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Summary. In vitro transcripts from the 3' flanking re- 
gions of mustard chloroplast genes were tested for pro- 
tein binding in a chloroplast extract. Efficient and se- 
quence-specific RNA-protein interaction was detected 
with transcripts of the genes trnK, rpsl6 and trnH, but 
not with the 3' terminal region of trnQ RNA. The trans- 
acting component required for specific complex forma- 
tion is probably a single 54 kDa polypeptide. The pro- 
tein-binding region of the rpsl6 3' terminal region was 
mapped and compared with that of the trnK transcript 
determined previously. Both regions reveal a conserved 
7-mer U U U A U C U  followed by a stretch of U residues. 
Deletion of the trnK 3' U cluster resulted in more than 
80% reduction in the binding activity, and after deletion 
of both the U stretch and the 7-mer motif no binding 
at all was detectable. RNase protection experiments indi- 
cate that the protein-binding regions of both the rpsl6 
and trnK transcripts correlate with the positions of in 
vivo 3' ends, suggesting an essential role for the 54 kDa 
binding protein in RNA 3' end formation. In the case 
of the trnK gene, evidence was obtained for read-through 
transcripts that extend into the psbA coding region, thus 
pointing to the possibility of trnK-psbA cotranscription. 
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Introduction 

With the detailed information available on the nucleo- 
tide sequence and organization of chloroplast genes and 
their in vivo transcripts, it has become possible to study 
the mechanisms involved in the transcriptional and post- 
transcriptional regulation of plastid gene expression 
(Weil 1987; Sugiura 1989; Gruissem 1989). One of the 
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steps thought to play an essential role is the formation 
of transcript 3' ends. The flanking regions downstream 
of many, but not all (Ruf and K6ssel 1988; Neuhaus 
et al. 1989), chloroplast genes reveal palindromic se- 
quences that are capable of forming stem-loop struc- 
tures. Available evidence suggests that at least some of 
these 3' sequence elements do not act as transcriptional 
terminators (Stern and Gruissem 1987; Chen and Oroz- 
co 1988; Thomas et al. 1988). Instead they seem to func- 
tion as processing signals and thereby protect upstream 
RNA sequences (Stern and Gruissem 1987, 1989; Adams 
and Stern 1990) comparable to prokaryotic REP (repeti- 
tive extragenic palindromic) sequences (Higgins et al. 
1988). It was shown more recently that chloroplast pro- 
teins interact in vitro with RNA from the 3' flanking 
regions of the spinach psbA, rbcL and petD genes (Stern 
et al. 1989) and the mustard trnK gene (Nickelsen and 
Link 1989), suggesting a role for these proteins in RNA 
processing and/or transcription termination in vivo. 

In the case of the mustard trnK gene the protein- 
binding RNA region was mapped. It was found to be 
located 70 nucleotides (nt) downstream of the trnK 3' 
exon in a region spanning 40 nt that has no apparent 
secondary structure (Nickelsen and Link 1989). We now 
present work aimed at defining the essential features 
of the binding region and identifing the protein(s) that 
interact with it. To clarify whether the interaction of 
this region with chloroplast proteins is a more general 
mechanism, we tested several other 3' transcripts for pro- 
tein binding. These RNAs were from the adjacent mus- 
tard genes trnH (Nickelsen and Link 1990), trnQ (Neu- 
haus 1989), and rpsl6 (Neuhaus et al. 1989), which code 
for tRNA His, tRNA Gin and the ribosomal protein $16, 
respectively. To obtain more detailed information on the 
cis-acting elements involved in chloroplast RNA-protein 
complex formation, we analysed deletion mutants in the 
trnK binding region. Finally, RNase mapping experi- 
ments were carried out to investigate whether the posi- 
tions of the in vitro binding regions correlate with those 
of transcript 3' ends in vivo. 
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Materials and methods 

Plasmid DNA. Plasmids pSPTH80/40 and pSPTH120 
have been described previously (Nickelsen and Link 
1989). Plasmid pSPTES358 contains the last 48 bp of 
the trnH coding region and 310 bp of the 3' flanking 
region (Nickelsen and Link 1990). It was constructed 
by inserting the 358 bp E c o R I -  SalI fragment of plas- 
mid pSA452 (Link 1984) into pSPT18 (Pharmacia 
LKB). Plasmid pSPTT317 has the last 19 bp of the trnQ 
gene and 298 bp of the 3' flanking region and consists 
of a 317 bp TaqI fragment inserted into the AccI site 
of pSPT19 (Neuhaus et al. 1989; Neuhaus 1989). Plas- 
mid pSPTS398 contains the last 174 bp of the rpsl6 3' 
exon and 224 bp of the 3' flanking region and was con- 
structed by cloning a 398 bp Sau3A fragment (Neuhaus 
et al. 1989) into the BamHI site of pSPT19. Plasmid 
pSPTS158 has 13 bp of the trnK 3' exon and 145 bp 
of the 3' flanking region extending down to the psbA 
promoter. It was constructed by inserting the 175 bp 
Sinai fragment of plasmid pSA05/A1 (Link and Lan- 
gridge 1984) into pSPT18. 

Production of 3' deletion mutants was according to 
Henikoff (1987). In brief, pSPTH80/40 was digested with 
PstI and BamHI, 10 l, tg of this DNA was treated with 
600 units exonuclease III in a volume of 60 gl at 25 ° C, 
and 2.5 gl aliquots removed every 30 s. Each sample was 
then treated with 1.75 units nuclease S1 in a volume 
of 10 ~tl at 25 ° C for 30 rain. After fill-in with Klenow 
enzyme, DNA was religated and transformed. Clones 
were characterized by restriction and sequence analyses. 

RNA and extract preparations. In vitro RNA transcribed 
from linearized plasmid DNA as well as plastid RNA- 
binding extracts were prepared as described (Nickelsen 
and Link 1989). 

Gel retardation assays. RNA-protein binding assays with 
the short transcript TH80/40 were carried out as de- 
scribed (Nickelsen and Link 1989). Binding mixtures 
that contained labelled in vitro transcripts longer than 
200 nt (TT317, TS398, and TES358) were subsequently 
treated with 20 units RNase T~. Samples were electro- 
phoresed in 5% non-denaturing polyacrylamide gels. 

UV crosslinking. UV crosslinking of RNA with chloro- 
plast proteins was as described (Nickelsen and Link 
1989), except that irradiated samples were treated for 
10 min with RNase A (5 ng/gl) instead of RNase T1. 
Bound proteins were analysed in 10% polyacrylamide- 
SDS gels (Laemmli 1970). 

RNase protection assays. RNase protection mapping of 
in vivo transcripts was done with 50 gg of mustard plas- 
tid RNA and 1 x 10 6 cpm of 32p-labelled in vitro tran- 
scripts as described (Sambrook et al. 1989). 

RNase T 1 mapping of RNA-protein complexes. The pro- 
tein-binding region of the in vitro transcript derived 
from the rpsi6 3' region was mapped as described pre- 
viously (Leibold and Munro 1988; Nickelsen and Link 

1989) using labelling with [32p]GTP, followed by bind- 
ing, digestion with RNase T1, and electrophoresis on 
denaturing 20% polyacrylamide gels. 

Results 

Chloroplast proteins interact with 3' RNA sequences of 
the trnK, trnH and rpsl6 genes, but not 
with those Jlanking the trnQ gene 

Figure 1A shows the mustard chloroplast trnQ-trnH re- 
gion as well as the four different 3' transcripts that were 
used as probes in RNA-protein binding experiments, i.e. 
TH80/40 (trnK gene), TES358 (trnH gene), TS398 (rps16 
gene), and TT317 (trnQ gene). When these 32p-labelled 
RNAs were tested in gel retardation assays (Fried and 
Crothers 1981; Garner and Revzin 1981), RNase T1- 
resistant RNA-protein complexes of approximately the 
same electrophoretic mobility were detected with TH80/ 
40 (Fig. 1 B, lane 2), TES358 (lane 4), and TS398 (lane 
8). In contrast, when the trnQ 3' transcript TT317 was 
used as probe, no complex formation was observed 
(Fig. 1 B, lane 6). 

UV crosslinking (Greenberg 1979; Wilusz and Shenk 
1988) of proteins bound to 3' RNA sequences revealed 
radioactively labelled polypeptides of 54 and 32 kDa in 
the case of THS0/40 (Fig. 1 C, lane 2), TES358 (lane 
4), and TS398 (lane 8). Only the 32 kDa signal was ob- 
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Fig. 1 A-C. RNA-protein interactions in 3' regions of chloroplast 
genes. A Schematic representation of the trnQ-trnH region of mus- 
tard chloroplast DNA. Coding regions are shown by filled boxes 
with a tip pointing into the 3' flanking region. The in vitro tran- 
scripts used for RNA-protein binding are shown by arrows. B RNA 
gel retardation assays (including RNase T1 treatment) with the 
32p-labelled RNA probes shown in A. Lanes 1, 3, 5, 7, RNA alone. 
Lanes 2, 4, 6, 8, RNA incubated with chloroplast extract (30 gg 
protein). Arrow, RNA-protein complexes. C Proteins labelled by 
bound RNA sequences after UV crosslinking, RNase A digestion, 
and separation on a 10% polyacrylamide/SDS gel. Lanes as in 
B. Arrows, RNA binding proteins at 54 and 32 kDa. Molecular 
sizes (kDa) of marker proteins are given in the left margin 
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served when trnQ 3' RNA (TT317) was used (Fig. 1C, 
lane 6). These results suggest that the 54 kDa protein 
might be responsible for the sequence-specific RNA-pro- 
tein complex formation seen in the gel retardation exper- 
iments with the transcripts from the trnK, trnH, and 
rpsl6 3' regions (Fig. 1 B). On the other hand, since the 
32 kDa protein was visible in each UV crosslinking ex- 
periment (Fig. 1 C) regardless of the probe used, its inter- 
action with RNA appears to be sequence independent. 
Previous studies with TH80/40, using RNase T~ treat- 
ment of crosslinked complexes prior to gel electrophore- 
sis, had revealed labelled proteins of 62 and 58 kDa in 
size (Nickelsen and Link 1989). The present treatment 
with RNase A instead of T1 was found to remove more 
efficiently those portions of the RNA that were not 
crosslinked to protein and hence is likely to give more 
accurate sizes for the labelled proteins. 

To substantiate further the idea that the same 54 kDa 
protein binds to TH80/40, TES358 and TS398, competi- 
tion experiments with 32P-labelled TH80/40 and a 200- 
fold excess of unlabelled competitor RNA were carried 
out. As shown by gel retardation analysis (Fig. 2A, lanes 
3, 4 and 6), the presence of either unlabelled TH80/40 
or TES358 resulted in disappearance of the binding sig- 
nal and TS398 led to decreased amounts of labelled com- 
plex. In contrast, transcript TT317 did not act as a com- 
petitor (Fig. 2A, lane 5). 

The same competition strategy with labelled TH80/40 
was also used in UV crosslinking experiments (Fig. 2 B). 
Binding in the presence of excess unlabelled TH80/40 
led to complete disappearance of the 54 kDa signal, 
whereas that at 32 kDa was still visible (Fig. 2B, lane 
3). The latter signal was not competed by any of the 
heterologous RNAs TES358 (lane 4), TT317 (lane 5) 
and TS398 (lane 6), again indicating that this smaller 
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Fig. 2 A  and B. Competition binding experiments with various 3' 
RNA segments (see Fig. 1 A). Labelled trnK 3' RNA (TH80/40) 
was incubated with 300 ng of the unlabelled competitor RNAs 
indicated at the top. Visualization of TH80/40-protein complexes 
(arrows) by gel retardation (without RNase T1 treatment) (A) and 
UV crosslinking assays (B). Controls include binding reactions 
without proteins (lanes 1) or with proteins but lacking competitor 
RNA (lanes 2). 

polypeptide does not interact with RNA in a sequence- 
specific way. Unlabelled TS398 from the rpsl6 3' region 
completely abolished the labelled 54kDa signal 
(Fig. 2B, lane 6), whereas TES358 was found only to 
decrease its intensity. This differs from the stronger com- 
petition effect of the trnH 3' RNA seen in the gel retarda- 
tion experiments (Fig. 2A, lanes 4 and 6), but could 
be explained by the possible existence of more than one 
binding site within the trnH 3' region (see Fig. 7), each 
having a lower affinity than the site in the rpsi6 3' tran- 
script. TT317 again showed no competition effect at all 
(Fig. 2B, lane 5). Taken together, these results suggest 
that the 54 kDa protein interacts strongly with the 3' 
in vitro transcripts of the mustard trnK and rpsi6 genes, 
more weakly with the trnH 3' RNA, and not at all with 
the trnQ 3' RNA region. 

RNase T 1 mapping of the protein binding region within 
rps16 3' RNA 

The trnK 3' RNA region involved in RNA-protein inter- 
action was previously located by RNase T~ mapping 
(Nickelsen and Link 1989) as described by Leibold and 
Munro (1988). To compare the binding sites, we investi- 
gated the rpsl6 3' RNA using the same mapping tech- 
nique (Fig. 3). Following incubation of TS398 with chlo- 
roplast proteins and subsequent RNase T~ treatment, 
the RNA of the Tl-resistant complex (T1R r s16) was re- 
. 0 P" isolated and analysed on a 20 Vo polyacrylamlde gel. The 
predominant RNA species generated is 38 nt in size 
(Fig. 3A, lane 2). Further T1 digestion of this RNA did 
not lead to smaller fragments, indicating the absence 
of internal G residues within this region (Fig. 3A, lane 
5). The rpsl6 3' sequence in Fig. 3B shows that only 
one 38 nt fragment can be expected after G-specific 
cleavage, indicating that the region 44 nt downstream 
of the rpsl6 3' exon represents the Tl-protected segment 
of TS398. The in vivo 3' end of the rpsi6 transcript 
was previously located within this region by $1 nuclease 
mapping (Neuhaus et al. 1989). 

In experiments similar to that shown in Fig. 3 we 
analysed the RNA of the T~-resistant complex formed 
with the trnH 3' transcript TES358. In contrast to TS398, 
no predominant RNA species, but multiple weak signals 
ranging from 15 to 3 nt in size were detected (data not 
shown). This is in agreement with the weak binding in 
UV crosslinking experiments (Fig. 2B) and indicates a 
more complex interaction that might involve multiple 
protein-binding sites (see Fig. 7). 

Deletion analysis of  the protein binding region within 
TH80/40 

Sequence comparison of the Tl-protected RNA region 
from T1R. Tr with that from T~R ..... shows many con- 
served nucrleotide positions (Fig.~,~). Both sequences 
contain the 7-mer U U U A U C U  as well as a stretch of 
U residues, which in the case of the rpsI6 transcript 
is located immediately upstream of the in vivo 3' end. 
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Fig. 3A and B. RNase T1 mapping 
of the TS398-protein complex. A 
Separation of Tl-resistant RNA 
fragments on a 20% denaturing 
polyacrylamide gel. Lane 1, intact 
TS398; lane 2, isolated T1Rr~sl  6 
RNA; lane 3, 48 nucleotide (nt) 
marker transcript from the pSPT18/19 
polylinker; lane 4, RNase T~ 
digestion products of TS398 ; lane 5, 
RNase Tt digestion product of 
T ~ R  r ~ .  RNA. Fragment lengths p o 
(nt) are given in the right margin. 
Asterisk, 38 nt fragment of the 
T~R .r complex B Nucleotide rpsio 
sequence of TS398, with the bases of 
the polylinker portion indicated by 
lower case letters. The rpsl6 3' exon 
is boxed and potential stem-loop 
forming regions are overlined. The 
mapped 3' end of the rpsl6 in vivo 
transcript (Neuhaus et al. 1989) is 
underlined by the heaw bar. 
Expected RNase T1 cutting sites at 
G residues are marked by arrows. 
The numbers below indicate sizes (nt) 
of the resulting oligonucleotide 
fragments. Asterisk, fragment of the 
T 1 R r p s l  6 complex 

An additional conserved 7-mer motif, UAUAUAG, is 
present in both sequences immediately 5' upstream of 
the T1R region. The cluster of five U residues within 
TH80/40 (Fig. 4A) was previously suggested to be essen- 
tial for the interaction of TH80/40 with chloroplast pro- 
tein(s), since the binding activity with this RNA is 
strongly competed by poly(U) (Nickelsen and Link 
1989). 

To test the possible significance of regions within 
TtRtrnK RNA for protein binding 3' deletion mutants 
of TH80/40 were constructed (Fig. 4B) and their pro- 
tein-binding activity was tested. Deletion of the 18nt 
portion including the U cluster at the 3' side of TiRtrnK 
(A 21) resulted in reduced binding activity in gel retarda- 
tion experiments (Fig. 4C, lane 4) down to less than 
20% of that seen with wild-type THS0/40 (Fig. 4C, lane 
2) and also led to decreased labelling of both the 54 
and 32 kDa protein after UV crosslinking (Fig. 4D, lane 
4). No binding activity at all was observed in gel retarda- 
tion experiments (Fig. 4 C, lanes 6 and 8) with two other 
mutants, one lacking 30 nt of the 3' terminal portion 
of T1RtrnK RNA including the conserved UUUAUCU 
element (A 33), and the other completely lacking the en- 
tire T1RtrnK RNA sequence (A 47). Following UV cross- 
linking, the 54 kDa protein was undetectable, whereas 
there was no further decrease in the intensity of the sig- 
nal at 32 kDa as compared with A 21 (Fig. 4C, D, lanes 
6 and 8). In competition experiments (Fig. 5 A, B), none 

of the three mutant RNAs was found to interfere signifi- 
cantly with the protein binding of TH80/40. These re- 
sults together indicate that the region previously mapped 
by RNase T1 protection (T1RtrnK) indeed corresponds 
to the protein-binding region, and that the 18 nt portion 
at the 3' side of this region contains a necessary signal 
(probably the track of five U residues) for efficient 
RNA-protein interaction. The further decrease in bind- 
ing activity of the mutant RNAs A 33 and A 47 as com- 
pared withA 21 suggests that sequences within the 5' por- 
tion of the T1RtrnK region are also involved in RNA- 
protein interaction. 

The TiRtrnx R N A  region is expressed in vivo 

The protein-binding region of the rpsl6 in vitro 3' tran- 
script (Fig. 3) roughly corresponds to the position of 
the 3' end of the precursor RNA in vivo (Neuhaus et al. 
1989), indicating that the RNA binding protein(s) de- 
tected by UV crosslinking might be involved in 3' end 
formation. In the case of the trnK 3' region, however, 
no evidence for such a correlation between the in vitro 
and in vivo data had previously been obtained. In vivo 
transcript mapping of the trnK region (Neuhaus and 
Link 1987), showed a single 2.8 kb precursor with a 3' 
end approximately 70 nt upstream of the in vitro binding 
region. Using a sensitive RNase protection assay (Sam- 
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Fig. 4A-D. Analysis of trnK 3' RNA deletion mutants. A RNA 
sequence comparison of T1Rrpsl 6 and T1Rt~nK. A single nucleotide 
gap (asterisk) was inserted into the 3' trnK sequence to allow for 
optimal alignment. Conserved nucleotides are marked by vertical 
lines, the UUUAUCU 7-mer is boxed, and U stretches are under- 
lined. Bases within the RNase T~-resistant binding regions are given 
in bold letters. B Sequences of 3' RNA deletion mutants of the 
trnK 3' region (A21, A 33, A 47). Lowercase letters indicate poly- 
linker sequences. C Gel retardation assays (without RNase T~ 
treatment) with either 32P-labelled full-size TH80/40 or 3' deleted 
RNAs. Lanes 1, 3, 5, 7, RNA alone. Lanes 2, 4, 6, 8, RNA incubat- 
ed with chloroplast extract (30 gg protein). Asterisks, RNA-protein 
complexes. D UV crosslinking of chloroplast proteins to TH80/40 
and 3' deleted RNAs. Lanes as in C. Arrows, RNA binding proteins 
of 54 and 32 kDa 
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Fig. 5A and B. Competition binding experiments with trnK 3' de- 
leted RNAs. 32P-labelled TH80/40 was incubated with 300 ng of 
the unlabelled competitor RNAs indicated at the top (see Fig. 4B). 
Visualization of TH80/40-protein complexes (arrows) by gel retar- 
dation (without RNase Tt treatment (A) and UV crosslinking as- 
says (B). Lanes 1, no protein; lanes 2, no competitor RNA 
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brook et al. 1989), we tested whether there might be 
minor trnK transcripts that extend into the T1RtrnK re- 
gion. When the 32P-labelled transcript cTS158 (Fig. 6 B) 
was hybridized to chloroplast RNA and subsequently 
treated with RNases, two resistant fragments of 158 and 
95 nt were detected (Fig. 6A, lane 3), which we're not 
observed after hybridization of cTS158 to Escherichia 
coli tRNA (Fig. 6A, lane 2). These data provide evidence 
that in vivo RNA sequences do indeed exist downs[ream 
of the previously mapped 2.8 kb trnK precursor (Neu- 
haus and Link 1987), which ends shortly after the 3' 
exon and is not detected by the probe used here. The 
95 nt fragment would correspond to a minor trnK tran- 
script ending at approximately the position of the con- 
served 7-met sequence within T1RtrnK. A 158 nt RNA 
fragment would be expected if the entire mustard se- 
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Fig. 6A and B. RNase protection mapping of in vivo transcripts 
spanning the trnK and rpsI6 3' regions. A Following RNA-RNA 
hybridization and treatment with RNase, resistant products were 
separated on a 6% denaturating polyacrylamide gel. Probes, 
cTS158 (lanes 1-3), cTH120 (lanes 4-6), cTS398 (lanes 7-9). Lanes 
1, 4, 7, RNA alone without RNase treatment. Lanes 2, 5, 8, RNA 
probes hybridized to 50 Ixg Escheriehia eoli tRNA and subsequently 
treated with RNase. Lanes 3, 6, 9, RNase-resistant products after 
hybridization to 50 gg chloroplast RNA. B Scheme of the trnK- 
psbA intergenic region. Coding regions are shown as filled boxes. 
The open box marks the T1Rt~,K sequence. Also indicated is the 
psbA promoter ( -35 / -10) .  Arrows, 32p-labelled in vitro RNA 
probes with broken lines representing polylinker sequences. Lines 
below, protected RNA fragments. H, HinfI; Hc, HincII; S, Sinai 
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quence within cTS158 were protected by chloroplast 
RNA and only linker sequences (79 nt) were digested 
by the RNases. This suggests that in vivo at least a 
fraction of the trnK transcripts extends further down- 
strata into the psbA promoter region. 

To analyse whether the region transcribed in vivo pro- 
ceeds even further into the psbA gene, RNA probe 
cTH120 (Fig. 6B) was used in a similar RNase protec- 
tion experiment. Electrophoresis of the nuclease-resis- 
tant products revealed signals at 120 and 50 nt (Fig. 6A, 
lane 6). The latter is likely to reflect the transcript initiat- 
ed at the psbA promoter in vivo, whereas the larger frag- 
ment is of the size expected if there were read-through 
transcripts that cover the entire chloroplast RNA-specif- 
ic portion of the probe. Based on the intensity of the 
two bands in Fig. 6A, lane 6, the fraction of read- 
through transcripts is much smaller than that of tran- 
scripts initiated at the psbA promoter. Likewise, the in 
vivo concentration of transcripts of the trnK-psbA inter- 
genic region is at least one order of magnitude lower 
than that of total trnK precursor transcripts as assessed 
by the intron-specific RNA probe cTBX140 (Nickelsen 
and Link 1989) (data not shown). 

To test if read-through also occurs at the rpsl6 gene, 
we used probe cTS398, which covers the region contain- 
ing the in vivo 3' end of the rpsl6 transcript (Fig. 3 B). 
A single 241 nt nuclease-resistant product was generated 
(Fig. 6A, lane 9), which matches the position of the in 
vivo 3' end, indicating that no significant read-through 
transcripts are present. 

Discussion 

As a step towards defining the mechanisms of transcript 
3' end formation in chloroplasts, we investigated the in 
vitro protein binding activity of transcripts from 3' 
flanking regions of plastid genes, and tried to correlate 
the binding sites with the positions of the mapped 3' 
ends of the corresponding in vivo transcripts. The results 
of our binding assays suggest a close relationship be- 
tween sites of RNA-protein complex formation and au- 
thentic 3' ends for the trnK and rpsl6 transcripts, but 
not for the trnH and trnQ 3' RNAs. The sequence-specif- 
ic RNA-protein interaction evident in gel retardation 
experiments is paralleled by the radioactive labelling of 
a 54 kDa protein in UV crosslinking experiments. Bind- 
ing assays using transcripts of trnK 3' deletion mutants 
indicate that the 54 kDa protein indeed binds to the 
region (T1RtrnK) that was previously shown to interact 
with plastid proteins (Nickelsen and Link 1989). The 
32 kDa protein that also becomes labelled in UV cross- 
linking experiments appears to bind in a sequence-inde- 
pendent way, reminiscent of the 28-33 kDa single- 
stranded DNA binding proteins that have recently been 
purified from tobacco chloroplasts (Li and Sugiura 
1990). 

Sequence comparison of T1RtrnK RNA with the puta- 
tive binding region of the rps16 transcript (T1Rrpsl 6 
RNA) reveals a high degree of nucleotide sequence con- 
servation. Apart from the overall high content of U resi- 

3' trnK 

TTTATCT ............. TqTI'r 
TTTCTGT ............. ' l ' l ' l T f  
TIX~ACT ................ ' l ' l ' lT l ' f  
TTTAT'rT . . . . . . . . . . . . . . . .  T I T I T f  

S.a. (Neuhaus and Link 1987) 
N.t. (Sugita et al. 1985) 
O.s. (Hiratsuka et al. 1989) 
M.p. (Ohyama et al. 1986) 

3' rpsl6 

TTTATCT .... TTTTCTTT S.a. (Neuhaus et al. 1989) 
TTFCTCT .... "l ' l ' l ' l ' l ' l ' f  N.t.(a) 
TITCTAT ..... TTrlTf N.t.(b) (Shinozaki et al. 1986) 
TCTATCT..'I'I'I~TI'ICIT 0.s. (Hiratsuka et al. 1989) 

3' trnH 

TTrCTCT.TTTTT 
TTrCTCT - 40bp -'I'I-I'I-I'I'CCTT~ITr 

S.a.(a) 
S . a . ( b )  ( N i c k e l s e n  and  L i n k  1990)  

3' t r n Q  

~ C T  . . . . . . . . . . . . . . . . . . .  r r r r r r  S . a .  ( N e u h a u s  e t  a l .  1989 ,  
N e u h a u s  a n d  L i n k  1990 )  

Fig. 7. Comparison of plastid 3' flanking regions. From top to 
bottom: DNA sequence elements within the 3' flanking regions 
of trnK and rps16 genes from different species that appear equiva- 
lent to the 7-mer motif and U cluster of T1RtmK/rpsarfrom mustard; 
sequence elements within the Y flanking regions of the mustard 
trnH and trnQ genes, resembling the conserved motifs. S.a. Sinapis 
alba, N.t. Nicotiana tabacum, O.s. Oryza sativa, M.p. Marchantia 
polymorpha 

dues (47.5% for T1R .. and 54.4% for T1R ~. RNA), 
t rnr , .  . . r p s l o  

a notable feature of both regions is the conserved 7-met 
UUUAUCU,  which is followed by a stretch of several 
U residues, whereas conserved secondary structure ele- 
ments appear to be absent. A search for similar con- 
served sequences downstream of the trnK and rps16 
genes from tobacco, rice and liverwort (the latter for 
trnK only) further substantiates the notion that these 
motifs might be functional cis-acting elements (Fig. 7). 
The 3' regions of the mustard trnH and trnQ genes also 
reveal related, but variant, motifs. This might explain 
the different binding efficiencies observed with the latter 
RNAs (Figs. 1 and 2). It has recently been reported 
(Stern et al. 1989) that a 55 kDa spinach chloroplast pro- 
tein is capable of binding to the unprocessed in vitro 
transcript of the petD 3' region. This protein did not 
bind to RNA processed in vitro and therefore was impli- 
cated in the processing reaction itself. Interestingly, the 
sequence U U U C A U C U  followed by a cluster of 6 U 
residues is present within the petD 3' region immediately 
downstream of a conserved stem-loop structure that acts 
as a transcript stabilizing element. 

The in vitro binding regions T~RtrnK and T1R.rps16 
both match the positions of 3' ends mapped in vwo. 
There are differences, however, with regard to the abun- 
dance of the corresponding transcripts. Whereas 
TiRrpsl 6 marks the Y end of the single rps16 precursor 
transcript that was previously defined by nuclease $1 
analyses (Neuhaus et al 1989), T1R_~ does not corre- 

• h . . ~  
spond to the Y end of the major 2.8 kb trnK precursor, 
which was shown to end shortly after the trnK 3' exon 
(Neuhaus and Link 1987; Boyer and Mullet 1986). We 
were able to detect the minor transcript 3' end within 
T1RtrnK only by RNase protection mapping, which is 
more sensitive than the $1 assay by at least one order 
of magnitude (Sambrook et al. 1989). Although ineffi- 
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cient transcription of  this region cannot  be excluded, 
the low concentration of  trnK 3' R N A  sequences is more  
likely to be the result of  rapid processing. The degrada- 
tion of  3' sequences after endonucleolytic cleavage at 
the 3' exon appears  to be a general mechanism in the 
precursor processing of  chloroplast  t R N A  genes (Yama- 
guchi-Shinozaki et al. 1987; Wang et al. 1988; Marion- 
Poll et al. 1988). 

An unexpected result of  the RNase  protection assays 
in our present work is that a fraction of  trnK transcripts 
appears to extend further downstream beyond the 
T1RtrnK region into the psbA coding region, suggesting 
cotranscription of the two genes. We were not able to 
detect a band of  the size expected for the dicistronic 
transcript (at least 4.3 kb) in Nor thern  experiments using 
cTS158 as hybridization probe (data not shown). Ob- 
viously, however, this failure could have been due to 
low transfer efficiency and/or  instability and does not 
preclude the existence of  such a transcript. 

An interesting consequence of the read-through tran- 
scripts detected by the RNase  protection assay is that  
at least two psbA transcripts with different 5' leader re- 
gions exist in vivo. Multiple R N A  5' ends have been 
reported for a number  of  chloroplast  genes (Crossland 
et al. 1984; Poulsen 1984; Mullet et al. 1985; Hanley- 
Bowdoin et al. 1985; Rock etal .  1987; Tanaka et al. 
1987; Westhoff  and Her rmann  1988; Neuhaus etal .  
1989; Haley and Bogorad 1990). Evidence has been pre- 
sented that  the 5' region of  chloroplast  m R N A  contains 
the target site for a translational activator (Rochaix et al. 
1989), and it has been suggested that  different 5' termini 
might be involved in the regulation of  plastid transla- 
tion. Indeed with regard to the psbA gene, much of the 
control of  its expression appears  to occur at the transla- 
tional level (F romm et al. 1985; Klein and Mullet 1986, 
1987; Deng and Gruissem 1987; Gamble  and Mullet 
1989). 

Recently, Callahan et al. (1990) reported the existence 
of a novel form of the psbA gene product.  This minor  
form of the 32 kDa  D1 protein, called 32 *, has a slightly 
different mobili ty on SDS-polyacrylamide gels and dif- 
ferent in vivo turnover rates. The authors suggested that  
32* might originate f rom conversion of  one form of  
the protein into the other. However,  in view of  our 
RNase  protection data, another  possible explanation 
would be that  the two versions of  the D I  protein might 
be the result of  different transcription and R N A  matura-  
tion pathways and hence each may represent a distinct 
translation product.  It  will be interesting to test this pos- 
sibility by using appropr ia te  in vitro systems. 
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