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The equations proposed by ZAKHAROV & SHABAT [1] and by KORTEWEG & 
DE VRIES [2] both possess solitary waves with striking properties. The first of 
these equations has the form 

au [ azu ] 
(1) a--7-=i -F~-x~ + V(u) . 

In case F(u)=kluJV-~u, p > l ,  k > 0 ,  it possesses the four-parameter family of 
solitary waves 

u (x, t) = f ( x -  c t; 2) exp ['i g(x - b t)], 
where 

and 

g(x)=2x+~, 2= T - b  >0, 

2k seth2 I/~(X--XO)]} 1/(p- 

For  small ;t these solutions have uniformly small amplitudes. In case p > 3, how- 
ever, they are not in every sense small, for their L 1 norms go to infinity as ;t ~ 0. 
On the other hand, as we shall show in Section 2, solutions of equation (1) which 
are initially small in terms of a certain norm stronger than the L 1 norm may 
remain small in absolute value. We show that, in case IF(u)[ = O (I u 14+~) as l ul -~ 0, 
all such solutions decay uniformly to zero as the time tends to infinity. 

The second equation is 
au a [ a2u  ] 

(2) at =-~x ~x +F(u)' 

with u real-valued. In case F(u)=ku v, p >  1, k > 0 ,  this equation possesses the 
two-parameter family of solitary waves 

u (x, t) = f ( x -  c t; c), 

wheref (x ;  c) is defined as above and c>0 .  For  small c these solutions have small 
amplitudes. On the other hand, for p > 3 their L 1 norms go to infinity as c ~ 0, 
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and for p > 5 their L 2 norms do the same. In Section 3 we consider solutions of (2) 
whose first three conserved quantities are initially small. In case I F(u) l = O (1 u[ s +9 
as [u[ ~ 0, we show that all such solutions decay uniformly to zero. Moreover, 
no sign condition is required on the nonlinear term. 

The existence of waves which do not decay reflects the balance between non- 
linearity and dispersion. In these two examples we have relaxed the nonlinear 
effects in such a way that the waves do decay and their asymptotic behavior can 
be obtained from the linearized equation. 

In summary, if the KORTEWEG-DE VR1ES or the ZAKHAROV-SHABAT equation is 
modified so that the nonlinear term is of high enough degree, then all disturbances 
which are initially small enough in a certain norm disperse and die out as [ t[ -~ oo. 

We use a standard iteration procedure [3] which is applicable not only here 
but also for other equations (for example, n-dimensional versions of (1) and (2)). 

I thank R. MIURA for some illuminating and helpful comments. 

. 

We shall use subscripts to denote partial derivatives. The notation IIp refers 
to the usual Lebesgue L p norms in the variable x: thus 

I~l~= ~ I~o(x)lPdx; I~l~= esssup Itp(x)l. 
~ o o  - o o < x < o o  

In addition, we define 

II~ll=l~h+l~xl2. 
We shall use the elementary inequalities I ~0 I~ < II~P II and 

I~olL<2 I~=h_-<l~l~+l~o~l~. 
Let F(s) be a complex function of class C 1 (as a function of two real variables) 

having the properties F(0) = / : '  (0) = 0 and I F" (s) I = O (I s 12 + E) as s--* 0, for  some 
e > 0. (The primes denote derivatives of F(s) in any direction.) 

Theorem 1. There exists a positive number ko, depending only on F(s), with 
the following property. For any function qg(x) with II~Pl[ <-ko, there exists a unique 
solution u(x, t) of  equation (1) with u(x, 0)=q~(x) which is uniformly bounded in 
time and has values in L 2 c~ U ~ This solution decays to zero as t ~ oo, and in fact 
we have the estimate 

lu(x, t)l <c( l  +lt l )  -u2  
for all x and t. 

Proof. We convert (I) into the integral equation 

t 

(3) u (t) = R (t) * ~ + S R ( t -  T) * iF (u (z)) d z, 
0 

where the space variable has been suppressed, * denotes the convolution operation 
in space, and R(x,  t) is the solution of the equation (linearized about zero) 

8v 82v 
(4) a t = i 
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with the initial data R(x, 0)=6(x) .  Thus R(t).q~ is the solution of (4) with data 
~o(x), and we have IR(t) . tPl2=lcP[2 . By Fourier transformation, R(x, t) can 
easily be computed, thus: 

R (x, t) = (4 n i t ) -  1/2 exp (x2/4 i t). 

To prove the uniqueness, let u and v be two solutions of (1) which agree 
initially. The difference w = u - v  satisfies 

t 

w(t)= i ~ R(t--r) * [F(u(r))- F(o('c))] dr. 
0 

Forming the L 2 norm, we find 

t t 

[w(t) 12 < ~ [ F(u(z))-  t(v(r))12 dr<__c ~ lw(x)[2 dr 
0 0 

since u and v are bounded. Thus w must vanish identically and u =  v. 

For  brevity let us write the integral term in (3) as Ju(t)  and also define the 
" t r ip l e"  norm 

Illvlll z = ess sup (I  v(t) IZ~ + I vx(t) I~ + t I v(t) 12}. 
t 

For  any pair of functions u and v of triple norm less than k, say, and any t>O, 
we have the following estimate (here we denote by c various constants which 
depend only on k and which tend to zero as k ~ 0): 

t 

] J u  (t) - ~r (t) 12 =< ~ [ F (u) - F (v) 12 a z 
0 

t 

<c ~ (lulo~ +lvl~)S+~lu-vlz dz<clllu-vlll. 
0 

Similarly, we can bound I[dfu(t)-~Cv(t)]x[2 and therefore also IJu( t ) - , fv( t ) l |  
To obtain the required decay as t--, 00, we use the explicit expression for R(x, t). 
Thus 

t 

IJu(t)-Jv(Oloo < ~ (4~(t--z)) -1/2 IF(u)-e(v)h dx. 
0 

The norm in the integrand is bounded by 

Hence 
c(lul~o +lvl~o)2+~(lulz +lvlz)lu-vlz.  

t 

[Ju( t ) -Jv( t ) lo  o <c I[lu-vlll ~ ( t -  r ) -  x/2(1 + r ) -  1+=/2 d r ,  
0 

the last integral being O(t-1/2). Combining these estimates, we have 

Ill J u  - J v  Ill ~ Co (k) Ill u - v II1 
where  Co(k)-~ 0 as Ic ~ .0 .  



Dispersion of Low-Energy Waves 89 

Now fix k so small that Co(k)~ 1/2. We define the approximating sequence 

uo=R*~p, u~=uo+~Cu~_l (n=>l) 

where II~oll <k/4=ko. Then I/lu0lll <k/2 and by induction 

III u.  Ill _-< k/2 + Co (k) III u ._  1 III =< k. 

In addition, Illu.+x-u.lll<cglllux-uolll. Since c o < l ,  (u~} converges in triple 
norm to some function u. It is easy to see that u is the required solution. 

The asymptotic behavior can be described most accurately in terms of the 
linearized equation (4), as follows. 

Theorem 2. Let u(x, t) be the solution of  Theorem 1. There is a unique pair of  
solutions u• (x, t) of  (4) such that I u(t) - u• (012 ~ 0 as t ~ + oo. 

Proof. It is enough to consider the case t ~ + or. We define 

o0  

u+ (t)=u(t)+ S R ( t - z )  * iF(u(z))dz. 
t 

The integral converges absolutely in L 2 norm because 

I F (u) h ~_c l u l ~+S l u l 2 = O  (x-< 3 +~)/2). 
Therefore 

oo 

]u+ (t)--U(t)]2<= S a~-~o  
t 

as t -~ oo. Using (3), we may write u+ in the form 

co  

u+ (t)=R(t)*qg+ S R ( t -~ )*  iF(u(z))dz. 
0 

Since the right side is a linear combination of solutions of (4), u+ also satisfies (4). 
The uniqueness of u+ is immediate. 

Remarks. It is dear,  in addition, that as t ~ + ~ we have 

tt/Z lu ( t ) -u  + (t)lo~ + l [u ( t ) -u  + (t)Jx[2 ~O. 

Moreover, the regularity of the solutions presents no problem if the data is 
smooth enough. 

3. 

Here we consider the generalized KORTEWEG-DE VRIES equation (2). We define 
I1~011 exactly as in Section 2. Let  F(s) be a real C 2 function such that [F ' ( s ) [=  
O(Isl  ~+~) as s ~  0, for  some e>0 .  Then the following result holds. 

Theorem 3. There exists a constant ko>O depending only on F(s), with the 
following property. For any function r with I1~11 _-<ko, there is a solution u(x, t) 
of  equation (2) with u(x, 0)=tp(x) which is uniformly bounded in time and has 
values in L 2. This solution moreover satisfies the uniform estimate 

lu(x,  O[<=c(l +ltl) -1/3. 
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Proof. We shall use the energy method (cf. for example TEMAM [4]) to prove 
the existence of a uniformly bounded solution, after which we shall consider its 
decay. Given ,~ > 0, we consider the parabolic regularization 

(5) ut+Uxxx+F(U)x=3Uxx--~U~xxx, t > 0  

(of course the solution of (5) with u(x, o)=q~(x) depends on fi). By parabolic 
theory, this problem is well-posed. In particular, assuming that the data q9 (x) is 
everywhere less than 1, say, the solution does not exceed 1 in some time interval 
0 < t < T~. We proceed to derive a priori bounds independent of ~ which are valid 
in this time interval. Multiplying (5) by u and integrating, we obtain 

[(�89 uZ)t + ~(uZ~ + u~) ]  d x =0. 

Hence lu(t)12~lq~h and 
oo 

~S S(u~+u~x)dxdt<~�89176 
0 

Multiplying next by ux~+F(u), we get 

d 
F (U)UxUxx]dx dt ~[�89 " z 

where G is a primitive of F. We may assume that G(0 )=F(0 )=0 .  In the time 
interval when ]u(x, t)] < 1, F ' ,  F "  and u-2G(u) are bounded. Thus 

~�89 dx <_ y [�89 - G(u)+cu 2] dx 
t 

+ u . . + u ~ l u ~ x l ] d x d t ,  
0 

where c denotes various constants depending only on F. The first two terms of 
the last integral are bounded by a constant times I q~ 122. To take care of the last 
term, ux 21 us~ I, we bound the first factor using the relation I u~ I oo < I Ux 12 + I Uxx 12. 
The last term thus is bounded by 

t 

c6 ~ (luxh + luxxl2) lush  lux~,lz d'r. 
0 

Therefore l uxlZz satisfies an inequality of the form 

t 

] u.~ ]z 2 < constant + S l [ Ux 122 d % 
0 

where l =  l('r) is integrable. Hence 

2< luxh=cx(l~oxl~ +lglZ~)exp(c21~ol~). 

Thus if [I q~ II is small, so are l uxh and l ulo~. In particular, Ta= + c~ and the 
estimates are valid for all positive times. 

Call the preceding solutions u ~) (x, t). As 6 varies, they are uniformly bounded 
together with F(u~'~)). Thus a passage to the limit is easily justified. This shows 
that if I q~x 12-I- 1~012 is sufficiently small, then there is a solution of (2) with initial 
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data go (x) which satisfies 

suplu(x,t)[<oo, sup(lux(t)12+lu(OI2)<oo. 
X,  t t 

To obtain the required decay as t ~ +  oo, we convert (2) into the integral 
equation 

t 

(6) u(t)=R(t)* go- S R ( t - z ) *  F(u(z))~,d~ 
o 

as in Section 2, where the source function R(x, t) is the solution of the linearized 
equation 

(7) vt + vxx~, = 0 

with initial data equal to the delta function. Once again I R( t )*  go 12 = I go 12. The 
source function [5] is given by 

lOO 
R(x, t) =-~--0~ exp (ix ~ + i t~ 3) de =(3  t)-  1/3 A i(x(3 t)-  l/s), 

so that t 1/3 R(x, t) is uniformly bounded. Thus from (6) we have 

t 

lu(t)l| + S c(t-T)-l/3 
0 

By means of the L 2 bounds already established, we obtain 

iF(u)~h<lu-XF,(u)l~olul21u~12<c 3+~ U oo �9 

We define m(t) as the supremum of (l+z)~/31u(~)l~o over the time interval 
0_<~<t.  Then 

m(O <--c II goll + cm(O 3+~. 

I f  Ilgoll is sufficiently small, m(t) is bounded. This completes the proof  for t > 0 .  
For t < 0 we need only reverse the time. 

Theorem 4. Let u(x, t) be the solution of  Theorem 3. There is a unique pair of  
solutions u+ (x, t) of  the linearized equation (7) such that l u(t)-u• ~ 0  as 
t---} -F oo. 

Proof. We define 
co  

u + ( t )  = u ( t )  - -  S R (t  - ~)  * F (u  (z ) )~  d z .  
t 

Since I F(u)x 12 < c l u l~ + ~ I uxl2, the integral converges absolutely in the L 2 norm. 
The proof then proceeds exactly as in Theorem 2. 

Remarks.  As before, t l / 3 [ u ( t ) - u •  as t ~ + ~ .  In addition, if 
go~xzL 2, we can use higher-order estimates to prove the uniqueness of the solu- 
tion of (2). 
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