On the Convergence
of the Rayleigh Quotient Iteration for the Computation
of the Characteristic Roots and Vectors. IV
(Generalized Rayleigh Quotient for Nonlinear Elementary Divisors)

A. M. OSTROWSKI

48. In this part* we shall give a quadratically convergent iteration rule for
computing an eigenvalue of a matrix to which there corresponds a non-linear
elementary divisor. Our method generalizes the rule discussed in Sections 1—8,
Part I, to non-symmetric matrices and combines it with rules for hastening the
convergence of an iteration of the first order.

Let A be an # X% matrix with an eigenvalue ¢, and assume that the maximal
exponent L of an elementary divisor of A corresponding to o, is >1. Choose
two (row) vectors, a and' 8, and consider for a 4, which is different from all eigen-
values of 4 the linear equations

(183) A—=2DE=a, 5(d—2Al)=4,
defining a couple of vectors &; 5 '

Now form the generalized Raylelgh quotlent of £ and % as defined by (72),
and put

(184)  AL=R(n) = "A;» ..
assuming that - '
(184°) n& 0.
’fhen from (184) and (183) we obtain A; as a rational function of A,
(185) h=gp(4).

We shall have to prove first that, under suitable hypotheses, the iteration
by the function ¢(4) defined by (185) has ¢ as a point of attraction. This is a
consequence of the following

Theorem. In the notation and under the assumptions of Section 48, there exists
a matrix H dejbendmg only on A and on the choice of o, such that if « and 8 are

* This paper was prepared in part at Numerical Analy51s Research, University of
California at Los Angeles, and in part under a National Bureau of Standards contract
with The American University, Washington, D.C., with the sponsorship of the Office
of Naval Research. I am grateful to Mr. G. CuLLEr and Dr. E. V. HAYNSWORTH
f or discussions.
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chosen to satisfy

(186) BHa«' =0,
then we have
(187) Plo) =1— 1.

In particular, if (186) is satisfied, then the condition (184°) is also satisfied when
Ao 15 sufficiently near to o.

49. (187) shows that the iteration by the function ¢(A) converges rather
slowly, though linearly; even for L =2 the derivative is §. However, since ¢ (1)
is a rational function, it follows from (187) that, as soon as (186) is satisfied, we
have a development

(188) gl =0 +(1~ 1) —0)+ Y & -0,

and therefore aifferent‘ methiods of acceleration are applicable.

Consider for an a==1 the function
(189) o) = (P () —x 2).

We verify at once that ¢*(s) =o and obtain for the value of the derivative
of p* in o:

1
1— o —a
(190) ety = L.

1—o

If now the value of L is known, we can choose a =1 -% and obtain for the
corresponding function ¢*:

(191) gr(d) =Lo(d) — (L —1)4
with vanishing derivative at the point 0. The iteration by means of this function

then converges quadratically fo the value o.
If the value of L is not known, then it is still best to use the iterating function

(192) @s(A) =29 (4) — 4.

The iteration by this function converges quadratically for L =2, while in the
case of a general L we obtain a derivative

/ 2
(193) galo) =1 — -
which is less than 1-%*(])'(6}. On the other hand, if L>2, the value of L
will usually be recognized easily after a certain number of steps, and then the
corresponding function ¢, (4) can be formed.

The use of @,(4) is best under the assumption that the value L =2 is the
most probable of all L>1. On the other hand, if all values of L between 2 and
# are more or less equally probable, we shall take

1,1
Tt

(194) MRS
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and obtain readily

2
1—=
. n

(195) le* (o) =

142
n
50. An iteration with.quadratic convergence can be obtained in our case, if
L is not known, by the Steffensen method, which, however, implies a double
amount of computational work, for it uses a combination of 4, (1) and ¢ (p(4)).

In this method we form the function

_ plpt)—o(i?
(196) ) = e T ele )

which for 1 =4, usually gives a better approximation.than
A=g) =g(p(i)).

In practice the value of p(4y) is of course ’computed by obtaining successively
the values of 4, and 4, and by taking

e a— R
(197) D(hy) = 10122]1+)'2—.
If then we put : ‘
(198) LH=D), =4,

we can consider the passage from A, to 4] as a direct iteration by the iterating
function @(A).

However, this iteration converges quadratically. We prove this by using the result

of our paper*. If we replace there 4,and A, by 2, yby 4, {bysand oy =, by 1 —-} ,
we obtain from formula (21) l.c. )

D(A)—
_(..;'__)?)g =L*T,+0(h—o)
where 7, is obtained from the formulae (15) and (9) l.c.:
) 2
L=(1— ) Elp®) - (1 — 1) EW),
EQA)=ay+ay(A—0o) + -,
T,— (1 - i)zaz— (1— 2)412—{—0(2 — o)

L
=—%(1—{-)a2+0(1—0)1
- o5 -~ anaron—n

The one theoretically unsurmountable difficulty in the practical application
of this method appears to be the fact that the bilinear form in (186) is unknown

* OstrowsKI, A.: Uber Verfahren von STEFFENSEN und HOUSEHOLDER zur
Konvergenzverbesserung von Iterationen [Mauro PicoNe zum 70. Geburtstag,
ZAMP Vol. VI1I, 218 —229 (1956)].
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so long as the transformation of 4 to the Jordan canonical form has not been
carried out, and this presupposes the knowledge of the eigenvalues. However,
in practice this is hardly a difficulty at all, since it is infinitely improbable that
for o and f taken at random, (186) would not be satisfied.

51. Lemma 1. Consider the malrix
{200) Ag=0lI+ U,

I being the unity matrix of order 1 and U the corresponding auxiliary unity matrix
of order 1, which has 1’s in the first superdiagonal and zeros elsewhere. Then we
have, for A==0, A—>0:

2 UI'-*l 1
(201) (o= 212 =l s +0( Gy
e Ul—l 1
(202) Uldy—A1)* = = 1) G +0( =)

Proof. Putting x = 7}; we have, since U'=0,

(6 — NI +U)2=2(I —=U)?

-1
=2 v+,
p=l)
and, multiplying this by U,
12
Ulle— NI+ U)2=23(p+1)»2 U,
=0

as U'=0. Taking out the highest terms on the right, we obtain (201) and (202).

52, Lemma 2. Let o be an eigenvalue of the matrix A to which correspond
elementary divisors with the maximal exponent L>1. Then there exists a matrix
H ==0 such that we have for A—o:

H
(203) (A=Al =L +0( o),

-2 — -2 __ . H 1
(204) A(A—AI)2—o(d ~ A1) 2= (L —1) (X”G)L+o( ).

(}.wc)f‘:_l,

53. Proof. Since the assertions (203) and (204) are invariant with respect
to a similarity transformation, though H does change, we can assume from the
beginning that 4 is given in the Jordan canonical form. We can therefore write
A as a direct sum,

(205) - A=3-4,+B,

where B is a matrix with eigenvalues =0, while each 4, is a matrix of order m,
given by

{206) 4,=0l, + U, {#=1,...,%, L=maxm,,

1, and U, having meanings analogous to those of I and U in Lemma 1.
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54. Then for A0 we obviously have

(B—AD2=0(1),
and therefore
&

(4 —AD2=3 (4, — AL,)*+0(1).

1=1

Applying the result of Lemma 1 to each of the first % terms in the direct sum
on the right, we obtain )

Z‘ U#[_l ! ’ -
A= _f . 1
d—an==L (A—o)t+? +O((l—'—a)l‘).
Here in the direct sum
(207) H= }] Un ™t

we must sum over all ¢ with m;=L. However, for m;<<L we have UL =0,
and therefore we can write

. .
H=XU;™",
i=1
where H =0, since there exist m;=L.
This proves (203)..

55. Further, from (205) we have
k
AA— A 2—oc(A—AD2=3(4;—0al,)(A—21,)2+0(1).
in1

Applying (202) to the first £ terms in the sum on the right, we have now

A;—oT,) (A, —AL)2="U, (4,— AT) %= y (1
(im0 ) (A; = AL F = Uy (A= ALY E= =) 2ot ()
Therefore i
R .
A = AN E—0(d =D = (L~ 1) o +0( i)

where the numerator of the first fraction on the right is given by (207). This
proves (204). :

56. Proof of the theorem of Section 48. Take the matrix H occurring in
the formulae (203), (204) of Lemma 2 and assume .that the condition (186) is
satisfied. Then from (184) and (185) for A;—o¢ we have

A F—o(nl) pAA-I) e —cf(d—A )2
‘P(Ao) o= 775 - ﬂ(A—loI)_z o Lk
From (203) and (204)
pHa 1
(L_1) — L‘+O Y 2= _ .
@A) — 0 = é/}}mlv) ((lo o) ‘) = (ho— )L 1+4+0(Ay—9)

.= g) —————,
K L+0(%y—a)
L (Ag—o)lt1 + ((zo—a)L) ’
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This proves assertion (187) of the theorem. The last part of the theorem follows
immediately by (203) from

g =pA—ItgD) o =L FES Lol L ).

(Zg—o)t+Y (7o—0)F

57. We consider as an example the matrix

2 0 3
A4=[1 1 3).
1 —1 1

Here (4 — A1) has the elementary divisors (A—1)% and (A—2), and we have
D=|A—T|=A—-1)22—A)=— (23— 422 +51—2).
We easily obtain

A2—22 44, -3, 34—3
DA—A)1= A+2, A2—34—1, 32 —3
A—2, 2— 4, A2—3A+2
_ D
X“}T{"(A Al)2
A3 — 3424121 — 16, — 094415, 642 —154+9
:( 202+ 44 — 12, AB—5A2— A+ 11, 6,12—15/1+9)
22— 81+ 8, —2A2+84—8, A*—5124+81—4
and
Y = ,;}12,1, A(A — A1)
2(A3—4), —6(A2— A —1), 3(A2—A2—24+2)
= A4 542— 81 —4, ABP—11224+142+2, 3(A3—2*—21-+2)
A3 —1312 44, —(AB—34244), AB—-512+8i-—4)
From the definition in Section 48,
_ By«
(208) p(4) = EXw "

Since we have
A2+ 44 —8 —3(24—3) 3(A—1)?
Y—X=(2~1)(/12+42—8 —3(24—13) 3(1—1)2)5(,’.—1)2,
(A —2)2 —(A—2)¢ 0
it follows that
S()—1 _ pZo

(209) o T EXa

For A =1, Z and X become respectively

-3 3 o0 —6 6 0
ZO:(—g 3 o), Xo=|—-6 6 0)=22(,,
2

1 —1 0 -2 0
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and we see that as A—1 the ratio (209) tends to } if 8Zya'=4:0. Z,, is therefore
the matrix H in the condition (186), and if we write

o= (ay,ay,a5), f=(b,b; by,
this condition becomes

(@, — ap) (— 36, — 36,4 bs) 0.
We see that « and § have to be chosen in such a way that a; 3= a,, by 3 (b, +b,).
If, for instance, we take
«=(0,1,0), B=(1,0,0),
we have from (208) . {
Y AB—A—1

and from (192)
‘ _ A 1—4
(211) ‘Pz(l)*3l—_5-
If we start with 4,=0 we obtain from (210) the following values of 4, and’ ; ! _} L
' Tly—1
1—4
i’ A 1=y
0 0.
1 4 6
2 6526 579
3 .80648 .557
4 -89599 -5375
5 94565 .5225
6 97214 5126
Starting again with 4,=0 we obtain from (211)
' (1—4—4)®
A =i
0
.8 5

984616 2.046
999884338 2.0%347
98331229  2.072006
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