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Abstract. In  this paper it is shown that  the relativistic analogue of the circulation 
in classical hydrodynamics is the integral 

where i i s  the specific enthalpy of the fluid, U~ are the covariant components of the 
four velocity of the fluid and the integral is taken around a closed curve traveling 
with the fluid. This integral is similar to an integral given by LlCnNEROWlCZ, but differs 
in the factor multiplying Ua in the integrand. 

The necessary and sufficient conditions for C to vanish are shown to be that  
the flow be irrotational and isentropic. The necessary and sufficient condition for 
C to be a constant of the motion is that  the pressure be a function of the density 
alone at every point in space-time occupied by the fluid. This condition is shown 
to be violated when a shock is present. Results for similar integrals taken around 
vortex lines are also obtained. The relations between these results and Bernoulli's 
theorems are discussed. 

1. I n t roduc t ion  

I t  is the purpose of this paper  to discuss an integral formed from quanti t ies  
describing the relativistic behavior  of a perfect fluid. This integral is analogous 
to  the integral defining circulation in classical hydrodynamics .  The results 
obta ined below are, in part ,  similar to results given by  SYNGE [1] and reported 
b y  LICHNEROWlCZ [2] bu t  are obtained by  using a different formulation for 
the stress-energy tensor of a perfect fluid. Our results hold for both  special 
and general relat ivi ty and depend only on the assumed nature of the stress- 
energy tensor and the four conservation laws it obeys and the equation of con- 
servation of matter .  

A perfect fluid is described by  the stress energy tensor 

T u " = a U ~ ' U  " -  P g~'", ( t . t )  

where 
UuU~ = 4; (t.2) 

U u represents the four dimensional velocity vector  of the fluid, gu,, the metric 
tensor of space-time, p, the pressure, and 
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In this equation Q is the proper density, and 

e = e (p, ~) (t.4) 

is the proper, specific internM energy of the fluid. Equation (1.4) is sometimes 
referred to as the caloric equation of state of the fluid. 

The equations governing the motion of the fluid are the formulation of five 
conservation laws, namely, the conservation of mass, energy and momentum.  
Where there are no singularities, these equations take the form of partial  differ- 
ential equations which are 

T" L, = O, (1.5) 

( o U " ) ; ~ = 0 ,  

where the semicolon denotes the covariant derivative with respect to the metric 
tensor gp,. This paper  is not concerned with the determination of this tensor. 
I t  is assumed to be known. 

Across a singular hyper-surface [3], the conservation laws are 

[ T*', ~.1 = 0,  (1.6) 
[e v~ a A = 0, 

where az are the components of the unit  normal vector to the singular hyper-  
surface, and we have used the notation 

[/1 = ~im ~ [ / ( * " -  ~ . )  - / ( , .  + ~")]  = / _  - 1+, 

where the x ~ are the coordinates of a point on the singular surface and the ~*' 
are arbitrary.  

If  equations (t . t)  are substi tuted into the first four of equations (t.5), they 
m a y  be written as (cl. [3]) 

u .  , v "  - ~ ( # "  - u .  u ' )  ( t .7)  
, - -  t~C2 

and 
TS;,  U" = O, (t.8) 

where T is the proper temperature,  and S is the specific proper entropy. The 
quantities T and S are defined as in classical hydrodynamics by  the requirement 
that  

T d S = d e + p d ( ~ ) .  (t.9) 

We define the specific enthalpy as 

i = e + P---. (1.10) 

Then 
d i =  T d S +  dp , (IA1) 

and 
o c I = 0 ( c2 + *). (t .t2) 

We further define p 

f - - ( ~ = - -  0,r ' 
P, 



3t4 A.H. TAUB: 

where the integrand is considered a function of p and S, and the integration is 
carried out with S = constant. Then 

p 
f di - - log  c*+i(p.s)  (l.t3) 

- -  q0 =.  c~ T i c2 + i ( p o ,  S )  " 
P, 

We shall treat Po as independent 0f the coordinates of points of space-time in 
our subsequent discussion. Then 

a~ 1 ap a~ as (tA4) 
as u - - +  dc* ax u. + as axu '  

where p is kept constant in the partial differentiation of q0 with respect to S. 

For some functions e (p, ~) there exists a Po such that 

i(po,  s )  = o.  

With this value of P0, equation (t.t3) becomes 

e - ~  = 1 + / (1.t 5) 
C~ 

and Oe-~ _ e _  ~ a~o T 
a s  ~ K  = ~ �9 

2. The Tensor ~ v  

We define the antisymmetric tensor 

S~, = V~;, --  V,;~, (2.1) 

where V~ = e -~ U~, (2.2) 

and ~ is given by equation (t . t3).  This tensor will play an important role in 
our subsequent discussion. We, therefore, discuss some of its properties. I t  
follows from equation (2.t) and (2.2) that  

~u,  = e-~ [W,, -- (~,, ~ -- ~,,, ~)1, 
where 

W~, = ~ ; , -  ~ ; , ,  (2.3) 
and hence 

W~, U" = U~;, U" (2.4) 
in view of equation (t.2). 

We further define the vorticity vector v u by the equation 

v ~ = � 8 9 1 7 6  U,, 
where 

and 

(2.5) 

EU . . . .  t ~ , ~  (2.6) 

The relative tensors 8 , . o . = e  " 'a" are zero unless all indices are different. In 
that  case. they are plus or minus one. depending on whether the values taken 
by the indices are an even or an odd permutation of t 2 3 4. 
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I t  is a consequence of the definition of these quantities that  

E,,...,~ ....... E " ' ' ' ' ~  ~'''" ~" = k! a,~:::r (2.8) 

where the tensor a a,... ~, is zero unless the indices 41... 2, are an even or an odd v ,  . . .  ~ r  

permutation of the indices Vl. . .v, .  In the former case it has the value + t ,  
and in the latter case, the value - -  1. 

Multiplying equation (2.5) by  Ev~a~ and summing, we obtain 

_ 1  , ~  = u ~ % ,  u ~ w ~  ~ w ~ .  v E~,~#~,---~b~t3:,Wa, U , + + (2.9) 

I t  then follows that  

wp~ = ,,; u~ e ~ p ~  - u, u~;~ u~ + u, u~;, u s. (2.~o) 

Substituting equation (1.7) into equation (2.t0) and the resulting equation 
into the expression for ~ ,  in terms of W~,, we obtain 

after having made use of equation (t.14). When equation (t.15) holds, this 
may  be written as 

Q~, = vu V~,E~,a#~, T (S;v U~ --  S;/~ U~) (2.t2) 

I t  is immediately evident  tha t  if 

v u = 0, and S = constant,  (2.t3) 

then J2av=0.  That  is, if the flow is irrotational and isentropic, then Q # r = 0 .  
The converse also follows; for, if the right-hand side of equation (2.t t) vanishes, 
we may  mult iply by  U v and sum to obtain 

in view of. equation (t.8). Hence, 

v ,  U" E ~  = o. 
This implies t h a t  

V ' =  A U u. 

However, it is a consequence of the definition of v u (c]. equation (2.5)) that  

v ~ U u = O. (2.14) 

Hence, the first of equations (2.t3) also holds. Thus, equations (2.t3) are the 
necessary and sufficient conditions for 

~ u , =  0. 

3. Algebraic Properties of ~ 

Associated with the tensor ~ there is the dfial tensor defined by  the equation 

5 . -  ! ~ ' . . ~ ,  , ' ,  (:~.~) 
* ' .  2 " ~  a*~J .O  " 

I t  is a consequence of equations (2.8) and (2.t2) that  
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Hence QI=QI,,~,, 4 T e _ ~ v  t, - ~ -  S , . .  (3-3) 

Thus, the tensor ~2v, will be singular if, and only if, v ~ T S , = O .  If it is singular, 
it can only be of rank zero or two. 

Another invariant associated with the tensor Qv, is 

T 2 Q,=Qt,,E2~"=2[e-"vi'v~,-l-~- S,~,S,,ff']. (3.4) 

Since both v ~ and TS,~ ,  are space-like vectors (c/.  equations (2.t5) and (1.8)), 
the quantity/2,, satisfies 

~9~ = o.  (3.5) 
The equality holds if, and only if, 

v~=O,  and S ,~=O,  
that  is, if, and only if, 

,-Q#t, : O. 

I t  is a consequence of equations (2.it), (t.2), and (t.8) that 

, T S , v ' U ~ ,  ~'~l,t, ?.) - -  C2 , 

where 

(3.6) 

and 
Q,,v '=O 

~2~, y" = O , 
where 

y ~ = ( U  ~ , e 2 ~  .A ~- ~ =-). (3.to) 

That  is, the vectors v" and y" are annulled by  the matrix of coefficients of the 
tensor ~ , .  The vector yv reduces to U ~ whenever w ~ vanishes, that  is, whenever 

T S  r 
v ~ = A c~ g~=' 

where A is an 'a rb i t ra ry  scalar. 

. . . .  r , ~  S ~ (3.7) w ,  = E , , ~  v v ~ g . 

and is a vector orthogonal to u ~', v ~ and T S~.  I t  further follows that  

T S 

and that  

In case /21=O , that  is, ~ , ,  is singular but not all of its components vanish 
(v a aiad T S s  , are not both zero), it follows from the above that 
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Since , # ~  
y" y. = t-f- ~ w g  w 

and w~w~>0 as follows from equation (3.9) and the application of SCHWAaZ'S 
inequality to the space-hke vectors involved, the vector y~ is always time-like. 

4. Tubes in Space-Time 

If z ~ (x) is a vector field, the solutions of the ordinary differential equations 

d M' 
= z ~' ( x )  ( 4 . t )  d W  

define a three parameter family of' curves passing through a hypersurface 
in space-time. We shall assume that  the hypersurface may be represented by  
the equation 

X ~" ----/(X"; X i', X ~') (4.2) 

where/1, i2, ia and i 4 are some permutation of the numbers t 2 3 4. 

We may then write the solutions of equations (4.t) as 

x .  = ~. (r w) (r = 6 ,  i~, i~), (4.3) 

where the r are the initial values of the x ~, that is 

and 
,,'(r o) = r  

x"(r o) = l[x"(r o), x"(r o), ,~'(r o)] .  

If in the surface • we have a closed curve described by  the equations 

r = r  71 < 7 ~ 72 
w~th 

r (71) - r (~,), 
then the equations 

x" = x" [r  (7), w ]  = xa(7, w )  (4.4) 

define a two-dimensional surface in space,time which we shall call a t u b e .  The 
closed curves obtained by setting constant values for W into equation (4.4) are 
imtges of the closed curve on the initial, surface. When in equations (4.4)T is 
constant, the equations define a curve which is a s6iution of equation (4.t). 

The ,tangent vector to the curve~ o f  parameter 7 is given by  

,~ (4.5) 

where W is kept fixed in the differentiation. We have 

(4.6) ~W -- ~--W--~-='OT " 

When the vector field # ' (x )  is set equal to the four-velocity US(x),  W is 
the proper-time and the curves of parameter W are called the world-hnes of 
particles making up the fluid. The four variables ~, W may be interpreted as 
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a new set of coordinates in space-time, co-moving coordinates. They are the 
analogues of Lagrange coordinates in classical hydrodynamics. The curves of 
parameter  r (W fixed) are then said to "travel  with the fluid". 

Another example of a tube in space-time is obtained by setting z" (x) equal 
to the vorticity vector v" (x). Then the curves of parameter  W given by equation 
(4.3) are said to be vortex-lines, and the tube is called a vortex tube. 

5. Invariant Integrals 
Consider the integral 

r(w) = f  v~ Ex(r, w)] ~=ar, 15.t) 
T1 

where V~ is given by equation (2.2) and is considered as a function of r and W 
in view of equation (4.4) and ;t ~ is the tangent vector to a curve of parameter  
W given by equation (4.5). The integral T' (W)  represents the integral of the 
vector V~ which is proportional to the velocity vector, around a closed curve on 
the tube defined by the solutions of equation (4.t). 

We now compute 
TS 

d F  " Z ~ ~ d r .  
d W  I ]  

This may  be written as 
v, 

~ s  f(~:.zo~=+ av: oz=~. 
dW 3 ~  ~ ~'~:z('+ V = o w J a r  

�9 r I 

T2  

where we have made use of equation (4.6). Thus 

a r  �9 o ~ o (vo~~ 

T 1  

Since we are integrating around a closed curve, we finally obtain 
t2 

d F  f D=ozO;ear. (5.2) 
d W - -  

"gl 

The necessary and sufficient condition fo r / ' (W)  = 0  for tubes defined by the 
vector field z ~ by  means of arbitrary initial surfaces and arbitrary curves in 
this surface is that  

~=~ = 0. (5.3) 

Similarly, the necessary and sufficient condition that  d I ' / d W =  0 for tubes defined 
with the same amount of generality is that  

z = . ~ - z ~ . , ,  = o 
where 

Zc, =-Q~,o z ~ (5.4) 
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6. The Circulation 

In this section we set z~= U ~', the four-velocity vector and W =  s, the proper 
time. w e  shall then name the integral in equation (5.t) the circulation and 
denote it by C (s). Equation (5.2) then becomes 

dCds -- f "-~~ -TSO~~ S,~ ~ d~ (6.1) 
7:1 

in view of the first of equations (3.6). 

Thus, a necessary and sufficient condition for the circulation to be inde- 
perident of proper-time is that 

(e - ~ a g S  ~ - - ( e  - ~ o ~  ,); . (6.2) aS ;~];~-- \ aS S; 

I t  is clear that for isentropic flows (S = constant), dI']ds=O. 
When equation (I.15) holds, equation (6.2) may be written as 

(TS;~);~ -- (TS;a); ~ ---- 0. (6.3) 

In virtue of equation (1.9) this may be written as 

P;~ e;a -- P;ae;~ = o. (6.4) 

Hence, in this case the necessary and sufficient condition that  dC/ds=O is 
that  at every point of space-time 

P = P (e). (6.5) 

That  is, the motion is such that  a knowledge of p (or O) at a point determines 
e (or p). 

7. Bernoulli's Theorem (Time-dependent Flows) 

The definition of the circulation, namely, 

Tt 

C(S) = f  e - ~ U ~ ' d z  
1: t 

involves an integrand which, aside from the exponential factor, is the tangential 
component of the four-velocity field U ~ taken at a point of a curve which travels 
with the fluid. C(s) is, thus, similar to the classical circulation. To show that 
it is a generalizat!on of this classical quantity, we shall show that  as in classical 
hydrodynamics, the condition 

c ( s )  = o 

and is related to BernouUi's theorem for time-dependent irrotational and isen- 
tropic flows. 

It  follows from equation (5.3) that  the condition (7A) is equivalent to 

Q, ,  = O, 

that  is, to the requirement that the flow be isentropic and irrotational (c/. Sec- 
t ion2).  Under these conditions (c]. [3]) there exists a scalar function R(x) 
such that  aR 

= e-"  G = ax , "  (7.2) 
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Define the quanti ty 

q' - (~ , - g ' " g " ] u " u ' .  c~ - g,,  U, U, ~ Ug 

This is the length of the vector 0 ~ which is given by  

0~ = U~ ~,, u, 
g44 

and which is the projection of U" onto the three-space orthogonal to the curves 
of parameter  x 4. 

In view of equation (t.2) we have 
/ . . . .  2-  

Ut= Ug,4 ] 1 + ~-. (7.3) 

Equations (7.2) with t*----4 imply that  

- -  ~X 4 �9 

When equation (4.15) holds, this becomes 

o .  

c~ = -ex ~ " 
If we now write 

2V (7.4) 
g ~ 4 =  t + c ~  ' 

and expand the left-hand side of the above equation neglecting powers of tic 
higher than the second, we obtain 

1 

This is the classical form of the Bernoulli equation for a non-steady irrotational, 
isentropic flow in the gravitational field with potential V. The quanti ty c2R 
is to be interpreted in terms of the velocity potential for the flow. 

Equation (7.4) is the usual relation between the classical Newtonian potential 
and the metric tensor of space-time which holds in the case of weak fields. 

In case we use equation (tA3), equation (7.5) becomes 

( i + V + � 8 9  S)J(~x4 - - t  ). (7.6) 

8. Bernou l l i ' s  T h e o r e m  (Steady  F l o w s )  

In classical theory Bernoulli's theorem is usually formulated for stationary 
flows. LICHNEROWICZ [2~ has indicated a method of describing steady flows of 
fluid in their own gravitational fields. I t  consists of assuming, that  the space- 
s and the velocity field are invariant under a time-like one-parameter group 
of motions. That  is, there exists a vector field ~' which is such that  Killing's 

equations ~ ;~  + ~a;~ = 0 (8.t) 

are satisfied and such that  u ~ ; , -  ~ v ~ =  o, 
(8.2) 

S;=~'=p;~ ,U=o.  
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Equations (8.2) state that  the velocity field U ~ is invariant under the group 
of motions as are the entropy and pressure. 

Define the quanti ty 
H = e-~  ~ "  = ~ (8.3) 

and compute 
H;a u a = (e-~ w ~ ) ;  a ua. 

We have 
H;a Ua = e-~ ( - 9;0 UaU'~ ~ + U~;# Ua ~" + U~,~a U a) 

= e-" t[ ,,c' p'~' ~" + !2 V~'uacs~ + 8a;.)] = o 

as a consequence of equations (1.7), (1.8), (l . t4),  (8A) and (8.2). Thus, along 
a world-line of the fluid we have 

H = constant.  

If  the coordinate system is chosen so that  

r = 6~ 

this equation becomes 
e -~ U 4 = constant.  

Using the results of the preceding section, we may  write this as 

q, 
i + ~ -  + V = constant (8.4) 

along a world-line of the fluid. I t  may  very from world-line to world-line. Equa- 
tion (8.4) is the usual form of the Bernoulli equation. 

I t  is instructive to compute the derivative o f  H in an arbi t rary direction. 
Thus, 

= e - ~ [ d ' ~ , , a ~  - -  9,~,~' Ua + Ua;,,~' - -  U~'~;,, + U"(~,,;a + Sa;~)] 

as follows from the definition of ~ r  (c/. equation (3.2)). In view of equations 
(8.2) we have 

Hence, if ~2~p= O, 
H = constant 

thoughout space-time. That  is, if the motion is isentropic and irrotational, the 
Bernoulli constant is independent of the world-line of the fluid particle as is 
the case in classical theory. 

9. Vortex Tubes 

In  this section we shall discuss the integral (SA) when the  tubes in question 
are vortex tubes, that  is, when we set z ~ (z)= v ~ (x), and the motion is rotational 
(vv4=0). In  this case, we cannot have F ( W ) = 0 .  However, .it follows from 
equations (5.2) and (3..6) that  

Tt 

dP f O~ aw " e-*'-~- S , r V~X~dz. (9.1) 
t l  

Arch. Rational Mech. Anal., "Col. 3 22  
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Equation (9.1) may be written as 

dF = f h V~ 2 ~ d~: (9.2) 
dW 

rx 

with 
h =  09 S ~v'. (9.3) OS , 

The necessary and sufficient condition for dF/dW = 0 for tubes defined by arbitrary 
curves in these surfaces is, then, 

(h V~); ~ -- (h Y~);~ = O. 
This may be written as 

Thus, 

and is of rank 2. Therefore, h = O  or-(21--=-0. However, Ql=e~h. Hence, the 
necessary and sufficient condition for dF[dW=O for vortex tubes defined as 
above is that  sc2~= 0, and D~a be of rank 2. 

In this case we also have 
dF 
dW = 0  

for world tubes defined by  the vector field y~ given by equation (3AO). 

10. The Change  in Circulat ion Across  Shocks  

All of the preceding discussion was based on the assumption that  the deri- 
vatives of the flow variables existed everywhere. We now consider the possi- 
bility of singular hyper-surfaces in space-time, representing shocks across which 
equations (! .6) obtain. These equations may be written as 

mc =Q§ u+. ,~. =o._ ~ ~ (to.1) 

and 

where 

"*c (~* u2 - a_ ~ )  = ~ -  (p§ - p _ )  , ( 1 o . 2 )  

i ( t o . 3 )  o = t + 7  . ~ t = Q  

In case equation (t.15) holds, equation (t0.2) may  be written as 

m ( l~v_  V~) = .2~ (p+ _ p_), (10.4) 
C 

where 2 v is normalized so that  

~"2. = - t (t0.S) 
and for a shock wave m :~ O. 

I t  then follows from these equations that  the components of the v e c t o r  
field V~ tangent to the hyper-surface are continuous across it. As has been shown 

~aflier, the components normal to the hyper-surface are discontinuous. We may 
determine the discontinuity in this component in terms of the discontinuity in 
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pressure (or densi ty)across the shock as follows: multiply equations (10.2) by 
U§ U ,  and 2. to obtain 

I (p+ _ p_), (t0.6) (m - ~ -  u_ .  u+, , )  = _~'~_-§ 

I (p+ .p_), (10.7) (~.+ u+" u_,, - z-) = ~  -Q_ 

~ -  = - (/ ,+ - p _ ) ,  ( t o . 8 )  -fi- o+ - q-/ c" 

respectively. If we now eliminate U ~ U§ from the first two of these equations 
we have the equation 

From equations (40.7) and (t0.t) we have 

m _  I [p•  ~ q+ (V.~2~)= 0- (V"2~). (10.t0) c-~-~p_ .+l=.+ p_ 
xO - -- ~+, 

Equations (10.9) and (t0.t0) are the relativistic Rankine-Hugoniot equations 
previously derived E4]. Wheff# is known as a function of p and 0, equation (t0.9) 
may be used to determine p+ in terms of p_, ~+ and ~_. Equations (t0.t0) may 
then be used to express 0+ and hence p. as a function of V ~ 2u, p_ and 0-. They 
may also be used to express V~ ,~, as a function of the latter quantities. 

We shall write 

M =  P+/~_, ~ /_  0-'~ and y =  pP-~-. ( t0. t l )  

Then equations (10.9) and (10.t0) may be written as 

v e g =  M (Wa.), 

~2 - -  P-  
c2 0_p_ �9 

When/~ is known as a function of p and ~, the first of these equations, may be 
used to determine y in terms of t/. We may then use the remaining equations 
to .determine all quantities as functions of V~' ~t," Since the entropy will not 
be conserved across shocks, care must be taken to choose solutions of these 
equations such that 

S + >  S 
across the singular hyper-surface. 

When a shock is such that ,~, is a function of the points of space-time, we 
say that it is of varying strength. This variation may be due to the curvature 
of the shock at each time x4=- constant or to the dependence of 2, on x 4 alone. 
The world-lines of particles which cut the singular hyper-surfaee have discon- 
tinuous tangents at the hyper-surface. Along such a world-line the entropy 

22* 
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suffers a discontinuity.  The size of this discontinuity in entropy varies from 
world-line to world-line. As a result, it is not  true tha t  the pressure and densitv 
at  all points of space-time are related as in equation (6.5). Thus, when shocks 
are present, we cannot  have dC/ds=O for arbi t rary  tubes. 

This result m a y  be seen in another  manner.  Suppose we have a shock of 
varying strength (~* not  constant) and suppose it is such tha t  V ~, p_, and ~_ 
are constant .  Then, we would have 

~r -~- V p ;~  - -  V_v;~  ~ -  0 .  

However  if 

then it follows from results of Section 2 tha t  the flow behind the shock would 
be both  isentropic and irrotational. However,  we have seen that  it is not  isen- 
tropic. Thus, 

~;,#o. 

This means that we can construct tubes of world-lines which cross shocks and 
for which C(S)=O 0 n one portion of the tube, but C(S)~=0 on other portions. 

The detailed behavior of the circulation across shocks depends on the explicit 
expression obtained when the system of equations (10.12) are solved as described 
above. These expressions depend in turn on the nature of ~ as a function of p 
and Q or equivalently on the nature of e as 'a function of p and ~. Once this 
function is prescribed, we may study the geometry of the world-lines in terms 
of the geometry of the shock surface by introducing a coordinate system con- 
sisting of the world-lines of the fluid particles as curves of parameter x 4 and 
t.he singular hyper-sul~ace as the hyper-surface x~=constant. The methods 
used in studying stationary and pseudo-stationary flows [5] may then be applied 
in a straightforward manner. 
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