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1. Introduction 

In 1776, COULOMB [1] presented the first yield criterion in mechanics, a yield 
criterion for soils, including granular materials. The Coulomb criterion states 
that slip is impending on a plane in the material when 

S=bT+c ,  (1.1) 

where S and T are the shear stress and normal stress, respectively, acting on the 
plane, b is a coefficient of static friction, and c is a coefficient of cohesion. The 
Mohr-Coulomb theory of limiting equilibrium, based on the Coulomb criterion 
and the equations of static equilibrium, was formulated by K6~n~R [2] and 
extended and summarized by SOKOLOVSKn [3]. The Coulomb criterion also serves 
as the starting or focal point for most existing three-dimensional deformation 
theories for soils which, for the most part, are extensions or modifications of the 
theory of elastic-plastic bodies [4, 5, 6, 7, 8, 9]. Such theories, however, do not 
recognize the two (or three) phase nature of granular materials and, consequently, 
yield results which are independent of the magnitude and distribution of the void 
volume. 

In this paper, we present a theory for granular materials formulated from 
formal arguments of continuum mechanics. The basic premise underlying the 
paper is that the concept of mass distribution must be extended to admit granular 
materials. In particular, the distribution of mass must be related to the volume 
distribution of granules. To achieve this, we introduce an independent kinematical 
variable, called the volume distribution function. 

The following physically motivated assumptions associated with the volume 
distribution of granules in a granular material form the basis for the proposed 
theory of granular materials. 

I. The volume of granules in a granular material is regarded as a measure on 
Euclidean space. The measure is equally valid for solid, porous materials (rock, 
cork, sponge, etc.) as well as granular materials (sand, grain, powder, etc.) 

2. The mass measure is assumed absolutely continuous with respect to the 
volume distribution measure. This assumption is tantamount to neglecting the 
void mass and is consistent with one's intuitive notion of granular materials; e.g. 
consider dry sand. Since the void mass is neglected, only one type of material point 
need be considered for describing the motion of the body. 
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3. To account for energy flux and energy supply associated with the time rate 
of change of volume distribution, a higher order stress and body force are intro- 
duced. Such terms are expected since the volume distribution function and the 
motion are kinematically independent. They are also expected on physical grounds; 
see, for example [10, 11, 12, 13]. The introduction of these terms is not without 
precedent. Terms of this type are contained in the higher order elasticity theories 
developed by MINDLIN [14], TOUPIN [15], and GREEN & RIVLIN [16] and in the 
theory of liquid crystals as presented by ERICKSEN [17] and LESLIE [18]. For 
granular materials, GOODMAN [19] has shown that the higher order stress degen- 
erates to an equilibrated stress related to a system of self-equilibrating forces 
resulting in either a center of compression or center of dilatation. 

4. From a conceptual viewpoint, the flow behavior of granular materials is 
considered to be similar to fluid behavior. Specifically, the response of a granular 
material is unaltered by any change in reference configuration that does not 
change the density and, in addition, does not change the volume distribution. The 
condition on the volume distribution requires that granular materials have pre- 
ferred reference configurations with respect to volume distribution. This is con- 
sistent with the experimental result reported by many investigators [20, 21, 22] that 
the bulk compressibility of granular materials is dependent on the initial porosity. 

In Section 2, we introduce the concept of a distributed body which we propose 
as a continuum model for granular and porous bodies. The work of NOLL [23] is 
paralleled in formulating the concepts of mass distribution and volume distribu- 
tion. Kinematics and thermodynamic processes for distributed bodies are con- 
sidered in Sections 3 and 4. In the thermodynamic development, we leave the 
entropy flux arbitrary as proposed by MOLLER [24]. In Sections 5 and 6, we con- 
sider constitutive equations for granular materials and restrictions imposed by 
the entropy inequality. We linearize the theory in Section 7 and show that a 
necessary condition for equilibrium is that the stress reduces to a generalized form 
of the Mohr-Coulomb stress state of limiting equilibrium. In Section 8, we present 
results for granular materials subject to the kinematical constraint of incom- 
pressible granules. 

Cartesian tensor notation is employed throughout the paper. 

2. The Distributed Body 

The distribution of the solid constituent in porous and granular materials is a 
distinguishing characteristic of these materials. The distribution of solid volume 
must be known before one can determine the distribution of solid mass. To 
express this idea precisely, we introduce the concept of a distributed body. 

A distributed body is a one-parameter family {B,}, - o o  < t <  oo, of regions of 
Euclidean three space such that 

(a) for any t and t', the region Bt is homeomorphic to the region B c, and 
(b) for each t, the region Bt is endowed with a structure given by two real 

valued set functions d(  t and ~ subject to the following axioms: 
(b 1) ~r and ~ are non-negative measures defined for all Borel subsets 

Pt~Bt, 
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(b 2) ~(Pt)  < V(Pt)*,  for all Pt c B,, 

(b 3) Mtt is absolutely continuous with respect to ~ .  

In the above terminology, B t is the configuration of the distributed body at 
time t and ~ and .~'/t are the distributed volume and distributed mass, respectively. 
If the homeomorphisms associated with {Bt} are restricted to subsets of B t, then 
{Pt} c {Bt} is a part where it is understood that P, ~ B t for each t. For any Pt ~-Bt, 
the quantities ~t(P,) and XI  t (Pt) a r e  the distributed volume and distributed mass 
of the part {Pt} a t  time t. Henceforth, it will be convenient to suppress the bracket 
notation and refer to Pt a s  a part of Bt. 

Before proceeding, we wish to comment on the significance of axioms (b2) 
and (b3) in the above definition. Clearly, axiom (b2) is characteristic of all porous 
and granular bodies. The volume of solid is always less than or equal to the total 
volume of any part of the body. Axiom (b3), however, imposes certain features 
on the body. It provides a continuum aspect to an otherwise discrete medium. 
The idea of discrete pores and granules is no longer retained as volume continuity 
rules out the possibility of point, line, or surface concentrations of mass. Moreover, 
condition (b 3) implies that the mass of a distributed body is only associated with 
the distributed volume ~ and not the void volume V - ~ .  We interpret this to 
mean that the void mass of a porous or granular material can be neglected. 

From axiom (b2), it follows that the distributed volume measure ~ is ab- 
solutely continuous with respect to the Lebesgue volume measure V. Hence, by 
the Radon-Nikodym theorem, there exists a real valued Lebesgue integrable 
function v(x~, t) defined on B t such that for any part P t ~ B t  

~t(Vt) = ~ v d V .  (2.1) 
Pt 

Moreover, the function v, called the volume distribution function**, has the property 
that for almost all x~eB t 

0__<v(xi, t)__< 1. (2.2) 

Similarly, it follows from axiom (b3) that there exists an essentially bounded 
~:integrable function ~(x~, t) defined on Bt such that for any part P t c B t  

~t',(P,) = j" ? d~'t. (2.3) 
Pt 

The function ~ is called the distributed mass density or simply the distributed 
density. From the absolute continuity of distributed volume with respect to 
Lebesgue volume, the mass .~t(Pt)  can also be expressed as 

�9 ~t(Pt)  = S ~ v dV,  (2.4) 
Pt 

where the function p(=~ v) is interpreted as the classical mass density function. 
For our purposes, this function is called the bulk density of the distributed body. 

�9 V is the  Lebesgue  vo lume  measure .  
�9 * In  soil mechan ics  terminology,  the  vo l ume  dis t r ibut ion v is related to the  porosi ty  n o r  

the  void rat io e by v=l--n=l/(l+e). 
19. 
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For a granular material, the function ~ would correspond to the mass density 
of the granules themselves and the function v would represent the granular volume 
distribution. In this way, the mass density of the entire ensemble is uncoupled 
from the mass density of the individual granules, allowing a continuum interpre- 
tation of the idea of volume distribution as well as the concept of dilatancy intro- 
duced by REYNOLDS [25]. The total volume of the ensemble can increase or 
decrease as a result of a change in void volume induced by a change in the volume 
distribution. 

3. Kinematics 
Although the permeability and fluid flow characteristics of porous and 

granular materials are of general interest, here we are only concerned with the 
behavior of the bulk material. This is evident since we have neglected the void 
mass. Hence, we need only speak of one type of material point and describe its 
motion relative to a reference configuration. 

For toe(-oo,  ~ )  the motion of a distributed body relative to the time t o is a 
mapping X~ ~ from the product set B,oX(- oo, co) into Euclidean three space having 
the following properties: 

(a) For each time t, the function X~~ t), called the deformation function, is a 
smooth homeomorphism of B,o onto B,. 

(b) For each X4~Bto, the function X]~ .), called the path function, is 
defined from ( -  ~ ,  oo) into Euclidean three space and is twice differentiable 
for all t e ( -oo ,  ~).  

The traditional kinematical quantities are obtained in their familiar form. The 
velocity vt(Xa, t) and acceleration a~(Xa, t) of the material point Xa are given by 

vi(Xa, t)= d-~-X~~ t), (3.1) 

02 
a~(Xa ,o , , t )=- -~-Z~ (Xa t). (3.2) 

The deformation gradient Fia(Xe, t) is defined by 

a to F~a(X~, t)=-fX-fa Zi (X.,  t), (3.3) 

and the velocity gradient L~(xk, t) has the form 

O - ,6-1 L,#(x k, t)=--~-j v,(X~ (xk, t), t). (3.4) 

The rate of deformation tensor Di j(x k, t) and spin tensor W~j(xk, t) are defined 
as the symmetric and skew-symmetric parts of the velocity gradient, respectively. 

We now consider the kinematics of volume distribution and introduce the 
concept of dilatancy. Let d V o be an element of total or bulk volume in the reference 
configuration and let d V denote its image under the motion X~ ~ It is a well-known 
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result from mechanics that 
d V = J  dV o (3.5) 

where J= ]det Fia [. From (2.1) it follows that an element of distributed volume 
in the instantaneous configuration is related to an element of total or bulk volume 
by 

d ~ = v d V .  (3.6) 

Similarly, in the reference configuration, 

dr = v o d V o. (3.7) 

Using (3.5)-(3.7), one can easily show that an element of distributed volume 
transforms according to 

d~l/~t= v---- J dq,~to . (3.8) 
Vo 

If the distributed body is constrained so that the total or bulk volume is preserved 
under the motion, i.e. the motion is isochoric, 

J = 1, (3.9) 

then the distributed body is said to be non-dilatant; otherwise, it is dilatant. We 
are interested in dilatancy and shall not employ the kinematical constraint (3.9). 

The kinematical constraint that is more interesting for distributed bodies is 
the constraint of incompressible distributed volume. From (3.8) this kinematical 
constraint can be expressed by the equation 

or, equivalently, 

v 
- -  J :  1, (3.10) 
~o 

~'+ vvt, i=O. (3.11) 

Although (3.10) and (3.11) are similar in form to statements of mass conservation 
in continuum mechanics, they represent a kinematical constraint and are not 
statements of any conservation principle. A body whose distributed volume is 
incompressible can still exhibit dilatancy. The change in total or bulk volume will 
then correspond to the change in void volume. 

In the development which follows, we consider the general unconstrained case 
of dilatant bodies with compressible distributed volume. The special case of 
dilatant bodies subject to the kinematical constraint of incompressible distributed 
volume is considered in Section 8. 

4. Thermodynamic Processes 

In this section, appropriate statements of the conservation of energy and the 
Clausius-Duhem inequality are assumed and some consequences of these state- 
ments are deduced from invariance principles (NOEL [26] and G m N  & RtVLIN 
[27]). A conservation law for the higher order forces associated with the volume 
distribution is postulated. The necessary thermal and mechanical field variables 
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are introduced as primitive quantities. Specifically, there exists a stress tensor T~j, 
body force b~, specific internal energy e, heat f lux vector q~, heat supply r, specific 
entropy ~1, entropy f lux vector q~, and temperature O. In addition, according to 
assumption three stated in the introduction, we introduce an equilibrated inertia 
k, equilibrated stress vector h~, external equilibrated body force l, and intrinsic 
equilibrated body force g. 

A process G for a distributed body {Bt} with a motion ~o is defined as the set 

G={Z~ ~ ~, v, Tij, bi, e, q~, r, r/, ~b~, 0, k, h~, l, g}. (4.1) 

A process G is called a thermodynamic process if the elements of G satisfy the 
following balance relations: 

Balance of Energy 

d t ~Tv(e+�89189 
(4.2) 

= S (Ti jv ,+hJ; ' -qj)njdA+ S7 v(biv,+l~+r)dV, 
OPt e t  

Entropy Inequality 
d r 

d t e,Syv~ldV> - oP, ~ q~,n~dA+ e,~?vffdV' (4.3) 

Balance of Equilibrated Force 

d ~yvkvdV= ~ hinidA+ Syv(l+g)dV, (4.4) 
d t e, ~e, Pt 

Balance of Equilibrated Inertia 

d I~vkdV=O. (4.5) 
Pt 

The statements of the conservation of energy and entropy inequality given 
above differ from the traditional statements by the occurrence of the power terms 
associated with ~ in the energy equation and the fact that the entropy flux is not 
assumed to be the heat flux divided by temperature in the entropy inequality. In 
the less restrictive assumption concerning the entropy flux, we are following 
MOLLER [24]. The introduction of the power terms associated with ~ are necessary 
because v is kinematically independent of the motion ;(~o and the temperature 0. 
That is to say, v, X~ ~ and 0 independently characterize energy storing or absorbing 
aspects of the model. It was noted in the introduction that similar terms appear 
in the theoretical developments of MINDLIN [14], TOUPIN [15], GREEN & RIV- 
LIN [16], ERICKSEN [17], and LESLIE [18] and also in the soil mechanics literature 
[10, 11, 12, 13]. 

The balance equations (4.4) and (4.5) are analogous to the classical balance 
equations of linear momentum and mass. The balance of equilibrated force is 
motivated by a variational analysis [19]. A similar equation also arises in the 
theories of MINDLIN [14], TOUI'IN [15], etc.* The balance equation for equilibrated 

* In a certain sense, the present theory may be regarded as a special case of the theories of 
microstructure (see MINDLIN [14], TOUPIN [15l, and GREEN & R]VLIN [16]) where only the dilata- 
tion of the micromedium is considered. 
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inertia is necessary for a complete theory; we have assumed the simplest form. 
A more general expression would include on the right-hand side of (4.5) an 
inertia supply term to be described by a constitutive equation. 

The classical laws of mechanics are deduced by invoking the principle of 
material objectivity and the following postulate: every process G' obtained from 
a thermodynamic process G by a change of frame must itself be a thermodynamic 
process. From arguments outlined by NOLL [26] and GREEN & RIVLIN [27], the 
familiar balance relations for mass, linear momentum, and angular momentum 
are obtained: 

~v+~vvi, i=0 ,  (4.6) 

?v{~i= Tij.i+ Tvbi, (4.7) 

Ti~= Tji. (4.8) 

Employing (4.6)-(4.8) in the balance relations (4.2)-(4.5), we obtain the follow- 
ing field expressions after some manipulation: 

~c=0, (4.9) 

~vk~ = hi,~+ ~v(l+ g), (4.10) 

~V~= TijDij-l-hi(v), i - ~ v g v -  qi, i+ ? vr, (4.11) 

r 
?viT>= -~pi, i+ ?v-o-. (4.12) 

Solving for r in (4.11), substituting the resulting expression into (4.12), and intro- 
ducing the free energy 

~b=e-~/0 (4.13) 
and extra entropy flux 

we have 

ki=dpi qi 0 ' (4.14) 

_),v((k+rl~)+ T~jD,j+h,(~).i_~vg~+Ok,, ' q,O,i >_0. (4.15) 
0 - 

This form of the entropy inequality will be used to investigate the constitutive 
postulates. 

5. Constitutive Equations 

The fundamental concepts and principles presented in the previous sections 
apply to a general class of materials, including porous materials as well as granular 
materials. Here we specialize the theory to granular materials. The basic distinction 
between porous materials and granular materials is characterized by the particular 
constitutive postulates. 

Generally speaking, it is assumed that the histories of the motion, temperature, 
and volume distribution determine the thermodynamic response of porous and 
granular materials. In accordance with the fourth assumption presented in the 
introduction, the behavior of granular materials is similar to fluid behavior except 
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that the response functionals for granular materials depend on the reference con- 
figuration Bto through the reference volume distribution v o. In particular, we 
consider in this paper granular materials whose response is characterized by con- 
stitutive functions of 

Vo, v, v, i, v, ?, 0, 0, s, vs, vs, j .  (5.1) 

Such materials will be called granular materials for the purposes of this paper. 
Invoking the principle of material objectivity which implies that the response 
of granular materials is independent of the velocity and skew-symmetric part of 
the velocity gradient, and assuming equipresence in the constitutive equations, 
we have 

r =ff(Vo, v, v,i, v, y, O, O,i, Dsj), 

t/=r/(v0, v, v, i, ~, ~, 0, 0, ~, Ds~), 

T U = Tij(Vo,  v, v, i ,  v, 3~, O, O, i ,  D i j ) ,  

hi=hs(vo, v, V,s, v, y, O, O,s, Dsj), (5.2) 

g = g ( v  o, v, v, s, v, Y, O, O,s, Ds~), 

qs = qs(vo, v, v, s, v, r, O, O, s, Dij) ,  

k s = ks(v o, v, v s, v, Y, O, O, ~, Dsj ) . 

A further consequence of the principle of material objectivity is that the con- 
stitutive functionals for ~/, r/, Tsj, hs, g, qs, and k s must be isotropic functions of 
their tensor arguments v. s, 0. ~, and Dsj. Thus, the principle of material objectivity 
implies that granular materials are, in some sense, isotropic. 

A thermodynamic process is said to be admissible for a granular material if 
the constitutive equations (5.2) are satisfied. 

If the functional dependence of ~/and ks expressed in (5.2) is incorporated in 
(4.15) by use of the chain rule, and if the relationship 

= -yOu-~---  v, (5.3) 
I l l ~  v 

which follows from (4.6), and the identity 

v-~l=(~;),t- v, 1Lj~ (5.4) 

are employed, then (4.15) becomes 

,s 0~' : 

or oO .. oO ~ aO ;. 

+ 0  [ Oks Oks Ok~ Oks Oks Oks ~ ] 
tOvo v~ v's+--OT-,/,j v"J+--~r Y's+-gO~,i O'sJ+--O-ff-~jk ~ 

+ (  Ot3ksO0 ~ ' )  Os=>O" (5.5) 
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where we have introduced the definitions 

2 0O 00 (5.6) 
p = r  v- -~- ,  P=rV2 Ov �9 

If we employ arguments outlined by COLEMAN & NOLL [28] and COLEMA~ & MIZEL 
[29], it follows that there exists at least one admissible thermodynamic process for 

a granular material in which the values of O, ~, (~,), i, OS,i, D i j ,  Vo, i, v, i j ,  ?, ~, O, i j ,  
and D~j, k can be specified independently of any other term in the inequality. The 
entropy inequality (5.5) then implies the following restrictions: 

0~b h v 0ff 0k~ (5.7) 
00 ' '=?  - ~  0 ~ '  

@ = 0 ,  (5.8) 
OV 00, i ODij 

0 k i 0 kj ^ 0 k i 0 kj  ^ 
Ov.j =~ ooj  TC., =u' (5.9) 

0k~ = 0 ,  0kt = 0 ,  0k---L=0. (5.10) 
OV o 07 ODjk 

The result (5.7)~ is a familiar result in thermostatics. We simply note that it is 
valid for granular materials in non-equilibrium. 

The restrictions (5.8) imply 
~b = ~k(Vo, v, v, i, ?, 0) (5.11) 

or, from the isotropic dependence of ~ upon v, ~, 

~k=~(v o, v, V, kV, k, ?, 0). (5.12) 

The dependence of the free energy on v, ~ is an essential result. As we shall show 
shortly, the representation (5.12) allows the equilibrium stress to depend on v, 
and, moreover, to include a shear stress component associated with the tensor 
product v iv j .  Real granular materials can, of course, support shear in equilibrium 
as evidenced by the characteristic angle of repose of these materials. 

It follows from (5.12) that 

Or, i V'J= 0~,j V'i (5.13) 

and, hence, the term in (5.5) involving W~j vanishes identically. 

The restrictions (5.9) and (5.10) on the extra entropy flux k~ can be investigated 
further using arguments presented by MtILLER [24]. Integrating the differential 
equations (5.9) yields the general solution for k i, 

kt=AtjkO, jr ,  k"l'-AijO, j-'l'-Bijv, j d ' a i ,  (5.14) 

where the coefficients are functions of only v, ~, and 0, and A~jk,  A~j ,  and B~ 
are completely skew-symmetric tensors. Since k~ must be an isotropic tensor 
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function of 0, ~ and v, ~ and since there are no isotropic skew symmetric tensors of 
ranks two and three, it follows that (5.14) reduces to 

k~=0. (5.15) 

Thus, by (4.14), the entropy flux takes on its traditional form. Combining (5.15) 
with (5.7)2 and recalling the functional form (5.12) for ~k implies 

ar 
hi=~ v -ff~v . = 2~ v, ~, (5.16) 

,i 
where 

�9 =a(v0, v, V, RV, k, 7, 0). (5.17) 

Returning now to the entropy inequality (5.5) and employing the restrictions 
(5.7)-(5.10), (5.13), (5.15), and (5.16), we obtain 

( T i i + p r ~ j + 2 c t v , , v , j ) D , y - ( , v g - ~ - ~ )  ~ - q ' O ~ > o .  (5.18) 

6. Equilibrium 
Additional information can be extracted from the entropy inequality without 

postulating specific constitutive equations. This information concerns the appro- 
priate equilibrium state for granular materials. We define an equilibrium process 
as one in which the independent variables 

Ya=(~,O,~,D~j),  A = l ,  2 . . . . .  10 (6.1) 
all vanish. 

Denoting the left-hand side of (5.18) by tr, we see that tr has a minimum in 
equilibrium. A necessary condition for this minimum is that 

t3tr 
[ = 0 ,  A = I ,  2, ... ,  10 (6.2) 

cgYA 0 

where the subscript 0 denotes the equilibrium values. This condition yields the 
equilibrium values of the stress, intrinsic equilibrated body force, and heat flux, 

Ti ~ = Tij(Vo, v, v, i, 0, 7, 0, 0, 0) = - P 6 i j - 2 ~ L  iv, j ,  (6.3) 
^ 

gO = g(vo, v, v i, 0, 7, 0, 0, 0 ) = ~ f f -  (6.4) 

qO =qi(vo ' v, v, i, O, 7, O, O, 0 ) = 0 .  (6.5) 

Recalling that p and ~ are defined by (5.6), we find that T ~ and gO are totally 
derivable from the free energy function and, moreover, are functions of only Vo, 
v, v i, 7, and 0. By virtue of (6.4), the equilibrium stress for granular materials 
with compressible granules has the dual representation 

Ti~ - ~ r i j - ~ v 2  g~ iv, j .  (6.6) 
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The term 2~tv, iv,j in the representations (6.3) and (6.6) demonstrates the point 
we mentioned previously about the ability of granular materials to support shear 
in equilibrium*. 

The pressures p and ~ associated with the distributed density V and the volume 
distribution v, respectively, appear similar to the pressure in a compressible fluid. 
Indeed, if we consider p as an independent variable in the constitutive equations 
instead of either V or v, we obtain 

p = p 2  ~P , /~=p2  -~P'  (6.7) 

where ~b' is a function of p instead of ~ and ~ is a function of p instead of v. In 
the present development, the pressure p is interpreted as a material pressure 
related to the compressibility of granules whereas the pressure ~ is interpreted as 
a configuration pressure related to the volume distribution of granules. 

7. Linear Theory 

The restrictions on the constitutive equations established in the foregoing 
sections indicate that the specific entropy r/, the equilibrated stress h~, and the 
equilibrium parts of the stress T~ and intrinsic equilibrated body force gO are all 
derivable from the free energy ~k. Consequently, in the theory of granular materials, 
we need only specify particular constitutive representations for the free energy ~k, 
heat flux qt, and dissipative parts of the stress T~j -T~  and intrinsic equilibrated 
body force g - g ~  In this section, we consider a linear theory in which the represen- 
tations for qi, T i j - T ~ ,  and g_gO are linear in the variables YA defined by (6.1) 
and, in addition, h~ given by (5.16) is linear in the variable v, ~. The linearity con- 
dition on h~ implies 

hi =2~v, i, ~=~(v o, v, "~', 0). (7.1) 

Recalling the functional dependence expressed by (5.2) for qi, Tij,  and g, we have 
in the linear theory 

qi = - x0, i, (7.2) 

Ti j - -  T i~  ~ v ri j +,~Dkk ri j + 2 ~ Di j , (7.3) 

g _  gO = _ ~ ~,_ 6Dkk (7.4) 

where the coefficients are, in general, scalar functions of Vo, v, v, ~, ),, and 0. 

We first investigate the restrictions imposed by the entropy inequality on the 
coefficients in the constitutive equations (7.2)-(7.4). Substituting the represen- 
tations (7.2)-(7.4) in the inequality (5.18) and employing the expressions (6.3) and 
(6.4) for T~ and gO, respectively, we obtain 

�9 . 0 iO, i ~ '0 .  (7.5) (?vJ-} -~)vDJJ-} - '~ 'Di iDj j"} -2pDi jDi j - } ' (?vvv+Ic '  "0 -- 

�9 The representation (6.3) for stress is a special case of a representation given by E~CKSEN 
[30, eqn. (3.8) with (3.5)] for transversely isotropic fluids; ERICKSEN'S material vector ni, the 
counterpart of our vector v,i, is not necessarily the gradient of a scalar field. 
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The expression on the left-hand side of (7.5), which is just tr, is a positive quadratic 
form in the variables YA- Hence 

d2tr is a positive matrix, A, B = 1, 2, .. . ,  10. (7.6) 

Performing the operations indicated by (7.6) yields the following necessary and 
sufficient conditions that (7.5) hold: 

x > 0 ,  (7.7) 

#_>-0, 32+2#_>_0, (7.8) 

~ > 0 ,  4 ~ v ~ ( 3 2 + 2 k t ) - 3 ( ~ + ~ v 6 ) 2 > O .  (7.9) 

The restrictions (7.8) are familiar inequalities obtained for a linearly viscous fluid 
whose dissipative stress is precisely that given by (7.3) except for the pressure 
term associated with ~. From (7.2) it follows that the heat flux reduces to its 
familiar form. Inasmuch as the conductivity x can depend on the volume distri- 
bution, a modified theory of heat conduction has resulted. Finally, the restrictions 
(7.9) arise due to the inclusion of terms involving ~ in the constitutive equations. 
Such terms are purely dissipative. 

Turning now to the constitutive equation (7.1) for hi and recalling the expression 
(5.16), we integrate to obtain 

~v~ = %(Vo, v, ~, O)+~v, ~ v, i. (7.10) 

Requiring the free energy per unit volume to be positive for all values of its 
arguments implies 

% > 0 ,  ct__>0. (7.11) 

The representation (7.10) use in conjunction with (5.6) yields the following ex- 
pressions for p and ~: 

t~ct o ~ct 

0e 
~ = (v-~v~ -Co)  + ( v - - ~ - -  e) L i v, i. (7.13) 

The representation (7.12) for p together with the equilibrium stress relation 
(6.3) require that the equilibrium normal stress and equilibrium shear stress acting 
on an arbitrary plane at an arbitrary point bear a special relationship to one an- 
other. A similar result occurs in fluid equilibrium in that the shear stress must 
always vanish. In granular material equilibrium, the shear stress has a specific 
non-zero value related to the magnitude of the normal stress. To develop this 
relationship, consider an arbitrary plane with normal ni. From (6.3) the normal 
stress T acting across the plane is given by 

T= Tij ni nj = - - p - 2 c t ( v ,  i r l i )  2 (7.14) 

and is related to the shear stress S in the plane by 

T2+S2=TijnjTiknk=pz+4otp(v, ini)2-{-4o~2(v, iv, i)(v, jnj) 2. (7.15) 
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Employing (7.14) to eliminate the term (v, i n~) 2 in (7.15), completing the square 
in the resulting expression, and introducing the notation 

s=~v,  iv, i, t=  - p - ~ v , ~ v , i ,  (7.16) 

we deduce the relationship 
S 2 + ( T -  0 2 = s 2. (7.17) 

Furthermore, recalling the representation (7.12) for p, we can write the expression 
(7.16)2 in the form 

s = b ( - t + c ) ,  (7.18) 
where 

0~o 1 _ 7 o~ 
(7.19) c = c t ~  t3y ' b ~t a~"  

Combining (7.17) with (7.18), we obtain the sought-after relationship between 
the shear stress S and normal stress T. Considering S and T as Cartesian coordi- 
nates, we find that (7.17) is the equation for a circle centered at S=0 ,  T=  t with 
radius s. The relationship (7.18) requires the circle radius to be a function of 
displacement of the circle from the origin. This result is a generalization of the 
Coulomb stress condition (1.1) and shows that the linear theory considered here 
imbeds the Mohr-Coulomb theory [3] of limiting equilibrium. The angle of 
internal friction associated with b and the cohesion associated with c are, in 
general, functions of Vo, v, ~, and 0. If b and c are constants, the traditional Mohr- 
Coulomb criterion is obtained; i. e., the Mohr circle (7.17) is tangent to the straight 
line (7.18). 

8. Granular Materials with Incompressible Granules 

The previous sections concerned the unconstrained case of dilatant granular 
materials with compressible granules. In this section, results are obtained for 
granular materials subject to the internal constraint of incompressible granules. 
This constraint is expressed by (3.11), 

--+vi,~=0, (8.1) 

which, when combined with the continuity equation (4.6) implies 

~;=0. (8.2) 

Two versions of the constrained theory are developed here. First, we use the 
approach taken by DORIA [31 ] for considering constraints. Then a more traditional 
approach, that of Lagrange multipliers, is employed. The difference between the 
two methods lies in the starting assumptions and in the generality of the resulting 
theory. 

Paralleling the approach of DORIA, we reformulate the general unconstrained 
theory using the thermodynamic pressure p as an independent variable instead of 
~. The basic assumption is that, with ~ given by (5.12), the expression (5.6)x for 
p (Vo, v, v, i, 7, 0) can be inverted to give a smooth function 

=~(Vo, v, v, iv, ~, p, 0). (8.3) 
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This expression can then be used to eliminate r as an independent variable in 
the constitutive equations. In the analysis which follows, we use an overbar on 
any function to denote that it has been rendered a function of p instead of ),. By 
use of the chain rule and the expression (5.6)1 forp, we obtain results corresponding 
to (5.6)2, (5.7)1, and (5.16): 

- p 
P=rV2 ~-~-v - - ~  --~-v ,/' (8.4) 

p or (8.5) 
00 -3%- 00'  

hi=~v l-~v,i - - -  ~ -  ~ =2~v , i  (8.6) 

where the coefficient ~ is a function of v o , v, v, iv, i, P, and 0. The representation 
(8.6)2 is possible because ~ and 7 depend upon v,i only through v, iv, i. The 
entropy inequality (5.18) can be written in the form 

The necessary conditions (6.2) for equilibrium then yield the results 

~ o =  - pai y -  2-~v, iv, j ,  (8.8) 

~o P - p  
= - 3 7 '  (8.9) 

~o =0 ,  (8.10) 

which differ from (6.3), (6.4), and (6.5) only by the change of independent variable 
from ~ to p. 

In order to constrain the theory so that the volume of granules is incom- 
pressible, we interpret the constraint (8.2) as an approximation whereby ~ is 
insensitive to changes in the independent variables. Thus, by (8.2) and (8.3), we 
impose the restrictions 

O~ 0 ~ _  0~ _O~_COY 
coVo = COy cov, i COp - co o =0 (8.11) 

upon the expressions (8.4)-(8.6) and (8.8)-(8.10). The resulting simplification can 
be read directly. The dependence upon p remains in all the constitutive equations. 
In particular, note that the coefficient ~ depends on p. 

In view of the constraint (8.1), the only dissipation in the constrained theory 
occurs through the independent variables Dij  and 0, ~. For the linear case, T t j -  Tt~ 
and qi take on their traditional representations 

T O -  ~Oj=2Okk6,1+2~tOi. i , (8.12) 

q t =  - x0 ,  l (8 .13)  



Continuum Theory for Granular Materials 263 

and g - 3  ~ has the form 
g __ ~ 0  ~ -  __ 6 D  k k,  (8.14) 

where the coefficients are, at most, scalar functions of Vo, v, v, ~v, ~, p, and 0. 
Substitution of (8.12)-(8.14) into the entropy inequality (8.7) and use of (8.1), 
(8.8), and (8.9) yields the following restrictions on the coefficients: 

~____0, (8.15) 

~ > 0 ,  3(2-~v2t~)+2~>__0. (8.16) 

Finally, the assumption that h~ is a linear function of v, ; implies 

h~=2~v i, 0t =ct(v o, v, p, 0), (8.17) 

which, when combined with (8.6), gives in the constrained theory 

~'v~=~o+~V.~v.i, -do =-do (Vo, v,p, 0). (8.18) 

The representation for ~ determined from (8.4) and (8.18) has the form 

= --do + v-~-v-e L~Li" (8.19) p =  V 

The Mohr-Coulomb condition expressed by (7.17) and (7.18) is still valid. By the 
same analysis as before, tlae relation (7.17) follows from (8.8). To obtain equation 
(7.18), we use (8.19), together with (8.9), in (7.16). In this case, the scalar functions 
associated with the angle of internal friction and cohesion, respectively, are given 
by 

1 v t~-d . (8.20) b- -d  Ov ' c=-~v2-g~176 O~~ 

We present now a more traditional treatment of constraints based on the 
method of Lagrange multipliers. We return to the initial constitutive assumptions 
(5.2) and note that, in view of the restrictions (8.1) and (8.2), the list of variables 
appearing in (5.2) is no longer independent. We delete ~ and y from the constitutive 
equations and repeat the analysis of Section 5. We find the same results (5.6)2, 
(5.7)1, (5.15), (5.16) and the entropy inequality (4.15) reduces to 

(Tij+2otv, iv,~)Dis- y v g +  ;,_ q~O,~ >-0 
0 - -  " 

(8.21) 

We note that a stress and intrinsic equilibrated body force of the form 

1 , 
T~l= --p* 6, i, g=-~-~--p , (8.22) 

where p* is an arbitrary scalar, do not contribute to the inequality (8.21) because 
of the condition (8.1). Thus we set 

Tl j= - p * r l j + ~ j ,  g = ~ +  ..1. p . ,  (8.23) 
~ v  
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and (8.21) can be written in the form 

(~ j+2~v ,  iv j )Di j - -  ~v~,+ ~_q.t0,i >0 .  
' 0 = 

Equilibrium considerations then yield 

T~~ - p *  ri.i-2ccv,~v,j, 

o P*-P g = - - ~ ,  

qO =0 

(8.24) 

(8.25) 

(8.26) 

(8.27) 

which correspond to (6.3)-(6.5) with p replaced by p*. The arbitrary scalar p* is 
the indeterminate pressure associated with the constraint (8.1). If p* is eliminated 
from (8.25) by using (8.26), the result (6.6) is obtained with gO given by (8.26). 
The treatment of linear dissipation in the constrained case is the same as before 
except there is no longer a functional dependence upon p. The equations (8.12) 
through (8.20) are obtained but with all the superimposed bars removed, indicating 
the lack of functional dependence upon p. 

The two methods of constructing the constrained theory here differ in basic 
assumptions and in the generality of the results. With the method of DORIA, the 
constraint is regarded as an approximation to be imposed on the general theory 
only after restrictions from the entropy inequality have been deduced. On the 
other hand, the Lagrange multiplier approach considers the constraint from the 
outset; the independent variables in the constitutive assumptions must be com- 
patible with the constraint. The difference in generality of the two methods is 
seen in the constitutive equations. The approach of DORIA leads to greater general- 
ity in the sense that the scalar coefficients ~, 2, ~, 6, and ~ all depend on p. The 
method of DORIA is, however, subject to the restriction of invertibility of the 
functional p. 

9. Concluding Remarks 
The theory presented here for granular materials demonstrates the significance 

of considering volume distribution as a kinematical variable independent of the 
motion. In the present theory the volume distribution serves to distinguish granular 
material behavior from ordinary fluid behavior. The equilibrated stress and body 
forces associated with the volume distribution are critical in the development. It 
is these forces which allow the material to support a density gradient in equilibrium 
(through the gradient of the volume distribution) as well as to sustain shear in 
equilibrium, properties uncommon to ordinary fluids. These forces are also 
responsible for the inclusion of a flow criterion which contains the generally 
accepted Mohr-Coulomb criterion. As a further consequence of the existence of 
these forces, the principal axes of stress and deformation rate do not coincide in 
the present theory. This result, which is in agreement with experimental evidence 
on the behavior of granular materials (see, for example, DE JONG [32]), has not 
been recognized in most existing theories for granular material behavior, parti- 
cularly in the plasticity type theories. An exception to this is the theory of SPEN- 
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CER'S [8] that incorporates a dependence on stress rate to avoid this coincidence 
of the principal axes. 

In a recent paper  [33] we considered a special case of the linear theory of 
granular materials for the solution to two flow problems. The main assumptions 
underlying this special case are (1) the equilibrated momentum k ~; and the external 
equilibrated body force l are negligible; (2) the distributed volume is incompressible 
in regions of non-equilibrium; (3) ao is analytic in its argument v at v = Vo, where 
Vo is taken as the critical volume distribution at which no volume change occurs 
during shearing; and (4) the Mohr-Coulomb criterion is a sufficient, as well as 
necessary, condition for equilibrium. This last assumption implies that the equilib- 
rium theory reduces to the traditional Mohr-Coulomb theory of limiting equilib- 
rium. 

The constitutive equation for the stress in this special case is expressed by 

Tij=(flO--flV2 +aV, k V, k + 20~VV, kk)6~j 

--20~V, iV, jq -2Dkk~i jq-2#Di j  , if D i j # O  , (9.1) 

s = b ( - t + c ) ,  if Dij=O, 

where the coefficients are material constants. A material described by (9.1) is 
referred to as a Coulomb granular material. 

The theory of Coulomb granular materials is amenable to problem solution. 
Although the governing differential equations obtained by inserting (9.1) into the 
balance of linear momentum (4.7) are non-linear and coupled in the variables v 
and v~, the one-dimensional problems considered in [33] render these equations 
linear and uncoupled. 

Acknowledgement. We thank J. L. ER/CKSEN for remarks which led to an improvement in 
this paper. 
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