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1. Introduction 
In a previous paper (GREEN • RIVLIN t957), subsequently referred to as 

Par t  I, the form of the constitutive equations governing the deformation of a 
class of materials possessing memory  was discussed. I t  was assumed that  the 
stress in an element of the material depends .not only on the deformation gra- 
dients in the element at the instant of time considered, but also on those at 
previous instants of time. The limitations imposed on the constitutive equation 
by  the fact that  it must  be f0rm-invariant under a rotation of the physical system 
considered (consisting of the body and applied forces) were examined. 

This was done by  first considering that  the stress depends on the deformation 
gradients at  a number  of discrete times up to the instant of measurement. Then, 
the number  of instants of time was considered to increase indefinitely, so that  
the expression for the stress became a functional of the deformation gradients. 
In this analysis it was found that  the form-invariance of the constitutive equation 
under a rotation of the physical system leads naturally to a particular form of 
dependence of the stress on the deformation gradients at the instant of meas- 
urement. I t  was assumed that,  apart  from this, the expression for the stress as 
a functional of the deformation gradients at times up to and including the instant 
of measurement is continuous. 

In the present paper, we do not make this assumption, but allow that  the 
stress m a y  have arbi trary polynomial dependence on the deformation gradients 
at the instant  of measurement, while its functional dependence on the deforma- 
tion gradients at times preceding the instant of measurement is continuous. 
Under these conditions, the limitations imposed by isotropy of the material in 
its undeformed state on the form of the constitutive equation is considered. 

2. Special Dependence of the Stress on the Displacement Gradients 

We consider a three-dimensional body to undergo defoemation described in 
a fixed rectangular Cartesian coordinate system x by  

x~(3) = x~(x; ,  3) (3 > o), 
(2.t) 

~ (3) = x~ (3__< 0), 

where X i and x i are the coordinates in the system x of a generic particle of the 
body at zero time and time T respectively. We assume that  x~ (3) are single- 
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valued functions of the arguments, possessing continuous spatial derivatives up 
to any required order except possibly at singular points, lines and surfaces. 
If the deformation is to be possible in a real material we must have 

lax~(~)laXj[ > o. 

We assume the stress components a~ i (t) at time t in the system x to be poly- 
nomial functions of the deformation gradients Oxi(v~)/OX i (0t = 0 ,  t ,  2 . . . . .  N) at 
the N + t  instants of time T1, zz . . . . .  T N, v o ( = t  ) between x = 0  and ,-----t. I t  
has been shown (GREEN & RIVLIN 1957), that  aii may then be expressed in the 
form 

' [  ~ ~ 1 a i i = - ~  /Oil+ axr oxs /'* ' (2.2) 
where the notation 

OX, OX, ' 
ax,(T) ax,(~) 

gPg(z) -- aX t, oXq ' gm= gpq(t), 

g(~) = I gp~(~)l, g = g (0, 

(2.3) 

is used, Oii denotes the Kronecker delta and / and ],, are polynomial functions 
of gp v (v~) and V - ~ )  (~r = 0, i ,  2, . . . ,  N). 

We may re-write (2.2) in. a somewhat more succinct form by observing that  

so that  

where 

2g(O , ~ , j -  a . ,  a.;  OX, OX, e"n" eswg"vg"~' 

1 Oxi Oxi ~ i i -  F., 

~ ,  = /  e,,,,,es,,~g,~,gnv + 2g],,. 

(2.4) 

(2.5) 

(2.6) 

Hence F,, is a symmetric polynomial function of g~e(z~) and Vg(z~) (or =o, ~, 
2 . . . .  , N). 

3. Isotropic Materials 

In Par t  I the restrictions requirec~ ,for a: material which is isotropic when 
T~_0 were obtained using (2.2) and the~,corre~p0nding results for (2.5) can then 
be deduced*. Here, however, we proceed directly from (2.5). Let  s be a fixed 
rectangular Cartesian coordinate system related to x by  

~ = A .  x i, (3.~) 

where Aq are constants Satisfying the orthogonality conditions 

Ai ,Ai ,  --- A , iA , i  = 6ii, IA, i[ = t .  (3.2) 

* A slight gap in the argument in Part I was completed later (GREEN & RIVLIN 
t 958). 

6* 
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If ~i (~) denotes the coordinates of x i (~) in the system ~ and )~i ~ xi (0), we have, 
from (3- t), 

�9 ~(~:) = A~ix~(.),  X~ = A~iXi ,  

a~,(z) a~,(z)=A~,Ai~g,~(v) ,  (3.3) 

~( * )  = I ~ , ; ( v ) l - - g ( ~ ) .  

Denoting the stress in the system' �9 by aii we obtain 

aii = Aim A i" am,," 

Hence, from (2.5), (3.t) and (3.4), 

(3 .4)  

8~i_ ~ a~,~ a~i A,..A~.Fm." (3.5) 2~ aX, aX, 

If the material is isotropic at ~----0 then 

- _ I 83, a3 i [ F , ~ g p q ( v , ) , ~ ] ,  (3.6) 

so that,  using (3.5) and (3.6), we have 

03, o~; (F .  [~p,(v~), ~1/~.)] - A , . A , . F m .  [gp,(~),  Vg-~.)]} = o. (3.7) aX, aX, 

Multiplying this equation by the non-zero expressions 

OX, OXt 

we obtain 
F,, [~,,(~.), Vg(v.)] = A , .  A , .  F . .  [g,,(~.), ~ ] .  

Using the notation 

9(~ )  - - I Ig , ; (~ ) l l ,  ~ (~ )  = I la ; (~ ) I I ,  

(3.8) 

(3.9) 

it follows that F,s are the components of a symmetric matrix polynomial in the 
matrices y (v=) in which the coefficients are scalar polynomials in vg (~) (~ = o, t, 
2 . . . . .  N) and traces of products formed from the matrices g (z~) (a = 0, t ,  2 . . . . .  N). 
Since [g(v)]~ is a continuous single-valued function of gpq(z) and t/g 0 has no 
singularities, we can omit the factor t/(2g t) and the arguments [g(z~)]~ in (2.5) 
and write, to any desired degree of approximation, 

r = e F e ' ,  (3.to) 
where 

o --II~. l l .  c = IlaxdaX, ll. (3.t~) 

In (3.30) e'  is the transpose of e and F is a symmetric matrix polynomial in the 
matrices g (v~) in which the coefficients are scalar polynomial functions in the 
traces of products formed from the matrices g (v~) (0t = 0, t, 2 . . . . .  N). 
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The expression (3AO), valid for materials which a r e  isotropic at  t ime r~_O, 
can be written in a convenient alternative form. Le t*  

~ x ,  ~x~ , , a , . ( ~ )  ~x . (~)  
hpq(T)- Oxp ~ "g's~'r) - -  Oxp Oxq ' 

h (~) = I I hpq (T) II, (3.a 2) 
and 

c = IIc,;ll c , i -  8,,, o,~ ' ax , , ,  ax , , , "  (3.t3) 
Then 

C = c c ' ,  g(T) = c 'h (T)  c,  h('r) ~--~ (c ')-lg(T) r -1. (3.14) 

The trace of products of matrices formed from g(%) (~ = 0 ,  t ,  2 . . . .  , N) 
can be expressed as the trace of products of matrices formed from C and h (T~) 
( ~ = 0 ,  t ,  2, . . . ,  N). Also a symmetric matr ix  polynomial formed from the 
matrices g (T~) can be expressed in the form c ' L c  where L is a symmetric  matr ix  
polynomial formed f rom the matrices C and h (~).  I t  follows that  we m a y  write 
()A0) in the alternative form 

a = a I t ,  h (T~)], (3.15) 

where a is a symmetric matr ix  polynomial in the matrices C, h(%) (0r 
2 . . . . .  N), with coefficients which are polynomial functions of the traces of 
products formed from the matrices C, h (v=) (= - -  t ,  2 . . . . .  N i. 

Conversely, we can show that  any  constitutive equation of the form (3.t5) 
can be expressed with any desired accuracy in the form (3A0), where F is a 
symmetric  matr ix  polynomial in the matrices g (~=) with coefficients which are 
scalar polynomial functions in the traces of products formed from these matrices. 

4. I sotropic  T e n s o r  F u n c t i o n a l  

When the material  is isotropic initially we may  make the transition from 
tensor functions to tensor functionals using either (3.t0) or (3.t5) as a start ing 
point. In  order to keep in line with the work of P a r t I  we use (3.tO) and suppose 

that  0xi axi F, s, (4.t) 
ai i - -  OX, OXs 

where we assume that  F,, is a symmet r i c  matr ix  polynomial in g~q with coefficients 
which are functionals of gpq(T) in the range O~T<: / .  We assume tha t  these 
functionals are continuous functionals of gpq (,) over the compact aggregate of 
functions which are continuous in the range O___,<:t. We denote the Fourier 
half-range cosine coefficients of gpq(~) by  "-" t, q {=} where 

t 

G~.=} = 2 f  = a . .  pq ~/ gpq(~) c o s ~ t - - - a ~  ( ~ > 0 ) ,  
0 , (4.2) , /  vpqf-(~ gpq( 'r)dT.  

o 
* From (2.1) x,n(z ) may be expressed as a function of xm(t ), T, t by eliminating 

X i, and then OXm(T)/Oxp can be evaluated. Alternatively, we can use the first expres- 
sion in (3.t2) to find hpq(T). 



86 A . E .  GREEN, R.  S. I~IVLIN & A. J. M. SPENCER: 

Then each continuous functional in the expression for F,s may be approximated 
by a polynomial pt~,)(Gtp~, Gtp] . . . . .  G~) which tends uniformly to the functional 
as ~t--> oo. I t  follows that  F,, can be expressed with any desired approximation 
by a polynomial in gm and Gtp~, G~] . . . .  , Gtp~ I with a sufficiently large choice of 
N and we write 

~xr axi G(O) G(~) r(N) l 
a q - - e X ,  b ~  F ' ' [gm'  m, m . . . .  ,~**J,  (4.3) 

where F,, is a polynomial. 

We next consider a change of rectangular Cartesian axes of the form (3.t) 
and (3.2). If aii denotes the stress components at time t in the system ~, then 
aii is given by (3.4) and (4.3). Also, if the material is isotropic ~or v ~ 0 ,  then 

e ~  e~ i F,, [~1,q, n(o) n ( ,  ~r a i / =  aX, aX, ~Pq, "~m . . . . .  t.~q j ,  (4.4) 

where 
t 

:q = y q (r) c o s - - T -  a r  (~ > 0 ) ,  
, d  
o ~ (4.5) 

q = y q(r) d r ,  

o 

and ~m(r) is given by (3.3). From (3.3), (4.2) and (4.5), we have 

~pq ----- Apm Aq. gin,, (4.6) 
H(~) "(~') = Ap,. Aq. t.m. (~ > 0). u p  q 

Also, from (3A), (3-3), (3.4), (4.3) and (4.4), we obtain 

8X"-~ &,~, {F 's [gm'  Gpq] - -  A r .  As~Fm,,[gl, q, G~a)]} = 0 
and hence 

Fv s - --(a) [gin, Gp q] ----- A,., A , .  F,.. [gpq, G~].  (4.7) 
Using the notation 

it follows from (4.7) and (4.6) that i~ is a symmetric matrix polynomial in t h e  
symmetric matrices if, G~ (m-----0, t . . . . .  N) and equation (4.3) may be written 
in the matrix form 

a = c F c ' ,  (4.9) 

where F is a symmetric matrix polynomial in the matrices if, G~ (,t = O, t . . . . .  N). 

Since ff (r) ----- e ' h  (,) e, it follows that G= = c'H~ c, where 

Ha = IIH 21f, 
t 

.':; = f h,,q (r)co s- v -~ d.r 
0 

t 

I fh:q(r) dr. 
0 

(or > 0), (4.10) 
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Hence, by an argument similar to that  used in w 3, we may  reduce (4.9) to the 
alternative form 

' .  = a [U, H 0, H 1 . . . . .  H~] ,  (4.tt)  

where a is a symmetric matrix polynomial in the arguments stated and C is 
given by  (3.t3). 

5. Further Deve lopment  of the .Equations  for Isotropic Materials 

Since F in (4.9) is a symmetric matr ix polynomial in the matrices g, G~ 
(~ = 0, t . . . . .  N) it is apparent that  it may be expressed as the sum of a number 
of terms of the form 

/(0 f f...f c ~  -r* c~ ~' ~*---~' " " t  _ _ = ~  ~ ~ " �9 cos ----7---- ~ 
0 @ 0 

X (tr111trIl~. . .  t r  11~) (IX +11') d v l d ~ . . ,  d~p, 
(5.~) 

where 1I 1,112 . . . .  ,11~ and 11 are matrix products formed from g, g (zl), g (~2), 
. . . .  g(Tp) and are such that  11111~ ...11~,11 is linear in each of the matrices g (~1), 
g (r2) . . . . .  g (~p), and 11' denotes the transpose of H. Let 111 be a matrix.product 
formed from g (-q), g (~2), . . . ,  g (~0,) and possibly g;  let 11~ be a matrix product 
formed from g (rr g (~,+~) . . . . .  g (Tr and possibly g and so on, so that  II~, 
is a matrix product, formed from g (~,-~+1), g (~,-~+~) . . . . . .  g (z~o) and possibly g, 
and let 11 be a matrix product formed from g(~r g(~oi,+2), "" ,  g ( ~ ' )  and 
possibly g. Then, the term (5.1) may be re-written as 

t t t 

~(of f..'fcos~=~Scos = ' = ' ' ,  , . . . c o s - - r - -  . . . .  ld~l...d~:,, 
0 0 0 

t t $ 

f f...fcos ~"+'~"§ .cos ~"~T"tr11, dv,,.1...d~#, 
t t 

0 0 0 

. . . . . . . . . . . . . . . . . . . . . . .  (5.2) 
t t t 

f f...f cos ,,~_,+1,~-~,_~+1t .. .cos ~"'~ ~#"t trn,,d~,~_~+~...d~p, 
0 0 0 

t t t 

f f...fcos ~§ . c o s ~  (11+11') ~T~,+~... e~ , .  
0 0 0 

We now consider the factor 

t t t 

f cs.31 
0 0 0 

I t  has been shown (SPENCER & RIVLI• t959) that  the trace of a matr ix 
product formed from the R symmetric 3 • 3 matrices ap (P = 1, 2 . . . . .  R) may be 
expressed as a polynomial in the traces of matrix products formed from those 
listed in Table t by  replacing KI: K~ . . . . .  K 7 by all permutations of t ,  2 . . . . .  R 
seven at a time. 
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Since IIz. is linear in each of the matrices g (~), g (z,), . . . ,  g (%), tr  iIz must 
be expressible as a polynomial in the invariants listed in Table 2 and the invariants 
formed from these by replacing v~, ~ . . . . .  ~ by all possible permutations of 
~ ,  ~ ,  : . . ,  ~ ,  seven at a time. 

Table t 
tr  aK~, tr a~ ,  

tr OK~ OK,, tr  aIG a~r 

tr  aIG aK, ~ tr, aIG aK, a~., 

tr  aK~ aK, oK, OK,, tr  aKt aK, OK, a~r 
tr  aK, aK, aK, aiQ o~,; 

t r  aK, aK, aK, aK, aK,, 
t r  alG aK~ aK, ~ OK, ~ 
tr  OK, a2ct oK, aK, OK, O~K,, 

tr aKx aK, aK, OK, aK, aK,. 

t r  O~t, 

t r  ~ oJ:, ~ 
tr aK, aX, a~r a~r 

t r  aKt OK, OK, OK, a~K,, 
tr  ax~ ax, oK, ax, aK, a~ s , 

t r  GKz (gKt aK, alQ ax~ a~,; 

tr ~ aK, aK a aK, aK, aK. OK:." 

Denoting the invariants in Table 2 which involve none of the matrices 
g(vl ) ,g(v2)  . . . . .  g(v?) by t r ~  ) ( ~ = t , 2 , 3 ) ,  those which involve g(vz) only 
or g and g (vz) only by  tr  Q~) (~r = t, 2, 3), those which involve g (vz) and g (v~) 

Table 2 
tr g, tr g2, t r  g~; 

tr g g(vz), tr g~ g(~z); 

tr g g(vz) g(r~), tr g* g(rz) g(vs); 

tr g g(vz) g(r,) g(%); tr g '  g(rz) g(vs) g(rs), 
t r  g(vz) g(v~) g g(vs) gS; 
t r g  g(vz) g(vs) g(va) g(T,), tr g~ g(vz) g(v=) g(v,) g(v,), 
t r  g(~,) g g(~,) g(~,) g(T,) g,, tr g(~,) g(~,) g g(~s) g(~,) g', 
tr  g(vx) g(~) g(va) gg(v4) g'; 

tr g g(~,) g(~,) g(~,) g(~,) g(~6) g(*,); 
tr  g(•), tr  g(vz) g(v~), tr  g(Tz) g(vs) g(•), 
t r g ( n  ) g(v,) g(vs) g (v,), tr  g(vz) g(vz) g(va) g(r4) g(T6), 
tr g (vz) g (r=) g (v6) g (v,) g (re) g (re), 
tr  g (Tl) g(T2) g (T$) g (T4) g (TS) g (V6) g (TT). 

or g, g(vz) and g(v=) only by t r Q  (=) (~r = t  2, 3), and so on, we see that the term 
(5.3) may  be expressed as a polynomial in expressions of the forms 

t t t 
t r t ~  ~ f~0(~z) trQ~X)dvz, ff~(vx, v=) tr~{~Z)dvldv~, 

o o o (5.4) 
t t 

�9 " 4 "  " / ~ ( ~ ,  ~, . . . . .  ~) t r , ~ "  d ~ , . . ,  d~,, 
0 0 

where the functions ~ (rz), ~0 (rz, re) . . . .  , ~ (rl, ~ . . . . .  ~7) are analytic functions 
of their arguments. Each of the other factors in (5.2) except the last may be 
similarly expressed. 
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We now consider the last factor in (5.2), i.e. 
t t t 

0 0 0 

Since IX +IX' is a symmetric isotropic matrix polynomial in the matrices 
g(zo,+x ), g(zau+e ) . . . . .  g(Zp) and g, linear in each of them except g, it follows 
( S P E N C E R  & RIVLIN t958) that  it may be expressed as an isotropic matrix poly- 
nomial of the form 

IX + II '  = Z 9,(X, + X'), (5.6) 

where X. denote the matrix products formed from those listed in Table 3 by  
replacing ~1. ~2 . . . . .  ~ by  all possible permutations of za,+x, ~#,+~ . . . . .  z? six 
at a time, while 9, are polynomials in the invariants obtained from those listed 
in Table 2, by replacing ,x, ,~. . . . . .  "7 by  all possible permutations of ,:#,+~, 
za,+e . . . . .  *v seven at a time. X' denotes the transpose of X- Since I I  + IX' is 
linear in each of the matrices g(~a,+x), g(~#,+~) . . . . .  g(~v), 9, and X , +  X~ cannot 
involve any of these matrices in common. We may therefore express the factor 
(5.5) as an isotropic matrix polynomial in which the matrix terms are of the forms 

0 
t t 

f f *P, (*~, *e) (X?) + X? ) ') dx~ d~e . . . . .  (S.7) 
0 0 

f t .' 

f f"" f W, ('q, "re, �9 �9 -, "to) (Xr *) -b XL ~ ') d'rl d're �9 �9 �9 d 'r e , 
0 0 0 

where Xr ~ are the matrix products listed in Table 3 which do not involve any 
of the matrices g(,1), g (~) . . . . .  g (~), X~ ~) are those which involve only g(zx) 

Table 3 
I;  

g, g~; 

g ~,(~.,), g"- g (~.,); 

g g(T~) g(~,) g(~,) g(T,), 
g,  g (~,) g (~,) g (~,) g (~,),  

Or g and  g (•1), X~ 2) are those which involve only g (vl) and  g (Te) or g ,  g (~1) and  
g (Te) and so on, and the functions ~p are analytic functions of their arguments. 
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I t  follows that  (5.2) and hence F may be expressed as an. isotropic matrix 
polynomial in which the matrix terms take the forms (5.7) and the coefficients 
are polynomials in the invariants (5.4) and functions of t. In general, the matrix 
polynomial will contain more than one terra of each Of therforms (5.7), except 
the first. Alternatively, we can bring the coefficients under the integration signs 
in the terms of the forms (5.7) to derive the result that F may :be  expressed 
in the form 

t 

F = X O, X~,~ Z fO,(~q) (X~a)+ X~, 1)') d~l+ 
t t 

+ Y. f f o, (~'1, ~,) (x~ ') + xC, ')') d 71 dr, + . . .  + (s.8) 
t, O 0  

t t f 

+ Z f f""  f O,(~:x, q . . . . .  ~,) (X~e)+ X~ ') ') dr ldr , . . ,  dr 6, 
s, O 0  0 

where the O's are functions of t and of their indicated arguments and polynomials 
in the invariants (5.4). 
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