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w Introduction 

W e  shall  cons ider  a real  nonl inear  per iod ic  system 

(0.1) dx dt - X ( x ,  t), 

where x and  X(x, t) are vectors  of the same d imens ion  and  X(x, t) is pe r iod ic  
in t of pe r iod  2n .  In  this p a p e r  we discuss the  quest ion of existence and  numer ica l  
a p p r o x i m a t i o n  of per iodic  solut ions of (0.1). 

If 

(0.2) xm(t) = ao + 1/2 ~ (a, cos n t + b,  sin n t) 
n = l  

denotes  a t r igonomet r ic  po lynomia l  of o rde r  m with  unde te rmined  coefficients 
ao, ax, bl, ..., a,,, bin, we m a y  be able  to de te rmine  these 2 m +  1 coefficients so 
tha t  x,,(t) satisfies ident ical ly  the reduced  system 

(0.3) dx,. _ 1 2.[ X[xm(S), s] ds + dt 2~ 

1 'n { nti"X[Xm(S),S]cosnsds+ + - -  ~,, cos 
7~n= x 2. } 

+ s i n  nt I X[xm(s), s] sin ns ds , 
0 
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or equivalently 

Fto~)(ct)= X xm(s),s ds=O, 

1 2n 

(0.4) F~'~(~)=-rT~-I X[Xm(S) ,S]cosnsds-nbn=O ( n = l , 2 ,  . . . ,m) ,  
Vx?~ o 

2n 

G~m)(ct)= , ~ 1 ~  S X[xm(S), s] sin ns ds+nan=O, 
V , L ~  o 

where ~ denotes the (2m+ 1)-vector ~=(ao,  al, bl . . . . .  am, bin) and the Fo ~ F~ tin), 
G~ ml are defined by the equalities above. 

It is to be expected that, for m sufficiently large, a trigonometric polynomial 
xm(t) determined by these relations, may be a reasonable approximation to a 
periodic solution J ( t )  of (0.1). Actually, this process is exactly the Galerkin 
method [3] applied to the determination of periodic solutions of (0.1). A trigono- 
metric polynomial xm(t) satisfying (0.3) or (0.4) (if any) will be denoted as a 
Galerkin approximation of order m and the system (0.4) will be called the deter- 
mining equation of Galerkin approximations. In the present paper we discuss the 
question of the existence and error bounds of periodic solutions of (0.I) in 
association with the Galerkin approximations x~(t). 

This problem was studied by C~ARI [2a] under very mild conditions. Pre- 
cisely, he proved that in association with a given Galerkin approximation xm(t), 
even of very low order (one or two), an algorithm is available which may answer 
the question as to whether there is an exact solution J ( t )  in some neighborhood 
of Xr~(t), and in the affirmative case may give a bound for ~(t)-xm(t) .  CESARI'S 
process can be applied at a very low order m of approximation, and may 
even lead the way to a qualitative analysis, as shown by KNOBLOCH [4]. Never- 
theless, the process, when applied to a practical problem, actually requires a 
certain amount of discussion which may not be easy. 

On the other hand, in a numerically given problem we may be able to obtain 
GALERKIN'S approximations of high order by an electronic computer. 

Assuming that GALERKIN'S approximations of somewhat high order can be 
obtained, assuming some more conditions on the given system, and restricting 
somewhat the class of periodic solutions we deal with, we present here a theory 
which is more convenient to practical applications. Namely, we assume that 
X(x, t) and its first order partial derivatives with respect to x are all continuously 
differentiable with respect to both x and t. We limit ourselves to those periodic 
solutions J (t) for which the multipliers of the equation of first variation are all 
different from one. Any such periodic solution will be called isolated in the present 
paper since there is no other periodic solution in some neighborhood of it. Both the 
smoothness condition on X(x, t) and the restriction that the periodic solution ~ (t) be 
isolated are not severe limitations from the standpoint of practical applications. Under 
these hypotheses, we can summarize the conclusions of the present paper as follows: 

1. The existence of an isolated periodic solution ~(t) of (0.1) lying in the interior 
of the region of definition of X(x, t) ahvays implies the existence of Galerkin approxi- 
mations xm(t) of all orders m sufficiently high, as well as the boundedness of certain 
operators connected with the Jacobian matrix of X(x, t) with respect to x. 
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2. The existence of a Galerkin appromaximation xm(t) of a sufficiently high 
order m always implies the existence of an exact solution provided a boundedness 
condition as mentioned in 1. is satisfied. 

Actually, from the first result, we prove the uniform convergence of the 
Galerkin approximations xm(t) toward ~(t) as m ~ oo. From the second result 
we obtain simple criteria for the existence of the exact periodic solution ~ (t). 

On the basis of the present results, practical numerical methods have been 
developed and applied to numerical problems. The methods and the numerical 
examples will be discussed elsewhere jointly with A. REITER. 

If we apply our method to weakly nonlinear systems, then we obtain the first ap- 
proximation of the averaging method [1], and moreover we can give an explicit bound 
for the magnitude of the parameter under which the averaging method is valid 
for the determination of periodic solutions. This will be shown in a later paper [5]. 

Lastly, we wish to acknowledge the comments made by Professor LAMBERTO 
CESARI. 

w 1. Preliminaries 
In the present paper, we use Euclidean norms for vectors and matrices and 

denote them by the symbol II.. .  II. Let f ( t )  be a continuous periodic vector-function 
of period 2re. In the present paper, for such a function, we use two kinds of norms 
[Ifl[~ and [Iflln, which are defined as follows: 

[- 1 2n  -J~ 

.I 011  , , j .  
[Ifl[n-- max IIf(t)II. 

t 

The approach of the present paper is based on the following three propositions. 

Proposition 1. Let 

(1.1) dx  dt  - A(t) x +tp(t) 

be a gwen linear periodic system where A( t )  is a continuous periodic matrix of 
period 27r and tp(t) is a continuous periodic vector of the same period. I f  the 
multipliers of the corresponding homogeneous system 

(1.2) dy  = A(t) y 
dt 

are all different f rom one, then (1.1) has one and only one periodic solution of 
period 2 ~z, which is given by 

2to 

(1.3) x(t) = S U(t, s) tp(s) as 
0 

where H(t, s) is the piece-wise continuous periodic matrix 

a ( t , s ) = ~  ~ ( t ) [ E - r  ~ - t ( s )  for O<s<t<2rr ,  
(1.4) 

r [E-  r 1 r r for  0 < t < s < 2 7 r ,  

(1.5) H(t, s ) = H ( t + 2 m  7r, s + 2 n  rr) (m, n integers), 

E is the unit matrix and ~( t )  the fundamental matrix of (1.2) with r 
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Proof. Any solution of (1.1) is expressed as follows: 

(1.6) x (t) = ~(t)  c + r  i ~ -  t (s) (o(s) ds ,  
0 

where e is a constant vector. The solution x( t )  given by (1.6) is periodic in t 
of period 27t if and only if 

21t 

(1.7) [ E -  ~P(2 n)] c=  #(2*0 5 g'-  '(s) ~(s) ds.  
0 

Since d e t [ E - ~ ( 2 n ) ] ~ : 0  by the assumption, the equality (1.7) implies 
2 ~  

(l.8) c = [E - �9 (2 It)] - i ~ (2 zr) I r t(s) ~o (s) d s. 
0 

The desired formula (1.3) is now obtained by substituting (1.8) into (1.6). Q.E.D. 
The formula (1.3) defines a linear mapping H in the space of continuous 

periodic functions of period 2~r. Consequently, the norms of this linear mapping 
are defined corresponding to the norms of continuous periodic functions. We 
shall denote them by II nll~ and II HII.. By means of SCHWARZ' inequality, it is 
readily seen that 

(1.9) IIHII, < I ~ H g t ( t , s ) d s d t  , 
0 k , l  

(1.10) IIHI[,=< 2~r.max ~ n 2 , ( t , s ) d s  , 
k, l 

where Hk~(t, s) are the elements of the matrix H(t, s). 

In what follows, we shall call the linear mapping H defined by (1.3) the H- 
mapping corresponding to a given matrix A (t). 

Proposition 2. Let 

(1.11) F(cr 

be a given real system of equations where ~ and F(a) are vectors of the same dimen- 
sion and F(~) is a continuously differentiable function of ~ defined in some region 
f2 of ~. Assume that (1.11) has an approximate solution o~=~ for  which the deter- 
minant of the Jacobian matrix J(o 0 of F(~) with respect to c~ does not vanish at 

= ~ and there is a positive constant 6 and a non-negative constant tc < l such that 

(i) a~---{~111~-&ll_-<6}c~, 
(1.12) (ii)  I I J ( ~ ) - J ( & ) l l < x / M  ' f o r a n y  ael2~, 

M ' r  <6 
(iii) l - x -  ' 

where r and M '  (>0)  are numbers such that 

(1.13) IIF(&)ll<r and IIJ-I(&)II<M '. 

Then the system (1.11) has one and only one solution at=~ in f26 and 

M'  r 
(1.14) II ~ -& II--< 1 - x  
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Proot. Put .4 =J-~(~) ,  and let us consider NEWTON'S iterative process: 

(1.15) cq+ 1 =~ . - -A F(~.) (n=0,  1, 2 . . . .  ), 

where % = ~. 

First, we shall prove that this iterative process can be continued indefinitely 
and that 

(1.16) I[ ~.+ 1 - ~. I[ < x" I10q - % II, 

(1.17) ~.+ 1 ef2a (n=0 ,  1,2 . . . .  ). 

For n=0 ,  (1.16) is evident. For ~ ,  we have successively 

II ~1 - ~ o  II = il,4 e(~o)I1 < M'r 
(1 .18)  

< ( 1 - x ) 6 < 6 ,  

and consequently ~le12o. This proves (1.17) for n=0 .  

Let us assume that (1.16) and (1.17) hold up to n -  1. Then from (1.15) we have 

(~n+ 1 --0~n= (~n-- (~n- 1)--A [-F (~.) - F (~._ 1)] 
1 

= A  S {S(Oto)-J[C~n-l  +O(O~n-~n_ l ) ] } .  ( ~ n - ~ n _ l )  dO.  
o 

Here ~._1+0(~.-~._1)e~2 6 ( 0 < 0 < I )  since ~., ~._lef2o by the assumption. 
Then, by (ii) of (1.12), we have 

(1.19) [I ~.+1 - %  l] < M ' .  ~7,"  II ~.-~.-111 =~  J[ O~n -- O~n _ 1 II, 

which proves (1.16) for n because 

II ~ . - ~ . - 1  II __<~.-i [I ~ - %  I1 
by the assumption. Since 

II ~.+x - ~ o  II ___< II ~ . + 1 - ~ .  H + II ~ . - ~ . - 1  II + " "  + 11 ~ - ~ o  II, 

it follows from (1.16) and (1.18) that 

II ~.+1 - ~ o  II--< (x" + x " - I  + "'" + ~ : +  1)II ~1 - ~ o  11 
(1.20) M'r  

< 6 ,  
< l - x -  

which proves (1.17) for n. 

By (1.16) and (1.17) it is evident that the iterative process (1.15) can be con- 
tinued indefinitely in f2n c O. 

Then, by the iterative process (1.15), we have an infinite sequence {~,} in f2a, 
which is convergent by (1.16) because I xl < 1. Let 

8=  lim ~,. 
n---~ oo 

This limit 8 is evidently a solution of equation (1.11). 
Inequality (1.14) readily follows from (1.20). 
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Lastly, let us prove the uniqueness of the solution. Let ~' be another solution 
of (1.11) lying in 06. Since 

analogously to (1.19) we have 

ot =~ - A F ( - ~ ) ,  

~ ' = K ' - A F ( ~ ' ) ,  

I1 ~ - ~ '  II ~K  II ~ - ~ '  II, 

i1~-~'11=o 
which implies 

(1.21) 

because 0 < x < 1. Equality (1.21) proves the uniqueness of the solution. 

Proposition 3. Let 

(1.22) dx  dt  - X ( x ,  t) 

Q.E.D. 

be a given real system of differential equations, where x and X(x,  t) are vectors 
of the same dimension, and X(x,  t) is periodic in t of period 2rc and is continuously 
differentiable with respect to x in the region D x L, where D is a given region of 
the x-space and L is the real line. 

Assume that (1.22) has a periodic approximate solution x=~( t )  lying in D and 
there are a continuous periodic matrix A ( t ), a positive constant 6, and a non-negative 
constant K < 1 such that 

(i) the multipliers of the linear homogeneous system 

(1.23) dy  = a ( t )  y 
dt  

are all different from one, and 

(ii) D6={x[ Hx-x(t)I1-<-~ for  some t s L } c D ,  

(1.24) (iii) II ~(x, t ) - a ( t ) l l < k / M l  for  all x such that IIx-~(t)l[<6 and t~L ,  

Here 

(iv) Ml r _<6 
1 - t o -  " 

7J(x, t) is the Jacobian matrix of X(x,  t) with respect to x; 

M I is a positive constant such that 1[ H[I,<Mx where H is the H-map- 
ping corresponding to A(t);  

r is a non-negative constant such that 

(1.25) ~ -  X Ix(t), t] < r. 

Then the given system (1.22) has one and only one periodic solution x = J ( t )  
in Dn, and this is an isolated periodic solution. Furthermore, for  x=J ( t ) ,  we have 

(1.26) I1 ~r < Mx r - - .  

=1--~: 
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Proof. Let us put 

dx(t)  = X Ix(t), t] + 17 (t). (1.27) dt 

Then this can be rewritten as follows: 

dx(t)  _ A(t) Yc(t) + {X Ix(t), t ] - A ( t )  x(t) + ~l(t)} . 
dt  

Since ~(t) is periodic of period 2~, by Proposition 1, ~(t) can be expressed as 
follows: 

2 z  

(1.28) x( t )=  S H(t, s) {X Ix(s), s ] - A ( s ) x ( s ) +  r/(s)} ds ,  
0 

where H(t, s) is the piecewise continuous periodic matrix defined by (1.4) and 
(1.5) in correspondence to A (t). 

As in Proposition 2, let us consider the iterative process 

2n 

(1.29) x . + l ( t ) =  S H(t,s){X[x.(s),s]-A(s)x.(s)}ds ( n = 0 , 1 , 2  . . . .  ) ,  
0 

where Xo(t)=Y,(t). 
First we shall prove that this iterative process can be continued indefinitely 

and that 

(1.30) II x,+ 1 - x ,  IIn--< s:" II xa -Xo II,, 

(1.31) IIx~§ 11,<6 (n=0,  1,2 . . . .  ). 

For n=0 ,  (1.30) is evident. Since 
21t 

(1.32) x l ( t ) -Xo( t )=  - ~ n ( t ,  s) tl(s ) ds ,  
0 

we have 

(1.33) l[ x l - X o  I1~ <M1 r < ( 1 -  r )6  <6 .  

This proves (1.31) for n=0 .  
Let us assume that (1.30) and (1.31) hold up to n -  1. Then by (1.29) we have 

2n 

x .  + 1 ( 0  - x.  (t) = ~ H (t, s) { X [x~ (s), s] - X [x~_, (s), s] - A (s) [x~ (s) - x~_l(s)]  } d s,  
0 

and hence, 

(1.34) I lxn+l -x ,  l l ,<Ml �9 l lX[x , ( s ) , s - I -X[x ,_ l ( s ) , s ' l - a ( s ) [ x , ( s ) - x , _ l ( s ) ]  II,. 

However, 

x [x .  (s), s] - x [ x .  - l ( s ) ,  s]  - A (s) I x .  (s) - x . _ l  (s)]  
1 

= ~ ( ~' Ex~_ ,(s) + ~ ( x ~ ( s ) - x ~ _  l(S)), s] - a (s)} { x ~ ( s ) - x ~ _  l(s)} d ~ ,  
0 

and 
II [X._l(S)+~(x.(s)-x~_l(s))]-Xo(s)ll =<6 (o__<~_<_1) 
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since IIx,-1-Xolln, i ixn-xol l ,=  < 6  by the assumption. Then, by (iii) of (1.24), 

K 
11 x [x~ (s), s] - x [x ,_  1(0, s] - A (s) [x,  (s) - x ,_  l(s)] II _-< M-T" II x , -  x ,_ l  I1,. 

Therefore, from (1.34) we get 

(1.35) l l x . + x - x ,  ll,_-<x I I x , - x , - l l l . ,  

which proves (1.30) for n because 

I Ix , -x , - l l l ,=<  ~ "-1 I I x , - x o l l ,  

by the assumption. Now since 

II x ,+ l  -Xo  II, < II X n +  1 - -Xn I1,+ II x , -x , -111 ,  + "" + II xl  -Xo  I1,, 

it follows from (1.30) and (1.33) that 

IIx,+ x -xo l l ,<(x '+x~- '  + . . .+x  + l) l lxl-xoll ,  
(1.36) < Mtr<~ ,  

= l - t o -  
which proves (1.31) for n. 

By (1.30) and (1.31) it is evident that the iterative process (1.29) can be con- 
tinued indefinitely in D~cD. 

Then, by the iterative process (1.29), we have a sequence {x,(t)} of continuous 
periodic functions lying in D~, and this sequence is uniformly convergent by 
(1.30) since I xl <1. Therefore there exists a continuous periodic limit function 

~c(t) = lim x,(t) 
n -..~ oo 

lying in D6. For this limit function J( t ) ,  (1.29) yields 

2 n  

;r ~ n(t, s) {X [~(s), s]-/t(s) ~(s)} ds 
0 

= {x(t) --Xn+ l(t)} + H(t, s) [X(x~(s), s)-- A(s) x,(s)] as - 

- -  I n ( t ,  s)  [X(3c(s), s ) - A ( s )  5r d s  . 
0 

Then analogously to (1.35) we have 

~c(t)- 2~ {X [Sc(s), s]-A(s)Sc(s)} ds n(t,  s) < II & - x , §  1tl, + x II x , - ; c  11,. 
0 

Letting n --* oo, we see that 

2~t  

(1.37) 5c(t) = S n(t .  s) {X [;r s ] - a ( s ) ; c ( s ) }  ds, 
0 

which implies that 

d 3c (t) = A (t) ~c (t) + {X [3c (t), t] - a (t) 3c (t)} 
dt 
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that is, 

M I N O R U  U R A B E :  

d ~ (t) = X [~ (t), t]. 
dt 

This says that x = ~ ( t )  is a periodic solution of the given system (1.22). 
Inequality (1.26) follows readily from (1.36). 
Next, let us prove the uniqueness of the periodic solution. Let ~'(t) be another 

periodic solution of (1.22) lying in D~. Then 

d So' (t) _ X [So' (t), t] = A (t) ~r (t) + {X [Sr (t), t] - A (t) ~r (t)}" 
dt 

therefore J '( t)  can be expressed as follows: 

2 g  

~'(t) = S U(t, s) {X [~r s] -A(s)Sr as. 
0 

Comparing this with (1.37), analogously to (1.35) we have 

^ A t < ^ A t , IIx-x I I .=~ l lx -x  II. 
which implies that 

11~-3r 

because O < r < l .  The above equality proves the uniqueness of the periodic 
solution. 

Lastly, let us show that x =  ~(t) is an isolated periodic solution. Put 

A(t)= ~[x(t), t], 
and let us consider the linear homogeneous system 

(1.38) dy ^ dt - A ( t ) y .  

This is the equation of first variation of (1.22) with respect to the periodic solution 
x= ~( t ) .  By (iii) of (1.24), 

(1.39) [I ,4 (t) - A (t) [[ _-< r/M1. 

Now any periodic solution y=y( t )  of (1.38) satisifes 

dy 
dt -A ( t )  y+ [.4(t)-A(t)] y; 

consequently, y(t) is expressed as follows: 
2 1 t  ^ 

y(t) = S H(t, s) ['A (s ) -A(s) ]  y(s) ds. 
0 

Then by (1.39) we see that 
K 

II y II. < M x  �9 ~-~" II Y tl. = ~  II Y I1., 
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which implies that [lyNn=0 because 0 < x < l .  This says there is no non-trivial 
periodic solution of (1.38). This implies that the multipliers of (1.38) are all 
different from one, namely x=~( t )  is an isolated periodic solution. Q.E.D. 

w 2. The Existence of a Galerkin Approximation 
2.1. A truncated trigonometric polynomial of a periodic solution. Let f ( t )  be a 

continuous periodic vector-function of period 2r~, and let its Fourier series be 

f(t)~Co+l/2 ~ (cncos n t+d~sinn t), 
n = l  

where Co, cl, dl, c2, d2 . . . .  are vectors. Then the trigonometric polynomial 

fm(t)=Co+V2 ~ (c. cos n t+d~sinn t) 
n = l  

is a truncated trigonometric polynomial of the given periodic function f ( t )  
(strictly speaking, a trigonometric polynomial obtained by truncating the Fourier 
series of the given periodic function). In the sequel we shall denote such a trun- 
cation of a periodic function (strictly speaking a truncation of the Fourier series 
of a periodic function) by Pm and write a truncated polynomialfm(t ) of a periodic 
function f ( t )  as follows: 

fm(t)=Pmf(t) .  

If we put ~ = (c o, cl, dt . . . .  , Cm, din), then 

2 n  

IlYmll~= 2- ~ ! lli.,(t) ll~ dt 

= II Co II 2 + ~ (11 c,, II 2 + II d,, II 2) 
n = l  

=11~,112; 
consequently 

Ilfm []~= Ir ~ [I. 

This property will often be used in the sequel. 
We owe to CESaRI [2a] the following lemma concerning continuously differ- 

entiable periodic functions. 

Lemma 2.1. Let f ( t )  be a continuously differentiable periodic vector-function 
of period 2 ~. Then 

(2.1) I[ f-Pmfl[n<a(m) II J'[Iq< a(m)I l l  I1., 

IIf--Pmfllq<='rl(m) IIf I1~, (2.2) 

where �9 = d/dt and 

(2.3) 

a(m) =V2 [- 1 1 -]r 

1 
~ t ( m ) = m + l "  

Arch. Rat ional  Mech. Anal., Vol. 20 
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Also 

V2 <~(m)< V~ 
(2.4) ,n--+ 1 V-'-~" 

Proof. Since f(t) is continuous and periodic and hence bounded, the Fourier 
series of f ( t )  is uniformly convergent. Let the Fourier series of f ( t )  and f ( t )  
be respectively 

f(t) = Co + V ~ ~ (c, cos n t + d, sin n t) 
n = l  

and 

with 

f( t)  ,., C'o + V2 ~ (c'. cos n t + d'. sin n t), 
n = l  

, 1 d 1 , ( n = l , 2  . . . .  ). Co=0, c ,=  - ~ -  d',, - c, 
n n 

Hence, 

(2.5) f ( t ) -  Pmf(t) = V ~ (-- d', cos n t + c" sin n O. 
n = m + l  

By SCHWARZ' inequality it follows that 

(2.6) ilf(t)-Pmf(t) l[2<a2(m) ~ ([I c', [12+ [I d; 112), 
n = m + l  

and by B~SSEL'S inequality, 

(ll c" tt + Lt Hi/ll . 
n = m + l  

Thus (2.1) follows from (2.6). Inequality (2.4) readily follows from the inequality 

2 2 . ~ d u  2 
(m~l )~  - < a  (m)<22 u'-~-=-- ~ .  

If we apply PAgS~VAL'S equality to (2.5), then we have 

llS-P.Slh =  r 
n = m + l  

1 ~ (11c,112+ iid, ll~), 
< ( r e + l )  2.=m+1 

from which (2.2) readily follows. Q.E.D. 
If we apply Lemma 2.1 to a periodic solution of a differential equation, then 

we easily get the following lemma concerning its truncated trigonometric poly- 
nomials. 

Lemma 2.2. Let 

(2.7) dx dt =X(x,  t) 

be a given real nonlinear periodic system, where x and X(x, t) are vectors of the 
same dimension, and X(x, t) is periodic in t of period 2re. We assume that X(x, t) 
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and its first partial derivatives with respect to x are continuously differentiable 
with respect to x and t in the region D x L, where D is a closed bounded region of 
the x-space and L is the real line. 

Let K, Kt and K2 be non-negative constants such that 

K = max I1X(x, t)II, K x = max 11 ~(x, t)II, 
D x L  D x L  

(2.8) 0 x (x, t) 
K 2 = max 

O •  Ot ' 

where 7J(x, t) is the Jacobian matrix of X(x,  t) with respect to x. 

I f  there exists a periodic solution x = J ( t )  of (2.7) lying in D, then 

(2.9) 

where ~cs(t)=Ps ~c(t). 

^ < (i) 113c-xsll,=K a(m) ,  
^ < 

(ii) [13c-xsllq=K al(m),  

(iii) II ~ -  i s  11,-<- ( g  g l + g2) cr (m) ,  

This lemma yields the following corollary. 

Corollary. I f  x = J ( t )  is an isolated periodic solution of  (2.7) lying inside D, 
then there exists a positive integer mo such that, for any m > m o , 

(i) ~Cs(t)zD; 
(ii) the multipliers of the linear homogeneous system 

dy  _ 7t [~cs(t), t] y (2.10) dt  

are all different from one and the H-mappings Hs  corresponding to 7 j [ks(t), t] are 
equibounded, that is, there exists a positive constant M such that 

(2.11) 11Hs I1,, IIHslI.<=M; 

d ~[~Cs(t),t] is equibounded, that is, there exists a non-negative (iii) - -~  

constant K 3 such that 

(2.12) a-~-~[L.(t), t] -<_K3. 

Proof. The conclusions (i) and (ii) are evident from (i) of (2.9), since (i) of 
(2.9) implies 

I[~m--~ll.--'0 as m--,oo 

and ~(x,  t) is, by the assumption, uniformly continuous with respect to x in D • L. 

d 7*[~,.(t), t] ,  we have Now for --d7 

d ~ [~s ( t ) , t ,=v . j  ~ a~ d~sk(t)  a ~  d---/ ~ rxs(t), t ] .  dt  -I-~-- I-Xs(t), t ] ,  

9* 
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where x k and fCmk(t) a r e  respectively the components of the vector x and Jm(t ). 
However 

~ <=K+(KKI+K2) a(m) 

by (iii) of (2.9), and all the elements of the matrices 

a T  a T  
r [Xm(t), t ] ,  63 t [~r t ]  

are equibounded so long as fCm(t)~D. Therefore, all the elements of the matrix 

d ^ 
dt  T[Xm(t), t] 

are equibounded provided m is sufficiently large. This proves (iii). Q.E.D.  

2.2 The Jacobian matrix of the determining equation of Galerkin approxima- 
tions. Let Jm(a) be the Jacobian matrix of the left member of the determining 
equation (0.4) of Galerkin approximations. The elements of Jm(a) are of the 
following forms: 

1 [Xm(S), S] ds, 
2 ~  o 

1 2= 
T Exm(s), s] cos ps ds, 

1 2= 
V2n So T[Xm(S),s]sin psds; 

27t 
V - ~  ~o T[Xm(S),S]c~ 

1 2n 
(2.13) ~ ~ T[xm(s), s] cos ns cos ps ds, 

1 2n 
~-~ T[Xm(S), S] COS ns sin ps d s - n  6np; 

1 2 .  
n~ T[Xm(S), S] sin ns ds, 

Vi 7C 

1 2n 
- ~  T [Xm(S), s] sin ns cos ps ds+n ~5.~, 

1 2n 
-~-o~ T[xm(s), s] sin ns sin ps ds, 

where a=(ao ,  al, bl . . . .  , an,, bin), p, n = l ,  2 . . . . .  m, and 

(2.14) Xm(t) = ao + V2 ~ (a. cos n t + b. sin n t). 
n=l  

To find the basic properties of Jm(a), let us consider the auxiliary linear system 

(2.15) Jm(a) ~ + ~ = 0 ,  
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where ~=(Uo, ul, vl, ..., urn, v,,) and ~=(c o, cl, dl . . . . .  cm, din). If we put 
m 

y (t) = Uo + ~/2 ~ (u, cos n t + vn sin n t), 

(2.16) "= ~ 

(p (t) = Co + [/2 ~ (cn cos n t +dn sin n t), 
n = l  

then relations (2.13) and (2.15) show that y( t )  satisfies the differential system 

(2.17) d y (t) _ Pm tP [Xm (t), t] y (t) + gO (t) 
dt  

where Xm(t) is of the form (2.14). 
First, we shall prove the following lemma. 

Lemma 2.3. Assume that the conditions of  Lemma 2.2 are satisfied and that 
the system (2.7) has an isolated periodic solution x = ~ (t) lying inside D. 

Taking m o sufficiently large, we consider the differential system 

(2.18) dy  =Pm ~ [~r t] y + (p(t) 
dt 

for  m >= m o , where Xm ( t )= Pm ~ (t) and where tp (t) is an arbitrary continuous periodic 
function of period 2 ~. 

Then, for  any periodic solution y = y ( t )  of (2.18) (if any exists), we have 

M J - I + K  1 a,(m)] 
(2.19) [I Y 114 < 1 - M ( K  3 +K~) al(m ) II ~o [Iq. 

Proof. For brevity let us put 

(2.20) Am(t) = ~Exm(t), t] .  

Then for any periodic solution y = y ( t )  of (2.18) we have 

(2.21) d y (t) =.4m (t) y (t) + q~ (t) + r/(t), 
dt  

where 

(2.22) 

Here 

r/(t) = --(I--Pm) ,4re(t) y(t). 
1 is the identity operator. 

Put 

(2.23) u (t) = A,~ (t) y (t). 

Then 

u( t)= Am(t) y(t) + Am(t) [em Am(t) y(t) + tp(t)] , 

from which, by (2.8) and (2.12), it follows that 

(2.24) [] t~ [Iq < K3 II Y II~+ Kl[[I em Zra Y IIq+ II ~o IIJ. 
But by BESSEL'S inequality, 

][ Pm "4m Y tlq----< II Am y [Iq~---K111 y IIq, 
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Therefore, from (2.24) we have 

(2.25) II t~ IIq <(K3 +K~) II Y llq +Kill  rp rlq. 

Since II~ [lq=<~x(m) lift 114 by Lemma 2.1, we have then 

(2.26) II r/114 ~ ~ [(g3 + K~) II Y [14 + ga  II rp 114]. 

On the other hand, y( t )  is a periodic solution of (2.21), so it can be expressed 
as follows: 

2 n  

(2.27) y ( t )=  ~ n.(t ,  s) [~0(s)+n(s)] ds,  
0 

where Hm(t, s) is the matrix of the H-mapping corresponding to J , ( t ) .  If rno is 
sufficiently large, by the Corollary of Lemma 2.2 we have 

(2.28) II y 114 < M [11 ~o 114+ 11'1 IIJ 
for m > m o . 

If we substitute (2.26) into (2.28), then we have 

II y I1~_-< M I1 ~o I1~ + M [-(K3 + Kx 2) [1Y II~ + Kx II ~o IIj ~x(m), 

from which follows (2.19) since 1 -  M(K3 +K~) a~(m)>0 for sufficiently large m. 
Q.E.D. 

Let 

(t) = ao + V ~ ~ (d, cos n t + b, sin n t) 
n = l  

be the Fourier series of an isolated periodic solution x = k ( t )  of (2.7) lying inside D, 
and let us consider the Jacobian matrix Jm(~) where ~=(do,  dx, bl . . . .  , din, b,,). 
Then the lemma above yields the following corollaries. 

Corollary 1. There exists a positive integer mo such that 

(2.29) det Jm (&) 4= 0 

for any rn > m o . 

Proof. For y( t )  and rp(t) of the form (2.16), the differential system (2.18) 
is equivalent to the linear system 

(2.30) Jm (~) ~ + • = 0 

as mentioned in the beginning of this section. Now put ~=0. Then go(t)=0 by 
(2.16), and this implies y ( t ) = 0  by (2.19). Then ~ = 0  by (2.16). Thus, in (2.30), 
~=0  implies ~=0. This proves (2.29). Q.E.D. 

Corollary 2. There is a positive integer mo such that, for any m>mo,  JZ, x(~) 
exists and 

(2.31) llJ~X(&)ll < M [ l + K l a x ( m ) ]  
= 1 - - M ( K  3 +K~) tra(m) " 

Proof. By Corollary 1, j ,~l(~) certainly exists for m > m  o. Further, for y( t )  
and cp (t) of the form (2.16), the differential system (2.18) is equivalent to the linear 
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system (2.30). Hence r = - J,7 l(8) ~. Since II y IIq = II ~ II and II ~o [la = II ~' II, (2.31) 
readily follows f rom (2.19). Q .E .D.  

Lastly, for the difference Jm(ct')--Jm(Ct"), we shall prove the following lemma. 

Lemma 2.4. Under the conditions of Lemma 2.2, let K4 be a positive constant 
such that 

K4>_[-ma x |  ~ / r  0 2  X k ( X "  t) "~2-]�89 (2.32) ) J' 
where Xk(X, t) and x t are respectively the components of the vectors X(x,  t) and x. 

Then, if both 
m 

x'  (t) = a o + 1/2 ~ (a'. cos n t + b'. sin n t) 
n = l  

and 
m 

x"( t )  = a'o' + V ~ ~, (a': cos n t + b'~' sin n t) 
n = l .  

belong to D together w i t h / ~ x ' ( t ) + ( l - ~ )  x " ( t )  (0<~<= 1), then 

(2.33) I I J m ( ~ ' ) - J m ( ~ " ) l l < g 4 1 1 x ' - x " l l , < g 4 l / 2 m + l  �9 I I~ ' -~" l l ,  
where 

! t r t !  t t  t !  t t  i !  
~x = ( a o ,  b l , . . . ,  am, b~) ~ ' = ( a ~ ,  al, bl . . . . .  a m, b ' )  and a t ,  

Take an arbitrary ~=(uo ,  ut, va . . . .  , Urn, Vm), and consider 
m 

y (t) = Uo + ]/'2 ~ (u, cos n t + v, sin n t). 
n = l  

Proof. 

(2.34) 

Put 

(2.35) 
and let 

If we put  

r ' = - - J m ( ~ ' ) ~ ,  ~ " = - J m ( ~ " ) r  

t ! t ! r t t !  r !  t t  r  r !  t !  
=(Co, cl, dx . . . .  , Cm, din) . . . .  ~ =(Co, cl ,  d l ,  , Cm, din). 

m 

q;(t) = c~ + 1/2 ~ (c'. cos n t + d" sin n t), 
n = l  

m 

q; ' ( t )  = c~' + V2 ~ (c'.' cos n t + d'~' sin n t), 
n = l  

then by (2.17) and (2.35) we have 

d y(  t) =Pro 7t [x'(t), t] y(t) + ~o' (t) 
dt  

dy( t )  =p , ,T j  [ ( ) ,  t]y(t)+qg"(t)  x"  t 
dt 

From this it readily follows that 

(2.36) q~'(t)-  ~o"(t) = --Pm { ~ [x'(t),  t] -- ~ [X"(t), t]} y(t) .  

Let us put 
q~(t)=q~'(t)--q~"(t) and ~ = ) , ' - y " .  
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Then from (2.36)we have 

(2.37) r  --Pro {~ [x'(t), t] -- ~[X"(t), tl} y(t),  
and from (2.35) 

(2.38) ~ = -- [Jm(~')-  Jm(s 4. 
Now 

II ~ [x' (t), t] - ~ I-x" (t), t1112 < ~ [ ~kt(X', t)-- ~kg(X", t)]2, 
k , l  

where ~kz(X', t) and ~kz(X", t) are the elements of ~[x ' ( t ) ,  t] and kV[x"(t), t], 
respectively. Since x"(t)+8 [ x ' ( t ) - x " ( t ) ] ~ D  ( 0 < 8 <  I) by the assumption, the 
quantity in the right member of the above inequality is estimated successively by 
means of SCHWARZ' inequality as follows: 

E [~'k,(x', O -  ~'k,(x", 0]  2 
k, ! 

[ '  }1 =Z Z ~S oy~, eo.(~,-x,), ,, 
k, 1 p ( 0 0 X p  

--<rF ox, 
<-z Fzi (~ ~,l:e~l., ~'(,)- ~"(,) e 
-~.,L. okaX.) j 

= k p aXp ) .] dS .  II II. 2 

<KI .  IIx'-x"ll2.. 
Hence 

II { ~ I-x' (t), t] - ~ [x"(t), t] } y (t) [I ~ K4" [I x' - x"l], .  II y (t) II. 

Then by BESSEL'S inequality it follows from (2.37) that 

II q~ IIq < K,~ �9 I[ x ' - x "  I1.. II Y Ilq. 

Since II r II = II ~o IIq and  II ~ II = IlY IIq, f rom (2.38) we have 

II [ J , , ( ~ ' ) -  J , , (~") ]  ~ II < g 4 .  I[ x ' - x "  I1." II ~ I[, 
which implies that 

(2.39) II .r,,(~')- Jm(~") II <=K4. II x ' -  x" [I, . 

Put ~- - -~ ' - s  and suppose a=(ao ,  al, bi . . . . .  a m, bin). Then 
m 

x'(t)-x"(t)=ao+]/2 ~ (an cos n t+b, sinn t), 
n = l  

and therefore, 
m 2 

x" t) 2 []x'(t)-  ( [1  =~k[aOk+l/2~=l(a~kCOSnt+b~kSinnt)l 

< k~ [1 no k] + 1 / ~ 1 [ / ~ ]  2 , 
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where aok , ank and bnk a r e  respectively the components of the vectors ao, an, and 
b n. By means of SCFIWARZ' inequality we have 

t H 2 ~  2 2 2 [ I x - x  [ l n = ~ ( l + 2 m )  aok+ l(ank+bnk) 

=(2m+l)[[laoll2+~([[anl'Z+l[b,[lZ)].=, 

= ( 2 m + l ) .  11 ~ ' - ~ "  I[ 2. 

Then (2.33) follows readily from (2.39). Q.E.D. 

2.3 The existence of a Galerkin approximation. The existence of a Galerkin 
approximation to an isolated periodic solution is proved by the following theorem. 

Theorem 1. Let 

(2.40) dx  dt  = X ( x ,  t) 

be a given real nonlinear periodic system, where x and X(x,  t) are real vectors of 
the same dimension and X(x,  t) is periodic in t of period 27r. We assume that X(x ,  t) 
and its f irst  partial derivatives with respect to x are continuously differentiable with 
respect to x and t in the region D x L, where D is a closed bounded region of the 
x-space and L is the real line. 

I f  there is an isolated periodic solution x = J ( t )  of (2.40) lying inside D, then 
there exists a Galerkin approximation X=Xm(t) of any order m > m  o lying in D 
provided m o is sufficiently large. 

Proof. Setting Pm ~r we have 

(2.41) d~cm(t)dt =Pm d~c(t)=PmX[:~(t)'dt t]. 

Now let us take a small positive number t~ o so that 

v = {x [ II x -  ;c(t) 11 ___<,5o for some t s L} = D. 

This is possible because x = J (t) lies inside D by the assumption. Then, by Lemma 2.2, 
~Cm(t)~UcD for all t eL  and for any m > m o  provided m o is sufficiently large. 

For such m equation (2.41) can be rewritten as follows: 

dxm(t) 
d t -Pro X ELm(t), t] +Rm(t) ,  (2.42) 

where 

(2.43) 

Now 
R m (t) = Pm {X  IX (t), t] -- X [~r (t), t] }. 

1 

X [~ (t), t] -- X [3r m (t), t] = -- j" ~ [~ (t) + ,9 (Xm (t) -- ~ (t)), t] (Xm (t) -- ~ (t)) d o q , 
0 

hence, by (2.8), 

II x [~(t), t-I --X[~m(t), t] II =<KI" 1[ ~r 
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Then by (ii) of (2.9) we have 

II x [& (t), t-I --X [-~cm(t), t-] I1+__< Kx .  II ~--~m II~<KK~ cry(m). 

Hence, from (2.43) and BESSr.L'S inequality, we see that 

(2.44) II Rm IIq<KKx trt(m). 
Let us put 

(2.45) 3c (t) = ao + ]/2 ~ (h, cos n t + b, sin n t) 
n = l  

and 

(2.46) Rr,(t) = rto~)+ V2 ~ (r~ r') cos n t + s~ ") sin n t). 
n = l  

Then (2.42) is equivalent to the following system: 

(2.47) 

2 ~  
= 1 !  x = - , ' : ' ,  

q c o s . , a t - ,  o' , 

(n = 1, 2 . . . . .  m ) ,  

where Fo(m)(u), F~'l(u), G~ml(~) are defined by the expressions above, and where 

~cm (t) = ~o + V ~ ~ (h, cos n t + b~ sin n t). 
n = l  

For brevity let us write equation (2.47) in vector form as follows: 

(2.48) F(m)(&) = - p("), 
where 

&=(ao, al,  bl, ..., h,,, bin) and pt')=(r(o m), r~ m), s([ "), ..., r~ 'n), s~m)). 

Then, by the definition of Jm(~), Jm(~) is the Jacobian matrix of F(m)(~ 0 with 
respect to u, and by (2.44) and (2.46) we have 

(2.49) If p(m)I1 < K K t  trl(m). 

Now, for m > mo and rn o sufficiently large, let us consider the region 

V,n = {X I 11 X-- 5Cm(t) II =<'~0-- K r for some t e L}. 

Then, by (i) of (2.9), 
V,,c U c D 

for any m>mo.  Consider 
8o-Ktr(m) '~ 
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where ~ = (ao, as, b~, ..., am, bin). Then, as is shown in the proof of Lemma 2.4, for 

m 

x=x( t )=ao+]/2  ~ (a .cosn t+b.s inn t )  
n = l  

with (ao, al, bl . . . . .  a,., bm)=a~f2,., we have 

II x-~c,, 1l.<l/2m + 1 �9 II~-& I[ 

< 6 o - K a ( m ) ,  

and hence, x(t)e  VmcD. Thus, it is proved that Fc"~(a) is well defined for any 
~6Qra. 

From (2.47) we note that a Galerkin approximation is a trigonometric poly- 
nomial whose Fourier coefficients satisfy the equation 

(2.50) F~m)(~)=0. 

S i n c e ,  = ~ is an approximate solution of the above equation, which follows from 
(2.48) and (2.49), we shall apply Proposition 2 to the above equation in order 
to prove the existence of an exact solution, namely the existence of a Galerkin 
approximation. 

Let us take mo sufficiently large. Then by Corollary 2 of Lemma 2.3, for any 
m > m o, J7,1( ~) exists and 

M [ I  + K  a o'x(m)] 
II Jml(&) II < l_M(K3+K~)crx(m)" 

This implies that 

(2.5t) 

where 
IlJ~,l(&)ll~M ' for any rn>mo, 

(2.52) M ' =  M[1  +Ka  trl(mo)-] 
1 - M  ( K  s + K 2) trl(mo) " 

Further by Lemma 2.4, 

(2.53) II Jm (~) -- arm (&) It < K41/2 m + 1. II. - ~ [I 

for any ~Eg2., provided m > m  o. 
Take an arbitrary number x such that 0 < x < 1, and put 

(2.54) min (K-~M, ,  6 o -  K cr(mo)) = ~5,. 

Let us take ml>mo so that, for any m>m 1, 

(2.55) M ' K K ~  M ' K K ~  1 fit 
l - x  al(m) = 1 - x m +-----1 < 

This is possible because 
m + l  

l / 2 m + i - o o o  as m--+oo. 

V 2 m +  1 �9 
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By (2.55) we can take a positive number 6,. such that 

M' K K1 61 
(2.56) 1 - x  trl(m)<=6"<= 

V 2 m + l  

Let us consider the set 

(2.57) f2a= {~111 ~-& I1_-__6~}. 
For any eef2am we have 

< 61 
II~-&ll= l /2m+ 1 

60 - K a (too) 
=< V ff l 
< 6o-  K a(m) 
= l / 2 m +  I (m>m*>m~ 

and consequently, 

(2.58) f2a,, c f2,.. 

Then, for any ~ef2~,,, by (2.53) we have 

11Jm(CO-dm(& ) [[ =<K 4 �9 V z m +  1.6,,, 

and hence, by (2.56) and (2.54), 

(2.59) II g~(~)-J~(&)II --< x/M'. 

Further, from (2.49) and (2.56), 

M'IIP(~)II < M ' K K l a l ( m )  <=6,,. 
(2.60) 1 - x 1 - x 

The expressions (2.57)-(2.60) show that the conditions of Proposition 2 are 
all fulfilled. Thus, by that proposition we see that equation (2.50) has one and 
only one solution ~ = ~ lying in f~6,,. This proves the theorem. Q.E.D. 

2.4 Error estimates and some properties of Galerkin approximations. An error 
estimate of a Galerkin approximation is given by the following theorem. 

Theorem 2. Assume that the conditions of Theorem 1 are satisfied. Let x = J ( t )  
be an isolated periodic solution of (2.40) lying inside D and x = 2, ,(0 be its Galerkin 
approximation as stated in Theorem 1. If mo 
positive integer m > m o, 

M' KK1 V 2 m + l  
(2.61) II~m-~ L--< l - r  m + l  

(2.62) II xm-~x II, ~ (K2 +2  K K1) tr(m)-t 

is sufficiently large, then for any 

- -  Jr K tr(m), 

M ' K K  2 ] / 2 m + 1  
1 - K  m + l  ' 

where ~ is an arbitrary fixed number such that 0 < K < 1, K, K 1 and K 2 are the 
numbers defined in (2.8), a(m) the number defined in (2.3), and M' the number 
defined in (2.52). 
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Proof. Put 

(2.63) 
m 

Xm (t) = a-o + V ~ E (a'n COS n t + b, sin n t).  
n=l 

As shown in the proof of Theorem 1, $=(ffo, al ,  bl . . . . .  am, bm) is a solution of 
(2.50) lying in g2~,,, and by Proposition 2 we have 

M '  K K1  . a~(m), 
(2.64) li ~ -  ~ II _-< 1 -  

where ~=(do,  dl,/~1 . . . . .  d.,,/~m) is such that 

rio + [/2 ~ (ft. cos n t+  b. sin n t) = ~,.(t) =Pm ~r (t). 
n=l 

Inequality (2.64) is evidently equivalent to the inequality 

M' K K  1 al(m). 
ll~m-~ll~--< 1-~: 

As shown in the proof of Lemma 2.4, we have 

M ' K K  1 M ' K K ~  V 2 m + l  
(2.65) IIx'~--Xmlln-< 1--X a l ( m ) V 2 m + l =  1--x m + l  

On the other hand, by Lemma 2.2, 

II & , -  & lln< K a(m). 

Thus, by combining this with (2.65), we obtain (2.61). 
Since ~ is a solution of (2.50), for Xm(t) of (2.63) we have 

dxm(t) 
dt 

This can be rewritten as follows: 

- - = P m X [ x m ( t ) ,  t]. 

d x m ( t )  = X [Xm(t), t] q-tim(t), (2.66) dt 

where 

(2.67) qm(t) = - ( I -  Pro) X [XI (t), t] ,  

and I is the identity operator. Since 

d~r~(t) ~- dX 
d X [Xm(t), t] = ~/' [Ym(t), t]" [~m(t), t] 
dt dt at 

OX 
= ~V [Xm(t), t]" Pm X[xm(t), t] +---~ [Xm(t), t] ,  

by (2.8) and BESSEL'S inequality we have 

II ~fm II~<gl �9 llPmXmllq+g2 

< K 1 K + K 2 ,  
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where Xm=X[Xm(t), t]. Then, by Lemma 2.1 and (2.67), we have 

II '/m I1~_-< a(m) (K K 1 + K2). (2.68) 

Since 

from (2.66) we have 

dxm(t) d~c(t) 

dx(t)  
d---~ = X [3r (t), t'] , 

dt  dt  =(X[-'xm(t)' t ] - X [ ~ ( t ) ,  t]}+~/m(t) 
1 

= S ~[Sr t]" [~ , . ( t ) -  5c(t)] d~+~m(t),  
0 

and consequently, by (2.8), 

IIxm-:x IIn~K1 �9 II ~ - ~  IIn+ II ~/m IIn. 

If we substitute (2.60 and (2.68) into the right member of the above inequality, 
we get (2.62). Q.E.D. 

Corollary. Assume that the conditions of Theorem I are satisfied. I f  there is 
an isolated periodic solution x = ~ ( t )  of (2.40) lying inside D, then its Galerkin 
approximations x=xm(t  ) stated in Theorem 1 converge uniformly to the original 
exact solution x=  ~(t) together with the first order derivatives as m ~  co. 

ProoL This is evident from (2.61) and (2.62), because V2--m--+l/(m+ 1) tends 
to zero as m~oo ,  and by (2.4), r also tends to zero as m~oo .  Q.E.D. 

By Theorem 2, if we take m o sufficiently large, then for any m > mo the con- 
clusions of the Corollary of Lemma 2.2 are all valid for xm(t) as well as for 
~m(t). Thus, by Corollaries 1 and 2 of Lemma 2.3, we have the following theorem. 

Theorem 3. Assume that the conditions of Theorem I are satisfied, and suppose 
that (2.40) has an isolated periodic solution lying inside D. Let 

x = Xm (t) = ao + l /~  ~ (an COS n t + bn sin n t) 
n = l  

be its Galerkin approximations as stated in Theorem 1, and suppose m o sufficiently 
large. Then, for any m ~_ mo, 

(2.69) det Jm (~) # 0, 

and there exists a positive constant M '  such that 

(2.70) 11J,7, x (~) l] < M' 

where ~ = (ao, al,~.bl . . . .  , ~,,, b~,). Furthermore, the multipliers of the linear homo- 
geneous system 

(2.71) dy _ ~l-,~m(t), t] y 
dt 

are all different from one, and the H-mappings H~ corresponding to ~[.x,,(t), t] 
are equibounded, namely, there is a positive constant M 1 such that 

(2.72) l] Hm II~, II Hmll~=<M1. 
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w 3. The Existence of an Exact Isolated Perimiic Solution 

According to Theorem 3, let us assume the equiboundedness of the H-mappings 
H m corresponding to ~[Xm(t), t]. Then the following theorem holds. 

Theorem 4. Let us assume that the conditions o f  Theorem 1 are satisfied. 
Let m o be a positive integer, e > 0  a given number, and 3 a region of points x 

whose e-neighborhood is contained in D. 
Then, if  there are Galerkin approximations X=~,m(t) of all orders m>=mo lying 

in d such that the H-mappings H,, corresponding to ~[Xm(t), t] are equibounded 
in the norm II Hm Iln, then there exists an isolated periodic solution x = s  of (2.40) 
lying in D, ~r is unique in a neighborhood of ~,,(t), and the following inequality 
holds: 

M1 ( K K l + K 2 ) c r ( m ) ,  (3.1) [1 ~ -~m ][~< l - s :  

where 

ir is an arbitrary f i xed  number such that 0 < ir < 1 ; 

K, K t, and 1(2 are the numbers defined in (2.8); 
t~(m) is the number defined in (2.3); 
M1 is a positive constant such that 

(3.2) [1Hm [[n ~ Mr. 

Proof. By the definition of Galerkin approximations, 

dxm(t) _ e , .  X ['Xm(t), t] 
dt 

(3.3) 

We have 

(3.4) 

where 

(3.5) 

d x m (  t) = X [Xm(t) ,  t] + tlm(t ) 
dt 

rim (t)  = -- [ I  --  Pro3 X [Xra (t) ,  t] . 

Equation (3.4) is of the same form as (2.66). Therefore, by (2.68) we have 

(3.6) II tim 11==< ~(m) ( K K 1  +K2) .  

Now let us take a positive integer ml >too so that 

- ( M1 . ( K K I + K 2 ) ~ < m m  e, M~-K, , 
1 - ~  V m, 

where ~ is an arbitrary fixed number such that 0 < ~ < 1 and K4 is the number 
defined in Lemma 2.4. Take g (>0)  so that 

(3.7) MI . ( K K I + K 2  ) V-2 <g___min e, 
1 - ~  Vm~ MT-K, ' 

and let m be any positive integer such that m>m~.  
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By assumption there is a Galerkin approximation X=~m(t) of the order m 
lying in A. Let D~ be the set 

D6 = {x [ [I x -  Xm (t) II _-_ 6 
Then 

(3.8) D~cD 

since 6 < 5. By (3.4) and (3.6) we have 

d~m(t)dt 

for some t~L} .  

X[xm(t) ,  t ]  = II rlra(t)II 

< ( K  K 1 +K2)  a(m) 

<(K Kt +K2) a(ml) 

<-(KK,+K2) V2 (cf. (2.4)) 
- -  VFt~ 1 ' 

and hence by (3.7) 

(3.9) Mill  qm [In < M1 
1 - ~  = 1--K 

.(KKI+K2 ) 1/2 <6. V m  -- 

Furthermore, as shown in the proof of Lemma 2.4, for any tEL and any x 
such that [[ X-~m(t)[[ _-<6 we have 

II ~(x,  t ) -  ~ [~m(t), t] II < K ,  II X--~m(O II <K4 6, 

from which, by (3.7), follows 
/s 

(3.10) II ~(x,  t ) -  ~ [~m(t), t] [I _-_ M--T" 

Relations (3.8)-(3.10) show that conditions ( i i ) -( iv)  of Proposition 3 are 
fulfilled for A(t)=~[2m(t), t]. Condition(i) of Proposition 3 is naturally ful- 
filled by the assumption of equiboundedness of Hm. Thus, by Proposition 3 we 
see that there exists one and only one exact isolated periodic solution x = s  
of (2.40) in D~. Inequality (3.1) readily follows from (3.6) and (1.26). Q.E.D.  

Remark 1. In practical problems, after finding a Galerkin approximation 
x = 2(t)  of some order, we can compute (say by numerical integration) the approx- 
imate values of the matrix H(t, s) of the H-mapping corresponding to the 
matrix ~[2( t ) ,  t]. Then, by means of (1.10), we can estimate the value of II Hlfn. 
Since 

~ -  [ ~ ( t ) ,  . X t] 

can also be estimated (say by numerical computation of the Fourier coefficients), 
we can check whether the conditions of Proposition 3 are all fulfilled or not. 
If the conditions are not fulfilled, then the order of the Oalerkin approximation 
has to be raised. As seen from the proof of Theorem 4, such a procedure always 
ends at a certain finite order in case the given system has an isolated periodic 
solution lying inside D (cf. Theorems 1 and 3). In other words, in such a case we 
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can always find a Galerkin approximation for which the conditions of Proposi- 
tion 3 are all fulfilled, and thereby, we can affirm the existence of an exact isolated 
periodic solution. The error of such a Galerkin approximation is within the 
bound given by (3.1). 

Remark 2. In Theorem 4 it is assumed that the multipliers of the linear 
homogeneous system 

dy _ ~ [x,,(t), t] y 
dt 

are all different from one. However, as is shown in the proposition of the Appendix, 
this can be proved if we assume the existence and the equiboundedness of J.~ 1 ( ~  
where ~ is the vector corresponding to the Fourier coefficients of 2, .(0.  

However, the equiboundedness of the H-mapping corresponding to kv [2,. (t), t], 
which is also assumed in Theorem 4, does not seem to follow solely from the 
assumption of the existence and equiboundedness of J,~ x (~ .  

w 4. An Example 
In this section we shall give an example of our method, using the equation 

(4.1) ~ + I. 52 x + (x - 1.5 sin t) a = 2 sin t .  

More realistic examples will be presented in the succeeding paper which will be 
mainly concerned with numerical techniques. 

Equation (4.1) can be rewritten in the form of a first order system as follows: 

~ = y ,  
(4.2) 

)) = - 1.5 2 x - ( x -  1.5 sin 0 3 +2  sin t. 

Now let x=x( t )  be any periodic solution of (4.1); then evidently - x ( - t )  and 
- x ( t + n )  are also periodic solutions. Therefore, if the periodic solution of (4.1) 
is unique, then it must be that 

x ( - t ) = - x ( t )  and x ( t + n ) = - x ( t ) .  

Then the Fourier series of such a periodic solution must be of the form 

x(t),'.ax sin t +a a sin 3 t + . . . .  

Taking this fact into consideration, first, for the system (4.2), let us calculate 
the 3 rd order Galerkin approximation of the form 

(4.3) 
x=x(t)=ax sin t+as sin 3t ,  

y = y ( t ) = a l  cos t + 3  as cos 3 t .  

Substituting (4.3) into (4.2), we get the following determining equation: 

--2+l.25a1+�88188 aa+~(al--l .5)a~=O, 
(4.4) 

--6.75 a a - � 8 8  (ax -- 1.5) 3 +�89 (a l - -  1.5) 2 aa +�88 aa a = 0 .  
Arch. Rational Mech. Anal., Vol. 20 10 
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Since a~= 1.5, a3=0 is an approximate solution, let us put 

a l = l . 5 + u .  

Then (4.4) is transformed to the following equation: 

u =0 .1-0 .6  u3+ 0.6 u 2 a 3-1.2  u a 2 , 

a 3 = ~ ( - u 3 + 6 u  za3+3 az3). 

This equation can be solved easily by the iterative method as follows: 

u =0.09941, a 3 -- -0.00004. 

Thus, for (4.2), we get the following 3 'd order Galerkin approximation: 

x=~( t )=  1.59941 sin t-0.00004 sin 3t,  
(4.5) 

y =~(t) = 1.59941 cos t -  0.00012 cos 3 t. 
Next, putting 

(4.6) A(t) = (_0o9 2 10) (o9= 1.5), 

we calculate the matrix H(t, s) of the H-mapping H corresponding to the above 
matrix. Let #( t )  be the fundamental matrix of the linear system 

dz 
dt -A(t) z; 

then evidently 

�9 (t)= ( cos cat 1 sin o~t/. 

\ -  co sin co t cos co t~ 
Hence, by (1.4) we have 

( 1 c~176 / H(t,s)= 1 s inog(n- t+s )  -~- for O<s<t<2n, 
2 sin or~ \ - c o  cos co (n - t+s )  sinco(rc-t+s)/ 

( 1 c ~ 1 7 6  t n(t,s)= 1 sin c o ( - n - t + s )  

2 sin o~rc \ - o ~  cos o ~ ( - l r - t  +s) sino~(-1r-t+s)] 

for 0 ~ t < s < 2 n .  
By (1.10) we see that 

< 13V  (4.7) I[ n II~ = ~  n=4.81312... <4.8132. 

Let ~(x, y, t) be the Jacobian matrix of the right member of (4.2) with respect 
to x and y. Then, from (4.6), 
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and hence, 

(4.8) II ~(x ,  y, t)-A(t)[I < 3 ( x -  1.5 sin t) z. 

Since 
IF(t ) -  1.5 sin t I =<0.09945 

by (4.5), inequality (4.8) implies that 

(4.9) l[ ~ (x, y, t ) -  a (t) II = 3 (5 + 0.09945) 2 

for x such that 

(4.10) Ix-~(01<5. 
Lastly, from (4.5), 

d~(t) 
dt ~(t)=0, 

d ~ (t) t- 1.52 ~(t) + I x ( t ) -  1.5 sin t] 3 _ 2 sin t 
dt 

- 0.0000 0040 sin t + 0.0000 2381 sin 3 t 

+ 0.0000 0030 sin 5 t. 
Consequently 

[ (dx( t )  ~;(t)) 2 ' f dy(t) + 
(4.11) L~" ~ ~'~,--d-t-l'5:~(t)+('x(t)-l'5sint)S-2sint)2] ' 

< 0.0000 25. 

Now, according to Proposition 3, let us determine 6 and x ( <  1) so that 

3(6+0.09945)2< r 
- 4.8132 ' 

(4.12) 4.8132 x 0.000025 
1 - ~ :  _<_5. 

The second inequality of (4.12) is 

(4.13) 0.00012033 
1 - •  < 5 .  

Let us suppose 

(4.14) 5 < 0.0002. 

Then the first inequality of (4.12) can be replaced by the stronger inequality 

/s /s 

5+0.09945__< 3 x 0.09965 x 4.8132 1.43890614 

which can be further replaced by the stronger inequality 

/r 
5 _< - 0.09945. 

- 1.439 

Combining this with (4.13), we have 

0.00012033 x 
< 5 <  -0.09945.  (4.15) 1 - r  = = 1.439 

10" 



148 MINORU URABE: 

Now let us consider the inequality 

0.00012033 x 1.439 <(1 - K)(~c- 1.439 x 0.09945), 
i. e . ,  

0.00017315487<(1-x)(x-0.14310855) .  

Then this is evidently satisfied by 
~:=0.144. 

But for this value of x, 

0.00012033 
= 0.00014057 . . . .  

1 - - t r  
(4.16) 

K 
- - -  0.09945 = 0.00061949 . . . .  
1.439 

Consequently, by our restriction (4.14), it is seen that we have only to choose 6 
so that 

(4.17) 0.000141 < 6 < 0.0002. 

This shows that there are indeed positive constants 5 and x ( <  1) satisfying (4.12). 

From this result, by Proposition 3, we see that the given equation which is 
equivalent to (4.2) has really one and only one exact isolated periodic solution 
x =  J ( t )  in the region 

(4.18) D0 = {x [ [I x - ~(t) [I < 6 for some t ~ L}. 

Further, from (4.16) we see that 

(4.19) [~(t) -~r <0.000141 

for the Galerkin approximation x = ~ ( t )  of (4.5). 

Remark. The region D o of (4.18) can be made broader by allowing a larger 
value to 6. For  instance, instead of (4.14), let us suppose 

6=<0.1. 

Then the first inequality of (4.12) can be replaced by the stronger inequality 

K K 
6 + 0 " 0 9 9 4 5 < 3 x 0 . 2 x 5  - 3 " 

Then, by combining this with (4.13) we have 

0.00012033 x 
_< 6 < - ~ - -  0.09945. 

1 /s 

Now let us consider the inequality 

3 x 0.00012033 =< (1 - x ) ( x -  3 x 0.09945), 
i .e .  

0.00036099 <(1 - x ) ( x -  0.29835). 

This is evidently satisfied by 
x=0 .9 .  
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But, for this value of x, 
0.00012033 

1 - x  
=0.0012033, 

K 
- - -0 .09945=0 .20055 .  
3 

Consequently, by our restriction it is seen that we have only to choose t5 so that 

0.0012033<5<0.1. 

From this result we see that an isolated periodic solution of the given equation (4.1) 
is unique in the region 

O' {x I II x -  ~(0 II ~ 0.1 for some t e L}. 

For  x=0 .9  we can obtain again an error estimate for the Galerkin approxi- 
mation, but this error estimate is of course worse than that of (4.19). 

Appendix 
Proposition A. Let  us assume that the conditions o f  Theorem 1 are satisfied. 

and furthermore,  let us assume that there is a positive integer m o such that, f o r  any 
m > too, there exists a Galerkin approximation 

m 

x = Xm (t) = ao + V ~ Y'. (a. cos n t + b. sin n t) 
n = l  

of  order m lying in D, f o r  which 

(A. 1) det Jm (~) =~ 0 
and 

(A.2) [I J~ 1(~) [I < M'. 

Here ~ = (fro, f l, b l . . . .  , am, bin), and M '  is a given positive constant independent o f  m. 

Then, i f  m x > m  o is sufficiently large, the multipliers o f  the linear homogeneous 
system 

(A.3) d y  
d t  - ~[-Xm(t), t ] y  

are all different f r o m  one f o r  any m>=m 1. 

Proof. For  brevity let us put 

(A.4) Am(t) = ~ ['~m(t), t ] ,  

and let us consider the linear system 

(A.5) d y d t = Pm/lm(t) y + tp( t) , 

where tp (t) is an arbitrary trigonometric polynomial of the form 

(A.6) ~o (t) = Co + 1/2 : (c/1 cos n t + d/1 sin n t). 
/1=1 
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Because of the particular form of the right member of (A.5), a periodic solution 
y=y( t )  of (A.5), if it exists, is a trigonometric polynomial of the form 

(A.7) y (t) = Uo + 1//2 ~ (u, cos n t + v, sin n t). 
n = l  

As has been mentioned at the beginning of Section 2.2, between ~ = (Uo, u~ . . . .  , 
urn, Vm) and y=(c  o, c 1, d 1 . . . . .  cm, din), the following relation holds: 

(A.8) Jm(~) r  

By assumption (A.I) this can be solved with respect to ~ as follows: 

(A.9) r = - Jm ~(~) 7. 

This means that a periodic solution y = y  (t) of (A.5) always exists and is determined 
uniquely for any trigonometric polynomial ~p(t) of the form (A.6). Furthermore, 
from (A.2) it follows that 

II r =< M' [I ~ II, 
which implies 

(A.10) II Y IIq < M '  l[ q~ IIq 

since fly I[q = II ~ II and II q~ I1~ = II r II. 
Now let us rewrite (A.5) as follows: 

d y -.4,~(t) y + q~(t)+~l(t) 
dt 

(A.11) 

where 

(A.12) r I ( t )  = --  ( I  - -  Pro) arn ( t )  y ( t ) .  

As seen from (3.4) and (3.6), Xm(t ) is equibounded in the norm II Xm II.; con- 
sequently, as in the proof of the Corollary of Lemma 2.2, there is a non-negative 
constant K~ independent of m such that 

~ _ _ <  K~ m > mo. for 

Since (A.11) is of the same form as (2.21), from (2.26) we have 

r 2 
II ~ IIq < ~rx(m) ['(K3 +K1)II Y Ilq+ K1 [l q~ [Ig], 

from which, by means of (A.10), we deduce that 

(A.13) 11 ~/Hq<[(K'3+K~)M'+KI"I a~(rn)II ~ Ilq. 

On the other hand, y(t) is a solution of (A.11), and consequently it can be 
written in the form 

t 

y (t) = �9 (t) c + �9 (t) ~ ~ -  ~(s) [~  (s) + ~ (s)] d s ,  
0 
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where e is a constant vector and ~( t )  is a fundamental matrix of (A.3) such that 
~ ( 0 ) = E  (E is a unit matrix). Since y ( t )  is periodic, we must have 

2 x  

(A.14) [,@(2n)-El c+ @(2re) ~ ~-'(s)[q~(s)+rl(s)Jds=O. 
o 

Now let us suppose that at least one of the multipliers of (A.3) is one, and 
hence, 

(A.15) det I -~(2n)-E]  = 0 .  

Then there exists a non-trivial vector h such that 

(A.17) 

where 

(A.16) h * [ ~ ( 2 r 0 - E ]  = 0 ,  

where h* denotes the transpose of h. From (A.14) it follows that 

2 ~  

.[ v*(s) [~ (s) + ,1(s)] as=O, 
0 

v*(s) = h* r re) ~ - t ( s ) .  

By (A.16), v*(s)  can be written as 

v* (s) = h* ~ -  l(s), 
o r  

(A.18) v(s) = 0 "  - l(s) h .  

Since O ( s + 2 n ) = ~ ( s )  ~(2n),  we have successively (cf. (A.16)) 

v(s+2g)  = ~* - l(s) ~* - 1(2n) h 

= ~ *  - l ( s )  h 

= v ( s ) .  

This means that v(s) is periodic in s of period 2n. Because h can be multiplied 
by any constant factor, we may suppose without loss of generality that 

(A.19) [l o II~ = 1. 
Since 

d v (s) = _ ii*. (s)  v (s)  
ds  

we have also 

(A.20) " ' llvllq<Kx, 
where 

K~ =max  [1 ~'*(x, t)[[. 
D •  

Since q~(t) is an arbitrary trigonometric polynomial of the form (A.6), we 
can take tp(t) so that 

clef  
tp (t) = vm (t) = Prn V ( t ) .  
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By L e m m a  2.1 it fol lows f rom (A.20) tha t  

(A.21) II ~ - v  lie = II vm-v II~ < K~ a l (m).  
Using (A.19), we have 

II ~ ll~ < 1 +K~ al(m).  
Then  f rom (A.13) we have 

(A.22) II ~ lie-5 [(K~ + K~) M ' +  K t ] .  [ I  + K~ a t ( m ) ]  a t ( m ) .  

N o w  (A.17) can be rewri t ten as fo l lows:  

2n 1 25 
1 S v*(s) v ( s ) d s = - ~ -  ~ v*(s) { [ ~ ( s ) - ~ ( s ) ] - ~ ( s ) }  ds, 

2~r o z n  o 
namely  

2 1 21t * 
II v I1~ = ~ ~ ~ v (s) {Iv ( s ) -  ~ (s)] - ~ (s)} d s. 

Then  by  SCHWARZ' inequal i ty  we have 

II v 112 <= II v 11~ I-II v -  ~p I1~+ II '/II~], 

from which, by (A.19), (A.21) and (A.22), it follows that 

1 <= K~ a~(m) + [(K~ + K,b m' + Kd"  [1 + K~ a,(m)] a~(m). 

This is a con t rad ic t ion  for  large m, since a~(m)=l/(m+l)--,O as m-~oo,  Thus, 
we see tha t  (A,15) does  no t  ho ld  for  any  re>m1 prov ided  m 1 >mo is sufficiently 
large,  This  proves  the  p ropos i t ion .  Q . E . D .  

This paper was prepared while the author was at the Mathematics Research Center, United 
States Army, Madison, Wisconsin, under Contract No. DA-11-022-ORD-2059. 
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