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1. Introduction 

Let BR ---- (x E 1%N; I xl < R) with N ~ 2. Consider a function u which 
satisfies 

u C C2(BR \ {0}), U ~ 0 on BR \ {0}, 
(1) 

- - A u + u  p = O  on BR\{O}. 

We are concerned with the behavior of  u near x = O. There are two distinct 
cases: 
1) When p >= N / ( N  --  2) and (N ~ 3) it has been shown by BR~ZIS & V~RON 
[9] that u must be smooth at 0 (See also BARAS & PIERRE [1] for a different proof). 
In other words, isolated singularities are removable. 
2) When 1-< p < N / ( N -  2) there are solutions of  (1) with a singularity at 
x ---- 0. Moreover  all singular solutions have been classified by V~RON [22]. We 
recall his result: 

Theorem 1. Assume that 1 < p < N / ( N  -- 2) and that u satisfies (1). Then 
one o f  the following holds: 

(i) either u is smooth at O, 

(ii) or lim u(x) /E(x)  = c where c is a constant which can take an), value in the 
x"+O 

interval (0, oo), 

(iii) or lim ]u(x) - -  l(p, N)[xl -2Z~-1) l  = 0. 
x ---)'0 

Here E(x)  denotes the fundamental solution of --A and l = l(p, N )  is the (unique) 
positive constant C such that Clx1-2/ -') satisfies (1)--more precisely 

l = l(p, N )  = 1 N 
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We shall first present a proof of Theorem 1 which is simpler than the original 
proof  of V6ron. In particular, it does not make use of FOWLER'S results [10] for 
the Emden differential equation. Instead, it relies on some simple scaling argument 
(see the proof  of Lemma 5) which is similar to the one used by KAMIN & PELET1ER 
[12] for parabolic equations. 

Next, we emphasize that a singular behavior such as (ii) or (iii) can be pre- 
scribed together with a boundary condition, and these determine uniquely the 
solution. 

More precisely, let .(2 be a smooth bounded domain in R N with 0 E ~Q and 
let q~ ~ 0 be a smooth function defined on ~Q. We consider the problem 

u E C z ( ~ \  {0}), u ~ 0 on (2 \ (0}, 

--/Ju + u ~ = 0 on .(2 (2) 

u = q~ on ?~2. 

Theorem 2. Assume 1 < p < N/ (N  -- 2). Then 

(i) There is a unique solution Uo o f  (2) which belongs to  C2(~). 

(ii) Given any constant cE (0, +o0)  there is a unique solution uc of (2) which 
satisfies 

lim u(x)/E(x) : c. 
x---~0 

(iii) There is a unique solution u~ o f  (2) which satisfies 

lim Ix! 2/(p-I~ u(x) - - l (p ,  N)  
x->O 

In addition, lim uc = Uo and lim u, = u~. 
c+O c~ 

Singular solutions of (1) occur in the THOMAS-FERMI theory with N : 3 and 
p ---- 3/2 (see e.g. [13] for a detailed exposition). Other results dealing with singular 
solutions of  nonlinear elliptic equations have been obtained by a number of 
authors: J. SERRIN [20], [21], VERON and VAZQUEZ (See the exposition in [23]), 
P. L. L~ONS [14], W. M. NI & J. SERRIN [16]. Semilinear parabolic equations with 
isolated singularities have been considered by BREZIS & FRIEDMAN [5], BREZIS 
& PELEI~ER & TERMAN [8], KAMIN & PELEXIER [12], OSWALD [18]. 

2. Some preliminary facts 

We recall some known results dealing with functions u satisfying (1) 
Set ~ = 2 / ( p - -  1) (for 1 < p <  oo). 

Lemma 1. Assume u E C2(BR) satisfies (1). 
Then 

u(O) ~ C(p, N) /R  ~ 

where C(p, N)  is defined by C(p, N) : Max (2gN, 40r + 1)} 1/(p-l). 
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The p r o o f  o f  L e m m a  1 uses a compar i son  funct ion U o f  the same type as 
in OSSERMAN [17] (or LOEWNER & NIRENBERG [15]), namely  set 

C(p, n) R ~ 
U(x) = (R 2 __ I x 1 2 ;  on BR.  

A direct computa t ion  shows that  

- - A U  + UP >= O on BR. 

By the m a x i m u m  principle we see tha t  

and in par t icular  u ( 0 ) ~  U(0). 

u ~ U o n B R  

L e m m a  2. Assume u satisfies (1) with 1 < p < N/ (N --  2). 
o < Ixl < R/2, 

l(p, N) ( C(p, N)  ( ] ~ )  ~) 
u(x) ~ ~ 1 -}- l(p, N------~ 

where fl : 2o~ + 2 --  N > o~. 

Then, for 

L e m m a  2 is established in BREZIS & LIEB [6] (Proposi t ion A.4) for  the special 
case where N = 3 and p = 3/2. The  p r o o f  in the general case is just  the same. 

L e m m a  3. Assume 
there is a unique function u satisfying 

u E LP(R N) A C2(R N \ (0)), 

u ~ O  on R N \ {O}, 

- -Au + u p : c6 o n  R N 

We set u :  W~. 

I < p < N / ( N - -  2) and let c > O be a constant. Then 

(3) 

L e m m a  3, as well as L e m m a  4 below, are due to BENILAN & BREZIS (unpub-  
lished); the ingredients for  the proofs  may  be found in [2], [3], [4] (and also [1] 
and [11]). 

Finally, we assume that  .(2 is a smooth  bounded  domain  in p N with 0 ~ $2 
and that  q~ :> 0 is a smoo th  funct ion defined as &Q. 

L e m m a 4 .  Assume I ~ p ~ N / ( N - -  2) and let c > O be a constant. 
Then, there is a unique function u satisfying 

u ~ L~(~) C~ C~(~ \ {0)) 

u ~ O  o n Q \ ( o }  

- -Au  + u p = c~ on -(2 
(4) 

u = r on &Q. 
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3. A Sealing Argument 

An impor tan t  step in the p r o o f  of  Theorem 1 is the following 

L e m m a  5. Assume 1 ~ p ~ N/(N -- 2). Then 

lira Wc(x) ---- l I x [ -  ~ ~ Woo(x). 
c~oo 

Proof .  I t  is clear (by compar ison)  that  W~(x) is a nondecreasing function of  c. 
Moreove r  we have 

Wc(X) < t l x l  - ~  

(by letting R--~- ~ in L e m m a  2). Therefore  lim Wc(x) = W~(x) exists point-  
c~o 

wise (for x @ 0) and W~(x) <= l l x [ -L  The uniqueness of  the solution of  (3) 
implies tha t  W~(x) is radial and so is W~(x). Next,  we observe that  the funct ion 

satisfies 

u(x) = U' W~(kx) (k > O) 

--Au(x) q- uP(x) = k~ = k ~  

--A W~ + W~ = 0 in ~ ' ( R  u \ {0}). 

This determines the value of  the constant  C to be C = 1. 

There  is a similar result in balls: Set u = V~ to be the unique solution of  
p rob lem (4) with X2 = B e. 

it follows that  

I t  follows, again by uniqueness, that  

k~Wc(kx)--- w~, , -N(x) .  

As e ~ co  we see that  

k~W~(kx) = W~(x).  

Choosing k = 1/] x I we obtain 

w~(x)  = w ~  [ x l  - ~  = c l x l  - ~  

where C ~ 0 is some constant.  Finally we note that  since 

- -AWc -l- W~ = 0 in ~ ' ( R  N \ {0}) 

and 

W~ ~ W~ in L~'oc(R N \ {0}), 
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L e m m a  6. Assume 1 < p < N / ( N  --  2). Then Voo(x) ~ lim V~(x) 
c~oo 

pointwise on BR \ {0} and moreover 

W o o ( x ) -  IR-~' <= Voo(x) ~ Woo(x) on Be.  

253 

exists 

Proof .  I t  is again clear (by compar i son)  that  Vc(x) is a nondecreasing funct ion 
of  c. Also we have 

o < Vc(x) < Wc(x). (5) 

I t  follows f rom (4) and (5) that  

- - A ( W c  --  go) < 0 on BR, 

and consequently Sup (We - -  Vc) ~ Sup (W~ - -  Vc) ~ Sup Woo = I R - L  The  
Be ~nR ~sR 

conclusion follows by letting e ~ cx~. 

4. Proof  of  Theorem 1 

Throughou t  this section we suppose 1 < p < N / ( N  -- 2). Assume u satisfies 
(1) and set 

We distinguish three cases: 

Case (i) c ---- 0 

Case( i i )  0 < c <  oo 

Case (iii) c = ~ .  

c = l im sup u(x) /E(x) .  
x-'-~0 

Cases O) and (ii). Here  the main  ingredient  is the following: 

L e m m a  7. In cases (i) and (ii) the function u belongs to L~oc(BR) and satisfies 

- - A u  + u p = coo in ~ ' (BR) 

f o r  some constant Co. 
Proof .  I t  is clear that  u E L~oc(BR) since E E L~o~(BR) and c < oo. We now 

use the same a rgument  as in [7]: set 

T = - - d u  + u p E ~ ' (BR) .  

Since the suppor t  o f  T is conta ined in (0), it follows f rom a classical result  abou t  
distr ibutions (see [19]) tha t  

T =  ~ c~,D~'(6). (6) 
0 < t ~ l < m  
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We claim c~ = 0 when [o~[ ~ 1. Indeed let ( E  ~(BR) be any fixed function 
such that  ( - -  1) T~l D~((0) = c~ for  every o~ with I o~1 ~ m. Mult iplying (6) through 
by ~',(x) = ~(x/e) we obtain 

- f u A # , +  fu"g,= Z c] e-t~'' 
0~lc~l~m 

An easy compu ta t i on - -u s ing  the est imate u ~ C E - - s h o w s  that  

If u ~ l  <= c when N ~  3 

If nAOmi <= Cllog~l + C when N =  2. 

Since fuPr 0 as e - +  0, we conclude that  ca----0 for  [o~] ~ 1. Therefore  

we obtain  

- - A u  + u t' = Co~ in ~ ' (BR) .  

We conclude the p r o o f  of  Theorem 1 in cases (i) and (ii) with the help of  the 
following: 

L e m m a  8. Assume u E C2(BR \ {0}) A LFo~(BI~) satisfies 

u ~> 0 o n  BR, 
- - d u  -k u p = Co~ in ~' (BR)  

f o r  some constant Co. Then 

(i) if C o = 0 ,  then u is smooth on BR, 

(ii) if  Co :4 = O, then lim u(x) /E(x)  = Co. 
x-+0 

Proof. 
(i) Assume Co----0. Since u is subharmonic  it follows that  u E Llo~c(BR) and 
thus A u E  LIo~(BR). We deduce that  u E Ca(Ble) and then u E C2(BR). In  fact 
u E C~176 since, by the strong m a x i m u m  principle, we have either u ~ 0 or  
u ~ > 0  o r B R .  

(ii) Assume Co =~ 0. By the m a x i m u m  principle we have 

u ~ coE 4- C o n  BR/2 

and therefore 

- - A u  ~ Co6 - -  (coE + C) v 

CoO - -  C(E  p -~  l) on BRI 2 

An elementary computa t ion  leads to 

u(x) ~ c o E -  o(E) 

and we conclude tha t  lim u(x) /E(x)  ~ Co. 
x--~O 

as x ~ O, 
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Remark 1. Assume Co =~ 0. The argument above provides in fact an estimate 
for [ u --  coEI as x ~ 0. More precisely we have 

a) I f  N = 2  and l < p <  o0 or N = 3  and l < p < 2 ,  then 

I u - c o E ] < = C  on Be/2 

b) I f  N : 3  and p = 2 ,  then 

lu(x) - coE(x)l <= C([ log  [xl l  + 1) on  MR/2 

c) I f  N : 3  and 2 < p <  3 or N ~ > 4  and I < p < N / ( N - - 2 )  then 

[u(x) - -  cog(x)[ ~: C Ixl z-<N-2)p on BR/2 

and consequently 

u(x) [ 
E(x) - -  Co ~ C I xl ~ o n  B~/~  

with r : N - - ( N - - 2 )  p > 0 .  

Proof of  Theorem 1 in Case (iii). We first recall a result of  V~RON [22] 
(Lemma 1.5): 

Lemma 9. Assume u satisfies (1). Then there is a constant V (depending only 
on p and N) such that 

Sup u(x) <= C Inf  u(x) for 0 < r < R/2. 
Ixl  = r  Ixl = r  

The conclusion of Lemma 9 is a simple consequence of Harnack 's  inequality 
and the estimate of  Lemma 1, see [22] for the details. 

We may now complete the proof  of  Theorem 1 with the help of  the following: 

Lemma 10. Assume u satisfies (1) and lim sup u(x)/E(x) : cx~. Then 
x--r-0 

lu(x) - t I x l - ~ l  =< c Ixl ~ on  B~z2 

for some constants C : C(p, N, R) and 7 = 7(P, N)  > O. 

Proof. By Lemma 2 we already have the estimate 

u(x) < 1 I xl  -~  + c Ix I ~ on BR/2 

with 

~, = f l - -  0~ = ~ - k -  2 - -  N > 0 .  

We now establish an estimate from below. Let x,  ~ 0 be such that lim u(x,)/ 
E(x,)  ---- e~. Set r .  = Ix, [, so that we obtain from Lemma 9 

In f  u(x)/E(x) ,~oo oo. (7) 
[x l  = r  n 
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We recall that  Vr is the unique solution of  (4) when .Q = BR, so that 
o n  B R- 

Given any constant  c > 0, we see (by (7)) that 

Therefore  

Vr 

u(x) ~ cE(x) for  I x] = G  and n large enough.  

u(x) >= Vr for  Ix[ = r ,  and n large enough.  

Applying the maximum principle in the domain  {x G BN; rn < Ix] < R} we find 
that  

u(x) >~ Vr for  G < I x] < R and n large enough.  

As n--~ eo we conclude that  

u(x) >= Vr on/~R \ {0) 

and as c - +  oo we see that  

u(x) >= Voo(x) on B R \ {0). 

In Lemma 6 we had the estimate 

voo(x) > t(lxl -~ - R - 0 .  

However  it is not  good enough to deduce conclusion (iii) of  Theorem 1. We need 
a better  estimate f rom below for  Voo(x); we claim that  

Voo(x) :> l [ x [ - ~  ( 1 -  ([--~R] f )  on BR, (8) 

where/3  is defined in Lemma 2. 
Clearly, it suffices to establish (8) for  R = 1. The function Voo is radial and 

so we write Voo(r). We define the function v on (0, 1) by the relation 

v(r t~) : l-l  r~ Voo(r) 

so that  0 ~ v ~  1 on (0,1),  v ( 1 ) : 0  and v ( 0 ) :  1. Using the relation 
--A Voo -k V p : 0 it is easy to deduce (as in the p roo f  of  Proposi t ion A.4 [6]) 
that  

--fl2t2v"(t) + lp-lv(t) (vV-l(t) -- 1) : 0 for  t C (0, 1). 

Consequently v is concave and thus we have 

v(t) ~> 1 --  t tG (0, 1), 

which is (8). 
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Remark 2. V~ROn [22] obtains in case (iii) an estimate o f  the form [u(x) - -  
l I xl-~[ =< c lxi ~ with an exponent ~ which is better than 7 = / 3  - -  o~. 

5. Proof of Theorem 2 

Case (i) is classical. 

Case (ii). The existence o f  a solution follows f rom Lemma 4 and 8. 
Suppose now u satisfies (2) and lira u(x)/E(x) = c. We deduce f rom L e m m a  7 

x--~O 

and 8 that  - -Au + u p = cb; uniqueness follows f rom Lemma 4. 

Case (iii). We denote by uc the unique solution o f  (4) given by Lemma 4. We 
claim that  u~o = lira u~ has all the required properties. 

ctoO 

Indeed u,(x) is a nondecreasing function o f  c. Fix R > 0 such that  2R 
dist (0, B,Q). By L e m m a  1 we have 

u~(x) <~ C(p, N)  R -  ~ for I xl = R. 

The maximum principle applied in the region 

s?R = {x~ ~ ;  lxl > R )  

shows that, in DR, 

Therefore 

we have 

uc(x ) < Max {Sup % C(p, N)  R-~} .  
0 o  

uoo(x) = lim Uc(X ) exists and u~ satisfies (2). By compar ison on B R 
ctoo 

V~ <~ u~ on BR 

and as c--~ ~ we obtain V~ < uoo on B R. I t  follows that  lim ] u~(x) -- 11 x] - ~ ] = 0 
x-+0 

(by Lemma 6 and Theorem 1). 
We turn now to  the question o f  uniqueness. Suppose u~ and u2 satisfy (2) 

and lim Ix[ ~ u i ( x ) =  l for  i = 1, 2. L e m m a  10 implies that  
X---~O 

l u ,(x)  - u~(x)[ < c I x[~ on BR. 

On the other  hand  

- -A(ul  - -  u2) -}- uf - -  u~ = 0 on ~ \ {0}. 
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App ly ing  the m a x i m u m  principle  in OR we obta in  

M a x l u l - - u 2 l ~ M a x [ u l - - u 2 l  ~ C R Y  
~R ~BR 

and then we let R--~ 0 to  conclude tha t  ut ---- u2. 

The work of BREZlS was partially supported by the United States Army under Con- 
tract No. DAAG29-80-C-0041. 
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