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In an earlier paper [1] I established the stability of solutions of the Navier-  
Stokes equations provided that  a certain Reynolds number was small enough. 
This result enables one to deduce from certain plausible hypotheses the existence 
of stable periodic solutions of the Navier-Stokes equations. In particular we 
shall prove the following result: 

Let $/'= $:(t) be a bounded region in space, and let a flow velocity be prescribed 
at each point o/the boundary o / ~ .  Assume ]urthermore that both $P and the assigned 
velocities depend periodically on the time t. Then, under conditions 1 ~ a~uf 2 ~ 
stated below, there exists a unique, stable, periodic solution o/ the Navier-Stokes 
equations in $/" which takes on the prescribed on the boundary o/$1". 

In view of condition 2 ~ (see below) it is necessary that  the boundary condi- 
tions be compatible with a flow of Reynolds number less than 5.7. The theorem 
may  therefore be paraphrased by the statement that  corresponding to suf- 
ficiently low assigned periodic velocities there exists a periodic flow to which 
every other motion eventually subsides. A simple example would be a fluid 
enclosed in a fixed container and stirred by a low speed bladed rotor. 

Another case of interest occurs when the assigned conditions are steady. Then 
the theorem asserts the existence of a unique, stable, time-independent solution 
of the Navier-Stokes equations taking on the prescribed velocities on the boundary 
of Y~. In several long papers (e.g. [2~--[5~) the existence of steady flows has been 
proved independently of conditions t ~ and 2 ~ though in these cases a con- 
siderable degree of smoothness has been required of the boundary data. Needless 
to say, the flows thus obtained may  be neither stable nor unique, unless their 
Reynolds numbers are low enough. 

We now state conditions t ~ and 2 ~ envisaged in the above theorem and 
remarks. 

1 ~ To every continuous initial distribution o/velocities over $/- there corresponds 
a solution o/the Navier-Stokes equations satis/ying the prescribed boundary condi- 
tions. 

2 ~ There is one solution whose Reynolds number Re-~Vd/v is less than 5.7. 
(Here V is the maximum sl~eed o/the ~low during the whole time interval 0 <= t < oo, 
d is the maximum diameter o/$P, and v is the kinematic viscosity.) This solution 
is equicontinuous in X = (x, y, z) /or all t. 
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Before proceeding to the proof of the theorem there are several remarks to 
be made. First, it is understood that  the flows guaranteed by  Condition t ~ 
should be valid for all t ~  0. Though this is mathematical ly a very stringent 
requirement, it is nevertheless quite plausible on the grounds of physical intuition 
and our knowledge of the behavior of other parabolic systems; moreover, from 
the proof it will be clear tha t  t ~ need hold only for initial velocity distributions 
whose Reynolds numbers are less than 5.7. Second, the number  5.7 in Condi- 
tion 2 ~ m a y  possibly be improved, as will be apparent  from the proof. Finally, 
the author wishes to make it clear t ha t  he does not consider the above theorem 
to be equivalent to the usual kind of mathematical  existence theorem: it is agreed 
that  for certain types of boundary behavior t ~ and 2 ~ might not hold, and that  
(correspondingly) the limits of application of the theorem are not well-defined. 
On the other hand, in view of the plausibility of t ~ and 2 ~ there is every reason 
to expect that  they will be proved in the future, subject to sufficiently smooth 
boundary conditions 1, and once such proofs are given the existence of periodic 
solutions indisputably follows. 

Now let v = v (x, 0 be the velocity vector of the flow guaranteed by  Condi- 
tion 2 ~ and suppose the assigned boundary conditions have period t .  We con- 
sider the sequence of vector fields 

~,,(~) = v ( ~ , n ) ,  n = o , t , 2  . . . . .  

This sequence is bounded and equicontinuous b y  hypothesis, hence by  the theorem 
of Arzela contains a subsequence which converges uniformly to a vector q~ (x). 
We assert that  actually the whole sequence converges to ~ (x). 

Indeed, if this were not the case we could find another subsequence converging 
to a vector t~ (x) different from q~ (x). But  this is impossible, as we shall now 
show. For positive integers m and n, (m > n), set 

v'(x,t) = v ( x , t  + m - - n ) ,  t ~ O .  

Then obviously v '  is a solution of the Navier-Stokes equations, and, ,according 
to the periodicity assumption, it satisfies the assigned boundary conditions. 
Now for any vector l=l(x, O, let ~ ( / )  be defined by 

Jc(I) = �89 f It(x, @dr. 
at(t) 

Then by  Theorem t of [1] we have 

w ( v ' -  v) < ~(0e-",  (t) 

where ~0  denotes the value of ~ ( v ' - - v )  at  t----O, and 

= ~ (~ ~/d~ - v~) > o 

since Re Iv] ~ 5.7. Because v '  as well as v satisfies R e ~  5.7, it :is seen tha t  

a3~o~ ~ f (2 V)~dv < 2da V ~ = Const. 

Setting t-----n in (1) yields ~ ( q ~ _  tpn) ~ Const. e -~n, (2) 

x Similar theorems are already known, cf. the papers of ILERAY and KISELEV & 
LADYSHEI~SKAY& cited in the references. 
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and  i t  follows tha t  lira .~f(cp,, - -  r = 0 (3) 

( the region of in tegrat ion in (2) and  (3) is, of course, ~V'(n) _~ ~r Now let t ing 
m and n t end  to inf ini ty  through sequences oI  integers such t ha t  r @, r r 
gives an immedia te  contradiction.  This proves  t ha t  lira ~ ,  ( x ) = r  (x). 

B y  condit ion t ~ there  exists a flow v*=v*(x,  t) such tha t  v*(x ,  0 )= r  
We assert  t ha t  v*  is a periodic solution of the  Navier-Stokes  equation.  For  set 
v"(x, t )=v(x ,  t+n).  Then we have,  in the same w a y  as inequal i ty  (t), 

or(v* - v") _~ ~ e-., ,  (4) 

where e has the  same meaning  as before, and oT 0 is the value of 3 r  
when t - - 0 ,  t h a t  is 3r = r  ). Pu t t ing  t = t  in (4) yields 

�9 .*'~f[V* (X, t )  - -  r (X)] • ~ ( r  - -  r 

and  le t t ing n - >  oo gives, finally, 

~r [v* (x ,  ~) - q , (x)]  = o .  

I t  follows tha t  v*(x ,  t ) = ~ ( x )  = v * ( x ,  0), t h a t  is, v* is periodic. 

To complete  the  proof  of the theorem it  is enough to show tha t  Re  Iv*] ~ 5.7, 
for  then  b y  [1] v*  is stable and  unique 2. Bu t  we have  

~ ( v * -  v) --> 0 as t - +  oo, (5) 

b y  vi r tue  of Theorem t of [1]. Since bo th  v and v* are eqnieontinuous, (5~ 
impfies (v*--v)-->O as t-->oo, and  therefore 

Maxv*(x,t) ~ V + o(t). 

v* being periodic, this in turn  prcxves V*_~ V and Re [v*]_~ 5.7. 

Note: This research was supported in par t  by  .the Uni ted States Air Force Office 
of Scientific Researcli under Contract AF 49 (538) --252. 
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2 That  v* is stable follows from Theorem t ; tha t  it is unique can be shown by the 
same argument  used to prove Theorem 2. 
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