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48. In this par t*  we shall give a quadratically convergent iteration rule for 
computing an eigenvalue of a matr ix  to which there corresponds a non-linear 
elementary divisor. Our method gendralizes the rule discussed in Sections t - -8 ,  
Part  I, to non-symmetric matrices and combines it with rules for hastening the 
convergence of an iteration of the f i rs t  order. 

Let A be an n • n matr ix  with an eigenvalue a, and assume that  the maximal  
exponent L of an elementary divisor of 21 corresponding to a, is > 1. Choose 
two (row) vectors, at and ' r ,  and consider for a ~ which is different from all eigen- 
values of A the linear equat ions 

(t83) (A --  201) 8' = ~', ~(A --  2ol ) = f l ,  

defining a couple of vectors 8, )/. 

Now form the generalized Rayleigh quotient of 8 and r/ as d,efined by  (72), 
and put  

(t 84) 21 = R (~, 7) ----- ,1A ~; ~ ,  , 

assuming that  

(184 ~ ~/~' =~ 0. 

Then from (t84) and (t83) we obtain 2i as ,a rational function of 2o, 

( t85) & = ~o (20). 

We shall have to prove first that ,  under suitable hypotheses, the iteration 
by the function ~0(2) defined b y  (t85) has a as a point of a t t rac t ion  This is a 
consequence of the following ,.' 

Theorem.  In  the notation and under the assumptions o/Section 48, there e'xists 
a m a t r i x H  depending only on A and on the choice o /a ,  such that i / ~  and fl are 
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chosen to satis/y 

(t86) ~H~'4= o, 
then we have 

1 
(187)  ~ ' ( ~ )  = 1 - L "  

In  particular, i /  (186) is saris/led, then the condition (184 ~ is also .satisfied when 
20 is sufficiently near to a. 

49. (t87) shows tha t  the i teration by  the function ~0(2) converges rather 
slowly, though linearly;  even for L = 2 the derivative is �89 However,  since ~0 (,t) 
is a rat ional  function, it follows from (t87) that ,  as soon as (t86) is satisfied, we 
have a development 

V = 2  

and therefore different  methods of  acceleration are applicable. 

Consider for-an 0r q= 1 the funct ion 

1 2 ) .  (189) 9"(2) = ] ~ - g  (~v (2) --  

We verify at  once tha t  ~0*(a) = ~  and obtain for the value of the derivative 
of q~* in a :  

1 
t -  Z - ~  

(t90) 9* ' (a)  ----- 1 --~ 

t I f  now the value of L is known, we can choose ~ = t - - ~  and obtain for the 
corresponding function 9" :  

(191) ~,. (,~) = L ~ (2) --  (L --  1) 2 

with vanishing derivative at the point a. The iteration by means o] this ]unction 
then converges quadratically to the value r 

I f  the value of L is not known, then it is still best to use the i terating function 

(t 92) qg, (2) = 2 q~ (4) --  2. 

The i teration by  this funct ion converges quadrat ical ly for L = 2, while in the 
case of a general L we obtain a derivative 

, 2 
(193) ~(cr) = t - -  Z 

t which is less than l--Z----~v (a). On the other hand, if L > 2, the value of L 

will usually be recognized easily after a certain number  of steps, and then the 
corresponding function 9 r  (2) can be formed. 

The use of r is best under  the assumption tha t  the value L = 2 is the 
most  probable of all L > t. On the other  hand, if all values of L between 2 and 
n are more or less equally probable, we shall take 

I 1 
I -  --q- 

(194) ~ . =  n 2 
2 
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and obta in  readily 
2 

t - - -  

(t95) I~*'@1 ~ - -  2 
14- - -  

$0. An i tera t ion wi th ,quadra t i c  convergence can be ob ta ined  in our case, if 
L is not  known, by  t h e  Steffensen method ,  which, however,  implies a double 
amoun t  of computa t iona l  work, for it uses a combina t ion  of 2, ~0 (2) and  ~0 (~0 (2)). 
In  this me thod  we form the  funct ion 

(t96) q~(Z) - -  ~(~0(2))- ~o(Z)~ 

which for 2 = 2 o usually gives a be t t e r  a p p r o x i m a t i o n  than  

a,= ,(all - - ,  (,/zoi). 
In  pract ice the value of ~0 (20) is of course compu ted  b y  obta ining successively 
the values of 2x and 22 and by  taking 

( 1 9 7 )  ~ ( 2 o )  - -  2o 2 , - -  2] 
2o--2 ~ + ) . ,  " 

I f  then we pu t  

(198) 21 = ~(2~), 2o = 20, 
' t t we can consider the passage f rom 20 to 21 as a direct i terat ion b y  the  i tera t ing 

function ~(2).  

However, this iteration converges quadratically. We prove this by  using the result  

of our paper* .  If  we replace there ;q and 2, b y  2, y by  2, r b y  a and  ~1 = a ,  b y  t - -  -L ' 
we obtain  f rom formula  (2t) l.c. 

�9 ().)--a = L~ ( 2 -  o)' T, + O(2 - -  a) 

where T: is Obtained f rom the formulae (t 5) and  (9) l.c. : 

E(2) = a, + as(2 - -  ~)  + - - . ,  

q~(2)--a _ (L - -  t) a ,  + 0 (2 - -  a) .  (t99) (2_a ) ,  

The  one theoret ical ly  unsurmountab le  difficulty in the pract ical  appl ica t ion 
of this me thod  appears  to be the fact  t h a t  the bi l inear to rm in (t86) is unknown 

~t O S T R O W S K I ,  A . :  Ober Verfahren von S T E F F E N S E N  u n d  H O U S E H O L D E R  z u r  

Konvergenzverbesserung yon Iterationen [MAuRO PICONE zum 70. Geburtstag, 
ZAMP Vol. VII ,  218--229 (1956)]. 
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so long as the transformation of A to the Jordan canonical form has not been 
carried out, and this presupposes the knowledge of the eigenvalues. However, 
in practice this is hardly a difficulty at all, since it is infinitely improbable that  
for ,r and fl taken at random, 086) would not be satisfied. 

51. Le mma  1. Consider the matrix 

(200) A 0 = a I + U, 

I being the unity matrix o/order I and U the corresponding auxiliary unity matrix 
o/order l, which has l 's in the first superdiagonal and zeros elsewhere. Then we 
have, ]or 2 ~ a .  ~-->a: 

U'-" 0 ( 1 )  (2ot) ( A o - - ~ I ) - ~ = l  (z_~?+ 1 r ~ , 

Ut-t 0 I . 
(202) U ( A o _  2 i ) - z =  ( l -  t ) ~  + ( (Z_ -,)/=-x) 

1 we have, since UZ= 0, Proof. Putt ing ~ - -  Z - a  

((a - -  2) Z + U )  -~ = ~ ( I  - -  ~ U)  -2 

1- -1  

= E (~+I )~ '+*UL 
v = 0  

and, multiplying this by U. 
1--2  

v((o - ~) i + v ) - ,  = X (v + ~) ~,+2 w+L 

as Ul=0.  Taking out the highest terms on the right, we obtain (20t) and (202). 

52. Le mma  2. Let a be an eigenvalue o/ the matrix A to which correspond 
elementary divisors with the maximal exponent L > 1. Then there exists a matrix 
H ~ O  such that we have/or 2-->a: 

(203) (A -- 21)-* = L (Z_a)L+a + 0 - , 

(204) A (A -- 2 I)-* -- a (A -- 2 I)-2 = (L -- t) (2_a)~-H + 0 ( (Z_~r)L~ x) . l  

53. Proof. Since the assertions (203) and (204) are invariant with respect 
to a similarity transformation, though H does change, we can assume from the 
beginning that  A is given in the Jordan canonical form. We can therefore write 
A as a direct sum, 

(205) A = E ' A ,  + B,  
i 

where B is a matrix with eigenvalues =~a, while each A~ is a matrix of order m~ 
given by  

(206) A, = a I , ,  + U,, (i = t . . . . .  k), L = max m i, 

1, ,  and Urn, having meanings analogous to those of I and  U in Lemma 1. 
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54. Then for ; t -+a  we obviously have 

( B  - ; t i ) - 2  = o ( 1 ) ,  

and therefore 
k 

(A - -  ~ 1) -2 = •. (A~ --  ;t i,.,)-2 _~ O (t)'. 

Applying the result of L e m m a  t to each of the first k terms in the direct  sum 
on the right, we obta in  

Z" U~v' 
0 t 

Here in the direct sum 

(207) H = Z" U~, - 1  

we must  sum over all i ~fith m i =  L. However,  i0r m i < L we have U ~ - I =  0, 
and therefore we can write 

k 

H = y .  v~,  -~ , 
i = 1  

where H & 0, since there exist m~= L. 

This proves (203). 

55. Further ,  from (205) we have 
k 

A ( A  - -  ,~ 1) -2 - -  a (A -- ;t 1) -2 = Y,. (A,  --  a I,~,) (A --  ;t i~,)-2 ~ O (1). 
i = 1  

Applying (202) to the first k terms in the sum on the r ight ,  we have now 

+ , )  (A i - -  a I , , )  (A i --, ;t 1,,) -2 = "U~(A i --  ; t l i)  -2 = (m i --  t) (Z - - -~  ' t 

Therefore 

i A ( A - - ; t I ) - 2 - - a ( A - - 2 I ) - ~ = ( L - - t )  -()~_a) L + O ( -  t ) (~_ ~)L- ~, 

where the numera tor  of the first fraction on the right is given by  (207). This 
proves (204). 

56. Proof  of the theorem of Section 48. Take the mat r ix  H occurring in 
the formulae (203), (204) of Lemma 2 and assume ,that the condit ion (186) is 
satisfied. Then from (t84) and (t85) for ;to--~a we have 

~A ~'--a(r}$') f l A ( A - - , ~ I ) - ' e ' - - a f l ( A - - ~ o I ) - '  =" 
(p (;to) - a = = ~ fl (A -- ;l o I) -~ 0d 

F rom (203) and (204) 

( L _ l )  f lH~ '  ( l ) 
~ ( ; t o ) - a =  (~o_~) L ~o  (Z0_~)L_ ~ _ =(;to_a)L_~+O(;to_,~ ) 

L flH~" [ ( '~ - -a )  ~][-~to~ ] L+O().o--a) 
(;to_a)L+~ + 0  
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This proves  assertion (t87) of the theorem. The last pa r t  of the theorem follows 
immedia te ly  b y  (203) from 

rl$,=fl(A_2ol)_2od= L (2o--a) L+lflHCx' +O((~.ola)L) " 

57. We consider as an example  the ma t r ix  

/ /2  0 3 )  
A = \ t  1 3 �9 

t - - 1  t 

Here  ( A - - 2 1 )  has the e lementary  divisors ( 2 - - t )  2 and (2 - -2 ) ,  and we have 

D ----- IA - 211 = (2 - 1) 2 (2 - 2) = - (2 s - 422  + 5 2  - 2) .  

We easily obtain  

( 2 2 - - 2 2 + 4 ,  

D(A- -2 I )  -x= 2 + 2 ,  

2 - - 2 ,  

D * X = ~ Z -  1 ( A - - 2 1 )  -2 

2 s -  3 2 2 +  t22  - - t 6 ,  

= 222 + 42 --  12, 

222 - -  82 + 8, 
and 

D~ A (A - -  2 I)-Z Y =  ~.z-i 

2 (23 - -  4),  

= 2 s + 5 2 2 -  8 2 - - 4 ,  

2 s --  3 2 2 + 4 ,  

- - 3  3 2 - - 3  ) 
2 2 -  3 2 - -  1, 3 2 - -  3 , 

2 - - 2 ,  2 2 - - 3 2 + 2  

- - 9 2 + 1 5 ,  
2 s - -  5 2 z - - 2 +  11, 

- - 2 2 2 + 8 2 - - 8 ,  

6 2 2 - 1 5 2 + 9  ) 

6 2 2 -  1 5 2 + 9  

2 s -  522-[-82 --  4 

- 6 ( 2 2 - 2 - t ) ,  

2 3 - / 1 2 2 + t 4 2 + 2 ,  

- - ( 2 3 - 3 2 2 + 4 ) ,  

3 ( 2 a - 2 2 - 2 2 + 2 )  \ 
3 (,i s - 22 - 22 + 2) ) . 
2 a -  522 + 82 - 4) 

From the definition in Section 48, 

(208) ~ (2) = fx-~'" 

Since we have  
22 + 42 - -  8 --  3 (22  - 3) 

Y - -  X----- (2 - -  t )  2 2 + 4 2 - 8  - - 3 ( 2 2 - - 3 )  
(a - 2) 2 - (~ - 2) 2 

it follows tha t  

(209) 2-- 1 ----- fl X a ' "  

For  2 = I, Z and X become respectively (66 
Zo ----- 3 3 0 , X o = 6 6 

t - - t  0 2 - - 2  

3 (2 - 1) 2 \ 

3 (2 - 1) 2 ) ~ (2 - 1) Z ,  

0 

i )  = 2Zo, 
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and we see' that  as 2--r the ratio (209) tends to -~- if/3Zood=~O. Z o is[therefore 
the matrix H in the condition (186), and if we write 

= (a x, a s, ~ ) ,  /3 = (bt, b2, bs) , 
this condition becomes 

(ax -- as) (-- 3 bx -- 3 ba + bs) 4: O. 

We see that 0t and/3 have to be chosen in such a way that al 4: as, b3 4:3 (bl + b~). 
If, for instance, we take 

= (o ,  t ,  o ) ,  
we have from (208) 

( 2 t o i  ~o(a) = 2 - -  

and from (t92) 

(21t) 

If we start with 2o----- 0 we 

/3= O, o, o), 

3a--5 

3.s+ 3.--4 

obtain from (210) the foUowing values of 2, and' 1 - ~ ,  
1--~-1 : 

a, l - x ,  
t - a , _1  

o o. 
t .4 .6 
2 .6526 .579 
3 .80648 .557 
4 .89599 .5375 
5 .94565 .5225 
6 .97214 .5t26 

Starting again with ~o----0 we obtain from (2t t) 

, a ,  

0 0 
t .8 
2 .9846t 6 
3 .999884338 
4 .9331229 

(t - a , - 1 ) '  
t - ~ b  

5 
2.O46 
2.08347 
2.0q2006 
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