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1. Introduction

In a previous paper (GREEN & RIVLIN 1957), subsequently referred to as
Part I, the form of the constitutive equations governing the deformation of a
class of materials possessing memory was discussed. It was assumed that the
stress in an element of the material depends not only on the deformation gra-
dients in the element at the instant of time considered, but also on those at
previous instants of time. The limitations imposed on the constitutive equation
by the fact that it must be form-invariant under a rotation of the physical system
considered (consisting of the body and applied forces) were examined.

This was done by first considering that the stress depends on the deformation
gradients at a number of discrete times up to the instant of measurement. Then,
the number of instants of time was considered to increase indefinitely, so that
the expression for the stress became a functional of the deformation gradients.
In this analysis it was found that the form-invariance of the constitutive equation
under a rotation of the physical system leads naturally to a particular form of
dependence of the stress on the deformation gradients at the instant of meas-
urement. It was assumed that, apart from this, the expression for the stress as
a functional of the deformation gradients at times up to and including the instant
of measurement is continuous.

In the present paper, we do not make this assumption, but allow that the
stress may have arbitrary polynomial dependence on the deformation gradients
at the instant of measurement, while its functional dependence on the deforma-
tion gradients at times preceding the instant of measurement is continuous.
Under these conditions, the limitations imposed by isotropy of the material in
its undeformed state on the form of the constitutive equation is considered.

2, Special Dependence of the Stress on the Displacement Gradients

We consider a three-dimensional body to undergo defofmation described in

a fixed rectangular Cartesian coordinate system x by
%x(t) =%(X;, 1) (>0,

%i(0) = X, (t<0), @4

where X; and x; are the coordinates in the system x of a generic particle of the
body at zero time and time v respectively. We assume that x;(z) are single-
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valued functions of the arguments, possessing continuous spatial derivatives up
to any required order except possibly at singular points, lines and surfaces.
If the deformation is to be possible in a real material we must have

We assume the stress components o;,(#) at time / in the system x to be poly-
nomial functions of the deformation gra,dlents 0%;(t)/0X; (=0, 1, 2, ..., N) at
the N -+1 instants of time 7, 75, ..., Ty, To(=1) between 7=0 and 'r-—t It
has been shown (GREEN & RiVLIN 1957) that ¢;; may then be expressed in the
form

0",.=

ox; 0
! TP'SWL oX, 3X, Ir¢]> (2.2)

where the notation

=, =S
gpq( T) = 3;!;’(:) 3;;((1) B Epy = Bpq (t) s (2.3)
glr) =g, (@], &=¢g@,

is used, d;; denotes the Kronecker delta and f and f,; are polynomial functions
of g,4(7a) and Vel(ry) (@=0,1,2,...,N).
We may re-write (2.2) in- a somewhat more succinct form by observing that

ox; @
2g(t) "“5";“ B;Z Crmn Csuv8mubno, (24)
so that
1 ox 0%
O'i'i 28’& '}? aXs P;ss (2.5)
where
'Frs =fermnesuvgmugnv+2gf15' (26)

Hence F,, is a symmetric polynomial function of gpe(7) and V() (x=0,1,
2,...,N).

3. Isotropic Materials

In Part I the restrictions required for a' material which is isotropic when
7= 0 were obtained using (2.2) and the corresponding results for (2.5) can then
be deduced*. Here, however, we proceed directly from (2.5). Let X be a fixed
rectangular Cartesian coordinate system related to x by

7‘—_—-A¢7x1, (3'1)
where A;; are constants satisfying the orthogonality conditions
AirAjr=A‘u'Ari=aij:‘ |40 =1. (3-2)

* A slight gap in the argument in Part I was completed later (GREEN & RIvLIN
1958).
6*



84 A E. GreeN, R. S. RivLin & A. J. M. SPENCER:

If %;(z) denotes the coordinates of x;(7) in the system ¥ and X = ¥;(0), we have,
from (3.1),

Z(r) =4;;%,(v), X;=A4;; X,

E,-,-(T)Z a:j%(:) a::'?(:) =A1'7A7‘sgrs(7)l (33)

E(r) =80 =¢(n).

Denoting the stress in the system X by &,; we obtain

61'1’ :AimAinamn' (3.4)
Hence, from (2.5), (3.1) and (3.4,
G, =1 0% 0% F
651 2_§ a)?' 3X_s ArmAsn mn" (35)
g
If the material is isotropic at v =0 then
- 1 8% 0% - =
Uiiz?gq—éi—a—xsls— s 8pe(7a), VB ()], (3.6)

so that, using (3.5) and (3.6), we have

22 o 1B [Bpg (), VEG] ~ Ao Aun B [gp0 (), V@) = 0. 3.7)

Multiplying this equation by the non-zero expressions

X, oX,
ox; 0%’
we obtain
Es [-qu (Ta)’ Ig(ra) = Arm Asn an [gpq(ra)l lg(ra)] i (38)
Using the notation
g(7) =llg; (|, §(T) =|lz;;@ |, (3.9

it follows that F, are the components of a symmetric matrix polynomial in the
matrices g (7,) in which the coefficients are scalar polynomials in Vg (z,) (¢ =0, 1,
2, ..., N) and traces of products formed from the matrices g (z,) (x =0, 1, 2,...,N).
Since [g(7)]* is a continuous single-valued function of g,,(v) and 1/g* has no
singularities, we can omit the factor 1/(2g}) and the arguments [g(z,)]¢ in (2.5)
and write, to any desired degree of approximation,

c=cF¢, (3.10)
where
o =|lo,ll. c=][ax/oX,]. (3.11)

In (3.10) ¢’ is the transpose of ¢ and F is a symmetric matrix polynomial in the
matrices g(7,) in which the coefficients are scalar polynomial functions in the
traces of products formed from the matrices g(z,) (x==0,1, 2, ..., N).
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The expression (3.10), valid for materials which are. isotropic at time <0,
can be written in a convenient alternative form. Let*

— 0%y () 3:(,,,(‘!’)
oxp ox,

80X, 90X
hypo(T) = -

oz, ox, &+ (%)

3.12
B = (] 012
and
c=|c;l, Caf=5?%%- (3.13)
Then
C=cc, g(ry=ch{r)e, h(x)=(c)1g(r)ct. (3.14)

The trace of products of matrices formed from g(z,) (x=0,1,2,..., N)
can be expressed as the trace of products of matrices formed from C and h(t,)
(®x=0,1,2,...,N). Also a symmetric matrix polynomial formed from the
matrices g (7,) can be expressed in the form ¢’ Le¢ where L is a symmetric matrix
polynomial formed -from the matrices C and h(r,). It follows that we may write
(3.10) in the alternative form

¢ =0c(C h(z,)], (3.15)
where o is a symmetric matrix polynomial in the matrices C, h(z,) (x=1,
2,..., N), with coefficients which are polynomial functions of the traces of

products formed from the matrices C, h(z,) (x =1, 2, ..., N).

Conversely, we can show that any constitutive equation of the form (3.15)
can be expressed with any desired accuracy in the form (3.10), where F is a
symmetric matrix polynomial in the matrices g (t,) with coefficients which are
scalar polynomial functions in the traces of products formed from these matrices.

4. Isotropic Tensor Functional
When the material is isotropic initially we may make the transition from
tensor functions to tensor functionals using either (3.10) or (3.15) as a starting
point. In order to keep in line with the work of PartI we use (3.10) and suppose

that

1= o i Fa (4.1)

where we assume that F, ; is a-symmetric matrix polynomial in g, , with coefficients
which are functionals of 8pq(7) in the range 0=7<¢. We assume that these
functionals are continuous functionals of g, (t) over the compact aggregate of
functions which are continuous in the range 0= 7<{ We denote the Fourier
half-range cosine coefficients of g,,(r) by G, where

b3
Gg‘g.—_—%fgpq(r) cosi;fldr (x>0},
[1]

t (4.2)
GP =—:—fgpq(r)dr.
[

- * From (2.1) #,,(7) may be expressed as a function of x,,(t), , ¢ by eliminating
X;, and then 9 x,,(7)/2#, can be evaluated. Alternatively, we can use the first expres-.
sion in (3.12) to find &y 4 (7).
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Then each continuous functional in the expression for F,; may be approximated
by a polynomial P(G), G, ..., G{%) which tends uniformly to the functional
as a—>oo. It follows that F,  can be expressed with any desired approximation
by a polynomial in g,, and f,“}, G, ..., G with a sufficiently large choice of
N and we write

. ax{ ox 0 1) N)
%= 3x ox Dr:[8rs Cpd Goar -+ Goel, (43)
where F,, is a polynomial.

We next consider a change of rectangular Cartesian axes of the form (3.1)
and (3.2). If G,; denotes the stress components at time ¢ in the system %, then
o;; is given by (3.4) and (4.3). Also, if the material is isotropic for 7<0, then

— 32,' ax,

Gij= e~ F[Bpq Gon» Goas -, Gop1, (4.4)

where

“t”dr (x> 0),

and g,,(z) is given by (3.3). From (3.3), (4.2) and (4.5), we have

gpqupmAqngmn: (46)
Eg‘q) =ApmAga G, (x=0).

Also, from (3.1), (3.3), (3.4), (4.3) and (4.4), we obtain

6;7,~ 0% .
aX—r 3){7 { rs[gpq, G( )] ArmAs'!an£gpq: ngq)]} =0
and hence
[gpq: G;“q) ——A'"'AS”F’”"[gfqugq)]. (47)
Using the notation
G. =65l 43

it follows from (4.7) and (4.6) that F is a symmetric matrix polynomial in the
symmetric matrices g, G, (=0, 1,..., N) and equation (4.3) may be written
in the matrix form

oc=cF¢, (4.9)
where F is a symmetric matrix polynomial in the matrices g, G, (x =0, 1, ..., N).
Since g(t)=c'h (-r) ¢, it follows that G,=c'H,e, where
=& ‘“’H
Hg*q)—_—~fhm yeos 22T dr  (x>0), (4.10)

HY =1 f hy,(1)d
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Hence, by an argument similar to that used in § 3, we may reduce (4.9) to the
altérnative form
‘a =¢[C,H,H,, ..., Hy], (411)

where ¢ is a symmetric matrix polynomial in the arguments stated and C is
given by (3.13).

5. Further Development of the Equations for Isotropic Materials
Since F in (4.9) is a symmetric matrix polynomial in the matrices g, G,
(x=0,1, ..., N) it is apparent that it may be expressed as the sum of a number
of terms of the form

t 3
ot B WL LT TP i)
f(t)of of of cos ==t cos 2 cos ; P

X (trI teI, . trXL) (T 4+ TX) d vy dv,. .. dp,

(5.1)

where II,,IL,, ..., IT, and II are matrix products formed from g, g(z,), g(7),
..., g({7p) and are such that II, IL, .. . II,II is linear in each of the matrices g (),
g(7y), .-, g(Tp), and II' denotes the transpose of II. Let II, be a matrix product
formed from g (7}, g(7s), ..., g(75) and possibly g; let II, be a matrix product
formed from g (75, 11), 9(75,49), ---, g(75,) and possibly g and so on, so that IT,
is a matrix product formed from g (75,_,+1), 9 (75, ,+2), ---, g (T4,) and possibly g,
and let IT be a matrix product formed from g(7y,.,), g(Tg,+2), ---, g (7p) and
possibly g. Then, the term (5.1) may be re-written as

L2 ] 4
f(t)f f---fcos “17:"1005%7:"2 . +.CO8 aﬂ‘frﬂ‘ trll dv, ... d7,
00 (1]

| 20 1 H
- [ 4 T og, T T,
ff...j cos_g‘il.t_f_‘il_...cos_.ﬁ‘_t__ﬁltrnzdrﬁl_‘_l”.dtﬂ‘
0 0 0

(5.2)
b E : OBy +1 TPy 41 g, TP,
ff...fcos I cos P AT d T, i .. ATy,
¢ 0 ¢
bt : o 7T, 1 oap T,
ff---fcos—i‘iﬂ-t——%---cos—P—[—P(H+H')dtﬁy+1...drp.
60 ¢
We now consider the factor
- ! T, x, T T, &g, T,
ff...fcosa'lt 1 cos zt 2...c08 ﬂlt "‘trnldrl...drﬂl. (5.3)
o 0 [}

It has been shown (SPENCER & RIviIN 1959) that the trace of 'a matrix
product formed from the R symmetric 3 X3 matrices @p (P =1, 2, ..., R) may be
expressed as a polynomial in the traces of matrix products formed from those
listed in Table 1 by replacing K,, K,, ..., K, by all permutations of 1,2, ..., R
seven at a time.
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Since II, is linear in each of the matrices g (1), (), ..., g(73,), tr I, must
be expressible as a polynomial in the invariants listed in Table 2 and the invariants
formed from these by replacing ,, 7,,..., 7; by all possible permutations of
Ty, Ty, ..., Tp, SEVeN at a time.

Table 1
trag,, tr ag,, ‘ trak;
trag, ag,, tr ag, a%,, tr ak, ak,;
tr ag, ag, ag, tr ag, ay, ak,, tr ag, ok, ak ;

trax, ag, ag, ag,, trag, ag ag ok, trag, ag, ak ok,

tr ag, ax, ag, ax, ak,;

trag, ag, ag ag, ag,,. tr ag, ag, ag, ak, ak,,

trag, ag, ag, ag, ag, ok,, trag, ax, ok, ax, ag, ak,,

trag, ag, ax, ag, ag, ek, ireg, ag ag ak ak,;

tray, ag, ag ax, ag, ag,, trag, ag, ag, ax, ax, ak,;

tr ag, g, aK' ag, g, Ak, A, .

Denoting the invariants in Table 2 which involve none of the matrices

g9(v), 9(73), ..., 9 (r;) by tr&® (x=1,2,3), those which involve g(r,) only
or g and g(7,) only by tr &) (x=1, 2, 3), those which involve g(z,) and g (7,)

Table 2
trg, trg®, trgd;
trgg(n), trg*g(zn);
trgg(n) g(r), trg*g(n)g(n);
trgg(n)g(m) 9(vn), trg*g(v)g(r) g(mw),
trg(z) 9(v,) 9 9(%) 9%;
trg g(v) g(v) 9(%) 9(%l), trg*g (71)_9 (72) 9 (%) 9(74),
trg(n) gg(z) g(n) g(r) g8 trg(n) g(z:) 99(v) g(z) g%
trg(n) 9(zs) 9(%) 9 9(7) 9%
trgg(n) g(z.) 9(%) g(z) g(ws), trg®g(z) 9(7.) 9(ws) 9(z) 9(7s);
trg g(v) g(7) g(fa) g(vs) 9(vs) 9(7);
trg(m), trg(zn)g(r), trg(n)g(zn)g(n),
trg(m) g(v) 9(v) 9(vd),  trg(v) 9(v) 9(%) 9(v) 9(7),
trg(v) g(75) 9(%s) 9(7) 9(75) 9(7),
tr g(v) 9(73) 9 (%) 9(74) 9(75) g(7e) (7).

or g, g(,) and g(z,) only by tr &@ (« =1, 2, 3), and so on, we see that the term
(5.3) may be expressed as a polynomial in expressions of the forms

f ‘e
tral, [emtréd®dry, [[o(n, ) trdPdrdr,,
0 00

¢ i (5'4)
ceif e f @y, 1oy o, ) 1P d Ty dy . d Ty,
0 0
where the functions ¢(1y), @ (71, 7o), ..., ¢(71, T2, ..., T;) are analytic functions

of their arguments. Each of the other factors in (5.2) except the last may be
similarly expressed.
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We now consider the last factor in (5.2), 7.e

¢ ¢ 4
fff cos aﬁ""'l,:-rﬁ"'i'l +++COS aP?TP (II 4-1T) d'rp,‘_l,l...dtp. (5.5)
o0 L]

Since II +II' is a symmetric isotropic matrix polynomial in the matrices
9(vpu+1), 9(Tsu12), ---, g(tp) and g, linear in each of them except g, it follows
(SPENCER & RIvLIN 1958) that it may be expressed as an isotropic matrix poly-
nomial of the form

O+IT=2 9, +X) (5.6)
where ¥, denote the matrix products formed from those listed in Table 3 by
replacing 7, 7y, ..., T¢ by all possible permutations of 7g,,,, 75,49, ..., Tp SIX

at a time, while ¢, are polynomials in the invariants obtained from those listed
in Table 2, by replacing 7y, 75, ..., T, by all possible permutations of 7g,,,,
Tgu+2s ---» Tp Seven at a time. ' denotes the transpose of x. Since Il 4 II' is
linear in each of the matrices g (%5,+1), 9 (Taux2), ---» 9 (75), ¢, and x,+ %, cannot
involve any of these matrices in common. We may therefore express the factor
(5.5) as an isotropic matrix polynomial in which the matrix terms are of the forms

XS’J v () 0+ x) d7y,
i

t
ofofw (r, 1) P+ xP "V dryd,, ..., (5.7)
t ¢

¢ .
ff f'l) (71, T2, -+, To) (x‘°’+x‘°")dndfz .d7g,

0
where x{? are the matnx products listed in Table 3 which do not 1nvolve any
of the matrices g(7y), g(7y), ..., g(vq), XM are those which involve only g(z,)

Table 3
I
g g%
gg(n), g*g(n);
99(m)g(w). g(ngg(n), gg(n)g(rn). g(v)gig(r),
99(n)9°9(%), 99(n) g(v) 9%
g9(7) 9(ta) 9(7), g(m) 9 9(%) g(rs),
g*9(n) g9(72) 9(%), g(7) 92 9(73) 9(7),
g9(v) 9(r) g(m) 9%  g(r) 99(%;) g(r) 92,
g(r) 9(t) 99(%) g%  g(v) 99(7:) g2 g(7y);
g9(v) g(7:) g(vs) 9(7), g(v) 99 glz,) g(zd),
g(n)g(r)99(n)g(z). g°9(v) 9(v) g(z) g(v).
gbr) 92 9(ta) 9(w) 9(vy), g(n) g(72) 9 9 (75) 9(z0);
99(1) 9(7) 9(%) 9(z) 9(v),  9(n) 99(%:) 9(%) 9(z) 9(7s),
g(7y) 9(7:) 9 9(%5) 9(7) 9(s);
g(r), g(7;) g(vy), g(7) g(7y) g(79), g () g(7a) g(7s) g(74).
g(7;) g{(7y) 9(7) 9(70) 9(7s), g(7) g(73) g(7s) 9(7d) 9(75) g(7e)-

or g and g(zy), ! are those which involve only g (z;) and g(r,) or ¢, g(r;) and
g (t;) and so on, and the functions y are analytic functions of their arguments.
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It follows that (5.2) and hence F may be expressed as an. isotropic matrix
polynomial in which the matrix terms take the forms (5.7) and the coefficients
are polynomials in the invariants (5.4) and functions of £. In general, the matrix
polynomial will contain more than one termi of each df the-forms (5.7), except
the first. Alternatively, we can bring the coefficients under the integration signs
in the terms of the forms (5.7) to derive the result that F may:be expressed
in the form

F = Zﬁ x‘°’+Zf?9(71 () + x4") dry+
+ foﬁ.(fp ) X7+ %) drdry+ - + (5-8)

+ fo f” (T1, Tasoon, T6) U+ ) drydTy ... dg,

vy 00

where the #’s are functions of ¢ and of their indicated arguments and polynomials
in the invariants (5.4).
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