is defined as 

(4.11) 

Putting ~'9/0X a zero, we see that a is nonnegative. COLEMAN calls it the internal 
dissipation. 

Summarizing this section, we can say that the constitutive functional -~A is 
subjected to the two restrictive requirements (4.5) and (4.8) and that the entropy 
inequality reduces to the form (4.10). 

5. Further Restrictions Imposed on the Constitutive Functional (3.9)4 by Invariance 
under Superposed Rigid Motion 

According to the principle of invariance under superposed rigid motions, laid 
down at the end of Section 2, K A is unaffected by this superposition: 

K* = Ka.  

* See equations (6.17) and (6.5) in [5]. In comparing, note that COLEMAN has replaced 
~la [/l~d(s), Aj, ln'$d(s)l using equation (5.17) in [5]. 
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Hence the functional R a is restricted by the following condition: 

~A [Oij(t--s)FJB(S),St(S), ~--~c]----~Ra [F/~(s); 8'(s), ~C-c] ' (5.1) 

which has to hold for any proper orthogonal matrix Oij(t). 
According to (2.4) we may write 

FJB (S) = Rj k (t -- S) U~B (S), 

where R is a proper orthogonal tensor and U is a symmetric positive-definite 
tensor. In (5.1) we may choose Oij(t-s)=R ~ i(t-s), and so we have 

It is more convenient for us to use the tensor 

COE=[J~E=FjDFjE, CDE=CED . (5.3) 
Hence we obtain 

KA(Xc , t)= RA [F~na(s), 8:(s); F,,, 8, --OOff-cXc ] 

=~a [C~En(s), 8:(s), Co~, 8, :OXc] " (5.4) 

According to (5.4), Ka must depend on CoE(t)=Fiv(t ) Fi~(t), i.e. K a must 
depend quadratically on F1 B, F2B, and Fan; on the other hand, (4.5) showed 
that Ka can depend only linearly on these quantities. Hence we conclude that K a 
can not depend at all on F,A, and (4.5) reduces to 

08 
Ka = QaB - ~ +  Qa, (5.5) 

where we have set Qa4n=OAn. In (5.5) Qan and s a may still be functionals of 
Fin a (s) and O~ (s) and functions of 8, and 

~ a  n = - Q n a .  ( 5 . 6 )  

Let us now determine explicitly the restriction placed upon Ra by (4.8). For 
this calculation we abandon the summation convention. 

Let us consider the Fr6chet-differential 

[ ~OO [OCt~ 08~(S).] 
6RA 

=aRA [~ aCt~ aS~(s).]. (5.7) 
axa ' oxA ] '  

this is a linear functional in the ten functions 

ac~,~(s) aO~(s) 
aXA ' a x a '  
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of which only seven are independent because of (5.3). We can rewrite (5.7) in the 
form 

~C'cod(S) l + 
' as,, 

+,~h, ,  [,.., oO~(s) ] (5.8) 

/ [ axA J" 
Here 

bCD~A ['~I aC*cDa(s)aX A "] 

are those parts of the functional 

and b~R,i [ ~  aS~(s)l 
L axA J 

~AA [~ oc~D,,(s) oO~(s)] 
OXA ' OX~, J 

that are linear in 

Oc*c.a(s) and OO~(s) 
OXA c~X4 " 

respectively. Without loss of generality we may sasume 

[- (5.9) t [ ax~ j ox4 j '  

since only six out of nine functionals 

for each A are defined by (5.8). The functionals 

I ^ aS~(s) 1 6CDRA [N OC~Ed(S).]OXA ] and ~RA [ "  OXA j 

are equal to the Fr~het-differentials (5.7) if C~:De(s ) or g~(s) are the only argument 
functions that depend on XA. If those functionals are zero for all 

o c ~ ( s )  and O~'.(s) 
ox. ox.4 ' 

^ 

respectively, then R A does not depend on C~:,d(s) or 8~(s). 
Now according to (4.8), (5.4) and (5.8) we have the condition 

o=222, cDa.[- r~l~ 
A c , 0XA J + ~ 6 ~ A L  [ 0XA J '  

which has to hold for all 
~Cc o.~(s) 

aX,,,_ ' 
Hence 

axa"  

(5.10) 
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which means that RA does not depend upon Cbod(S) and 0~(s), and consequently 
by (5.4) Ra is independent of F[Bd(S) and ~td(S). 

Summarizing this result and (5.5) and (5.6), we can say that K A has the following 
form: 

d0 
Ka = f2aB(~) -~-~ + f2a(~), f2aB= --OBA" (5.11) 

OAB 

Hence the material components of the entropy flux are (see (2.9)) 

and by (2.11) 

pa = _ ~ +  flAB(,9 ) ~,.9 

~ 1 = + 1 

(5.12) 

(5.13) 

The second term on the right-hand side of (5.13) is solenoidal; therefore this term 
does not contribute to the entropy inequality. Using (2.12), we find that 

dxj ax--f + FjA Oa axj " 

Accordingly, if we insert K a from (5.11) into our reduced inequality (4.10), we 
obtain 

1 ( 1 1 a l2A)(3~ 
a - - - f  - ~ z - Q A  p 08 -~X-f>- - 0 ,  (5.15) 

or finally with (2.11) 
/ 1 1 3~A\ r > 0  

~ - - [ ~ z - q i - - - ~ - F i A - - ~ )  C~X, = " (5.16) 

6. Material Symmetry 

It might seem at first sight that (5.12) or (5.13) considerably modify the usual 
result. However, the class of materials in which a material vector t] and a material 
antisymmetric tensor f2 can exist is rather restricted. We now find what properties 
those materials must have. 

Let us change the reference configuration of the body. The unimodular trans- 
formation matrix 

i I-IcE= d e , Idet{HcE}l=l (6.1) 
h 

maps the coordinates XE into the new coordinates X~. In the new coordinates (5.11) 
has the form 

KM = HMa HN B g2A B ~ + HMA t2A" (6.2) 
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All transformations for which 

! _ _  
I2M N = Hun  HN B I2,i a = I2M N, 

t _ _  (6.3) 

are said to belong to the symmetry group of the material. 

If the symmetry group is formed by all transformations that map (say) one 
plane into itself, the material has a preferred plane; if only transformations HcE 
with det {l ice } = 1 belong to the symmetry group, the material does not possess 
central symmetry. 

We now determine the general transformation for which (6.3) holds and from 
this infer properties a material must have in order for t] and f2 to exist. 

The components f2 u and g2MN in (6.3) are referred to a certain basis el, e2, ca. 
In general we may assume for instance that this basis has been chosen so that 

t~M = ( a l ,  0, 0), 

(00 0 o) 
0 

o9 2 0 

To give an intuitive idea, we note that this means that el is in the direction of the 
polar vector ~ and e2 is in the direction of the axial vector iS, which can be 
associated with the antisymmetric tensor 12. This is not possible, of course, if t2 
is parallel to aS; we treat this case later. 

Then it is an easy problem to show that (6.3)1 requires 

a b c  

HM~---- 0 I f  ' e  a f - d c = + _ l ,  (6.4) 

while (6.3)2 requires 

01 il HMA = 0 i , i I-- k j  = + 1. (6.5) 
k 

Thus (6.3) allows for transformations of the form 

01 il HMa= 0 1 . (6.6) 
e 

(6.6) describes all those transformations that 

i) leave the direction and length of O unaltered, 

ii) preserve a plane through ~ and the distance of lines parallel to t] in this 
plane, 

iii) preserve the distance of the preserved planes mentioned in ii). 

1 0  A r c h .  R a t i o n a l  M e c h .  A n a l . ,  V o l .  2 6  
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Hence we conclude that a material in which a polar vector ~ and an axial 
vector 03 which are not parallel exist, cannot have central symmetry and must 
possess all those preferred elements mentioned in i ) - i i i )  as preserved elements. 

There is, however, a case in which the material may have fewer preferred 
elements and still allow for the existence of Q and 03. If t] and 03 both point into 
the el direction, then (6.3) requires that 

i~176 I n"uA = c d 
1 + d e  " 

e - -  

c 

These are the transformations that 

(6.7) 

i) leave the direction and length of ~ unaffected, 

ii) preserve a plane that does not contain ~. 

There are still two special cases which must be discussed, namely the cases in 
which either ~ or ~ is equal to zero. The symmetry group is then formed by the 
transformations (6.4) and (6.5), respectively. 

The transformations (6.4) preserve a plane; hence if ~ = 0  and Y2,0, the 
material must have a preferred plane. 

Similarly, the transformations (6.5) preserve a length on a line and the direc- 
tion of this line. Hence if ~ , 0 a n d  ~2=0, the material must possess a preferred 
direction and a preferred length in this direction. 

In a material which does not prefer any of these elements, we have 

hence 
~ = 0  and Y2M N = 0; 

ql 

Thus we have proved that in such a material, the entropy flux has the form usually 
assumed as a postulate. 

If the material symmetry forbids the existence of a vector ~ but allows for t2, 
we still have (see (5.14)) 

Ox~ Ox~ 

i.e. the divergence of the entropy flux has the form usually assumed. 

7. Heat Conduction in a Homogeneous Thermoelastic Medium 

In a thermoelastic material, the quantities e, tl, t i j  , qi, and pl at a particle X a 
at the time t are determined by the instantaneous values of deformation gradient, 
temperature and temperature gradient at that particle. Hence a thermoelastic 
material is the special case of a simple material in which the constitutive functionals 
(3.2) reduce to ordinary functions. 
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The same argument which we applied in the theory of simple materials with 
memory can be used to show that the final inequality for a thermoelastic material is 

_(p__~_ 1 aaa(o)] 0 ' 9 > o  
q i - - - ~  - FiA -if8 ] Oxi = " (7.1) 

Comparison with (5.16) shows that the internal dissipation a vanishes in this case. 

Let us consider a thermoelastic material in which the vector f~, as discussed 
in Section 6 does not vanish. According to the considerations in the last section, 
the symmetry group of such a material contains transformations of the form (6.5). 
These are transformations with preserve the direction and length of f]. Hence a 
material which has a non-zero f~ cannot possess central symmetry and must at 
least prefer one line and a length along this line. In this section we consider a 
material for which these are the only preferred elements; if there are other pre- 
ferred elements as well proper regard must be given them in the calculations below. 
The necessary alterations can easily be made. 

Equation (7.1) shows that the heat flux in the absence of a temperature gradient 
need not vanish; we have 

'92 0(2a('9) (7.2) 
qi(FJs'O'O)=--f -FiA 00 

But this is not as remarkable as it sounds because the divergence of this heat flux 
vanishes, and hence this heat flux cannot give rise to a time rate of change of the 
internal energy. 

Let us now consider the case when the temperature gradient does not vanish. 
The heat flux in a thermoelastic material has the general form 

From (7.2) we get 

(7.3) 

'92 t3f2a ('9) (7.4) 
~A('9, C .  E, O) = j a 0 

Hence if we introduce 

~A=O A 82 0Oa('9) with ~a(0, CD~,0)=0,  (7.5) 
J 08 

we have 

q,=(~,tq- 0~J a"QA(O)~F~A.00 ] (7.6) 

Hence we see that such restrictions as were obtained for the coefficient ~a  in (7.3) 
by means of the usual inequality remain correct if we merely replace ~a by ~A- 
Thus the presence of the term 

05 aO~(8) 
J d 0 FiA 

10" 
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may have physical implications because q~ now contains a term linear in Fia with 
a factor which does not depend on the temperature gradient. 

Let us give an example of what may occur with such a term present: we con- 
sider an undeformed body ( F i a = f i a ) ,  so that 

qi = ~i + 02 012l(3-------)-)) (7.7) 
00 ' 

where ~i now may depend on 0 and O0/axj. Since we consider a material which 
has only one preferred direction, the vector 

must be parallel to t2i(3): 

do1(0) 
O0 

02 012,(0) = a(3) 12,(3) (7.8) 
dO 

In (7.7) we now restrict attention to terms of order lower than the second in 
03/axj. Then ~i  must be a vectorial combination of the two available vectors 
and grad 3, which is linear in grad 3 and vanishes if grad 3 vanishes; hence 

a o  - a o  
~i = - x ~ + b (~2 x grad 3)i + c f2 i . 

\ ~ Oxj] 

If we insert this into (7.7), we find with (7.8) 

qi = - x - ~ t  + b (f2 x grad 0)i + c \ j dx~] 0i + a (0) I2~. (7.9) 

The inequality shows that the tensor {x 6 1 i - c  0 i ~2j} is nonnegative definite. 

F rom (7.9) and (7.8) we obtain the following heat conduction equation when 
3 is time-independent: 

00 (x6i.i-cf2tf2.i) a23 =Af2~ , (7.10) 
ax~ Oxj Oxt 

where 
[ a a  a2 \ l I2~ 

a , =  , 

for simplicity we have assumed that r ,  b and c are constant coefficients. 

Hence we can decide whether or not the proposed generalization of the entropy 
flux is meaningful by measuring the steady state temperature distribution in a 
thermoelastic material of the kind considered. 

Let us treat  the case in which 3 depends on x only and ~2~ points in the positive 
or negative x-direction. Then we get the differential equation 

0t! ~--- 1 
+ T O ' ,  (7.11) 
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with the solution 
1 

,9= A ei~:'+ B (7.12) 

and with + or - according to whether ~t points in the positive or negative x- 
direction. In (7.11) and (7.12) we have set 

1 A 
(7.13) 

2 x - c  Iffl 2 

If ~ (0)= To and/)  (L)= TL, we get 

1 
~ •  L L 

e~-~ e-~-~ 

i L • TE 
[ (Tz-  To) e• To e 24_ Tz e 2a], (7.14) 

where again the upper sign corresponds to the case when g2~ = ( +  1, 0, 0) and the 
lower sign to the case when r = ( -  1, 0, 0). Fig. 1 shows the different temperature 

r~ 

ro 

(.,~ > 0 assumed) 
Fig. 1 

L x 

distributions in these two cases, and the dotted line denotes the classical linear 
distribution 

oc= TL- To x + To. (7.15) 
L 

Thus if we measure the temperature at any point 0 < x < L ,  we expect different 
results according as t ] t = ( +  1, O, O) or t]z=( - 1, 0, 0). 

8. Dipolar Fluids 

Constitutive Equations and Restrictions Imposed on Them by the Entropy InequaBty 

In the preceding sections we dealt with simple materials; it turned out that 
the generalizations of the entropy flux proposed here lead to a modification of 
the usual theory only if the material considered possesses rather uncommon sym- 
metries. However, this is not necessarily so for non-simple materials. Let us 
briefly investigate the effect of this generalization on a non-simple material. We 
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choose  a d ipo la r  f luid which is character ized by  the fol lowing set of const i tut ive 
equa t ions :  

tij=tij p, dij,Aijk,O, 08 (8.1) 

The  var iables  dij and  Aij k are  def ined by  

1 / OX i D2~j~ 02,yi 
a,j=-~ t-~xj +~-~ ) ,  Afjk = DXjDXk . (8.2) 

Inse r t ion  of the  const i tut ive equat ions  (8.1) in to  the inequal i ty  (2.10) y ie lds*  

I 1 Dff 6ij) di .l__l_ D8 8 (Oki Og 

a k  i 02~ a k  i Ddjk ~k  i DAjk l Dk i Op.~>__0. 

( 0~ ) DXi~Xj "[" Ddjk Oxi ~ DAjk~I Oxi "] 019 oxiJ-- o- g 

(8.3) 

The inequal i ty  (8.3) mus t  ho ld  for  any 

O~ ~" " " D2~ DAj(kI Dp (8.4) 
O' \'-~Xl] d(ij), hicik), OX(i DXj)' Dxi) ' DxI" 

where the bracke ts  ( ) indicate  symmet ry  with respect  to the b racke ted  indices, 
These quant i t ies  can  be chosen a rb i t ra r i ly  and  independent ly  of o ther  terms in the 

* It is true that it is customary in the theory of multipolar materials -- of which the dipolar 
fluid is a special case --  to start with equations of balance more general than those used to derive 
(2.10) (e.g. see [11], [12]). But since we are interested in what modifications of the classical results 
are caused by the proposed generalization of the entropy flux, we do not consider generalization 
of the equations of balance as well. 
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inequality; hence we obtain the following statements: 

: o  

0~ =0 

0r =0 
Odiy 

0 ~  = 0 ,  
OA~jk 

(8.5~ 

0 k~ Jr 0 kj = 0 ,  (8.6) 

Oki ~ Okt + dkk 
OAjk t OAji k dAjt i = 0 ,  (8.7) 

0 k~ = 0. (8.8) 
dp 

Thus the inequality reduces to 

tij.k.p 0 ~  1 (qi_oq 2 dki] 0,9 Ok i Ajki> 0 (8.9) 

The differential equations (8.6)-(8.8) can be solved. Omitting the rather tedious 
details, we obtain 

3 0~9 ~ ~p a0  
Oi(ab)(lk)(rs)jA~abApzkA~,rs~X'-f+g ~..~= 1 Of (,, b) (l k) j A~, a b Aa z k ~-xy + 

=,~,'~= 1 ~<#<~, ~<# 

3 ~ A (3,9 Q 0,.9 ~ ~(ab)(tk)(rs)A~abAftkAvrs + "4" ~ ~ i (ab) j  =(ab)-~.  "{- i j - ~ .  "~- L =fly 
==1 j j ~,f,~=l (8.10) ~<#<~, 

3 3 
O~(ab)(tk)A~abAptk + 2 O~(at')A'ab +ff2i" 

~,p= l a~= l 

The f2-tensors can depend on dkt and 0, and the following symmetry relations 
must hold: 

The f2-tensors are symmetric with respect to the bracketed indices, e.g. 

~i  (a b) = O~ (b ,o, (8.11) 
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they are antisymmetric with respect to the index pair i, j ,  e.g. 

~'~i j = - -  ~c~j i ; ( 8 . 1 2 )  

and the sum of three components which result from cyclic permutation of i and 
two bracketed indices is zero, e.g. 

~c'~ (a b) + ~'~a ~ (b i) "JI- A'-~ (i a) = O.  (8.13) 

Further Restrictions on the Constitutive Equations 

From invariance under superposed rigid motion we know that the tensors f2 
in (8.10) must be formed from dij, 6ij, and eij k. Hence it follows immediately 
that 

~2i = 0 (8.14) 
121j=0, 

and after some calculation using (8.13) 

~"~ n p = ( D 1 6  i ot O n p - -  --~--- ( (~ i n rct p "~ (~ i p (~ ot n) -~ (-D 2 (~ i ot dn p - 0) 3 0 n p d i g - -  

0922 (6"pdin+6""dip)+-~ - (ri"d'P+fiPd'")" 
(8.15) 

In (8.15) the coefficients 0)1, 0)2, and 0)3 may depend on 0 and dn,. It is also easy 
to find the form of the other tensors f2, but we can omit this because from now 
on we want to restrict ourselves to the case linear in the sense that we neglect all 
terms in (8.9) which are of order higher than the second in the quantities 

O0 
d i j ,  A i j k ,  OX i . (8.16) 

If we satisfy this requirement, the most general constitutive equations for t~j, qt 
and ki are 

t~j = - p  61j+(~-~iz) dn n 6tj + 2# dij , (8.17) 

O0 
qi = --Ir T --ff:S---tCA A i n n - - K B  A n n i ,  ( 8 . 1 8 )  uxi 

k,=0)~ nn-A. . , )+0)~ d .n (A i . . -Ann i )+  

+0)2(A~kldkt--Atlkdik)+0)3(Akt~dkl--Akttdtk). 
(8.19) 

In (8.17)-8.19) the coefficients p, ~, #, XT, rCA, and xa may depend on 3 and p. 
From (8.8) we know that 0)0, 0)~, 09 2 and 0)3 depend only on 3. 

Note that in (8.19) we must allow for those second-order terms in which dpq  

occurs; otherwise second-order quantities in (8.9) arising from its last term would 
be neglected. 
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The Inequality, Final Form of the Constitutive Equations 
Inserting (8.17)-(8.19) into the inequality (8.9), we get by a lengthy 

straightforward calculation 
but 

_ (p+p2 0~ -~p d,~) +( d2,+ 

(? 
+\; - -  0 ({ (D2 + 1"i-~ (D2) �89 0 ((-.t.,)i "l" ~" (.,UI2- ~ ( 2 ) 3 ) I t A i t i l t A i l i l  

X -- ~((..O I "1-~ 09 2 --"~ ( . D 1 ) / ~ l l  i / \ A , ,  i I 

+ (8.20) 

+ 2/~ <d,~> <dij> + 0(2 ~2 + c~ <As k i> <Ais k> + 0 co 3 <Aj k l> <As k *> + 
3 3 

+0 ~ Asss(w2Aiis+waAsii)-,.9 ~ Assi(Co2Aiss+CoaAssi)>O, 
i , s = l  i,s=l 

where the crosses indicate that the matrix in (8.20) is symmetric. Here we have 
introduced the traceless parts of dis and Ai~k. 

<dij>=dtj-�89 

<Atjk>=Ai.ik--~-e{(4Aitl--2Atti) tSjk+(--Aktt+ 3Attk)tSij+ 

+ ( - A j l l +  3Atl j) 3ik}. 

(8.21) 

The inequality (8.20) is satisfied for all dnn, aO/axi, A , l ,  Atlt, <dis>, and <Aijk> 
if and only if the following relations hold: 

p=p2 ap 

~>o 

#>0 

~r 

Co2=0 

tO3=0 

@ =0 
xA = x B =  - ~2 a o~~ 

d0 

(8.22) 

Thus the constitutive equations for $, tij, qi, and 

kt=p t qi 
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have been reduced to the following forms: 

~b = ~b (p, 0) with 

2 fij= -p(p, O)6ij+[~(p, )-~p(p, 0)] d,,6~j+ 
+ 2 # (p, 0) d~ j with 

ql= --tOT(p, O) ~-~a(~)(Aitt-Atti) with 
c x  i 

=-~- + to~ ('9) (Al I ~ - At I i) with Pf O t  

@ 
~ = - t /  

or p=p2.~p C>o, g=>o 

XT>O 

aco ~ 1 
00 ~ xA. 

(8.23) 

Equation (8.23)4 shows that in a dipolar fluid of the type considered, the entropy 
flux need not be equal to the heat flux divided by temperature. This result presum- 
ably indicates that the generalization of the entropy flux leads to alterations in 
the theory of multipolar materials which could well prove to be of less trivial 
character than they are for simple materials. 

In the present case the main physical implication is that heat flux and tempera- 
ture gradient are related by (8.23)3 instead of being proportional. Although the 
heat flux does not vanish if the temperature gradient vanishes, its divergence does. 

Simple Viscous Fluid 
For the simple viscous fluid, there is no difference between the theory proposed 

here and the usual one. A simple viscous fluid is characterized by constitutive 
equations of the form 

0, O0 ] (8.24) tij=tij (P, du, Oxi] 

qi=q~ (p, dij, Oxi] 

ki=ki(p, dij,O,~xi)" 

Following the same procedure as in the case of the dipolar fluid, we obtain 

OO ki=~,j(O)~xj+O,(O), Oij(0)=-~j,(0); 

hence by the same argument as led to (8.14), 

ki=O, pi=~ -. 
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