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This paper deals with one aspect of the classical problem of hydrodynamical 
stability, namely, the determination of sufficient conditions for a basic (usually 
laminar) flow of an incompressible fluid to be stable under arbitrary disturbances. 
The technique to be applied is the well known method of energy,  originated by  
OSBOUR~E RSYNOLDS and WILLIAM McF. ORR and used since that  time by  
many other writers 1. In spite of this intensive study, it appears that  a number 
of new results can be secured from the method, and it is to these that  the p a p e r  
is devoted. 

Our main conclusion is a Reynolds number criterion for the stability of an 
arbitrary fluid motion in a bounded region. In particular, we show that  a basic 
flow in a bounded region ~v" is stable whenever its Reynolds number Re = Vd]~ 
is less than 5.7t ; here V is the maximum speed of the basic floW, d is the diameter 
of ~ ,  and v is the kinematic viscosity of the fluid. The number 5.7t in itself 
is neither especially good nor especially bad as a criterion for stability, but  
what is interesting is the fact that  it is absolutely rigorous and applies in- 
dependently of the geometry of the flow region and the particular flow involved. 
For this reason the result may  appropriately be called a Reynolds number for 
universal stability. We also obtain similar criteria for the stability of flows in 
unbounded regions, and applications are made to the problem of uniqueness of 
steady flow. 

In the second part of the paper (w 4) we state a general variational problem 
connected with~the stability of an arbitrary motion. The Euler-Lagrange equa- 
tions corresponding to this problem bear an interesting and remarkable resem- 
blance to the Navier-Stokes equations, but  they are in general too difficult to 
solve', except  for special cases. 

The last part of the paper treats a particular example, the laminar Couette 
flow between rotating coaxial cylinders. The methods of the earlier sections of 
the paper, when applied to this case, yield the stability criterion 

i ! 

in which the notation is practically self-explanatory. The author knows of no 
other formula of this type which applies to arbitrary disturbances of the basic 
laminar motion. (The criteria of G. I. TAYLOR and others (c]. [14], Chapter 2) 

1 C/. references [1] -- [9] at the end of the paper. 
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all refer to infinitesimal disturbances of a special type; thus, although they have 
indisputable importance if one is considering the breakdown of already established 
flow, and give quite sharp results in certain limited situations, thev do not by 
any means apply to the whole realm of possible disturbances of the motion.) 
Finally, the stability of Couette motion is considered from the point of view of 
the variational method noted above. The results here do not have the finality 
of criterion (1), but they are nevertheless of interest. 

The paper begins with a derivation of a fundamental identity for the rate of 
change of energy of a perturbation motion. This formula is the basis for all that 
follows. 

1. The Reynolds-Orr  energy equat ion 

We consider a basic fluid motion occupying a region ~V= ~/" (l) of space and 
subject to a prescribed velocity distribution on the boundary ~9 ~ of ~r In the 
cases of greatest interest YP is bounded by material walls and the boundary 
conditions arise from the motion of these walls, as, for example, in the case of 
Couette flow. Now suppose the velocity field of the basic flow is altered at 
gorrie initial instant t = 0; it is natural to ask whether the subsequent motion, 
subject to the same boundary conditions, will alter only slightly from what it 
was, or whether it will change radically in character. To investigate this problem, 
we shall consider the energy ~ of the perturbation (difference) motion. If oY" 
tends to zero as t -+ o% then the basic motion is said to be stable, or, more 
precisely, stable in the mean. 

To be specific, suppose the region Y/" is bounded, and let i, and v '  denote, 
respectively, the velocity vectors of the basic and altered motions. The velocity 
u----v'--v of the perturbation motion obviously satisfies 

u = 0 on 5 r (2) 

and its kinetic energy is given by  
9F = �89 f u 2 (3) 

(in writing integrals, we shall consistently omit the conventional volume infini- 
tesimal; moreover, all integrals are understood to be extended over the entire 
region r The rate of change of 3r is governed by the fundamental formula 

I daV f ( u .  D .  u + v grad u : grad u) I (4) d t  I 

essentially due to REYNOLDS and ORR. In this equation grad u denotes the 
matrix with components (grad u)~k----uk, i and D denotes the deformation matrix 
'of the basic motion, Di,----~(vi, k+vk, i). 

To prove (4), we begin with the observation that  both v and v '  satisfy the 
Navier-Stokes equation 

~(~Yt + v .  grad v) = ~ [ - -  grad p + t~ V~v. 

By subtraction there arises 

_0u + u .  grad v + v ' .  grad u = grad _PUP" + v V 2 u. 
0t o 
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Forming the scalar product of this equation with the vector u, and using the 
incompressibility conditions div v : div v ' =  O, then leads to 

0(-t  2 u ~ ) = - - ( u . D . u ~ v g r a d u : g r a d u ) + d i v ~  (5) 

where 
r -- P--P' u + ,, grad ( '2 ,,~) _ I u~v," 

0 2 
On the other hand, we have obviously 

-dT = N u'Z) + 12 u2 v . n ,  (6) 

the lat ter  integral being taken over the entire boundary of * ' .  The required 
formula (4) now follows easily from (5), (6), the divergence theorem, and the 
fact that  u = �9 = 0 on ~ .  2 

This derivation does not hold when the region $/" is unbounded, since both 
formula (6) and the divergence theorem are applicable only to bounded regions. 
Under suitable conditions on the asymptot ic  behavior of v, v', however, the 
above formal steps can still be justified (we shall omit the details). Another 
justification of (4) for infinite regions is available whenever the flow geometry 
is such that  the disturbances can be assumed spatially periodic at each instant. 
This will be the case, in particular, for the important  Poiseuille and Couette 
flows. The disturbance u being supposed periodic in the direction of the: axis 
of symmetry  (what LIN calls sustained oscillations), the region ~r can then be 
chosen to cover exactly one period. Then the boundary integrals at either end 
of ~r neither of which vanishes separately, just cancel one another .  Formula (4) 
may therefore be assumed to hold in these two important  situations. 

2. Criteria for universal  stabil i ty 

In this section we shall use the method of energy to establish certain criteria 
for the stability of arbi trary fluid motions. This method is based on the observa- 
tion that  if ~ tends to zcro, then u must likewise tend to zero almost everywhere. 
Thus a basic flow will be stable (stable in the mean) provided the energy of any 
disturbance tends to zero as t increases. To apply the method one considers 
the right-hand side of (4) : if it is negative for arbi trary non-vanishing vectors u 
satisfyi~lg div u = 0 ,  then obviously d ~ / d t < O  and there is stability. Since the 
second term on the right of (4) is always negative, it is seen that  viscosity tends 
to damp out a n y  disturbance. On the other hand, a high rate of shear in the basic 
flow can cause the first term to be highly positive, thus fostering the growth 
of a disturbance. The relative importance of these two terms, then, determines 
the stability of the flow (c[. also the discussion in E14], w 4.5). 

Another criterion of the same sort arises when the right-hand side of (4) is 
written in slightly different form. Indeed, since div u = 0 ,  we have 

u . D .  u = d iv~(u ,  v) u~ --  u . g r a d u . v ,  

2 Several alternate and occasionally useful forms of (4) arise from the simple 
identity f grad u : grad u = f (curl u) 2 = 2 f D'  : D',  

where D" denotes the deformation matrix of the perturbation motion. 

1" 
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whence, by  application of Ihe  divergence theorem, (4) can be written in the form 

= f (u .  grad u~ v v grad u : grad u).  (7) 

I f  the first term on the right of (7) is less than the second for all admissible 
vectors u, then clearly the basic flow will be stable. But the size of the first 
term is governed by  the magnitude of v, from which it follows that  high speeds 
in the basic flow, as well as high rates of shear, tend to cause instability. The 
qualitative nature of these effects will be investigated in the next several para- 
graphs. 

I t  is important  to note that  the energy method cannot provide accurate 
knowledge of the limits of stability, such as can be gained from the linearized 
perturbation theory ([6], Part  I I ;  [14~, Chap. t).  The reason is that  in the 
energy method one establishes stabili ty relative to arbi trary disturbances, while 
in reality only those satisfying the hydr0dynamical equations need be considered. 
Nevertheless, becaus~ the energy method gives insight into the physical situation, 
and because the results have the merit  of simplicity and complete mathematical  
rigor, the investigations based on it are both interesting and valuable. 

With these preliminary remarks aside, we may  now turn to the main result 
of the paper. 

T h e o r e m  1. Let q/ '= q/" (t) be a bounded region o/space, which can be included 
in some cube o/ edge length d. Le~ v be the velocity vector o] any motion in q/" 
satis/ying prescribed conditions at the boundary o/~e'. Then the kinetic energy o] 
an arbitrary disturbance motion u = v ' - - v  satisfies the inequalities 

: : <  ~ o  e 2(~'-~'/d')', (8) 
oCt:~ )g'o e(V'-a"/a')t/'. (9) 

Here 3g o is the initial energy o/ the disturbance, - - m  is a lower bound/or the 
characteristic value s o/the de/ormation matrix o/the basic flow over the time interval 
0 to t, V is the maximum speed o/the basic ~low in the same time interval, and 
is a pure number, 

0t : -  3+1ci3 zd~--- 32.6. (t0) 
2" 

This theorem is a generalization and improvement of certain results of 
T. Y. THOMAS and EBERHARD HOPF a. Before giving the proof of the theorem, 
we note two important  corollaries, which in a certain sense constitute the heart  
of the paper. I t  is to be emphasized that  these corollaries are absolutely rigorous, 
and 'app ly  to all possible motions in ~e-. 

Universal  stabili ty criterion I. I /  the dimensionless "Reynolds number" 
md2]v o / a f l o w  is less than 32.6, then ~ - - ~ 0  as t---~ 0% and the motion is stable. 

aTHOMAS [8] proved that an arbitrary fluid motion is stable if its deformation 
matrix is sufficiently small, but did not compute numerical values; the present 
analysis is an extension of THOMAS' work. Similarly, HOI'F has shown (essentially) 
that a fl~aid Iriotion is stable if its maximum speed is small enough, again with no 
,discussion of numerical values. 
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Universal stability criterion II. I/ the Reynolds number Vd]v o] a /low is 
less than 5.7t, then ,X'~---~O as t-> 0% and the motion is" stable. (Here V is the 
max imum speed o / t h e / l o w ,  and d is the max imum diameter o / the  flow region.) 

Proo/ o/ Theorem 1. We begin with an auxiliary computation whose goal is 

the inequality ~ d-* f u*< f g r a d .  : grad u ,  ( t i)  

where 0c is given by (t0). Let h be an arbitrary continuously differentiable vector 
field in ~r Then for any value of the constant s, 

0 < (u~ h k + u~, k + e uk, ~) (ui h~ + ul, k + e u~,~) (t 2) 

= (1 + e ~) us, k us,~ + h2 u~ + hi (u2), ~ + 2 s (u i h k + us, ~) u~,i. 

(For convenience we use tensor rather than vector notation in carrying out this 
and several subsequent calculations.) Some of the terms on the right-hand side 
of (t2) can be transformed as follows, 

hi (u~) , i  = (u2 hi),~ - -  u~ hi, i 

us hk uk, i = (ui hk uk), i --  ui hk, i u~ 

Here we have made use of the incompressibility condition u~,~-----0. Making the 
above changes in (12), integrating the result over ~e', and using the divergence 
theorem, we obtain the inequality 

f [ (h i , , -  h 2) u~+ 2euihi ,  ku~] < (t + e z) f u i ,  ku,, k. (13) 

Now the particular vector field h i = C tan C x i is differentiable in a cube of edge 
length ~]C centered at the origin. If we set C =z~]d and suitably locate the 
origin in r then this vector can be substituted into (t3). An easy computation 
then yields the inequality 

(a + e*) -1 (3 + 2*) C ~ f u*< f/us., ui.,. 

The left-hand side is maximized by choosing e ={ ( ] /~ -3 -  3), and (ta) is thereby 
proved. 

The term u . D .  u in (4) satisfies the inequality 

U .  D .  u : >  - -  m u s ( t 4 )  

during the entire time interval 0 to t. Therefore, fro m (4), ( t l)  and (t4) 

a d, ---- (m & va-*) fu ,  - 2 ( m  - -  o~vd-a) oT'. 

Writing this in the form 
d {;U e _21,,_~,a-,),} ~ 0 
dt 

and integrating from 0 to t leads at once to (8). 

The proof of (9) is similar but requires in addition the inequality 

, .  grad u .  ~ ~ -2- grad u : grad u + - - 7 - / ,  
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which follows at once from the ident i ty  

A : A - -  2 u .  A . v  + u~v  ~ ~ ( A  - -  u v )  : ( a  - -  u v )  ~ 0 

with A = v  grad u. F rom (7), (15),  a n d  (t~) we obtain 

d a r <  t__ (V ~ --  ~v~d-2)jd,  
dt - -  v 

and (9) then follows by  integrat ion as in the proof of (8). 

3. E x t e n s i o n s  a n d  appl icat ions  of Theo rem 1 

The preceding method can be applied equally well to flows which take place 
in channels and pipes, and to plane flow problems, so long as the fundamental  
formula (4) applies. To illustrate the method, consider for example a straight 
pipe whose cross section has a max imum diameter  d. If  the pipe is directed along 
the z-axis, then the vector 

h = C ( i t a n C x + j t a n C y ) ,  (C =:r /d) ,  

can be used in (t3). Choosing e = 0 ,  we get an inequali ty of the form (1t) with 
= 2z~ ~. By  using this result, the reader can easily obtain estimates for the rate 

of change of ~r and thus formulate analogues of Theorem t and the universal 
stabil i ty criteria for flow in a pipe. 

Other  cases can be t reated similarly and the results conveniently grouped 
in the following table. 

A. Straight channel, max imum width d: ~ = zr ~. 

B. Straight pipe, max imum diameter d: ~ = 2~r ~. 

C. Plane flow in a bounded region, maximum diameter  d, 

i) ,Three dimensional disturbances:  ~ = 2yr 2, 

. .,~ii) Plane disturbances only:  ~ = (t + V ~) z~ ~. 

3 +  ] / ~  ~2. D ~. Bpunded region, max imum diameter d: ~ - -  
~t 2 

Note:  I t  is only in cases C, ii) and D tha t  we have been able to make use of the 
incompressibil i ty condition div u ----- 0.) 

We conclude the section with two simple applications of Theorem t. First, 
suppose the boundaries of ~v" consist of rigid fixed walls, so tha t  any  motion 
initially present will .presumably die out  due to lack of an energy source. By  
choosing v ~  0 for t he  basic motion, we see from (8) tha t  the energy 3 (  of an 
arbi t rary  motion v '  in ~ mus t  in fact tend to zero according to the law 

�9 ~ <  afeo, e -*~t/a', ~ ~ 32.6. 

Similar estimates, but  with smaller values for the coefficient ~, have been obtained 
by  LERAY (for plane flow} arid KAMV~ DE FERreT 4 and BERKER (for spatial 

�9 KArap~ DE F~RmT obtained the value ~, ----- 3 ~r 2, using a method somewhat similar 
to the one presented here. 
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flows), and RAYLEIGH in a much earlier paper  [4] proved that  ~ - - ~ 0  as t--> ~ ,  
though without estimating the rate of convergence. I t  remains an open question 
whether the velocity itself, must tend to zero as t -+ oo; certainly one would 
expect this, but  a strict proof seems to be a mat te r  of more than ordinary diffi- 
culty. 

As a second application, we have the following uniqueness theorem concerning 
steady motion in a fixed bounded region }r 

Theo rem  2. Let v and v' be two steady ]lows in ~F', subject to a prescribed 
velocity distribution on the boundary o] ~b". Let - - m  be a lower bound ]or the 
characteristic values o/the de]ormation matrix o/the motion v, let V ~ m a x  v, and 
suppose that either 

md2/v<=r162 or Vd/~,~Vd.  (t6) 

Then the two flows are identical. 

Proo]. The kinetic energy of the difference motion v ' - - v  must  be constant, 
since the flows are steady. On the other hand, it must  satisfy both (8) and (9). 
In view of (16) this can happen only if Y = 0 ,  which in turn implies v ~ v ' .  

This theorem depends strongly on the condition (t6), but  without some such 
assumption it is extremely unlikely that  the conclusion is true. 

4. Variat ional  techniques 

The key step in the proof of Theorem t lay in .establishing inequality ( t t ) .  
We are concerned, however, not only with the validity of (1t), but  also with the 
determination of the largest possible coefficient ~, for the size of ~ evidently 
determines the numerical values in the various stability criteria. Now the method 
of proof in Theorem 1 clearly gives no guarantee of providing the "best  possible" 
value for ~; moreover, it is quite crude in its estimate of the term u ,  D .  u. 
For these reasons, it is of great interest to consider an alternate approach which 
not only supplies a theoretical procedure for determining the best possible ~, 
but  in addition gives a way to avoid the estimate (14). 

Stated in precise terms, our problem is twofold. First, we must  determine 
the greatest coefficient ~ such that  the inequality 

d -2 f u S ~ f grad u : grad u 

holds for arbi trary vector fields u satisfying 

d i v u  = 0 ,  u = 0  on St. (17) 

Second, we must determine the least coefficient ~ such that  the inequality 

f (u.  D -  u + ~ grad u : grad u) ~ 0 

holds, again for arbi trary u satisfying (t 7). In this case it is clear tha t  the basic 
flow will be stable provided simply that  v > ~. The two problems above can be 
consolidated into the single variational problem: 

- -  f u .  D -  u = M a x i m u m ,  ( t  8) 
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where the vector field u must  satisfy the side conditions 

f grad u : grad u = l ,  div u = 0, u ---- 0 on ~9 ~ (t9) 

The first problem occurs when D is the negative of the identity matrix. 

The variational problem (18)--(t 9) can be reformulated as a partial  differential 
equation for the extremal function u, according to well known procedures of the 
calculus of variations. Thus, through introduction of Lagrange multipliers v* 
and 4 = 4  (x, y, z, t), the problem becomes 

f (u.  D .  u + v* grad u : grad u - -  24 div u) = 0. (20) 

The Euler-Lagrange equation corresponding to (20) is easily found to be 

u - D  = - -  grad 4 + v* V 2 u ,  (2t) 

and this is to be solved subject to the side conditions (t9). The reader may  
(.bserve the remarkable similarity between the eigenvalue equation (2t)  and the 
equations of hydrodynamics. The equations corresponding to the case D = - - I  
are of sufficient importance to be noted separately, namely 

v* V 2 u + u ---- grad 4, div u = 0. (22) 

In spite of the relative simplicity of (22), we have been unable to determine its 
solution, and in what follows can only offer some general remarksconcerning the 
system (t9), (2t). 

Now for any solution of equation (2t) we ha'ce 

- -  f u ,  D .  u = f (u.  grad 4 - -  v* u .  V 2 u) = v* f grad u : grad u = v*, 

where use has been made of the divergence theorem and the conditions (19). 
On the other hand, any vector u which provides the integral (t8) with its maximum 
value must be a solution of (2t). I t  follows that  the eigenvalue ~ associated with 
a maximizing vector is precisely the maximum value of the integral (t8). Moreover, 
no eigenvalue v* can be larger than ~, for if this were the case then the cor- 
responding eigenvector u* would give to the integral (t8) a value larger than ~. 
This proves the following theorem. 

Theorem 3. Suppose there exists a vector u which solves the variational problem 
(18)--(t9). Then the eigenvalue problem (t9), (2t) has a greatest eigenvalue ~, and 
the basic motion will be stable provided that v > ~,. 

The difficulty with Theorem 3 is, of course, that  there is no direct way of 
verifying its hypothesis. In circumstances such as these the best that  can be 
hoped for is to determine all the eigenvalues (by Theorem t they constitute a 
bounded set), and to assume that  the least upper bound of these eigenvalues is 
tim required maximum of the integral (t8). If  the eigenvectors are complete in 
the set of admissible vectors, then this gives another method for proving that  
the least upper bound of the eigenvalues is the maximum of (t8); unfortunately, 
this appears at least as difficult to verify as the hypothesis of Theorem 3. 
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5. Example .  Couette f low 

We consider the well known circulatory flow between rotating concentric 
cylinders. If the inner a n d  outer cylinders, respectively, have radii R 1 and R , ,  
and rotate with angular speeds Q1 and Q2 (QI> 0), then the velocity field is given 
by 

v o = A r  + B r  -I, v, = v , = 0 ,  
where 

.4 -- R~ t2*--RI Y21 B - ~  (Rx R')*(t2i--Dx) 
R~--R i ' R | - - R  i 

One finds easily that  the scalar vorticity r has the constant value 2A,  while 
in polar coordinates 

B t 0 . 
D = - - 7 r  o o 

The characteristic values of D are + B / r  ~, whence 

u . 1 ) . u ~  - I B l u 2  (23) 
- -  V2 " 

The special form of inequality (23) suggests that  the stability estimates of w 2 
can be considerably improved. In particular, in place of the inequality (1 t) we 
shall look for an estimate of the form 

fl f ~'- ~ f grad u : grad u . (24) 

To this end, let us seek a vector field h such that  

div h -- h 2 = C2/r ~, Rx < r < R 2. (25) 

A radially symmetric solution of (25) is readily found, namely 

h = C tan (C log r + D) i,, (26) 
r 

where the constants C and D are given by  

C -- n D -- n log (R, Ra) 
log(Rs/Rx)' 2 log(R,/R,) 

Substituting (26) into (13) and setting e = 0 then yields an inequality of the form 
(24), with 11: } 2  

# = c '  = t log (~/RI) 

Combining (23) and (24) with the fundamental energy equation (4) yields 

dt  --  r ! ' 

and from this it follows that  Coueae /low is stable relative to arbitrary disturbances 
723 henever 

The reader should notice that  this stability is in the "strong" sense, ,~f'--~0 as 
t---> oo. 
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Previously, SYNGE [13} has proved stability relative to infinitesimal disturb- 
ances whenever A has the same sign as .(21, which in the present case (f21>0) 
gives the stability conditions c o = 2 A ~ 0 ,  or equivalently, f2,~(R,/R1)*f21 s. 
The relative zones of stability are shown in Fig. t. For the celebrated pair of 
radii R1=3.55, R ,= 4 .0% inequality (27) reduces to 

In Fig. 2 we have indicated the stability zones based on (28), on SYNGI~ S criterion, 
and on the calculations and experiments of G. I. TAYLOR. If  we suppose TAYLOR'S 

w ,d]Iil,, 

-vc 0 vc ~ 
Fig. I. Stability zones for Couette flow. The zone ta>O lies below the line to = 0 

experimental data to be an accurate representation of the mathematical  situation, 
it is seen that  the right-hand side of (28) cannot possibly be greater than about 50, 
for otherwise there is an observed secondary motion. Our value is certainly not 

~t/v 

" " S  ,-ad, 
Fig. 2, Stability zones for Couette flow, Rt=  3.~5 and R...= 4.03 

very near 50, but considering.the difficulty of the problem and the fact that  (28) 
applies to arbi trary disturbances, one does feel that  t0.92 is a qaite respectable 
value. 

6. Couette f low (continued) 

In the previous section we studied the stability of Couette flow using the 
methods of w 2. In this section the same problem will be treated by the variational 
techniques of w 4. The end result will be seen to have a somewhat tentative 

5 I n  t h i s  c o n n e c t i o n  w e  m a y  r e c a l l  s o m e  e a r l i e r  w o r k  o f  ] ~ A Y L E I G H  a n d  S Y N G E ,  

in which the same criterion is established for inviscid fluids; el. reference [lg], w 4.2. 
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character, in line with the remarks at the close of w 4, though it still has con- 
siderable interest. For Couette flow the differential equation (2t) and the side 
condition div u = 0  take the following form (in polar coordinates) 

B v  O~ { 2 Ov 
r *  - -  O r  ~- v *  A u - -  r~-  O ~ -  - -  - -  

B u  t 02 + v , { A v  + 2 Ou 
r ~ r O0 r 2 O0 

0 = - -  o_~_Z + v * A w ,  
Oz 

r ~r r - ~ -  - ~ - = 0 ,  
where 

~ i  ~ , 

(29) 

t 0 [ r •  / I e, e, 

and u, v, w denote, respectively, the r, 0 and z components of the perturbation 
velocity u. Equations (29), as they stand, are too difficult to solve in full 
generality. We shall therefore seek a particular solution of the form 

u = a ( r ) c o s k z ,  v = ~ ( r )  c o s k z ,  w = ~ ( r )  s i n k z .  (30) 

Eliminating 2 and rb from the system (29), we get 

B k  ~ f/ 
. ( L  - -  k 2 ) ~ . ~  : - ~ ,  - r ~  , 

( L - - k ~ ) ~ =  B ~ C~) 

where L denotes the differential operator 

( d )  , 
t d r d r r  r 2 " r dr 

(The derivation of (51) is most simply carried out as follows. From the last 
equation of (29) we have 

! d ( r a ) + k @ = O ,  
r- ~tr 

whence u can be written in the form u =cu r lW,  where 

W =  kt ( ~ i _ ~ io) sin k e 

Substituting u = c u r l t l  t directly into (2t) and taking the curl of that  equation 
yields 

B curl (v/r*, u/r ~, 0) = v* curl* tit, (32) 

where the identity curl curl = g r a d  d i v -  V 2 has been used. The first equation 
of (3t) is now obtained as the O-component of equation (32). Finally, the unkown 
~. must necessarily be independent of 0, so that the second equation of (29) 
reduces immediately to the second equation of (3 t).) 
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Equations (31) are formally similar to the classical first order equations for 
small disturbance in Couette flow. The solution of (3t) is a difficult task unless 
the cylinders are close together, in which case we can suppose (31) to be suf- 
ficiently well approximated by  the simpler equations 

( D  ~ - -  k 2 ) ~  : A k 2 
(33) 

(D 2 -  k s)~ = - - A a ,  

where D=d/dr, A = B / v * R  2, and R is some appropriate mean radius, say 
=FRxR2. The boundary conditions associated with (33) are 

= ~ - -  da  _ 0  at r = R  1,R~. (34) dr 

According to the calculations of JEI~FREYS and others (c/. [ld], w 2.3) the critical 
value of A is 41.2 (R2--R1) -* (that is, this is the smallest value of A for which 
a non-trivial solution of (33), (34) exists). We are thus led to the following 
stabil i ty criterion, 

~ < :  41.2 Rx+R2 
R1 Rz (R 2_R1) �9 (3 5) 

For  the pair of radii 3.55, 4.03 this gives, in particular, 

4 . .  

(36) is certainly a real improvement over the earlier estimate (28), and, moreover, 
the right-hand side comes very close to the "best  value" 50. I t  must be borne 
in mind, however, that  (35) and (36) are not yet rigorously established, since it 
remains to be shown that  we have really found the greatest eigenvalue of the 
system (29). There is some reason to believe that  this is so, since hydrodynamical 
experiments have shown indisputably that  the secondary motion occurring in 
Couette flow is approximately of the form (30), but barring a proof of this fact, 
we must  accept {35)--(36) as only tentat ively established, in contrast with the 
absolute ce r t a in ty  of (27)-- (28). 

Note: The above research was supported by the United States Air Force Office of 
Scientific Research under Contract No. AF 49(638)-262. 
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