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M a t e r i a l  s y m m e t r y  imposes  ce r t a in  r e s t r i c t ions  on t h e  fo rms  of  t h e  r e sponse  

func t ions  or  func t iona l s  wh ich  a p p e a r  in c o n s t i t u t i v e  equa t i ons .  I f  a t enso r -  

v a l u e d  re sponse  f u n c t i o n  or  f u n c t i o n a l  sat isf ies  t h e  m a t e r i a l  s y m m e t r y  r equ i r e -  

m e n t s ,  t h e n  i t  m u s t  be  r e p r e s e n t a b l e  in a ce r t a in  c a n o n i c a l  fo rm.  I n  P a r t  I a 

c a n o n i c a l  f o r m  is d e r i v e d  for r e sponse  func t ions ,  a n d  in P a r t  I I  an  ana logous  

r e p r e s e n t a t i o n  is d e r i v e d  for response  func t iona l s .  T h e  r e p r e s e n t a t i o n s  are  c o m -  

p le te  a n d  genera l ,  in t h e  sense  t h a t  no  e x t r a n e o u s  a s s u m p t i o n s  conce rn ing  con-  

t i n u i t y  of  t h e  func t ions  or  func t iona l s  a re  used.  T h e  g e n e r a l  r e p r e s e n t a t i o n  

t h e o r e m s  are  v a l i d  for t e n s o r - v a l u e d  response  func t ions  or  func t iona l s  of  a r b i t r a r y  

r ank ,  d e p e n d i n g  on  an  a r b i t r a r y  n u m b e r  of tensors ,  o r  t e n s o r - v a l u e d  func t ions ,  

r e spec t i ve ly ,  of a r b i t r a r y  ranks ,  a n d  for a n y  g r o u p  of m a t e r i a l  s y m m e t r i e s  wh ich  

is a s u b g r o u p  of  t h e  o r t h o g o n a l  group .  
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P a r t  I.  F o r m - I n v a r i a n t  R e s p o n s e  F u n c t i o n s  

1. Introduction 

A central problem in the formulation of constitutive equations is to find 
the effect of material symmetries in restricting the forms of response functions. 
Due largely to the efforts of RIVLIN and his co-workers, this problem may be 
regarded as solved, in the sense that  standard techniques for deducing the 
implications of symmetry are known. However, the simplest and most widely 
used method involves the assumption that  the response functions are poly- 
nomials. In the present paper, we show that  the polynomial assumption is not 
essential to the technique motivated by it. Without any a priori assumption 
about the nature of the response functions, the restrictions imposed by material 
symmetries can be found by the polynomial technique. 

The relevant theorem has been proved in an earlier work [11., but  only 
for materials with a finite group of symmetries (i.e. crystals). In the present 
paper, we extend this theorem to include those continuous groups which char- 
acterize the symmetries of isotropic and transversely isotropic materials. 

The general problem which we consider is the following. Some physical 
property of a given material is described by the dependence of a tensor X on 
a number of other tensors hb I~) (v = t, 2 . . . . .  N) : 

x = I  (~1> . . . . .  O/N>). (1. t ) 

That  is, the components Xil...~, of X in a Cartesian coordinate system x are 
assumed to be functions of the components ,1#) . of the tensors ~b (~) in that  

"r h . . .  *'r (v) 

same system: 
Z~,... i, =/i,... r (~,)... p, (o) �9 (1.2) 

In a second Cartesian coordinate system ~, the components of ~b (0 are given by 

~(0 . = R . .  R .  �9 ,1#1 . (1.3)  
~ l . . - t r ( ~ )  ' 1 1 1  " " " tr(v)lt '(v) T ' ] I . - . ] r ( ~ ) '  

where the matr ix 1~= tlR,;H is orthogonal: 

RikR ik  = R~ iRk i---- ~ii .  (1.4) 

If the transformation with matrix R is a symmetry of the material, then the 
components /i,...~, of the tensor-valued response function [ must satisfy the 
relations 

/,,...,, (~...p,,,)) ----R,,A ... R,,#/A...# (W~)...p,,,,) �9 (1.5) 

I f [  satisfies (I .5) identically in the tensors hb (~) (v = r 2, . . . ,  N) ,  for each matr ix /~  
belonging to the group of symmetries of the material, we shall call [ [orm-invariant 
under the group considered. The property of form-invariance implies a restric- 
tion on the form of [. The problem is to find the most general form which this 
property allows. 

If attention is limited to solutions in which I is a polynomial (i.e. the com- 
ponents of I are polynomials), the general solution can be obtained in the follow- 
ing way ([1], [2]): First, introduce an auxiliary tensor q~ of rank r, the rank 

�9 Numbers in square brackets indicate references at the end of the paper. 
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of f. (It  may be convenient to let ~o be an outer product of tensors q~(~) ( # =  
t, 2 . . . . .  M) of total rank r. In that  case, the following description must be 
appropriately modified.) Second, calculate the elements of a finite integrity 
basis for polynomials in the components of q~ and ~b (~) (v = 1, 2 . . . . .  N) which 
are invariant under the group considered. Third, single out those elements I~ 
(~ = 1, 2 . . . . .  A) which are functions of ~b (~) (v = t, 2 . . . . .  N) only, thus forming 
an integrity basis for invariants of these tensors. Fourth, select those invariants 
J~ ( f l - - t ,  2 . . . . .  B) which are linear in the components of rp. Each such in- 
variant is of the form 

= , ,  . . . . .  ( t  .6} 

where the components /!~!..~, of j'(~) are polynomials in the components of the 
indicated tensors. The tensor-valued function [Is) is form-invariant, i.e. it satis- 
fies (1.5). We call the functions I (~) (fl = 1, 2 . . . . .  B) basic/orm-invariant tensors. 
Then, every form-invariant polynomial I is a linear combination of the basic 
form-invariant tensors f(~), with coefficients p~ which are polynomials in the 
elements of the integrity basis I~ (c~ = l, 2 . . . . .  A): 

B 
f = ~ pl 5 ( I  1 . . . . .  IA ) i(fl) (tj~(1) . . . . .  ~(N)) , (~ .7) 

~=1 

Conversely, for every choice of the coefficients p~, the polynomial I defined 
by  (1.7) is form-invariant. We call (t.7) the polynomial canonical/orm. 

The technique just outlined has been used, with one variation or another, 
in applications to a variety of specific constitutive equations and material sym- 
metry  groups (see, e.g. [3]--[9]). The method is probably best understood by 
studying these specific examples. I t  is evident that  the only possible difficulty 
involved in carrying out this procedure lies in the second step, where calculation 
of an integrity basis is required. This difficulty is alleviated by the fact that  
there exist standard tables of basic invariants for the cases most frequently 
encountered. The following list of such tables may be helpful. On this list, 
tensor means symmetric second-rank tensor. 

Symmetry Variables Source 
Crystal Classes t vector, 1 tensor SMITH, SMITH & RIVLIN EIO] 
Crystal Classes M vectors SMITH & RIVLIN Ill] 
Orthotropy N tensors ADKINS [12] 
Transverse Isotropy N tensors ADI~INS E12] 
Transverse Isotropy M vectors, N tensors ADI~INS [13] 
Isotropy N tensors SPENCER & RIVLIN [14], E15], 

SPENCER E16], RIVLIN [17] 
Isotropy M vectors, N tensors SPENCER & RIVLIN [18]. 

Few form-invariance problems arising from specific constitutive equations 
and material symmetry groups have been solved without making use of the 
assumption that  the response functions are polynomials. In the present paper 
we are concerned with the general solution of the form-invariance relations (t. 5), 
with no a priori restriction of any kind on f. We shall show that  the general 
solution is obtained from the polynomial canonical form (t.7) merely by  re- 
moving the stipulation that  the coefficients pp are polynomials. That  is, with 
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the definitions introduced earlier, every /orm-invariant tensor-valued /unction if 
is a linear combination o/ the basic /orm-invariant tensors if(~) (fl = 1, 2 . . . . .  B), 
with scalar coe//icients F a which are/unctions o/the elements o /an  integrity basis: 

B 

if = 2~ Fa (Z~, . . . ,  G )  ifc~ (r . . . . .  r (t.s) 
/~=lt 

Conversely, /or every choice o/ the/unct ions F~, the/unction if so defined i s /orm-  
invariant. Thus, (1.8) furnishes a canonical representation for solutions of the 
material symmetry problem. 

The proof of this canonical representation theorem is lengthy, although 
largely elementary and self-contained. Any facts about group theory which 
are required, excepting the most trivial, are mentioned in Section 2. The simplest 
relevant concepts in invariant theory are defined in Section 3. In Section 4 
we prove two theorems characterizing functional bases. 

In the special case in which if is a tensor of rank zero, the canonical represen- 
tation theorem reduces to the statement that  an integrity basis is a/unctional 
basis. This result, which is explained and proved in Sections 5 and 6, will be 
used as a lemma in proving the general theorem. 

The proof of the general theorem is outlined in Section 7 and carried out 
in Sections 8 to t 1. 

2. Notation and Preliminary Remarks 

Since we shall not be concerned with the number or ranks of the tensors 
~b C~) in (t. 5), it is possible and convenient to use an abbreviated system of notation. 
Let  the collection of components ~o!;!..i,~v~ (v = 1, 2 . . . . .  N) be arranged in some 
sequence and renumbered with a single index as ~1, ~v2 . . . . .  lye. We denote this 
sequence by the symbol q .  The collection of components ~!~!..#,v, (v = 1, 2 . . . . .  N) 
in the system ~ can be arranged in a corresponding sequence, denoted by ~ .  
For brevity, we shall refer to q~ as a tensor, rather than a collection of components 
of various tensors. Alternatively, since it is convenient to think of the components 
~v i (i = 1, 2, . . . ,  n) as coordinates in an n-dimensional space, we shall often refer 
to ~ as a point. Particular choices of t~ will be labeled with a superscript, as 
for example t~ ~ t~ 1, etc. 

Similarly, the functions /i,...~, in (1.5) are renumbered with a single index 
a s /1 , / 2  . . . . .  /m, and this sequence is denoted by  if. If we say that  if (or some 
similar sequence of functions) is a polynomial, we mean that  its components 
are polynomials. 

The relation (1.3) between the components of ~ and the components of t~ 
can be written as 

~ =  ~ S~j~j (i=1, 2 .. . . .  n). (2.t) 
i=1 

Each element of the matr ix S =  I]S~j]] is a product of elements of the matr ix R 
which appears in (t.3). The relation (t.5) can be written as 

/i(~) = ~, Tii/i(t~) (i = t,  2 . . . . .  m), (2.2) 
i = l  

Arch. Rational Mech. Anal., Vol. t7 t4  
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where each element of T=[ITi/][ is also a product of elements of R. The two 
relations (2.1) and (2.2) can be abbreviated still further as 

~ = S t ~  and I(~)=TI(q~), (2.3) 
respectively. 

The symmet ry  groups which concern us are the 32 crystal point groups and 
the continuous groups which describe the symmetries of the various types of 
isotropic and transversely isotropic materials. There axe two groups associated 
with isotropy, the full and proper orthogonal groups. Under the heading of 
transverse isotropy, there are four groups, differing from one another in their 
reflectional symmetries. Each of the four groups contains the group of rotations 
about a fixed axis as a subgroup. The four cases arise from the fact tha t  the 
material  may,  or may  not, be symmetric under reflections in planes perpendicular 
to the symmet ry  axis, and also may,  or may  not, have reflectional symmet ry  
in planes containing the symmet ry  axis. Whenever we speak of a symmet ry  
group, we shall mean one of the groups just mentioned. 

In the case of a crystal symmet ry  group, there are a finite number of sym- 
metries of the material. These symmetries can be numbered with a parameter  4 
which takes a finite number  of values. In  the case of the group of rotations 
about one axis, the group elements can be numbered with a continuous index ;t 
representing the angle of rotation. For hemihedral isotropic materials, the group 
elements can be numbered with, say, the Euler angles of the rotation. Although 
there are three such angles, we denote the set of all three variables by  the 
one symbol ~. In groups involving reflectional symmetries as well as a continu- 
ous subgroup of rotational sylmnetries, the group elements should be numbered 
with both a discrete and a continuous parameter.  In such cases we shall continue 
to use the single symbol 4 to denote the set of all such variables. In every case, 
R(2), S(4) and T(4) will denote those matrices (appearing in (1.3) and (2.3)) 
which correspond to the symmetry  numbered 4. 

The set of matrices S (4) is an n-dimensional representation of the symmet ry  
group considered, and the matrices T(4) form an m-dimensional representation. 
I t  follows from their definition that  these matrices, like R (4), are orthogonal, i.e. 

S(4) S r ( 4 ) = I  and T(4)TT(~)=I. (2.4) 

Here S r and T r are the transposes of S and T, respectively, and I is the unit 
matr ix  in the appropriate number of dimensions. 

The domain of each variable in the set 2 can always be taken to be a finite 
number of closed and bounded intervals. (For example, 0_<2_<2~ for the two- 
dimensional rotation group.) That  is, the domain of 2 is compact. When we 
speak of all values of 2, we shall mean all values in that  compact set which is 
appropriate to the group considered. 

The elements of the orthogonal matr ix  R (2) are continuous functions of the 
variables denoted by  2. This is trivially true in those cases in which ;t takes 
only a finite number  of values. Since the elements of the matrices S (2) and 
T(4) are products of elements of R (2), they too are continuous functions of 2. 
As continuous functions defined on a compact set, they are uniformly bounded. 
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In fact, it is easily seen from the orthogonality of these matrices that  

IR i j ( ) t ) ]~ l ,  ]Sii()t)l<=t and ]Tii()t)]<:l. (2.5) 

We shall have occasion to use the process of integration (or summation) 
over all group elements. This Hurwitz integration is discussed by  WIGglER ([19], 
p. 98), for example. The Hurwitz integral of a function g ()t) will be denoted by 

f g()t) d)t. (2.6) 

We shall take the integral to be normalized in such a way that  

fd) t=t .  (2.7) 
When )t is a discrete parameter, the integral is to be interpreted as a sum over 
all values of )t, divided by the number of group elements in order to satisfy 
(2.7). In such cases, it is easy to see that  for any )t0, the following relation is 
satisfied: 

f g [S ()t) S (20)0] d)t---- f g [S ()t)03 d 2. (2.8) 

For, the set of matrices S ()t)S ()to) obtained by letting )t take all values is the 
same as the set S ()t), and thus the argument of g runs over the same set of 
values in each of the sums in (2.8). For continuous groups, the integral is defined 
in such a way that  (2.8) still holds. We note in passing that  if the integrand 
g[S() t )0  J is a polynomial in the components of S()t)O, then the integral is a 
polynomial in the components of 0-  

Nothing in the discussion to follow depends upon which finite or continuous 
material symmetry group we consider. We suppose that  the group is fixed once 
and for all. 

8. Invariants. Definitions 
Given a tensor 0 ,  the tensors S() t)0 which can be obtained from it by 

transformations of the group will be called equivalent to 0 .  We observe that  
since the matrices S ()t) form a group, the tensors which are equivalent to 0 
are equivalent to one another. 

The set of tensors equivalent to 0 will be called the orbit of 0 .  The orbits 
of two tensors 0 o and 01 either coincide or have no points in common, depending 
on whether 0 o and 01 are equivalent or not. In the case of a continuous group, 
one can think of an orbit as one or more closed curves or surfaces in the space 
of points 0-  In the case of a finite group, an orbit consists of a finite number 
of points. Since the group parameter )t ranges over a compact set, and the 
elements of S (2) are continuous functions of )t, then the points S ()t) 0 0 of the 
orbit of 0 0 form a compact set in the space of points 0 .  

An invariant of 0 is a scalar-valued function F ( 0  ) such that  

F ( S 0 )  = F ( 0 ) ,  (3.t) 

for every 0 and every S in the group considered. Thus, an invariant is a func- 
tion which takes equal values at equivalent points. Invariants are functions 
which are constant on every orbit. In effect, an invariant is a function which 
assigns a number to each orbit. 

14" 
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A set of invar iants  H1(%5 ) . . . . .  Hg(%5) is called a /'unctional basis if every  
invar ian t  F(%5) can be expressed as a funct ion of the  invar iants  H 1 . . . . .  Hs.. 
The  not ion of a functional  basis will be examined  in more  detai l  in Section 4. 

B y  a polynomial in %5, we mean  a polynomial  funct ion of the  components  
of %5. B y  a polynomial invariant we mean  an invar ian t  which is a polynomial .  
An integrity basis is a set  of polynomial  invar iants  11 (%5) . . . . .  I a (%5) such t ha t  
every  polynomial  invar ian t  can be expressed as a polynomial  in the  invar ian ts  
I~@) (~--1, 2 . . . .  A). In  Sections 5 and  6 we shall p rove  t h a t  an in tegr i ty  
basis is a functional  basis. 

4. Criteria Characterizing Functional Bases 

In  the  present  section we prove  two theorems character iz ing funct ional  bases. 
These results were s ta ted  in an earlier paper  [1] wi thout  detai led proof. The  
theorems give cri teria for determining whether  or not  a given set  of invar iants  
forms a functional  basis. The  first cri terion will be  used in Pa r t  I I  of the  present  
paper .  The  second criterion will be  applied in Section 5, in showing tha t  an 
in tegr i ty  basis is a funct ional  basis. 

In  order /or a set o/ invariants H 1 . . . . .  H K to /orm a /unctional basis, it is 
necessary and su//icient that/or every choice o/%5o, the/ollowing system o/ equations 
is saris/led only by those tensors %5 which are equivalent to %5o: 

H~ (%5) = H~ (%5~ (z----1, 2 . . . . .  K) .  (4A) 

To prove  this, first suppose t h a t  the  invar iants  H 1 . . . . .  H K form a func- 
t ional  basis. Le t  %5 be a tensor  which is not  equivalent  to %5% so t h a t  the  orbits  
of these tensors are distinct.  Le t  Q be an invar ian t  whose value on the  orbi t  
of %5 is different f rom its value on the  orbit  of %5o. B y  hypothesis ,  Q can be 
expressed as a funct ion of the  invar iants  H 1 . . . . .  H K. Hence,  the  equat ions 
(4.t) cannot  all be  satisfied. T h a t  is, the sys tem (4A) is not  satisfied b y  ten-  
sors %5 which are not  equivalent  to %50. 

Conversely,  suppose t h a t  the  sys tem (4.1) is satisfied only b y  those tensors 
%5 which are equivalent  to %50, regardless of how %5 o is chosen. Then  one and  
only one orbi t  is de te rmined  b y  a set  of values H~ (%5o) (~ = t ,  2 . . . . .  K).  Any  
funct ion which assigns values to  orbits  can be expressed as a funct ion of those 
var iables  H 1 . . . . .  H K which specify the  orbit.  Thus,  any  invar ian t  can be ex- 
pressed as a funct ion of the  invar iants  H 1 . . . . .  H g ,  which therefore form a 
funct ional  basis. 

A slightly different criterion can be obta ined  f rom the preceding one. In  
order/or a set o/invariants H 1 . . . . .  Hg to/orm a/unctional basis, it is necessary 
and su//icient that /or every choice o/ inequivalent tensors %50 and %51, there is a 
/unction Q (H 1 . . . . .  HK; %50, %51) which takes di//erent values on the orbits o/ %5o 
and %51: 

Q [H 1 (%5o) . . . . .  HK (%50) ; %5% %51] # Q [n  1 (%51) . . . . .  HK (%51) ; %5% %51]. (4.2) 

We call such a funct ion Q an orbit-separator. 
I f  the  invar iants  H 1 . . . . .  H g form a functional  basis, then  b y  the  first  cri- 

terion above,  a t  least  one of these invar iants  can be used as an orb i t - separa tor  Q. 
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To prove the converse, suppose now that  for every choice of inequivalent tensors 
4 o and 41, there is a function Q satisfying (4.2). From (4.2) it follows that  there 
is some invariant H~ which fails to satisfy (4.t) when 4 = 4 1 .  Since 41 is any 
tensor inequivalent to 4 ~ then the system (4.1) is not satisfied by tensors 4 
which are inequivalent to 4 ~ Hence, according to the first criterion, the in- 
variants H 1 . . . . .  HK form a functional basis. 

5. Integrity Bases as Functional Bases 

We now show that  an integrity basis is a Junctional basis. Let I~ (~r = 1,2 . . . . .  A) 
be an integrity basis. Let 4 o and 41 be inequivalent tensors. We shall construct 
a polynomial Q in the invariants I~ (~r = t, 2 . . . . .  A) which distinguishes the orbit 
of 4 o from that  of 41 , i.e. 

Q [I, (40) . . . . .  za (4o); 4o, 41~ + 9 [I1 (41) . . . . .  Ia (4~); 4o, 4 ~ .  (5.t) 

According to the second criterion in Section 4, this is all that  is required in 
order to prove that  the invariants I~ (e = 1, 2 . . . . .  A) form a functional basis. 

The details of the construction of a polynomial orbit-separator Q will be 
carried out in Section 6, along the following lines. We first define the distance 
D (4, 4 ~ from 4 0 to 4 .  In terms of this distance, we define a measure D*(4;  4 ~ 
of the distance from 4 o to the orbit of 4 .  D* is shown to be a continuous 
function of 4 .  I t  can accordingly be approximated as closely as desired, over 
a compact set containing the orbits of 4 o and 41, by a polynomial in 4 ,  P ( 4 ;  
4~ From P, a polynomial invariant P * ( 4 ; 4 ~  is constructed by Hur- 
witz integration. P* is also a good approximation to D*. Because P* is a 
polynomial invariant, it can be expressed as a polynomial Q in the elements 
of an integrity basis. Since the distances from 4 0 to the orbits of 4 o and 4 ~ 
are different, and since Q is approximately the distance from 4 o to the orbit 
of 4 ,  it will satisfy (5.1). This will complete the proof that  an integrity basis 
is a functional basis. 

6. Construction oJ a Polynomial Orbit-Separator 

We begin by defining the distance D (4, 4 ~ from 4 to 4 o : 
n 

(6.~) 
= ~(4 - 4 ~  �9 ( 4  - 4 ~  ~. 

This distance is a continuous function of 4 .  Recalling from Section 3 that  the 
set consisting of the points S (~)4 (the orbit of 4)  is compact, it follows that  
on this set D attains a minimum. Thus, we can define the distance from 4 o 
to the orbit of 4 by 

3 * ( 4 ;  4 0) = minO[S  (,~) 4 ,  4~ �9 (6.2) 

We note that  D* has the following properties: 

t) D * ( S 4 ; 4 ~ 1 7 6  (6.3) 

2) D*(S4~ 4 ~ = 0, (6.4) 

3) 0 * ( 4 ; 4  ~ > 0 if 4 is not equivalent t o 4  o. (6.5) 
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To prove property l), that  D* is an invariant of d/, we first note that  since 
S (2) S varies over all transformations of the group when S (2) does, then S (2) Sd/ 
varies over all the points of the orbit of d/ when S(2)d/ does. With this ob- 
servation, (6.3) follows directly from (6.2). By the definition of D, the minimum 
value which D takes on any orbit must be non-negative. With this in mind, 
properties 2) and 3) follow from (6.2) and the fact that  D vanishes only at 
d/=d/~ 

We now prove that  D*(d/;d/0) is a continuous function of d/. To prove 
continuity at an arbitrary point d/=d/l ,  we shall show that  D (d/, d/i) -+0 implies 
that D*(d/; d/~ d/e). First, the triangle inequality yields 

D IS (2) d/, d/0] < D IS (2) d/, S (2) d/l] _}_ D IS (2) d/l, d/o]. (6.6) 

Since S(2) is an orthogonal matrix, it follows from (6.t) that  

D [S (2)d/, S (2)d/i] = D (d/, d/i). (6.7) 

By using (6.7) in (6.6) and making use of the definition (6.2) of D*, we obtain 

D*(d/; d/o) ~ D (d/, d/l) + D*(d/1; d/o). (6.8) 

Since the same inequality holds with d/ and d/1 interchanged, we have 

[D*(d/; d/o) _ D,(d/x; d/o)] < D (d/, ~4J1). (6.9) 

This inequality implies that D*(d/; d/0) is continuous at d/=d/x. 
To begin the next step in the construction of the polynomial orbit- separator, 

let t~b I be a tensor which is not equivalent to d/0. According to (6.5), we have 

D.(d/1; d/0)=D' (say), D ' >  0. (6.t0) 

Let C be a compact domain containing the (compact) orbits of d/o and d/1. Since 
D*(d/;d/~ is a continuous function of d/, then according to the Weierstrass 
theorem, we can approximate it arbitrarily well in the compact domain C by 
a polynomial in d/. Thus, there is a polynomial in d/, p(d/;d/o, d/l), such that  
for all d/ in C, 

ip(d/; d/o, q$1) --D*(d/; d/~ < �88  (6.11) 

From P we can construct a polynomial invariant in d /by  Hurwitz integration : 

p,(q$ ; d/o, d/l) = f P [S  (2)d/; ~J~~ d/l] dZ. (6.t2) 

That P* is an invariant follows from property (2.8). P*, like P, approximates 
D* well enough to take different values at d/o and d/l: 

p,(d/o; d/0, d/l) :~= p,(d/1, d/0, d/l). (6.13) 

To prove this, we first note that  since D* is an invariant, we can write 

D* (d/; d/o) = f D* IS (2)d/; d/o] d 2. (6.14) 

Then, from (6.12) and (6.t4) we obtain 

Ip,(d/; d/o, d/i) _ D,(d/; d/o) l < f IP[S (2)d/; d/~ d/l] _ D* IS (2)d/; d/~ d 2. (6. t5) 
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Let q~ be a tensor whose orbit is in C, so that  (6.tt) is valid with ~ replaced 
by ;S(2)~b. Then, by using the bound (6.tl) on the integrand in (6.15), and 
recalling that  the integral is normalized according to (2.7), we obtain 

[ P *  (q# ; t~ 0, tJ~ 1) - -  D *  ( ~ ;  q#~ < 1 D' .  (6. t 6) 

Since the orbits of ~b ~ and ~b 1 are in C, (6.t6) is valid when ~b takes either of 
these values. Since D* vanishes at ~b----~b ~ and takes the value D' at ~b=~b 1, 
it follows from (6.t6) that  P* takes different values at these two points. 

Because P* is a polynomial invariant, it can be expressed as a polynomial 
Q in the elements of an integrity basis I~(d~) ( ~ = t ,  2 . . . . .  A): 

P*(~b; ~b ~ q~l) = Q EI 1 (~b) . . . . .  I A (~b); ~b o, q~]. (6.17) 

The inequality (6.t3) guarantees that  the values of Q at q~=~b ~ and q~=q~ are 
not equal. Hence, Q satisfies the condition (5.t) demanded of an orbit-separator. 

7. Canonical Representations/or Form-Invariant Tensor-Valued Functions 

We return now to the main problem under consideration, which is to show 
that  every form-invariant tensor-valued function ~ can be expressed in the 
canonical form (t.8). In the present notation, the form-invariance requirement 
(1.5) (or (2.3)) takes the form 

]'VS (4)kb] = T(~) I(~b). (7.1) 

It  should be recalled that  as 2 varies over all values in its domain, S (4) varies 
over all matrices in a certain representation of the group, and T(2) varies over 
all matrices in another representation. For [ to be form-invariant, (7.t) must 
be satisfied identically in t~ and 2. 

The canonical form (1.8) involves the basic form-invariant tensors [(8) (/5= 
1, 2 . . . . .  B), which are defined in Section t. It  is known ([1], [23) that  these 
functions are indeed form-invariant, i.e. 

I ~ Es (~)ql = T(4)I  ~ (q). (7.2) 

It  is also known that  every form-invariant polynomial p* can be expressed in 
the polynomial canonical form (t.7): 

B 

p*(•) = X Pa (rl . . . . .  •) I ~ (q).  (7.3) 
8=1 

Here the coefficients Pa (/5 = l, 2 , . . . ,  B) are polynomials in the elements I~ 
(x = t, 2 . . . . .  A) of an integrity basis for invariants of hb. 

The canonical form (a.8) is, in the present notation, 

B 

I(q,) = Y F~(Zl . . . . .  h )  I (a~ (q,), (2.4) 

where the coefficients Fp are scalar-valued functions of the indicated invariants. 
A function of the form (7.4) is form-invariant, whatever the functions F~ may 
be. This can be verified immediately, by using (7.2) and the fact that  the func- 
tions I~ (~-= 1, 2 . . . . .  A) are invariants. 
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In Sections 8 to 1t we will show that  every [orm-invariant /unction [ can 
be expressed in the canonical/orm (7.4). 

The proof will proceed along the following lines. The main idea is that  al- 
though we assume nothing about continuity of the components of if, the form- 
invariance condition (7A) itself implies that  jr varies continuously along each 
orbit. That  is, [ can change discontinuously only as ~ moves from one orbit 
to another. I t  is then possible to find a polynomial p which approximates [ 
on a given orbit, the orbit of ~0, say, with an error which is uniformly small. 
We shall make these statements more precise, and prove them, in Section 8. 

From the polynomial p we can construct a form-invariant polynomial p* 
which also approximates [ on the orbit of ~o (Section 9). Because p* is a form- 
invariant polynomial, it can be expressed in the polynomial canonical form (7.3). 
Thus, jr can be approximated as closely as desired, over the orbit of d~ ~ by  a 
linear combination of the basic form-invariant tensors [la). I t  follows that  on 
the orbit of ~0, jr is exactly a linear combination of the tensors fa). This will 
be proved in Section 10. 

Finally, we consider the manner in which jr can vary  as the orbit changes. 
By using the fact that  dependence on the orbit amounts to dependence on those 
invariants I~ ( ~ = t ,  2 . . . . .  A) which determine the orbit, in Section t t  we will 
complete the proof that  jr can be expressed in the canonical form (7.4). 

8. Continuity Along an Orbit; Polynomial Approximation 
Since T(;t) is continuous with respect to ;t, the right-hand side of (7.t) is 

continuous in ;t, and therefore so is [IS(;t)~b~. A stronger result is needed, how- 
ever. We show that  along a given orbit, [ (~ )  is a continuous function of ~b. 
That  is, if a sequence of points {d~ k} (k = t,  2 . . . .  ) lies on the orbit and approaches 
a limit ~o, then the sequence { / (~)}  (k = t, 2 . . . .  ) approaches the limit [(Up~ 

Because each orbit is compact, the limit d~ 0 must lie on the same orbit as 
the points {d?k}. Then, for each point ~b k there is at least one value ;tk such that  

= s q o. (8.t) 

Convergence to the point ~o can be expressed as 

(8.2) 

Since there may be more than one transformation which takes d? ~ into itself, 
S (;tk) need not approach the identity, and the sequence {;tk} need not be con- 
vergent. However, the sequence {;tk} must have one or more limit points since 
the values ;tk belong to a compact set. Let ;t o be one such limit point, and let 
{;t~} be a subsequence converging to ;to. Then by using (7A) twice, and making 
use of the continuity of T(;t), we find that  

I IS (;t~) ~~  3 = T(;t~) I ( ~  ~ -+ T(Z0) I(q~ ~ = I  E S (;to) q~~ (8.3) 

Since S (;t) is continuous, we know that  

S (;t~)q~ (2o) hb ~ (8.4) 

Comparison of this result with (8.2) shows that  

s (ao) o =q o. (8.5) 
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By using this result in (8.3) we obtain 

l [ S  (2~)0~ -~I(0~ �9 (8.6) 

Since this result is independent of the particular limit point 2 0 chosen, then 

I [ s (L) 0~ -+I (0~  �9 (8.7) 

The statement that  (8.2) implies (8.7) is the required statement of continuity. 
Since the orbit of 0 ~ is compact and if(W) is continuous along the orbit, it 

follows from the Stone-Weierstrass theorem that if can be approximated arbitrari- 
ly well along this orbit by  a polynomial in 0-  That is, given 0 o and s >  0, there 
is a polynomial in 0 ,  denoted by p (0;  0 ~ ~), such that for all 2, each component 
Pi (i = t, 2 . . . . .  m) satisfies 

I/, Is  (2)0~ - p, [ s  (2)0o; 0 0, ~]l < ~- (8.8) 

The argument 0 o is included in p ( 0 ; 0  ~ ,) as a reminder that the form 
of p depends upon which orbit is considered. This polynomial will not necessarily 
be close to if on any other orbit. In order to approximate if on an orbit which 
is distinct from that of 0 ~ a different polynomial must be used. With this 
clearly in mind, we will abbreviate p ( 0 ; 0  ~ 8) as p (0;  s) in order to simplify 
the notation. 

9. Form-Invariant Polynomial Approximation 
We now construct a polynomial in 0 ,  denoted by  P*(O; e), which is form- 

invariant, i.e. 
p*[S  (2)0; e] = T(2)p*(0;  s), (9.t) 

and which furnishes a close approximation to if over the orbit of 0 ~ That is, 
for all 2 and i = 1, 2 . . . . .  m, the component p* satisfies 

[ t, Is  (2) 0 o] - p* Is (4)0 0; 811 < ~. (9.2) 

The polynomial p* is defined in terms of the polynomial p in (8.8) by the 
Hurwitz integral 

P*(0 ;  ~) = f TT (2)p IS (2)0; , /m 2] d 2, (9.3) 

where TT(2) is the transpose of T(2). We shall verify that if p* is defined in 
this way, then (9.1) and (9.2) are satisfied. 

First consider (9.t). From (9-3) we obtain 

p* IS (2) 0 ;  8] ---- f T r (2') p IS (2') S (2) 0 ;  q m~] d 2' 
(9.4) 

---- T(2) f IT(2') T(2)1T p [S  (2') S (2)0; e/mZl d 2', 

where we have used the orthogonality condition (2.4) for T(2). From the de- 
fining property of Hurwitz integration, it follows that the integral in the final 
member of (9.4) is the same as the integral in (9.3). Thus, by  using (9.3) in 
(9.4), we obtain (9.t) as desired. 

To prove that  the inequality (9.2) is satisfied, we first consider the difference 
between if and p* at the point 0 = 0  0. We note that  

if (0 o) = f i t  (0 o) d 2 = f T r (2) if IS (2) 0~ d 2. (9.5) 
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This follows from (2.4), (2.7), and the form-invariance of [. Then from (9-3) 
and (9.5) we obtain 

/o (~b0) _ p ,  (~bo; e) = f T r (4) {I IS (4) ~b ~ -- p IS (4) ~b~ e/m2]} d 4. (9.6) 

By using the inequality (8.8) w i t h ,  replaced by s/mL and recalling that  [Ti j (4) 1 =< 1, 
we obtain bounds on the integrand in (9.6). It  then follows that  

I/'(~b~ -- P*(~b~ e) l (9.7) 

< Y~ f Ih ,  (4) 11 l; i s  (4) 4 o] - #; i s  (4) q,o: dm~]l d 4 < din. 
i = l  

Hence, (9.2) is satisfied at the point d~ ~ Since ~b ~ is a representative point on 
the orbit considered, it follows that  (9.2) is satisfied at every point on the orbit. 
However, we shall also show this by direct manipulation. From the form- 
invariance of f and p*, we obtain 

/ [ s  (4)tbo] _ p , [ S  (4)q~o; ~] = TT(4)[/(q~0) _ p , ( q 0 ;  ,)], (9.8) 
whence 

m 

l / , Is  (4) q~o] _ #.  is (4),~o, *]l < iX  l~,-,(4)l l / j (q ~ -p*(q~ *)i. (9.9) 

Then, by using (9.7) and the bound ITo-(4)I =<1 we obtain (9.2), as desired. 

10. Canonical Form on a Given Orbit 

We have shown that  there is a form-invariant polynomial p* which is arbi- 
trarily close to f everywhere on the orbit of t~ ~ Because it is form-invariant, 
this polynomial p* can be expressed in the polynomial canonical form (7.3). 
The forms of the coefficients pa in the canonical form (7.3) will depend on the 
orbit considered and on e, since p* depends parametrically on these variables. 
We are interested in p* only on the orbit of t~ ~ where it furnishes a good ap- 
proximation to f. Because the coefficients pa are invariants, they are constant 
over the orbit of q~o. Thus, on the orbit of ~b ~ p* is of the form 

B 

p*[s(4) r ~] = F p~(~)I ~> [s(4)~o], (10.t) 
p=l 

where p~(s) is a constant depending on e. 
I t  then follows from (9.2) and (10.]) that  the components of/~ satisfy the 

inequalities 
B 

]/, I s  (4> , o ]  _ x pa i s  (4) ,Oil < e (i = 1, 2 . . . . .  m). (10.2) 
p=l 

The functions [(a) IS (4)~b~ regarded as functions of 4, span a linear manifold 
of finite dimension ( g B ) .  The functions p* given by (a0A) lie in this manifold, 
for each value of e. If we consider a sequence of these functions p* with e ap- 
proaching zero, (10.2) states that  this sequence converges to [ in a certain norm. 
The manifold can be shown to be complete with respect to this norm, essentially 
because it is finite-dimensional. Hence, the limit [ of the sequence of approxi- 
mations p* also belongs to the manifold. That is, on the orbit of d~ ~ [ can be 



Material Symmetry Restrictions 197 

expressed as a linear combination of the functions [la), with constant coefficients pa: 
B 

l l S  (~)4~ = 0o.3) Z p~I ~> Is (~)4~ 

As a side issue, it is worth noting that  if the functions [(al are not linearly 
independent on the orbit of 4 ~ then the coefficients pa in (10.3) are not unique. 

11. Complete Canonical Form 
Since 4 o can be chosen arbitrarily, a relation of the form (t0.3) is valid, 

whatever orbit m a y  be considered. For tensors 4 which lie on a given orbit, 
[ takes the form 

B 

I@) = Z P~I ~) (4). (11.1) 
#=t 

The coefficients pa depend upon which orbit is considered, but each coefficient 
is constant over any given orbit. Thus, these coefficients are invariants. 

Since the coefficients are invariants, they can be expressed as functions of 
the elements of a functional basis. We have shown earlier tha t  an integrity 
basis I~ (~ = t ,  2 . . . . .  A) is a functional basis. Hence, each coefficient p~ can 
be expressed as a function F~ of these invariants: 

p~=F~ [I1(4) . . . . .  IA(4) 1 ( f l = l ,  2 . . . . .  B). (11.2) 

By using (1t.2) in (IIA),  we obtain the canonical representation (7.4), and the 
proof is complete. 

Part II. Form-Invariant  Response Funct ionals  

1. Materials with Memory 
Results analogous to those established in Par t  I can be obtained for con- 

sti tutive equations involving functionals. Such constitutive equations arise when 
it is assumed tha t  the value X at t ime t of some tensor depends upon the values 
of a number  of other tensors 4 C~) ( v = l , 2  . . . . .  N) at times t - - z  up to and 
including t. We will denote the value of 4 Iv) at t ime t - - z  by  4 I~l (3). This 
tensor-valued function of t ime will be called a history. Then, the assumption 
that  X depends on the histories 4 I~) (3) (v = l, 2 . . . . .  N) can be written as 

x = ~ ( 4  ~1) (3) . . . . .  4 ~N~ (~)), (t .t) 

where ~ is a tensor-valued functional of the indicated functions. That  is, the 
components of X in a Cartesian system x are assumed to be functionals of the 
components of the histories 4 (') (3) (v----1, 2 . . . . .  N) in tha t  same system: 

x,,...,.= %..~,(~0~)...~.,,, (~)}. (1.2) 

The range of ~ is not important  for our purpose, but  for concreteness one may  
suppose tha t  T ranges over the interval 0 ~ r < e c .  

I f  the material  described by  the constitutive equation is symmetric  under 
an orthogonal transformation with coordinate transformation matr ix  R =  [IR,;II, 
then the functionals ~il...i, must  satisfy the following relations: 

~,,...i,{Rp, q,... Rp,,,,q,,~)y~!..q,,,,(z)}=R,,i,... R,,i, ~A... j, {~'~)... p, ,,) (z)}. (1.3) 
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If (t.3) is satisfied identically in the histories ~(')(7) for each ma t r ix /~  belong- 
ing to the group of symmetries of the material, we shall say that  the tensor- 
valued functional ~ is [orm-invariant under the group considered. 

Our object is to derive canonical forms for form-invariant functionals, using 
only those properties of the functionals which are implied by  (t.3), We shall 
not make any extraneous assumptions, either about the class of functions which 
are admissible as histories, or about the nature of the functionals. For our 
purpose, the functionals in (1.1) are to be regarded as any rules of correspondence 
which specify X when the histories ~b I'l (7) are given. 

The special case in which X depends only on the values of the histories at 
the instant 7 =  0 is treated in Part  I of this paper. Another special case arises 
when X is assumed to depend only on the values of the histories and their first 
n time-derivatives at tile instant 7 =  0. I t  should be noticed that  in this case, 
only those functions which are sufficiently differentiable can be admitted as 
histories. However, for our present purpose, such restrictions on the class of 
admissible functions are irrelevant. 

Relations which are special cases of (1.t) appear in a variety of forms in 
continuum physics. The stress-relaxation integral constitutive equation of linear 
viscoelasticity theory is an example in which X is the stress, a second-rank 
tensor, and there is one history ~bm (z), the strain history, which is also of second 
rank. In this case the functional ~ is defined in terms of integrals. 

A second example in which X is the stress and ~u)(7) is the strain history 
is given by  the constitutive equations of plasticity theory. Here the func- 
tional ~ is defined by a list of rules from which the stress can be determined 
when the strain history is known. The fact that  no integral representation of 

is available in this case is not relevant to our purpose, since in deriving its 
canonical representation, we shall make use of no properties of ~ other than 
its form-invariance. 

The constitutive equation for magnetic hysteresis is a relation of the form 
(1.t) in which X is the magnetization vector and ~bU) (7) is the history of the field 
strength. In this case, with restriction to one-dimensional histories, the func- 
tional ~ is defined by a hysteresis diagram. In Section 2 we shall show how 
form-invariance restricts the forms of the functionals in such relations between 
two vectors. 

NoLL's E201 definition of a simple fluid leads to a relation of the form (1.t) 
in which X is the stress at time t and ~bu) (7) is the strain at time t -- 3, measured 
relative to the configuration at time t. The definition of a simple fluid also 
specifies that  the material is isotropic, i.e. that  (t.3) must be satisfied for every 
orthogonal matrix R. Nothing further is assumed about the dependence of the 
stress on the strain history. In Section 3, we shall show how isotropy limits 
the forms of the functionals in such a relation. 

The first major work on the implications of form-invariance with respect 
to general non-linear functionals was GREEN & RIVLIN'S paper E4~ on stress- 
deformation relations for materials with memory. They obtained a relation of 
the form (1.t) in which X is the Piola-Kirchhoff stress and ~(1)(q~) is the strain 
history measured relative to the initial configuration of the body. By making 
assumptions about continuity of the histories and continuity of the functionals, 
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they were able to obtain integral representations of the functionals. The form- 
invariance requirements could then be applied to the integrands of these integrals, 
and the problem was thus reduced to one involving functions rather  than func- 
tionals. This method of procedure is illustrated in a less complicated case by  
RIVLIN'S work [21] on the dependence of one vector on the history of another; 
continuity assumptions are used to obtain integral representations of the func- 
tionals, and the form-invariance problem is reduced to the problem of finding 
canonical forms for the integrands. Although the results which we shall obtain 
are mot ivated by  those of GREEN & RIVLIN, we avoid any assumption about 
continuity of the histories or of the functionals. We shall be concerned only 
with the restrictions which are imposed by  material  symmetry.  

The explicit form of a canonical representation depends on the rank of the 
tensor-valued functional ~, the number and ranks of the histories t~ (~) (~), and 
the particular material  symmet ry  group. However, the general method of con- 
struction and the general features of the representation can be expressed in 
terms which are independent of these details, just as in the case of functions, 
considered in Par t  I. The method is stated in Section 8 in the form of a general 
theorem covering all cases. 

The main body of the paper  is intentionally general and thus necessarily 
somewhat abstract.  Furthermore,  the type of result we obtain is not familiar 
from examples in the literature. For these reasons, in Sections 2 and 3 we will 
discuss a number  of special cases in order to illustrate the method and to show 
the type of result which is obtained. 

In Section 4 we shall introduce a general notation scheme similar to tha t  
used in Par t  I. Some relevant results pertaining to finite sets of tensors are 
summarized in Sections 5 and 6. In particular, in Section 5 we shall discuss 
the notion of a table of typical basic invariants, which plays an important  role 
in the canonical representation. In Section 6, some results from Par t  I are re- 
written in a form more suitable for our present purpose. 

The canonical representation of scalar invariant  functionals is derived in 
Section 7. I t  is shown tha t  every such invariant  functional can be represented 
as a functional of certain t ime-dependent invariant functions which are obtained 
directly from a table of typical basic invariants. 

The main theorem on canonical representations is stated in Section 8. The 
proof is outlined in Section 9, and the remainder of the paper is devoted to 
carrying out the details of this proof. 

2. Example. Dependence o/One Vector on the History o/ Another 
As a first example, let us suppose tha t  the value X of some vector is dependent 

on the history t~ (z) of a second vector. Thus, in terms of the components of 
these vectors in a Cartesian coordinate system x, the relation we consider is 
the following special case of (1.2): 

Zi=~i{~op (7:)}. (2.t) 

Here ~i is a functional of the three argument  functions ~o 1 (3), ~?~ (~) and ~8 (*)- 
RIVLm [21] has investigated the restrictions imposed on such relations by  
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form-invariance under the orthogonal group, for cases in which the functionals 
can be represented in terms of integrals. 

Let ~ be a second Cartesian system, related to the first by  a transformation 
with matr ix R:  

xi=Rijx i ,  RikRik----Rk~R~j= ~ii" (2.2) 

If this transformation is a symmetry of the material, then the relation between 
the components ~q and ~p (z) of the vectors X and t~ (z), respectively, in the 
system ~ must be the same as the relation (2.t) between components in the 
system x. From this it can be shown that  

~,{~p (,)) = R, i~ j  {~% (3)), (2.3) 
where 

~p (3) = R  m ~Oq (~). (2.4) 

Equation (2.3), together with (2.4), is the special form which (1.3) takes in the 
present example. 

Let ~ be an arbitrary vector, whose components ~r and ~r in the systems x 
and ~, respectively, are related by  

Upi----Rij 9 i . (2.5) 

Then from (2.3) and (2.5), with the orthogonality conditions (2.2), we obtain 

~,~,{~p (T))= q),~, (~% (~))----3 (say). (2.6) 

Thus, ~ is a scalar invariant of the vector q~ and the history d? (3) under each 
transformation R belonging to the group of symmetries of the material. 

We shall regard the history t~ (3) as an infinite set of vectors, numbered 
with a parameter 3. From this point of view, ~ is an invariant of an infinite 
number of vectors. If ~ were dependent on only a finite number of vectors 
we could deduce its form, and thus the form of ~r by the method of Part  I. 
We would first find the elements I~ of an integrity basis for invariants of the 
vectors ~b (3). We would then find the elements Ja, linear in q~, of an integrity 
basis for q~ and the vectors ~b (3). Since an integrity basis is defined only for 
a finite number of tensors, we shall instead find a set of basic invariants which 
would be an integrity basis if ~ could take only a finite number of values. This 
will be the first step in the procedure for constructing the canonical form for 
form-invariant functionals. We shall illustrate this step and the remaining steps 
of the procedure with a number of examples of particular symmetry groups. 

2a. Holohedral Isotropic Materials. Let us first consider the case in which 
the functional ~ defined by (2.6) is invariant under the full orthogonal group. 
An integrity basis for orthogonal invariants of a set of vectors is composed 
of inner products of these vectors. That  is, there is only one type of basic 
invariant, 

u.v----u i v i. (2.7) 

An integrity basis for an arbitrary number of vectors can be obtained by sub- 
stituting these vectors in all possible combinations, repeats allowed, for u and v 
in the typical basic invariant. 
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If we consider the set of vectors ~ (T), the set of basic invariants which are 
obtained in this way are given by  

I[tl~ (~I), ~ (~2)] =~'~ (~I)"~ (~2), (2.8) 

where ~1 and ~ range over all possible values of ~. The basic invariants of q~ 
and ~ (z), linear in q~, which are obtained from (2.7) are 

yEq~, ~ (~e)] =q~. dr (~), (2.9) 

where ~ ranges over all possible values of ~. 

If  there were only a finite number of the vectors d~ (T), we could now con- 
clude that  since ~ in (2.6) is linear in q~, it must be expressible as a linear com- 
bination of the invariants J ,  with coefficients which are functions of the invari- 
ants I.  However, J and I take infinitely many values as their time arguments 
vary. Accordingly, we regard J as a function of ~, and take ~ to be a linear 
functional of the function J.  We also regard the invariant I as a function of 
~1 and ~2. Then, in analogy with coefficients depending on a finite number 
of invariants I,  we suppose that  the form of the linear functional depends on 
the function I.  Thus, we arrive at the representation 

= ~ { l ;  ~r}, (2.t0) 

where cp is a functional of J and I,  linear with respect to J .  

By  using the definition (2.6), and making use of the linearity of ~---~ with 
respect to its first argument, from (2.10) we obtain 

~ , ~ , { ~  (~)} = ~e{~,~,(~); I} = ~,ae{~,(~); x}. (2.11) 

Since q~ is arbitrary, (2.tl) yields 

{,ep = ,e; (2.12) 

where we have also used (2.8). This is the canonical representation for the 
functionals in this example. 

The constitutive equation (2.t) then takes the form 

Zi = ~{~/)i (~) ; ~/)j (~1) ~/)1" (~2)}, (2.13 ) 
or, in vector notation, 

X = ~ { ~  (~) ; ~ (~,)" dr (~)} .  (2.14) 

I t  should be emphasized that  L-r in (2.13) is the same functional for each choice 
of the index i. 

The general theorem, to be stated in Section 8, justifies the assertion that  
if the vector-valued functional ~ is form-invariant under the orthogonal group, 
then the functionals ~i must be of the form (2.t2). The converse, that  all func- 
tionals of this form are form-invariant under the orthogonal group, can be verified 
immediately. For, if ~ is of the form (2.t2), then with (2.4) we obtain 

~,{V/p (T)} :~,{Rpq~pq(,r)}=.Se{R,j~pi(~e); Rk, ~pt (~) R~,~ ~p~ (~) } . (2.15) 
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By using the linearity of -9' with respect to its first argument and using the 
orthogonality conditions (2.2) to simplify the second argument, we obtain 

~, ( ~  (~)} = R, ;.~'{~0, (~); V'~ (~) V'~ (~)} 
(2.t6) 

Here we have used (2.12). Thus, if ~i has the form (2.12), the form-invariance 
condition (2.)) is satisfied for every history and every orthogonal matrix R. 

2b. Hemihedral Isotropic Materials. Let us now consider materials which are 
symmetric under the three-dimensional rotation group. In this case, (2.)) must 
be satisfied for every proper orthogonal matrix R. The basic rotational invariants 
of vectors are of two types, inner products and scalar triple products. That is, 
an integrity basis for invariants of an arbitrary number of vectors can be obtained 
from the typical basic invariants 

u ' v = u i v  ~ and u . v x w = e i i ~ u i v i w k ,  (2.17) 

by substituting the given vectors for u, v and w in all possible combinations. 
The invariants of the vectors ~(z) ,  as obtained from (2.t7) are 

zl Eq 
and (2.18) 

z= Ell, '4, =q,  x 
where ~i, ~2 and ~a vary over all values in the range of v. The invariants of r 
and ~b(v), linear in r which are obtained from (2.17) are 

]iE~o,q(t)] =~o.q(~)  and /~EtP, q(~i),q(t~)~ = ~ ' r 2 1 5  (2.19) 

aside from redundant elements. The invariants (2.19) can be written as 

J~--cfil~ .~) ( f l=t ,  2), (2.20) 
where 

/!i)=v/i(~) and /~ )=e i i~ i (~ i  ) ~p~(~). (2.2t) 

Regarding I= (~ = t, 2) and J~ (fl = 1, 2), now, as functions of the various 
time variables, the functional ~ must be of the form 

~=~f(x){J1; Zl, I~) +.Lf('){/=; Ix, I~}. (2.22) 

Here Lf (a) is a functional of J~ and the functions 11 and I2, linear with respect 
to  J~. 

By using (2.22) together with (2.20) in (2.6) and taking into account the 
linearity of -9' (~) with respect to its first argument, we obtain 

9i~i{~/)p (T)} = ~0i~(1){1!1) ; I i ,  I=} +/pi.gf(=){/!~); 11, Z~}. (2.23) 

Since (p is arbitrary, (2.23) yields an expression for ~i- 
Thus, in the case of hemihedral isotropic materials, the constitutive equation 

(2.t) must be expressible in the form 

gi ----- -Lf(1){~P/(~) ; I i ,  12} + .Lf(=){eii,Wi(~i) ~p, (~=) ; / i ,  I d  (2.24) 
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or, in vector notation, 

X = ~ec1){q~ (,); 11 , Is} + ~ ) { @  (~1) x @ (*~); 11, I~}, (2.25) 

where the functions 11 and I~ are defined in (2.18). 

I t  is easy to verify that  the functionals in (2.24) are form-invariant under 
the proper orthogonal group. The converse, that  the relation (2.1) must reduce 
to the form (2.24) in the present case, follows from the general representation 
theorem to be proved later. 

2c. Orthotropic Materials. For materials with three mutually orthogonal 
planes of reflectional symmetry, if the coordinate planes of the system x are 
taken to coincide with the symmetry planes, then a table of typical basic in- 
variants for an arbitrary number of vectors consists of the invariants 

ulv 1, usv ~ and u~v~. (2.26) 

From these we obtain the following invariants of the vectors ~ (3): 

11 = ~Px (~1) ~31 ($2), I s = v/~ (#~) ~s (#~), I~ = ~03 (~) ~pa (~2). (2.27) 

We also obtain invariants of qo and qd (3), linear in qo, of the form 

J# = 9~i/~-#) (/3 = t,  2, 3), (2.28) 
where 

/~.#)=O~i~0~(~) (no sum over/3). (2.29) 

Then, by following a procedure analogous to that  used in the preceding examples, 
we find that  the constitutive equation (2.t) must be of the form 

3 
Zi = Z ~LO(fl) {/! fl); [1 ,  [Z, I~3}, (2"30) 

where ~Ia) is a functional of the indicated functions, linear with respect to [~a). 
By using (2.29) and taking into account the linearity of ~81~) with respect to 
its first argument, from (2.30) we obtain 

Zi=~10{~oi(~); I1, 12, I3} (no sum over i), (2.31) 

where the functions I~ (~ = 1, 2, 3) are defined by (2.27). 

3. Example. Dependence o/ One Symmetric Second-Rank Tensor on the History 
o[ Another 

To consider a slightly different type of example, we now suppose that  some 
sylmnetric second-rank tensor X is a functional of the history d d (z) of another 
symmetric second-rank tensor: 

z .=~ .{~pq(3)} .  (3.t) 
In this case, form-invariance under the orthogonal transformation (2.2) requires 
that  

~,i(v-pm (3)} = R,k Rjl ~kt (Y)m (3)}, (3.2) 
where 

G~ (*) = G ,  G ,  ~O,s (3). (3.3) 
Arch. Rational Mech. Anal., Vol. 17 1 5 
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Form-invariance of a relation of the type (3.t) under the orthogonal group was 
investigated by GREEN & RIVLIN E4] for cases in which the functionals Vii 
could be represented in terms of integrals. 

Let ~ii be components with respect to the system x of an arbitrary sym- 
metric second-rank tensor r The components of r in the system ~ are then 
given by 

9~i= R~kRiIcpkl. (3.4) 

From (3.2) and (3.4), with the orthogonality conditions (2.2), we obtain 

~, j~i i(~m(z))  = ~vij.~,i(~vpq(z)} = ~ (say). (3.5) 

Thus, ~ is an invariant of q) and the infinite set of tensors t~ (z). 

8a. Isotropic Materials. In the case of the orthogonal group (full or proper), 
it is known from the work of SI'ENCER & RIVLIX I14] that  a table of typical 
basic invariants for an arbitrary number of symmetric second-rank tensors is 
given in terms of six such tensors M (1) . . . . .  M (6) by 

t r M  o), tr M ( I ) M  (~) . . . .  , t r M O ) M t ~ ) M ( a ) I t l t 4 ) M ( 5 ) l t I  (e) ( t r M  = trace/F/). (3.6) 

That is, treating these tensors as matrices, an integrity basis is given by the 
traces of these matrices and the traces of their matrix products taken two at 
a time, three at a time, and so on up to six at a time. 

From the typical invariants (3.6), we obtain the following invariants of the 
tensors t~ (z) : 

11 = tr~b (~), I ,  = tr•  (~1) ~b (~) . . . . .  (3-7) 

Neglecting redundant elements, the invariants of q) and ~b (z), linear in q~, ob- 
tained from (3.6) are 

(3.s) 

These invariants J~ can be written as 

2(fl) = ~ j / .  (~=o,  ~, 2 . . . . .  ~), (~.9) 
where 

/!0)=~,i and 2/~)=[t~(~t)...kb(~#)+Nb(~#)...~(@i)],i ( /5=1,2 . . . .  ,5). (3.~0) 

The invariant ~ defined by (3.5), which is linear in q~, can be expressed in 
terms of the invariants I= and J~ in the form 

5 
= ~ ~e~>(~; ~, . . . . .  ~ ) ,  (~.~)  

a=0 

where ~tal is a functional of Ja and I~ (~ = ~, 2 . . . . .  6), linear in Ja. By using 
(3At) together with (3.9) in (3.5), taking into account the linearity of ~#a) with 
respect to its first argument, and making use of the arbitrariness of q), we obtain 
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expressions for the functionals ~ii" The constitutive equation (3.1) then takes 
the form 

5 
Zi j  = E ~(~) {/~'~); 11, " ' ' ,  I6} '  (3"1Z) 

#=o 
where the functions /r and I~ are defined by (3AO) and (3.7), respectively. 

The term involving .La(0) can be simplified slightly, by making use of the 
linearity of La(o) with respect to its first argument c~,i: 

s {~,;I1,..., I~)= 6,~Lf~o, {~;I1 . . . . .  I , ) .  (3.13) 

Thus, this term reduces to 6ii times a scalar invariant functional. 

3b. Orthotropic Materials. For the group of reflectional symmetries in the 
coordinate planes, ADKINS [12~ has shown that  a table of typical basic invariants 
for an arbitrary number of symmetric second-rank tensors is given by 

Mxx, Mz~, Mz3, M~zN~3, MzlNzI, MI~N12, M23Nz~Px2. (3.14) 

From these we obtain the following invariants of the tensors d? (~): 

I i  = ~Pii (~), I z = v/~ ~ (~), /3 = ~p33 (~), 

I , = ~ 3 ( ~ 1 ) ~ ( ~ ) ,  I~=~1(~1)~0~1(~), I,=~1~(~1)~1~(~,), (3.15) 
/7 = ~o~ (~1) ~0~ (~) ~1~(~).  

The invariants of q~ and ~ (~), linear in q~, which are obtained from (3.t4) are 

Ji =~ll, J2 = ~~ 

f4 = ~023 ~/323 (~), ]5 = ~031~])31(~), 

/7 = ~ ( ~ 1 )  ~1~(~),  /8 = ~ 1 ~ ( ~ 1 )  ~ ( ~ ) ,  
The latter invariants can be written as 

Ja-- ~o/!{ ) (/5--1, 2 . . . . .  9), 
where 

[!{) = ~a ~ ~a # (/5 = 1, 2, 3 ; no sum over/5), 

2]!~) = ( ~  ~3 i + ~3 i 1~2 ]) ~/)2 3 (~)' etc., 
and 

2/!7 ) ---- (6zi 63i+ 63~ c~2i) ~v3x(~l) vA2(8~), etc. 

J 3 =  ~/93 3, 

Js = 912~012(~), (3.I6) 

= ~i~ ~ (~1) ~;3~ (G). 

(3.t7) 

(3.18) 
(3.19) 

(3.20) 

Then, for orthotropic materials, the constitutive equations (3.1) must be 
expressible in the form 

9 
z .  = ~, ~r {/~~); I1 .. . . .  4 ) ,  (3.2t) p=l 

where .W <#) is a functional of the indicated functions, linear with respect to/!~). 
Thus, for example, Xtx is of the form 

Zll=~q(1){t ;/~} (3.22) 
and Z~3 is of the form 

2X23 = ~(4){~/32 3 (~); Iot} "{- 0~(7){~/33 1 (~1) ~/)12 (~2); I~}.  (3"23) 

Here I~ stands for the set of seven functions defined by (3.t 5). 
15" 
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4. The General Problem. Notation 

To treat the general problem posed by  the form-invariance condition (1.3), 
we shall use a notation similar to that  employed in Part  I. The components 
~v~)...p,c~(z ) ( v = t ,  2, . . . , N )  will be renumbered with a single subscript as 
v/1 (7) . . . . .  ~ ,  (T), and the ordered set will be denoted by  ~ (7). We shall speak 
of ~ (~) as a history, or, if we mean the value at a particular time T, as a tensor. 
The functionals ~i,...~, will also be renumbered with a single subscript as 
~1 . . . . .  ~m, and the ordered set will be denoted by  9. This set will be called 
a tensor-valued functional. Matrices S (4) and T(~t) are defined as in Section 2 
of Part  I. In this notation, the material symmetry requirement (1.3) takes the 
form 

~i{S (2)~b (v)}----- T(~) ~i {~ (v)}. (4.t) 

The material symmetry groups which we shall consider are enumerated in 
Part  I, Section 2. Since all of our remarks will be applicable to each of these 
groups individually, we regard the group under consideration as fixed once and 
for all. With the understanding that  S (4) and T(2) vary over all transformations 
in certain representations of the group when the set of parameters denoted by 
)L varies over all values in its domain, then material symmetry requires that  
the relation (4.1) must be satisfied identically in d? (~) and 4. The tensor-valued 
functional ~i will be called form-invariant (under the group considered) if (4.1) 
is so satisfied. 

5. Finite Sets o/Tensors 

We restrict our attention in this and the following section to finite sets of 
tensors q~l, d?2 . . . . .  ~b L, rather than histories. We are particularly interested in 
sets d? (*x) . . . . .  d~ (ZL) obtained by  evaluating a history ~ (z) at a finite number 
of instants zl . . . . .  ZL. 

The definitions and results of Part  I are stated in terms of a single symbol ~b 
which represents an ordered sequence of the components of some given finite 
number of tensors. In particular, the given tensors can be those denoted by  
~1 . . . . .  ~bL. We now state some of these results explicitly in terms of sets 
~b I . . . . .  ~b L. We shall also discuss the notion of a table of typical basic invariants 
for an arbitrary number of tensors. 

By applying a common transformation S (4) to each tensor of the set ~ 
(i-----1, 2 . . . . .  L), we can obtain a second set S(A)~b i (i ----1, 2 . . . . .  L). The latter 
set is called equivalent to the first (see Part  I, Section 3)- An invariant of the 
set of tensors is a function G which takes equal values on equivalent sets: 

G IS (~)~1 . . . . .  S (/~)qhL] = G [~1 . . . . .  Ij~L]. (5.1) 

The sets which are equivalent to a given set d? i (i = 1, 2 . . . . .  L) are said to form 
the orbit of that  set. An invariant can be regarded as a function which assigns 
values to orbits. 

A form-invariant tensor-valued function of the set q~i (i = t,  2 . . . . .  L) is a 
function [ (with components /1 . . . . .  /~) such that  

I [ S  (2)~b ~ . . . . .  S (,~) d~ L] = T(2) I ( ~  1 . . . . .  dgL). (5.2) 
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For  each of the mater ia l  s y m m e t r y  groups,  there exists (see WEYL [221, p. 44) 
a finite table o[ typical basic invariants for a tensor  q) and  an a rb i t r a ry  n u m b e r  
of tensors ~i .  B y  ~ we mean  a tensor  whose t ransforms  are of the form T(;[)~.  
We shall be concerned only wi th  those typica l  invar iants  which are ei ther in- 
dependen t  of q~, or linear in s There  is a m a x i m u m  number  p of tensors q~ 
which appear  as a rguments  in any  of these typica l  invar iants .  Al though some 
of these invar ian ts  m a y  involve fewer than  p tensors ~b, for s implici ty  in nota t ion  
we write each of t hem as a funct ion of p such tensors. Le t  I~ (~b 1 . . . . .  d~ ~) ( ~ =  
1, 2 . . . . .  A) be  those typica l  invar iants  which are independent  of q), and  let 
J~ (q~, ~b 1 . . . . .  t~ p) (/3 = t ,  2 . . . . .  B) be  those which are l inear in q~. Each  invar ian t  
I~ or Ja is a polynomial ,  l inear in each of the tensors on which it ac tual ly  depends.  
This l inear i ty  grea t ly  facili tates the  calculation of a table  of typica l  invar iants .  

The  defining p rope r ty  of a table  of typica l  basic invar iants  is t ha t  f rom it, 
one can obta in  an in tegr i ty  basis for any  number  of tensors,  however  large. 
This is done b y  let t ing the a rgumen t  tensors in the typica l  invar iants  t ake  on 
the values of the given tensors in all possible combinat ions,  repeats  allowed. 
Thus,  for a given set  of t imes T1 . . . . .  "~L, a finite in tegr i ty  basis for the  tensors 
d~ (zl) . . . . .  ~b (zL) is given in t e rms  of the  typica l  invar iants  I~ b y  

I~ N~ (3,,) . . . . .  ~ (%)1 (5.3) 
( e = 1 , 2  . . . . .  A;  i t = l , 2  . . . . .  L ;  . . . ;  ip----1,2 . . . . .  L) ,  

no m a t t e r  how large L m a y  be. Similarly, any  polynomial  invar ian t  in s and  
%b (zl) . . . . .  d~ (ZL), l inear in s can be expressed as a l inear combinat ion  of the 
invar ian ts  

J~ E"t ~, q (~i,) . . . . .  q (*i,)] (5.4) 
( / 3 = t , 2  . . . . .  B;  i 1 = t , 2  . . . . .  L ;  . . . ; / p = t ,  2 . . . . .  L) ,  

wi th  coefficients which are polynomials  in the invar iants  (5.3)- 

E a c h  typica l  invar ian t  J~ is of the  form 

A = ~, ~,/!f~ (a~l . . . . .  0 / ) .  (5.5) 
i = 1  

We recall f rom P a r t  I t h a t  the  functions I ift) defined b y  relat ions of the form 
(5.5) are form-invar iant .  T h a t  is, in t e rms  of the  tensors d?(~il ) . . . . .  dj(Tip), 

i f  (f) satisfies 

I ~f~ I s  (~ )~  (3,1) . . . . .  s (~ )~  (%)] = T(~) i ~f~ [q~ (~,~) . . . . .  t~ (%) ; .  (5.6) 

The  functions 

I ~f~ rq~ (~,) . . . . .  q (%)1 ( f l= t ,  2 . . . . .  B; i ,  = t, 2 . . . . .  L ; . . . ;  i ,  = t, 2 . . . . .  r.) (5.7) 

are the  basic fo rm- invar ian t  tensors for the  set ~ (~i) (i = t ,  2 . . . .  , L). 

6. Canonical Forms [or Invariants  and Form-Invariant  Tensor-Valued Functions 

I n  P a r t  I we have  shown t h a t  an in tegr i ty  basis is a funct ional  basis. Since 
the  invar ian ts  (5.3) form an in tegr i ty  basis for the  tensors t~ (z~) (i = t ,  2 . . . . .  L), 
then  they  also form a funct ional  basis for these tensors. 
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From this result and the first criterion for functional bases given in Section 4 
of Part I, we immediately obtain the following theorem: Given two sets o/tensors 
t~ ~ (zi) (i = t,  2 . . . .  , L) and t~ 1 (zi) (i = t ,  2 . . . . .  L), there exists a trans/ormation 
S(1) such that 

t4#1(~i) = S (2)~~ (* i )  ( i=1 ,  2 . . . . .  L), (6.1) 

q and only i / the /o l lowing  equations are satisfied: 

I ,  [q~0 (*i,) . . . . .  qjo (~,ip)] = i~ t [tj~l ('~ia) . . . . .  t~A1 (vi")] (6.2) 

(0c---- 1, 2 . . . . .  A ; i t = l , 2  . . . . .  L; . . . ;  ip-----1,2 . . . . .  L). 

Put differently, the values of the invariants (5.3) uniquely determine the orbit 
of the set ~ (,i) (i = 1, 2 . . . . .  L). 

From Part I it is also known that any form-invariant function [ of a set 
of tensors ~b (zi) (i = 1, 2 . . . . .  L) can be expressed as a linear combination of 
the basic form-invariant tensors (5.7) for this set, with invariant coefficients: 

B L L 
[ = )--] Z . . .  Z Fa,,...,JIal E+(zi,) . . . . .  q(z,~)]. (6.3) 

f l= l  / t=l ip=l 

Here the coefficients F~il...ip are functions of the invariants (5.3). 

7. Invariants o/ Histories 

Given a history ~(z),  any history S(t)q~(z) which can be obtained from 
it by applying a time-independent transformation will be called equivalent to 
~b (T). The set of histories equivalent to ~b (z) will be called the orbit of ~b (3). 
This set is also the orbit of any history equivalent to t~ (3). The orbits of two 
histories either coincide or have no common element. 

A functional J{~b (z)} will be called an invariant of the history q~ (3) if it 
satisfies the relation 

J { ~  (~)} = Y { S  (2)q~ (~)}, (7.1) 

identically in ~b (z) and 4. An invariant takes the same value for every history 
on a given orbit, and thus in effect assigns values to orbits. 

We shall show how invariants can be characterized explicitly in terms of 
functions derived from the elements I~ of a table of typical invariants. We 
note first that  for each choice of ~1 . . . . .  ~p, the quantities I~ [~b(~l) . . . . .  t~ (~p)l 
( ~ = t ,  2 . . . . .  A) are invariants of the history ~(z).  Let us regard these in- 
variants as functions of the variables ~1 . . . . .  ~p. Then, we shall show that  every 
invariant /unctional can be expressed as a /unct ional  o / the  invariant /unctions I~ 
(cr = 1, 2 . . . . .  A). That is, if J satisfies (7A), then 

J ~.~_ ~'{IiEtJ~ (~1) . . . . .  tJ~ (~)] ; . . . ;  IA [tJ~ (~1) . . . . .  ~ (~p)]}. (7.2) 

This theorem is true provided that  the values of the functions I~[t~ (~t), 
. . . .  ~ (~p)] (~ = t, 2, . . . ,  A) uniquely determine the orbit of t~ (z). For, the value 
of an invariant is determined by the orbit on which the history ~ (3) lies and 
is thus determined by those values which specify the orbit. Hence, it is suf- 
ficient to prove that  the functions I~ (~----t, 2 . . . . .  A) determine the orbit: Two 
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histories +o (z) and +1 (z) lie on the same orbit i /  and only i / the /o l lowing  equa- 
tions are satis/ied /or every choice o[ the variables Sx . . . .  , Sp: 

E+o($1) . . . . .  +0($p) ]  = [+1($1) . . . . .  +1($p)] = t ,  2 . . . . .  A ) .  (7.3) 

To prove this theorem, we first note that  if +o (z) and +1(z) lie on the same 
orbit, then, by  the definition of an orbit, there is a transformation S such that  
for all z, 

+1(3) = S + ~  (7.4) 
In particular, 

+1 ($i) = S + 0  ($i) (i = 1 ,  2 . . . . .  p) (7.5) 

for every choice of $1 . . . . .  Sp. Since I~ [+ ($1), . . . .  + ($p)] is an invariant of the 
set of tensors + ($i) (i----t, 2 . . . . .  p), then (7.3) is satisfied. 

We now prove the converse, that  satisfaction of (7.3) implies that  there 
exists a matrix S such that  (7.4) is satisfied. Since +o (3) has a finite number 
of components Iv ~ (z), . . . ,  Ip ~ (z), the values of +o (3) for all z span a linear manifold 
of finite dimension L =< n. Then, there exists a set of times 31 . . . . .  VL such that  
the values +o (vl) . . . . .  +o (ZL) form a basis for this manifold. That  is, every value 
+o(x) can be expressed as a linear combination of the elements of this basis, 
with scalar coefficients ci(3): 

L 

+~ = Z ci(z)+~ (7.6) 
i = 1  

Assuming that  (7.3) is satisfied for all choices of $1 . . . . .  Sp, then in particular 
it is satisfied for all choices from the set vl . . . . .  ZL. Then (6.2) holds, and it 
follows from the theorem in Section 6 that  there exists a matrix S such that  

+ l ( z , ) = S + ~  ( i = 1 ,  2, . . . ,  g) .  (7.7) 

In addition, (7.3) is satisfied, by  hypothesis, for all choices of $1 . . . . .  Sp from 
the set of times consisting of v t . . . . .  VL and an arbitrary time ~. Then, for each 
choice of z there is a matrix S ,  such that  

+t(v) = S , + o ( ~ )  and +1(3i) =S,l~~ (i = 1, 2 . . . . .  g) .  (7.8) 

We now find, from (7.8a), (7.6), and (7.8b), that  the tensors +1(~i) ( i =  
1, 2 . . . . .  L) form a basis for the manifold spanned by the values of +1(3) : 

L 

+1 (z) = Z ci(z) + t  (vi)" (7.9) 
i = 1  

Since +l(zi) is related to +~ by  the transformation S, according to (7.7), 
then from (7.9) we obtain 

L 

+1 (3) = s Y. (3) + 0  (7.t 0) 
i = 1  

and thus with (7.6) we obtain (7.4) as desired. Hence, +1(z) is related to +~ 
by the same matr ix S for every v; the two histories are on the same orbit. This 
completes the proof. 

Having proved that  every invariant functional can be expressed as a func- 
tional of the functions I= [+ (St) . . . . .  + ($p)] (ct = t, 2 . . . . .  A), we call these functions 
the basic invariants of the history + (z). 
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8. The Canonical Representation o/ a Form-Invariant Tensor-valued Functional 

The canonical representation theorem will be stated in terms of quantities 
which have been defined in Sections 5 to 7. We shall summarize these definitions 
and then state the theorem. The summary of definitions is in effect an outline 
of the method to be employed in deriving a canonical representation. 

Let  I~(41 . . . . .  4 p) (0c=1, 2 . . . . .  A) be a table of typical basic invariants for 
an arbitrary number of tensors 4 .  The basic invariants of the history 4 (z) 
are then the functions I~I4($1) . . . . .  4(~p)~ ( ~ t ,  2 . . . . .  A) of the variables 
$1 . . . . .  Sp. Let q~ be a tensor whose transforms are of the form T(4)r Let 
J~ (qL 41 . . . . .  4 p) (/3 = t,  2 . . . . .  B) be the elements, linear in q~, of a table of 
typical basic invariants for the tensor q~ and an arbitrary number of tensors 4-  
Let [(al (fl = t,  2 . . . . .  B) be the basic form-invariant tensors, defined in terms 
of J~ by (5.5), and let the tensors [(al E4 ($1) . . . . .  4 ($p)l be regarded as functions 
of the variables $1 . . . . .  Sp. A functional ~} is said to be form-invariant if it satis- 
fies the material symmetry requirements (4.1). We can now state the theorem. 

Every [orm-invariant [unctional ~ can be expressed in the [orm 

B 
{4 (q~)) = Z ~(~) {[(fl) ; I1 . . . . .  IA}, (8.t) 

t~=I 

where ,Lf c#) is a [unctional o/ the basic/orm-invariant tensor flal and the basic in- 
variants I~ (o~ = 1, 2 . . . . .  A) o/ the history, and .W I#) is linear with respect to [(~). 
Conversely,/or every such choice o/the ]unctionals .Lf la), a [unctional ~ o / the /orm 
(8.1) is /orm-invariant. 

The fact that  every form-invariant functional can be expressed in the form 
(8.t) will be proved in Sections 9 to 12. The converse, that  the right-hand 
member of (8.t) is form-invariant, is easy to prove. We give the proof in 
order to promote a better understanding of the theorem. 

By substituting S ( 4 ) 4  (z) for 4 (z) in (8.t), we obtain 

( 4 ) 4  
. (8.2) 

= Z ~(/~) {I (fl) E s (4) 4 (~1) . . . . .  • (4) 4 (~p)] ; Ia E s (4) 4 (~1) . . . . .  S (4) 4 (~p)]}, 

where I~ denotes the set of functions 11 . . . . .  I A . By now using the facts that  
jf(~) is form-invariant, according to (5.6), and that  the functions I~ are invariants, 
from (8.2) we obtain 

B 
~{S (4)4 ('~)} = Z ~(fl) {T(4)f(fl)E4 (~1) . . . . .  4 (~p)J ; I ,  [ 4  (~1) . . . . .  ~t~ (~p)~}. (8.3) 

Because ~s is linear with respect to its first argument, it follows from (8.3) 
that  

B 
{S (4)~1~ ('K)} = T(4) Z ~(f(fl) {f(O)E4 (~1) . . . . .  q~dl(~p)~ ; I~ E~I~ (~1) . . . . .  4 (~p)]} 

~=~ (8.4) 
: T(4) (3)}. 

Here we have used (8.1) again. Thus, if ~ is of the form (8.t), it is form-invariant. 
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9. Outline o /Proof  

The proof  t ha t  a fo rm- invar ian t  funct ional  can be expressed in the  canonical  
form (8.t) will proceed along the following lines. We first restrict  our  a t t en t ion  
to histories on the orbit  of a given his tory  dd~ (3). We shall show tha t  histories 
on this orbit  are distinguished, or characterized,  b y  their  values a t  a finite set  
of t imes zl . . . . .  TL. These t imes depend  on the  orbit ,  bu t  not  on the par t icular  
h is tory  considered. Then,  wi th  restr ict ion to  histories d d (3) on the  orbi t  of 
dd ~ (z), we shall show tha t  ~ is a funct ion f of the  finite set  of values Sb(zi) (i---- 
1, 2 . . . . .  L) (Section t0). 

The  form-invar iance  of the functional  ~ implies t h a t  the function [ is form-  
invar iant .  B y  using the canonical representa t ion  of a fo rm- invar ian t  function, 
which is known f rom Pa r t  I, we will show t h a t  ~ is a l inear combina t ion  of 
cer tain values of the  basic form- invar ian t  tensors f(/~) [t~ (~1) . . . . .  ~b (~p)~, and thus 
a l inear funct ional  of these functions (Section 1t).  The  form of this linear func- 
t ional  depends upon which orbit  is considered, since the form of/~ and the choice 
of t imes zt . . . . .  ZL depend on the orbit.  Since dependence on the  orbit  amoun t s  
to  dependence on the  basic invar iants  I~ leg (~1) . . . . .  q~ (~p)] (~ = 1, 2 . . . . .  A), we 
arr ive a t  (8A) as desired (Section 12). 

10. Reduction of Functional to Function on a Given Orbit 

In  this section we consider only  those histories ~b (z) which are on the orbit  
of some arbi t rar i ly  selected h is tory  ~b~ i.e. histories of the form ~(z)----- 
S(,~)~o(~). We shall p rove  two results. First ,  there  exists a finite n u m b e r  of 
f ixed t imes zl . . . . .  ZL wi th  the  p rope r ty  t h a t  if two histories on this orbi t  are 
not  identical,  then  there  is a t  least  one t ime z i a t  which they  take  different 
values. Second, on the  orbit  of dd~ ~(~b(z)) can be represented as a func- 
t ion of the  values ~b (z~) (i = l, 2 . . . . .  L). We now proceed with  the proof  of these 
s ta tements .  

I t  was shown in Section 7 t h a t  the  values of t~ ~ (z) for all z span  a manifo ld  
of some finite dimension L. Then,  there  are t imes zl . . . . .  ZL such t h a t  the  values 
t~ ~ (zi) (i ~ t ,  2, . . . ,  L) form a basis for the manifold.  In  o ther  words, for every  
value Sb ~ (z) there exists a set  of numbers  c~ (x) (i----l, 2 . . . . .  L) such t ha t  

L 

q~0 (3) = ~ c~(~) ~bo (,,). (t 0.t) 
i = 1  

Let  t~ (z) be  a h is tory  on the  orbi t  of d/~ (3). Then  there  is a fixed ~ such t ha t  
for all 3, 

t~ (3) = S (2)t~ ~ (3). (t 0.2) 

F r o m  (I0.1) and  (10.2) it  follows t h a t  

L 

q~ (3) = Z c~(3) ~ (~). 00.3) 
i = 1  

T h a t  is, the values t~ (*i) (i ~ t ,  2 . . . . .  L) form a basis for the linear manifold  
spanned  b y  the values of t~ (3). We note  t h a t  the  scalar coefficients c i(3) ( i =  
t ,  2 . . . . .  L) are the  same for all histories on the  orbi t  of Sb ~ (3). 
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If  ~b 1 (z) and t~ 2 (z) are two histories on the orbit  of t~ ~ (z), then  

L 
~b 1 (z) --d~ 2 (z) = Z ci (T) [~1 (z,) - - t ~  (z,)]. (10.4) 

/=1 

If  at  some t ime z, ~b 1 (z) differs from ~b ~ (~), so tha t  the lef t -hand member  of 
(10.4) is not  zero, then  at  least one of the terms in the r ight-hand member  must  
also be different from zero. Thus, if two histories t~ 1 (z) andd~ ~ (T) are not  identical, 
they  take different values a t  one of the times T 1 . . . . .  zL. 

This result  means tha t  if d~ (z) is a his tory on the orbit  of t~ ~ (T), then  the 
values d~ (z~) (i ----t, 2 . . . . .  L) serve to  distinguish it from any  other  his tory on 
tha t  orbit.  If  tile orbit  and the values d~ (zi) (i----1, 2 . . . . .  L) are given, ~ (z) 
is completely determinate.  Hence,  a functional  which assigns values to histories 
~b (z) on the orbit  of t~ ~ (z) is a function of the finite set of tensors ~b (~i) ( i =  

. . . . .  L ) .  

This can also be seen by  direct manipulat ion.  B y  subst i tut ing (t0.3) into 
~i(t~ (z)} and making use of the fact tha t  the scalar coefficients are the same 
for each his tory on the orbit  of ~b ~ (,), we find tha t  the functional  ~i becomes 
a function of the tensors ~b (~):  

L 

--IEtP . . . . .  tp o 

The symbol 0 (t~~ denoting the orbit  considered, is a t tached as a reminder  
tha t  (10.5) holds only for histories on tha t  orbit. Indeed,  jr is not  defined for 
histories which are not  on the orbit  of ~0 (z). Since it will be convenient  to 
have f defined for all histories, we shall arbi trar i ly take j r~  0 for histories which 
are not  on the orbit  of ~b ~ (z). 

11. Canonical Form on a Given Orbit 

If the functional  ~i is form-invariant ,  then  the function jr defined by  (t0.5) 
satisfies the form-invariance requirement.  This follows from the fact tha t  since 
S(2)~b(z) is on the orbit  of ~b~ if ~b(~) is, we m a y  subst i tute  (10.5) into (4.1) 
to obtain 

jr IS (2)~ (*gl) . . . . .  S (2)~ (TL) ; 0 (t~0)] ~___ ~ (S (2) IJ~ ('g)} 
(1t.1) 

= J/~(/~) ~ ( t ~  ('C)} = T ( ~ ) j r [ ~  (~1) . . . . .  r (q~L) ; 0 (~0)~ . 

Since we have defined jr to be zero for histories not  on the orbit  of t~ ~ (z), the 
form-invariance requirement  is satisfied trivially for those histories. 

Since jr is a form-invariant  function, it can be expressed in the canonical 
form (6.3). By  using (6.3) in (t0.5) we obtain the result tha t  for histories %b(z) 
on the orbit  of ~0 (z), ~i is of the form 

B L L 
= X Y. . . .  X . . . .  (11.2) 

8=1 i1=1 i~=1 

where the coefficients F~il...~ p are functions of the invariants  (5-3)- Since the 
functions F~il...i~ are invariants,  they  are constant  on the orbit  of t~~ Since 
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(! 1.2) is valid only on the orbit  of 4,0 (z), we m a y  regard the coefficients Fai,...ip 
as constants.  

The r ight-hand member  of ( t t .2)  is a sum of certain functionals which are 
linear in the functions jf(al [4, (~1) . . . . .  4, (~p)]. For, since the value of a function 
at  a part icular  point  is a linear functional  of tha t  function, then the values 
iriS} [4, (vi,) . . . . .  4, (vi~)] (ii = t ,  2 . . . . .  L ;  . . .  ; ip = t,  2 . . . . .  L) are linear functionals 
of the function 1(~1 [4, (~1) . . . . .  4, (~p)l. Fur thermore ,  since a linear combinat ion 
of linear functionals of jr lal is itself a linear functional  of f{~l, then the sum of 
all terms involving I Cal in ( t l .2)  is a linear functional  of I lal. We shall denote 
this sum by  ~q, Ca): 

L L 

~0,~ {i0~ [4' (~) . . . . .  4, (~,)3; o (4,o)} = E . . .  Y:. F~,,...;,, lct'~[4, (~,) . . . . .  4, ('~,9] �9 (I t.3) 
i1=1 i p = l  

B y  using (1t.3) in ( t l .2) ,  we obtain the desired expression for {~ on the orbit  
of 4,0(z), 

B 

~{4, (~)} = X ~<a~ {l(a~ [4, (~.) . . . . .  4, ( ,p];  o (4,0)}. (~ ~.4) 
,a=l 

The symbol 0 (4,0) is a t tached  to  ~g~'(~) as a reminder  tha t  the definition of 
~r depends on the orbit  considered, through the choice of t imes z i (i = 1, 2 . . . . .  L) 
and the values of the coefficients F~i,...ip in (11.3). The functional  ~q~Ia) is defined 
by  (1t.3) for all histories, bu t  ( t l .4)  is not  necessarily valid unless 4,(z) is on 
the orbit  of 4,~ 

12. General Canonical Form 

The representat ion (t l .4)  is valid only for histories on the orbi t  of 4,~ 
However ,  since 4,o (z) was chosen arbitrari ly,  some representat ion of this general 
form is valid for each orbit.  The  linear functionals s in these representat ions 
depend upon which orbit  is considered. Thus, for any  his tory we can write 

B 

{4, (~)} = E ~('~> { I  ('~> [4, (~,) . . . . .  4, (~,)];  0 (4,)}, (12.1) 

where 0 (4,) indicates tha t  the linear functionals depend upon the orbit on which 
4, (z) lies. 

In Section 7 we have shown tha t  dependence on the orbit  of 4, (z) is equi- 
valent  to dependence on all the values taken by  the basic invariants  I s [4, (~1), 
. . . .  4,(~p)] ( ~ = 1 ,  2 . . . . .  A). Thus, the dependence of X ~(~) on 0(4,)  in (12.1) 
can be expressed as dependence on the basic invariants  of the his tory:  

B 

~ {'.1.' ('~)} = ~ ~ (~  { I  Ct'~ [4, (~,) . . . . .  4, (~:,)]; 
e=~" (t2.2) 
& I-4, (~) , . . . ,  4, (g)] . . . . .  -'.~ E4, ( ~ ) , . . . ,  4, (~,)1}. 

If we regard ~(~) as a functional  of the functions I s (0~ = 1, 2 . . . . .  A), as well 
as a linear functional  of l le), then the representat ion (12.2) is valid for every  
his tory 4, (z). This completes the proof tha t  every  form-invar iant  functional  
can be represented in the form (8.1). 
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