
Acta Informatica 24, 679~94 (1987)

�9 Springer-Verlag 1987

An Efficient General Iterative Algorithm
for Dataflow Analysis

Susan Horwitz x, Alan Demers 2, and Tim Teitelbaum 3
1 Computer Sciences Department, University of Wisconsin-Madison, 1210 W. Dayton Street,

Madison, WI 53706, USA
2 Xerox PARC, 3333 Coyote Hill Road, Palo Alto, CA 94304, USA
3 Department of Computer Science, 405 Upson Hall, Cornell University, Ithaca, NY 14853, USA

Summary. Existing iterative algorithms for global dataflow analysis have
demonstrable shortcomings; either they can be used only for a limited class
of problems or they are needlessly inefficient in some cases. We review several
algorithms, pointing out weaknesses and develop a new algorithm that can
be used for a wide class of problems and has a runtime that compares
favorably ro runtimes of existing algorithms.

1. Introduction

A number of iterative methods for performing global dataflow analysis on a
flowgraph representation of a program have been proposed. The most efficient,
node listing iteration [1, 9], has worst-case runtime O(n log n), but can be applied
only to a limited class of flow problems. For more general iterative algorithms,
worst-case runtimes depend on the particular problem being solved; for many
problems, including those in the domain of node listing iteration, worst-case
runtime is O(n2).

Non-iterative algorithms can also be used for global dataflow analysis. Two
important non-iterative methods are presented in [5] and [13, 14]. Although
they may appear to out-perform the iterative algorithms, there is an important
difference in the way runtimes are calculated for these methods and for iterative
methods. The two non-iterative methods require function compositions; applica-
tions of both composed and non-composed functions are given equal weight
in the runtime analyses. By contrast, iterative algorithms apply only non-com-
posed functions.

The functions associated with certain specific dataflow problems, e.g., live
variable analysis, can be composed so that an application of a composed function
is equivalent to an application of a non-composed function in terms of runtime.
It is not clear, however, that such efficient compositions exist for arbitrary func-
tions. It is, therefore, misleading to compare the time requirements of the two
non-iterative algorithms with those of general iterative algorithms. The non-

680 s. Horwitz et al.

iterative algorithms do not necessarily supercede the iterative approach in the
context of arbitrary dataflow problems.

We confine our discussion to iterative methods for the remainder of the
paper. Our goal is to develop a general iterative algorithm with the following
properties:

(1) It is as efficient as node listing iteration when applied to a problem
in the domain of node listing iteration.

(2) It is never less efficient than existing general iterative algorithms.
(3) There exist examples on which it is more efficient than all existing general

iterative algorithms.
The structure of the rest of the paper is as follows: Sect. 2 introduces termi-

nology; Sect. 3 discusses the two existing general iterative algorithms, worklist
iteration [1 i], and rPOSTORDER iteration ['6, 8], including examples on which
they may require O(n 2) time when O(n) time is clearly sufficient. Section 3.2
develops a series of new iterative algorithms; the final version, presented in
Sect. 3.2.4 has the three properties listed above. Knowledge of node listing,
worklist, and rPOSTORDER iteration is assumed.

2. Terminology

For the data flow analysis algorithms discussed here, a program is represented
by a flowgraph G=(N, E, no), where (N, E) is a directed graph, and n o in N
is the entry node. Nodes in N represent basic blocks of the program; edges
in E represent possible transfer of control among basic blocks. We assume
that there is a path from no to every node in N. For edge e=(nl, n2) we define
source(e) = nl and target(e) = n 2 .

For programs written using standard constructs (including GOTOs), the
number of edges in the flowgraph is O(number of nodes in the flowgraph). We
use n to denote the number of nodes (and edges) in the flowgraph when discussing
runtimes.

A flow problem is either a forward problem or a backward problem. Given
a point in a program, forward problems determine what could happen before
program execution reaches that point; backward problems determine what could
happen during or after execution at that point. Available-expression analysis
and constant propagation are examples of forward problems; live-variable analy-
sis and faint-variable analysis [4] (see Appendix A) are examples of backward
problems. To solve backward problems, some algorithms require that the flow-
graph have a unique exit node; if the flowgraph does not have such a node,
one can be added, with an incoming edge from every exit node of the original
graph. All the algorithms discussed here can handle both forward and backward
problems, so we will not differentiate between them; in particular, algorithms
that include schemes for numbering the nodes of a flowgraph are always given
as if for forward problems; backward problems simply use the reverse number-
ing.

An Efficient General Iterative Algorithm 681

The goal of dataflow analysis is to produce an assignment, i.e. to assign
to each node in N a program fact, information that will be valid every time
the node is reached during every possible execution. The universe of program
facts is modeled by a bounded (contains no infinite descending chains) lower
semi-lattice L with meet operation A, least element _1_ (bottom), and partial
order < . Some dataflow algorithms also require a greatest element T (top);
if L does not include such an element, a new value T not an element of L
can be added, defined so that for all x in L, x A-l- = x.

Associated with each edge e in E is a function fe: L ~ L , such that if fact
x is true before executing source(e), and control flows along e, then fact fe(x)
will be true before executing target(e).

Definition. A function f : L--*L is monotone iff for all x, y in L, x < y implies
f(x)<=f(y).
Definition. A monotone dataflow framework ~ consists of:

(1) a bounded lower semi-lattice L with meet operation A, least element
1, and partial order < ;

(2) a value no_ init, an element of the set { l , T}; no_ init represents the pro-
gram fact initially true at entry node no;

(3) a set F of monotone, total functions from L to L closed under composi-
tion; further, we require that for every element x in L there exists a function
f in F such that f(no_ init)= x.

Definition. An instance of a dataflow problem consists of:
(1) a monotone dataflow framework (L, F, no_ init);
(2) a flowgraph G = (N, E, no);
(3) a map M: E ~ F.
Map M associates a function from F with each edge of the flowgraph; we

use fe to denote M(e).
We extend our notation to include fp, the function associated with path

P, as follows: if P is the empty path then fp(x)=x; if P=(ex,e2, ...,ek), then
fp(x) =fek fek-, ' '" fel(X)"

Given an instance of a dataflow problem, the ideal result of dataflow analysis
is to produce the meet-over-all-paths assignment, the map MOP: N ~ L such
that for all nodes n, MOP(n)= A {fp(no_init) I P is a path from no to n}. Unfortu-
nately, the MOP assignment is, in general, undecidable [7]. Fortunately, there
are assignments other than the MOP that are both decidable and useful; one
such is defined below.

Definition. A fixed point assignment for an instance of a dataflow problem is
a map FP: N ~ L such that for all edges e, FP (target (e)) < f~ (FP (source (e))).

Theorem [7]. For every instance of a dataflow problem there exists a unique
maximum fixed point assignment MFP, and for all nodes n, MFP(n)< MOP(n).

1 Other frameworks that have been studied include distributive [7, 8, 11], continuous 1-13], and k-
bounded [5, 13]

682 s. Horwitz et al.

Some dataflow analysis algorithms [10, 15] produce assignments A that
may be less precise than the maximum fixed point assignment MFP. By less
precise we mean that there may be node n such that A(n)<MFP(n). All algo-
rithms considered in this paper produce the MFP assignment for instances of
dataflow problems.

Some algorithms guarantee correctness only for limited classes of flow prob-
lems. These algorithms may restrict the flowgraph G, the set of functions F,
or both G and F. Node listing iteration requires that the flowgraph be reducible
[3] and that the functions be separable [6].

Definition. A dataflow framework is separable iff for all f, g in F, x in L:

fg(n0_init) > g(n0_ init) Af(x) A x.

Separability is an important concept in this paper; our goal will be to develop
an algorithm that works efficiently on both separable and non-separable prob-
lems. Faint-variable analysis, defined and discussed in Appendix A, is an exam-
ple of a non-separable but obviously useful flow problem. Another example
commonly found in the literature is constant propagation.

3. Iterative Algorithms

We now turn our attention to iterative methods for solving dataflow problems.
Our goal is to produce a new general iterative algorithm that outperforms exist-
ing algorithms. In Sect. 3.1 we look at examples that may cause the two existing
general iterative algorithms, worklist iteration and rPOSTORDER iteration,
to exhibit pathological behavior; in Sect. 3.2 we develop a series of new algo-
rithms, each of which attempts to overcome some problem found in a previous
version. Our final algorithm, presented in Sect. 3.2.4, is as efficient as node listing
iteration when applied to a problem in the domain of node listing iteration,
is never worse than worklist or rPOSTORDER iteration, and, on some examples,
is shown to be better than both worklist and rPOSTORDER iteration.

We wish to stress that the examples presented in the following section were
designed specifically to cause worklist and rPOSTORDER iteration to exhibit
worst-case behavior. We make no claims about the probability of such examples
resulting from "real-life" programs and thus do not claim that these algorithms
will exhibit worst-case behavior when used on "real-life" programs.

3.1. Old Iterative Algorithms

All Iterative algorithms are based on the following non-deterministic algorithm,
which we call the canonical iterative algorithm.

Input: an instance of a dataflow problem
Output: for each node n of flowgraph G, the value n. val--MFP(n)

An Efficient General Iterative Algorithm 683

LET "visit n" be defined as:
LET e be any edge such that target (e)= n IN

begin
temp.'=fe (source (e). val);
if temp < n. val then n. val.-=temp fi
end

IN
begin

no. val := no_ init;
for all other nodes n do n .va l :=top od;
while there exists a node m = target(e) such that m. val

> f~ (source (e). val) do
choose any node n;
visit n
od

end
Fig. 1. The canonical iterative algorithm

Note that the canonical iterative algorithm may never terminate because the
node n that is chosen in the body of the while loop may not be one of the
nodes m with an inconsistent value mentioned in the loop condition. The algo-
rithms discussed below use different methods to insure termination.

3.1.1. Worklist Iteration. During worklist iteration, n, the next node to be visited,
is chosen from a worklist, which is initialized to contain all nodes; if n.val
changes as a result of the visit, all successors of n are added to the worklist.
Worklist iteration can be used to find the MF P assignment for both separable
and non-separable flow problems, on both reducible and non-reducible flow-
graphs. Worst-case runtime is 0 (n �9 length of longest chain in lattice).

The problem with worklist iteration is that there is no specified order for
choosing nodes from the worklist. For example, consider the graph shown in
Fig. 2:

Fig. 2. Example flowgraph I

The topological order of the nodes is: A B C D . . . It is possible to choose nodes
from the worklist in topological order, and this results in O(n) runtime. It is
also possible to choose nodes so as to respect the reverse topological order:

684 S. Horwitz et al.

after visiting node A, both B and C will be placed on the worklist; choose
C; after visiting C, B D and E will be on the worklist; choose E; and continue
in this manner, always choosing the node closest to the end of the alphabet.

For certain problems, such as available expression analysis, the length of
the longest chain in the lattice will be O (n); in that case, the worst-case choosing
strategy described above produces O (n 2) runtime, when O (n) is clearly sufficient.

3.1.2. rPOSTORDER Iteration. rPOSTORDER iteration consists of multiple
passes through the flowgraph, on each of which all nodes are visited in reverse
postorder; the algorithm halts when no n.val changes during a pass. rPOST-
ORDER iteration is as general a technique as worklist iteration, and will achieve
O(n) runtime on flowgraphs like that of Fig. 2; however, the worst-case runtime
is O(n * length of longest chain in lattice), just as for worklist iteration.

We can take advantage of the fact that rPOSTORDER iteration visits every
node of the graph on each iteration to produce an example on which rPOST-
ORDER iteration is unnecessarily slow. Consider the flowgraph shown in Fig. 3.

Fig. 3. Example flowgraph II

All nodes except nn-1 will receive final values during the first iteration;
for a non-separable problem, the number of iterations required to produce the
final value for node nn_ 1 could be equal to the length of the longest chain
in the lattice. In that case, runtime for rPOSTORDER iteration would be
O(n * length of longest chain), while an algorithm that visited only node n,_ 1
after the first iteration would have runtime O(n + length of longest chain).

3.2. New Iterative Algorithms

In this section we explore ways of modifying and combining existing algorithms.
We wish to produce a new algorithm that is as general as worklist or rPOST-
ORDER iteration but avoids the possibility of the kinds of pathological behavior

An Efficient General Iterative Algorithm 685

discussed above in Sect. 3.1. Our new algorithms are still based on the canonical
iterative algorithm; in particular, "visit n" is defined as in Fig. 1.

3.2.1. Priority-Queue Iteration. One nice feature of worklist iteration is that it
visits a node only when some immediate predecessor has changed, unlike rPOST-
O R D E R iteration, which visits every node on every iteration. The problem
with worklist iteration is that it includes an unspecified "choose" operation:
choose a node from the worklist; thus, in analyzing the worst-case runtime
of worklist iteration we must always assume the worst-case choice.

Suppose that, instead of keeping an unordered worklist, we keep a priority
queue I-2], with nodes ordered in reverse postorder. We will call this priority-
queue iteration. At first, priority-queue iteration seems to combine the best fea-
tures of worklist and r P O S T O R D E R iteration. Because it is the same as worklist
iteration but with a specified choose operation, worst-case runtime (in terms
of the number of function applications) can never be worse than for worklist
iteration, and there are obvious examples (such as Fig. 2) where priority-queue
iteration will be much better than worklist iteration. Maintaining the priority
queue is not free, but it takes only log n (where n is the size of the queue,
at most the number of nodes in the flowgraph) time for each insert or delete
operation. In the worst case, total runtime for priority-queue iteration is only
a factor of log n worse than for worklist iteration; in the best case, it is a
factor of (length of longest chain) better; in Fig. 2 for example, worklist iteration
may take O(n 2) time, while priority-queue iteration takes just O(n) time because
the size of the priority queue never exceeds a small constant.

Priority-queue iteration can be an improvement on rP O S TO RD ER iteration,
too, for non-separable problems. The flowgraph given in Fig. 3, which could
require O(n, length of longest chain) function applications for r P O S T O R D E R
iteration, would require just O(n + length of longest chain) applications for prior-
ity-queue iteration.

()

�9
Q

h

~) f 0 fo(x) = x monus 1

fl(x) = 0

1

f2(x) = x

n0_init -- top = 5

Lattice L Flowgraph G Functions F
Fig. 4. Example dataflow problem instance

Value n 0_init

686 s. Horwitz et al.

Unfortunately, priority-queue iteration can be arbitrarily worse than rPOST-
O R D E R iteration. Figure 4 gives an instance of a non-separable flow problem
for which rP OS TORDER iteration requires just O (n) time, using three iterations:
one to initialize, one to propagate values, and one to discover that final values
have been assigned to all nodes. Priority-queue iteration requires O(length of
longest chain) time; because n o is a successor of itself, n o will always be placed
at the front of the priority queue until successive applications of fo to no_ init
finally produce bottom. Theoretically, the length of the longest chain in the
lattice can be arbitrarily greater than O(n), so the runtime of priority queue
iteration can be arbitrarily worse than that of rP O S TO RD ER iteration.

What is it about this example that causes priority-queue iteration to have
such bad behavior compared to r P O S T O R D E R iteration? The flowgraph of
Fig. 4 is strongly connected, so that a change in the value at any node may
influence the values at all other nodes in the graph; however, priority-queue
iteration visits one node, n o , many times before visiting other nodes at all.
By contrast, r P O S T O R D E R iteration visits every node in a strongly connected
component once during each iteration.

3.2.2. Strongly-Connected-Component Iteration. The observations at the end of
the previous section suggest a new approach, which we call strongly-connected-
component iteration (scc iteration): visit strongly connected components in topo-
logical order, using rPOSTORDER iteration within each scc. An algorithm for
scc iteration is given below.

Input: an instance of a dataflow problem
Output: for every node n of flowgraph G, the value n. val = MFP(n)

Step 1 : Numbering the graph
LET D be the dag produced by finding all strongly connected

components in G and reducing each to a single node
IN
begin

num.-=0;
for each node d in D in topological order do

for each node n in the scc represented by d in
reverse postorder do
n. number..= num;
num..=num + 1
od

od
end

Reverse postorder within each scc is obtained using a depth-first search
that starts with the entry node no, if no is within this scc, and otherwise
starts with any node that is the target of an edge whose source is in
a previous scc.

An Efficient General Iterative Algorithm 687

Step 2: Flow analysis
begin

initialize
n o. val ,= no _ init;
for all other nodes n do

n. val .-= top
od;

find MFP
for each scc in topological order do

perform rPOSTORDER iteration within this scc, i.e.
using n. number, visit all nodes n in this scc in
reverse postorder, repeat until no n.val changes
od

end

Step 1 can be done in O(n) time [2]. We show below that the time needed
for Step 2 is never more than the time needed for flow analysis using rPOS-
T O R D E R iteration.

Our proof is based on the fact that an application of either r P O S T O R D E R
or scc iteration can be represented by a visit sequence, a list of the nodes as
they are visited during the application. The length of the visit sequence corre-
sponds to the runtime of the algorithm; thus, we show that, for an arbitrary
instance of a dataflow problem, the length of the visit sequence that represents
the application of scc iteration to the problem is never longer than the length
of the visit sequence that represents the application of rPOSTORDER iteration
to the problem.

An application or rPOSTORDER iteration consists of m iterations, each
of which visits all nodes in reverse postorder; when the application is finished,
each node has been assigned a final value. An application can be represented
by listing the nodes in reverse postorder m times to form a visit sequence.
For example, r P O S T O R D E R iteration might require three iterations to produce
the MFP assignment for a flow problem using the flowgraph of Fig. 5.

Fig. 5. Example flowgraph III

Such an application would be represented by the following visit sequence:

A B C D E F G H A B C D E F G H A B C D E F G H

688 S. Horwitz et al.

Similarly, the application of scc iteration to the same problem would be repre-
sented by the following visit sequence:

A B C D A B C D A B C D E F G H

In general, the visit sequence representing an application of rPOSTORDER
iteration to a flowgraph with k strongly connected components that requires
m iterations looks like:

1 2 m ^ ^

(SCCl) (SCC2)... (SCCk) (SCCl) (SCC2)... (SCCk)... (SCCl) (SCC2).-. (SCCk).

The visit sequence representing an application of scc iteration looks like:

(scc0 (sccl). . . (SCCa) (scc2) (scc2)... (sccz)... (scck) (scck) ... (scck).

It is clear that the final value at node n can depend on values at node m
only if there is a path from m to n. This observation motivates the following
definitions and rule:

Definition. Two visit sequences VS 1 and VS2 are equivalent iff visiting nodes
according to VS 1 results in the same final values at all nodes as visiting nodes
according to VS 2.

Definition. For a given flowgraph G, node x is an ancestor of node y iff there
exists a path in G from x to y.

Definition. A group of nodes is a non-empty consecutive sub-sequence of a visit
sequence.

Rule. If visit sequence VS contains two consecutive groups of nodes A and
B such that no node in A is an ancestor of a node in B, then VS is equivalent
to the visit sequence identical to VS except with AB replaced by BA.

Example. The visit sequence given above for rP O S TO RD ER iteration applied
to the flowgraph of Fig. 5 contains consecutive groups (E F G H) and (A B C D);
no node in the first group is an ancestor of a node in the second group, thus,
the above visit sequence is equivalent to the following (with the changed part
in italics):

A B C D A B C D E F G H E F G H A B C D E F G H

Theorem. An application of scc iteration will visit no more nodes than an applica-
tion of r P OS TORDER iteration.

Proof. It is sufficient to show that, for an arbitrary instance of a dataflow prob-
lem, the visit sequence V1 representing the application of scc iteration to the
problem is never longer than the visit sequence V2 representing the application
of rP OS TOR DER iteration to the same problem. For i<j, no node in sccj
can be an ancestor of a node in scci; thus, using the rule given above we can
permute V2 to the equivalent form:

1 2 m 1 2 m

(sccl) ~scc0 ... ~sccl) /scck)iscck) . . . (scck)

An Efficient General Iterative Algorithm 689

which contains exactly as many nodes as the original form. Because this new
form is equivalent to the old form, we see that, for all i, m passes through
scci are sufficient to produce final values for all nodes in scci. An application
of scc iteration produces the same final values as does an application of rPOS-
T O R D E R iteration, and an application of scc iteration visits sccl only until
all nodes in scci have received their final values; thus, there will never be more
than m occurrences of scc~ in V1, and the length of V1 will be no greater
than the length of V2.

3.2.3. Priority-Scc Iteration. Scc iteration is guaranteed to perform no more
function applications than r P O S T O R D E R iteration, and it will perform fewer
function applications on problem instances like those of Fig. 3. However, if
we were to modify that flowgraph slightly by adding an edge from node n,_ 1
back to node no then the entire graph would be one scc, and scc iteration
would be no better than r P O S T O R D E R iteration.

What we really want is scc iteration where we only visit a node after a
predecessor has changed. This idea can be expressed as follows:

number nodes as for sec iteration;
initialize graph as for scc iteration;
mark all nodes;
for each scc in topological order do

while there is a marked node in this scc do
for each marked node n in this scc in reverse postorder do

unmark n;
visit n;
if n. val changed then mark all successors fi
od

od
od

We can use a priority queue to implement the " m a r k " and " u n m a r k " operations
as we did for priority-queue iteration; a node is marked if it is in the queue.
We can achieve the condition of the inner for loop, ". . . in reverse postorder" ,
by using n .number to order the priority queue. To insure that the algorithm
produces final values for one scc before going on to the next scc, and to insure
that it visits all nodes within the scc once before visiting any nodes twice, we
use three concatenable priority queues [2] :

(1) future queue contains all marked nodes in scc's with topological number
greater than the current scc;

(2) current_queue contains all marked nodes in the current scc with reverse
postorder number greater than the current node; and

(3) pending_ queue contains all marked nodes in the current scc with reverse
postorder number less than the current node.

We call this priority-scc iteration; an algorithm is given below.

690 S. Horwitz et al.

LET
number be defined as for scc iteration;
scc's be numbered starting with 1;
max(i) be the highest numbered node in scc~;
current_ queue, pending_ queue, and future_ queue be concatenable prior-

ity queues containing nodes n, ordered by n. number, with the follow-
ing operations:
EMPTY() return an empty queue
NEXT(queue) remove and return the lowest numbered node from

the given queue
A D D (node, queue) add the given node to the given queue
CAT(queue l, queue2) return queue l concatenated to the front of

queue2
SPLIT(queue, number) r emove and return (as a priority queue) all

nodes n in the given queue with reverse post-
order number less than or equal to the given
number

IN
begin

cur ren t_queue :=EMPTY() ;
pending _ queue ..= EMPTY() ;
future _ queue .'= EMPTY() ;
n o . val := no _ init;
for all other nodes n do n.val.-=top od;
for all nodes n do A D D (n, future_queue) od;
current_scc:=0;
while there exists a non-empty queue do

if current_ queue is empty
then if pending_ queue is non-empty

then current_ queue
:=CAT(pending_queue, current_queue);

pending _ queue := EMPTY()
else current_ scc..=current_ scc + 1 ;

current _ queue .'= SPLIT(future max (current _ scc))
fi

fi;
n :=NEXT(cur ren t_queue) ;
visit n;
if n. val changed

then for all nodes m, successors of n do
if m. number < n. number

then ADD(m, pending_ queue)
else if m. number < max(current_ scc)

then ADD(m, current_ queue)
fi

t3
od

fi
od

end

An Efficient General Iterative Algorithm 691

The only difference between priority-scc iteration and scc iteration is that
priority-scc iteration never visits a node with unchanged predecessors; thus,
priority-scc iteration is at least as fast (in terms of the number of function
applications) as scc iteration and rPOSTORDER iteration. Priority-scc iteration
differs from priority iteration only by refusing to consider any node in an scc
twice until all nodes in that scc with changed predecessors have been considered
once; thus, priority-scc iteration is also a special case of worklist iteration and
it will be at least as fast as worklist iteration, again in terms of the number
of function applications. Bookkeeping costs for maintaining a concatenable
priority queue are the same, O(log(size of the queue)) as for a priority queue
and O(log n) in the worst case.

Figure 6 gives an example on which priority-scc iteration will perform better
than both rPOSTORDER and worklist iteration, even counting the extra time
needed for bookkeeping.

region A

region B

Fig. 6. Example flowgraph IV

In Fig. 6, region A is the same as the flowgraph of Fig. 2, so if the length
of the longest chain in the lattice is O(n), worklist iteration may take O(n 2)
time to produce final values for the nodes in this region. The general form
of the flowgraph of Fig. 6 is the same as that of Fig. 3, so rPOSTORDER
iteration may require O (n 2) time to produce final values for all nodes. Priority-see
iteration will visit the nodes of region A in topological order, taking time O(n)
to produce their final values, then will visit the node of region B O(length of

692 s. Horwitz et al.

longest chain) times (i.e. O(n) times) to produce its final value. Total time for
priority-scc iteration will be O(n) including bookkeeping time because the prior-
ity queue will never contain more than two nodes.

3.2.4. Hybrid Iteration. Although priority-see iteration is more general than node
listing iteration, there are obvious examples using instances of separable flow
problems where it can be much less efficient; node listings are never longer
than O(n log n) while priority-see iteration can require O(n 2) function applica-
tions. We would like to guarantee O(n log n) runtime for separable problems
and reducible flowgraphs, while maintaining the generality of our algorithm.
A strategy like:

given an instance of a flow problem

if problem is separable and graph is reducible
then apply node listing iteration
else apply priority-see iteration
fi

would work if we know how to implement the separability test. Fortunately,
such a test is not necessary; we achieve essentially the same result with the
algorithm given below.

if the given flowgraph is non-reducible
then perform priority-scc iteration
else

Step 1 : Apply node listing iteration;
Step 2: Apply priority-scc iteration using the values produced by Step 1 to ini-

tialize all n. val.

We call this hybrid iteration.

It is easy to verify that hybrid iteration will produce the MFP assignment for
both separable and non-separable problems:

- When applied to a separable problem, Step 1, node listing iteration, will pro-
duce the MFP assignment; Step 2 will visit each node once, producing no
changes, and so the algorithm will halt.
- When applied to a non-separable problem, Step 1 will produce values n.val
such that for all n, n.val>MFP(n). Priority-scc iteration will produce the
MFP assignment, given such initial values as long as its priority queue is initia-
lized to include all nodes n such that n. val > MFP(n). Priority-scc iteration initia-
lizes the priority queue to contain all nodes, thus, Step 2 will halt when and
only when the MFP assignment has been produced.

There are examples on which hybrid iteration may perform more function
applications than worklist or rPOSTORDER iteration because some flowgraphs
require node listings of length O(n log n). Step 1 of hybrid iteration will perform
O (n log n) function applications in such cases even though O (n) function applica-
tions may be sufficient. To insure that the number of function applications

An Efficient General Iterative Algorithm 693

performed by hybrid iteration is never more than the number performed by
priority-scc iteration we modify the algorithm slightly by introducing parallel-
ism:

In parallel, on separate copies of the flowgraph, do:

Process 1 : Perform hybrid iteration as defined above.
Kill process 2.

Process 2: Perform priority-scc iteration.
Kill process 1.

Both processes will eventually produce the MFP assignment; parallelism allows
us always to use the faster of the two.

4. Conclusion

The parallel version of hybrid iteration, presented above, achieves the goals
listed in Sect. 1. However, these results are based on worst-case runtime analysis;
empirical studies are needed to determine which is the best algorithm from
a practical point of view. For example, 1-6] and [8] show that rPOSTORDER
iteration, when applied to a separable problem, will have runtime at most
O (n * (d + 3)), where d is the maximum number of backedges in a cycle-free path
through the flowgraph. In structured programs d is the maximum depth of
loop nesting, shown in 1-12] usually to be three or less.

This result, which holds for priority-scc iteration as well, may mean that,
in practice, conceptually simple algorithms like rPOSTORDER and priority-scc
iteration are preferable to theoretically faster but conceptually more difficult
algorithms like node listing and hybrid iteration.

Appendix A

Faint Variable Analysis

For live variable analysis, a variable x is defined to be live at a program point
if there exists a path from that point to the end of the program on which
x is used before being defined. A variable that is not live is dead. This idea
was extended in 1-4] as flows:

A variable x is defined to be faint at a program point if x is dead at that
point or if x is live only because it is used to define a faint variable.

Faint variable analysis seeks to identify the minimal set of non-faint variables
at each program point.

Live variable analysis can be used to find useless assignments, that is, assign-
ments to dead variables. Removing such assignments during compilation will
lower a program's space and time consumptions. The removal of a useless assign-
ment may cause a previously live variable to become dead; thus, the use of
live variable analysis to remove all useless assignments requires repeated applica-
tions of live variable analysis alternating with the removal of useless assignments.

694 S. Horwitz et al.

Alternatively, faint variable analysis can be used to find all useless assignments
in a single pass; an assignment is considered useless if the variable assigned
to is faint, and removal of such an assignment cannot create new faint variables.
In addition, faint variable analysis can find some useless assignments that even
repeated live variable analysis will never find, as illustrated below:

x:=0;
while cond do

(no use of x in this region)

x . '=x+ 1;

(no use of x in this region)

od;
(no use of x in remainder of program)

The variable x is faint throughout this program because it is used only to
define a faint variable (itself), and thus, both assignments to x could be removed.
Live variable analysis would not discover this, because x is live throughout
the loop.

References

1. Aho, A., Ullman, J.: Node listings for reducible flowgraphs. J. Comput. Syst. Sci. 13, 286-299
(1976)

2. Aho, A., Hopcroft, J., Ullman, J.: The Design and Analysis of Computer Algorithms. Reading,
MA: Addison Wesley 1974

3. Allen, F.: Control flow analysis. SIGPLAN Notices 5, 1-19 (1970)
4. Giegerich, R., Moncke, U., Wilhelm, R.: Invariance of approximative semantics with respect

to program transformations. Proceedings, Third Conference of the European Co-operation in
Informatics. In: Informatik-Fachberichte 50, pp. 1-10. Berlin Heidelberg New York: Springer
1981

5. Graham, S., Wegman, M.: A fast and usually linear algorithm for global flow analysis. J. ACM
23, 172-202 (1976)

6. Hecht, M., UUman, J.: Analysis of a simple algorithm for global data flow problems. Conf.
Record of the 1st ACM Syrup. on POPL 207-217 (1973)

7. Kam, J., Ullman, J.: Monotone data flow analysis frameworks. Acta Inf. 7, 305-317 (1977)
8. Kam, J., Ullman, J.: Global data flow analysis and iterative algorithms. J. ACM 23, 158-171

(1976)
9. Kennedy, K.: Node: Listings applied to data flow analysis. Conf. Record of the 2nd ACM Symp.

on POPL 10-21 (1975)
10. Kennedy, K.: A survey of data flow analysis techniques. In: Program Flow Analysis, Theory

and Applications. Muchnick, S., Jones, N. (eds.), pp. 45-46. Englewood Cliffs, N J: Prentice Hall
1981

11. KildaU, G.: A unified approach to global program optimization. Conf. Record of the 1st ACM
Symp. on POPL 194-206 (1973)

12. Knuth, D.: An empirical study of FORTRAN programs. Software Pract. Exp. 1, 105-134 (1971)
13. Tarjan, R.: A unified approach to path problems. J. ACM 28, 577-593 (1981)
14. Tarjan, R.: Fast algorithms for solving path problems. J. ACM 28, 594-614 (1981)
15. Wilhelm, R.: Global flow analysis and optimization in the MUG2 compiler generating system.

In: Program Flow Analysis, Theory and Applications. Muchnick, S., Jones, N. (eds.), pp. 144-147.
Englewood Cliffs, N J: Prentice Hall 1981

Received July 17, 1987/July 20, 1987

