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Abstract. This paper deals with finite rotations, and finite strains of three-dimensional space-curved elastic beams, under 
the action of conservative as well as nonconservative type external distributed forces and moments. The plausible deformation 
hypothesis of "plane sections remaining plane" is invoked. Exact expressions for the curvature, twist, and transverse shear 
strains are given; as is a consistent set of boundary conditions. General mixed variational principles, corresponding to the 
stationarity of a functional with respect to the displacement vector, rotation tensor, stress-resultants, stress-couples, and 
their conjugate strain-measures, are stated for the case when conservative-type external moments act on the beam. The 
momentum-balance conditions arising out of these functionals, either coincide exactly with, or are equivalent to, those from 
the "static method". The incremental variational functionals, governing both the Total and Updated Lagrangian incremental 
finite dement formulations, are given. An example of the case of the buckling of a beam subject to axial compression and 
non-conservative type axial twisting couple, is presented and discussed. 

1 Introduction 

There exist three approaches that are commonly used for describing the large displacements and 
large rotations of space-curved beams. The first approach is based on a direct use of  the 3- 
dimensional finite-elasticity theory. The second one is based on certain plausible hypotheses such 
as the Euler-Bernoulli hypotheses, while the last one, on the work of  Reissner (1973). From a 
mathematical viewpoint, the first approach may lead to a consistent beam theory; however, it is not 
so easy to derive the kinematic relations. Therefore, asymptotic expansions have been used in the 
first approach (Parker 1979, Pleus and Sayir 1983). Each of  the variables employed in such theories 
does not always carry a physical meaning, and their interpretation becomes difficult especially in 
highly nonlinear problems. The approach based on plausible deformation hypotheses, on the other 
hand, may not yield a beam theory consistent with 3-D finite-elasticity theory; however, as indicated 
by the theory of  the "elastica", this approach is often found to be practically useful. Also in buckling 
problems, the second and the third approach enables one to easily take into account the prebuckling 
deformations, since each variable has a clear physical meaning. 

There has been a limited number of  earlier works concerning theories for beams undergoing 
large deformations, large rotations, and large strains. Notable among these is due to Reissner (1973, 
1981), who developed a finite strain beam theory based on the differential equations of  force and 
moment equilibrium for elements of  the deformed curve. The exact definitions for kinematic 
relationships have been derived (Reissner 1973, 1981), while the expressions for boundary conditions 
consistent with the equilibrium equations have been obtained implicitly. 

In this paper, using plausible and consistent kinematic hypotheses, a large deformation (and 
large rotation) beam theory is developed. The effects of  stretching, bending, torsion and transverse 
shear, are taken into account, while the cross-sectional warping deformations are neglected. In the 
present formulation, we do not restrict the magnitude of  strains, but  assume that the material is 
linearly elastic. Using the principle of  virtual work, we present a set of  boundary conditions which 
are consistent with the presently developed finite strain beam theory. 

As indicated by Argyris et al. (1979), the use of  an arbitrary set of  mathematical variables to 
describe rotations may lead to unsymmetric geometric stiffnesses of  finite beam elements, even when 
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the beam is subjected to a conservative system of external moments. One of the objectives of this 
paper is to present well-defined variational functionals, and associated 'principles' corresponding 
to the vanishing of the first variation of such functionals, when a conservative system of external 
forces and moments act on the finitely deformed beam. Using these functionals, one may construct 
a symmetric geometric stiffness of a beam element in its current equilibrium state. It is noted however 
that when a nonconservative system of external forces and moments act on the beam, the geometric 
stiffness of a beam element, in its current equilibrium state, will be unsymmetric. A systematic 
approach to solve such problems of nonconservative loading, has been discussed by Kondoh and 
Atluri (1987), based on a direct statement of the weak form of the associated balance laws. 

The variational functionals, in the presence of a conservative system of external forces and 
moments, which are presented in this paper, form the bases of general mixed-hybrid finite element 
methods for finitely strained and rotated space-curved beams. The modus operandi for such finite 
element methods, involving finite rotation kinematics, has been discussed earlier by Atluri and 
Murakawa (1977), Murakawa and Atluri (1978). 

The remainder of the paper is as follows. Section 2 deals with preliminaries; Sect. 3 with the 
geometry of the undeformed beam; and Sect. 4 with the geometry of the deformed beam. In Sect. 
5 we deal with the principle of virtual work for the finitely strained beam; and discuss how this 
virtual work principle may be cast in the form of a condition of stationarity of well-defined 
functional, even when only a system of conservative external forces and moments act on the beam 
undergoing finite rotations. Depending on the form of virtual variations of the rotation parameters 
considered, (if R is the rotation tensor, one form of rotational variation corresponds to the vector 
~4~ such that ~4~ x I = ~R. R t and the other form corresponds directly to ~ / w h e r e  ~J are the three 
parameters that describe the Lagrangian components of R), the linear and angular momentum 
balance conditions take on different but equivalent forms; with only one of these forms coinciding 
with those derived a priori from the so-called "static-method". In Sect. 6 we deal with the constitutive 
equations; and Sect. 7 deals with the most general mixed variational principles under conservative 
loading, and their "incremental" counterparts. In the general variational principles, the variables 
are: the displacement vector, the rotation tensor, the stress-resultant vector acting on the beam cross- 
section, the stress-couple vector acting on the beam cross-section, and the appropriate strain and 
curvature measures that are conjugate to these mechanical variables. 

To demonstrate the novel features of the presently developed theory, we consider, in Sect. 8, a 
problem of buckling of a beam subjected to an axial compression and a nonconservative twisting 
couple with the emphasis on the boundary conditions. The effects of prebuckling and shear deforma- 
tions are manifested in the presently derived buckling load. 

2 Preliminaries 

The fundamental hypotheses for deriving the present finite-strain beam theory are itemized as 
follows: 

(1) The plane cross-sections of the beam remain plane and do not undergo any shape-change 
during the deformation. 

(2) The cross-sections are constant along the beam axis which remains a smooth space curve 
throughout the deformation. 

Throughout this paper, the summation convention is adopted; and the Latain indices will have 
the range 1, 2, and 3, and the Greek indices the range 1 and 2. 

3 The geometry of the undeformed beam 

Consider a naturally curved and twisted beam in a fixed Cartesian coordinate system X m, with base 

~2 
tors Ira, as shown in Fig. 1. An orthogonal curvilinear coordinate system ym, with base vectors 
, is introduced to describe the motion of the beam. The coordinates Y~ are taken in the cross 

sections, while the coordinate y3 is taken along the beam axis. The way to select the origin of the 
coordinates ym will be discussed in Sect. 6. The orientation of the present coordinate systems follows 
the familar "right hand rule". 
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The position vector of a point at the beam-axis is represented as 
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X = X m ( y 3 )  Im . (1) 

The tangent base vector ~J3 is a defined by: 
0 

E 3 = d X / d  y3. (2) 
0 0 

In general, the base vector E 3 is not a unit vector, while the base vectors E, are chosen to be unit 
vectors without loss of generality. For latter convenience, we introduce the unit vectors E m defined 
by 

0 0 0 
E~, = E=, E3 = E3/IE3[.  (3a, b) 

The well-known Frenet-Serret formulae lead to the relations: 

Era, 3 = K x Era; K =  Km Era, (4a, b) 
o 

where ( ),3 = d(  ) / d L  where dL = IE31 dy3; K~ are the components of initial curvature, and K 3 is 
the initial twist. 
The position vector of an arbitrary point in a cross-section of the beam is given by: 

R = X +  Y~E~. (5) 
Then, the base vectors at an arbitrary point in a cross-section of the beam are given by: 

A~ = E~, A3 = _ y2/£3 E1 q_ yl  K3 E2 q_ go E3, (6 a, b) 

where 

go = 1 -  y 1 K 2  + y2  K 1 . (7) 

The contravariant base vectors A m are defined through the relation: 

A m. A n = c~ m where 6 m is the Kronecker delta. 

X 3 

I 
X z 

D pX ~ 

11 y3 
Before the / ...~''"" 

Iz deformotion/ / / "  

A2," ~ \ ! 

(/2 
Fig. 1. Kinematic scheme for large deformation and large rotation 
analysis 
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4 The geometry of the deformed beam 

Let 0 3 be the unit vector tangential to the deformed beam axis. After deformation, the unit base 
vectors E~ are transformed to the unit base vectors e~, as shown in Fig. 1. Without loss of generality, 
the base vectors e~ and e3 are assumed to be the maps of the base vectors E~ and E 3 after a purely 
rigid rotation, denoted by the tensor R, alone• 
Accordingly, we have 

e~ .ea = 3~a; e~" 03 @ O• (8 a, b) 

Equation (8 a) is consistent with assumption (1). The nonorthogonality condition given by Eq. (8 b) 
• • • 0 

is due to the transverse shear deformation which renders e 3 @ e3 • 
The relationship between the unit orthogonal vectors em and E m is written, in terms of a f in i t e  

rotation tensor R, (Atluri 1984; Pietraszkiewicz and Badur 1983), as: 

em=R'Em; R=RijEiEj. (9a, b) 

Because of the condition that R .  R r = I, where I is the identity tensor and ( )r  a transpose, the 
number of independent components of R are three. 

Finite rotation vectors are also used by Atluri (1984), Kane, Likins and Levinson (1983), Pietrasz- 
kiewicz and Badur (1983), Reissner (1973) and Simmonds and Danielson (1972) to represent the 
relationship between e m and E m. Let e be a unit vector satisfying R • e = e and co a magnitude of 
rotation about the axis of  rotation defined by e. The alternate representations commonly used for 
finite rotation vectors are: 

co 
fa = sinco e; 0 = 2 t a n -  e; and co = roe. (10a-c) 

2 

In terms of the finite rotation vectors fa, 0, and a~, the relationship between em and Em may be 
written as (Pietraszkiewicz and Badur 1983). 

1 
em = Em +12  x Em + - -  • x (I2 x Em) ; 

2cos 2 
2 

sin co 1 - cos co 
=~'m--I.- (D X EmJi - (_O X ((D X Era). 

co (co)2 

The finite rotation tensor R is often expressed very conveniently, in terms of co, as: 

R = exp(a~ x I). (12) 

It is well known that no 3-parameter representation of R can be both global and nonsingular 
(Stuelpnagel 1964); for this reason the four quaternion or Euler parameters have been introduced 
to describe the finite rotations (Kane, Likins and Levinson 1983; Stuelpnagel 1964)• In spite of this 
drawback, the concept of a finite rotation vector is useful for the study of finite rotations in structural 
members. For example, the three Rodrigues parameters, defined by Em" 0/2, are not global, i.e., 
co = ~ rad yields the Rodrigues vector of infinite magnitude• However, the finite rotation tensor R 
is determined uniquely even if co = x rad (Kane, Likins and Levinson 1983)• In this way, the 
finite rotation vectors have been frequently employed to describe the finite rotations in structural 
mechanics• 

In the present case of a space-curved beam, we define the angles of shear deformations, denoted 
by/3~, in the following fashion: 

o (13) sinfi= = e~" e 3. 

1 0 x (Era + 1 0 x Em) • (11 a-c) 
= E r a +  10 ~ ~ , 

1 + -  
4 
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Since 1°31 = 1, we have 
o e3 = sin//~ e~ +/ /3  e3, 

where//3 = e°3 " e3. 
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(14) 

(15) 

From the definition of covariant base vectors, the deformed unit tangent vector o 3 takes the natural 
form, in terms of the displacement components, u m, as: 
0 
e 3 = ( X +  u ) , 3 / l ( X +  u),31 = u m ll3 Era; u m 113 = ( ~  + tgm [3)/g; 

g = ]/iU 113) 2 + (u 213) 2 + (1 + u 313) 2 (16 a-c) 

where u (=  umEm) is the displacement vector at the beam axis and ( )13 the covariant differentiation 
with respect to the metric tensor Eij = El" Ej. With the use of Eqs. (9) and (16), the angles of shear 
deformations//~ and//3 are represented, in terms of the displacement components and the finite 
rotation tensor, as 

sin//~ = (R -E~). (umll3 Em) ; //3 = (a"  E3)' (umll3 Era). (17a, b) 

According to the assumption (1), the deformed base vectors at an arbitrary material point are given 
by 

a m = ( X +  u q- Y ~  e~) ,m,  (18) 

where ( ),~ denotes a differentiation with respect to Y~. It follows from Eqs. (14), (16) and (18) that 

a ~ = e , ;  a 3 = ( g s i n / / 1 - Y 2 k 3 ) e l + ( g s i n / / 2 + Y l k 3 ) e 2 + ( g / / 3 - Y l k 2 + Y 2 k l ) e 3 ,  (19a, b) 

where 

em,3 = k × e m; k = k m e m . (20 a, b) 

The components km of k are expressed in terms of the finite rotation tensor as 

1 
ki = ~ eijk [(R" Ej),3 ] • [(R" Ek)], (21) 

where e;jk is the permutation symbol. It should be noted that the components k m a r e  not exactly the 
curvatures and twist after the deformation since the deformed beam axis has undergone extension. 

5 Equilibrium equations and boundary conditions 

To derive the equilibrium equations, the so-called "static method" or alternatively, the energy method 
are often employed. Once the appropriate stress resultants and moments are defined, the static 
method yield the equilibrium equations from a consideration of the free-body diagram of a differen- 
tial element of the beam. On the basis of the static method, however, it is difficult to derive the 
boundary conditions consistent with the resulting equilibrium equations. The energy method, on 
the other hand, may lead to the equilibrium equations and the associated boundary conditions 
without difficulty, but with tedious calculations. Since no explicit boundary conditions consistent 
with a finite beam theory are currently available in literature, the energy method is employed herein 
to derive them. 
The Green strain tensor is defined as 

1 
g : gij a i  Ai; 8ij = ~ (ai" aj - a i"  a j ) .  (22 a, b) 

Substituting Eqs. (6) and (19) into Eqs. (22) leads to 

g13 = e31 m_ ~ (gs inf l l_  Y2~3); e23--= 632 = ~ (gsinfl; + Y1E3); ~33-- ( g s i n f l l -  y2k3)2 

(g sin//2 + y1 k3)2 + ( g f l 3  - -  y 1  k 2  + yzk l )2  _ Q (/£3)2 _ (go)2/; e~p = 0. (23 a-d) + 
A 
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where 

FC m = km  __ K m ;  ~ = (y1)2 + ( y2 )2 .  (24a, b) 

The stress resultants and moments  are defined, following Atluri (1984), as: 

T =  ~g0 A 3 (Sl" F r )dA;  M =  ~ Y~ e~ z [go a 3 (Sl" FT)]dA, (25a, b) 

where $1 (= S~ n Am An) is the second Piola-Kirchhoff stress tensor, F the deformation gradient 
tensor and dA = d y1 d y2. By using the component  representation, we obtain the stress resultants 
and moments  in the form (Appendix I) 

T = TJ ej, M = MJ ej, TJ = ~ t3fg o dA,  (26 a-c) 

M 1 = ~t33 y2godA,  M'2 = _ ~t33 y l g o d A ,  M 3 = ~(t3~ y 1  _ t3i y 2 ) g o d A ,  ( 2 6 d - f )  

where t ma are the stress components  defined by 

t "~ = S] 'j a j .  e,.  (27) 

The ( ) in superscript is used to emphasize that these are not  components  in convected coordinates 
y m .  

The internal virtual work is written as (Washizu 1982) 

I V W =  ~ S]J 3e i jdV,  (28) 

where d V = g 0 d y l d  y2dL.  In this paper, following Atluri (1984), we introduce a tensor ( f iR-R r) 
as a rotational variation. Since R • R r = | ,  fR  • Rr i s  a skewsymmetric tensor. There exists, therefore, 
a vector f4~ satisfying fR  • R T -  - f q~ x I. Through some straightforward algebra it may be shown 
that the variation of the finite rotation vector co, denoted as fco, is related to the vector f ~  as 

{ 1  sinco} f~b =s inco  fco _ (1 - cosco) go) x co + fcoco. (29) 
- g -  (co)2 

Substituting Eqs. (23) into Eq. (28) and using Eqs. (25), one is lead, after some straightforward 
algebra, to: 

I V W = - ~ [ T  3 " f u + { M 3 + ( X + u ) , 3 x  T } . f ~ l d L + [  T "3u+M'&,blL=o,L=t (30) 
S.  + S~ 

where l is the length of the beam axis before the deformation, Su and S~ are parts of boundary on 
which geometrical and mechanical boundary conditions are prescribed respectively. 

Let Pb be the vector of body force defined per unit  volume of the undeformed beam, Pc the 
vector of distributed surface traction defined per unit area of the undeformed cylindrical surface of 
the beam, denoted as So; and Pe the vector of distributed surface tractions at the end cross sections 
denoted as Se. Then the external virtual work is written as (Washizu 1982): 

E V W =  f Pb " f V d V  + I Pc" f V d S c  + [I Pe" 3VdSe]~=to, (31) 
S= 

where V is the displacement vector at an arbitrary material point  defined by V = u + Y~ (e~ - E~) 
and dSc = I R,s x R,3ldsdL in which s is the coordinate taken along the bounding curve of the cross 
sections. 

At first, we assume that  the directions of external forces do not change during the deformation. 
Therefore we may write the external forces in the form 

eb --m- P j  F_,j, Pc = PJ Ej, P,  = PJ Ej, (32 a--c) 

where P~, P{ and P{ are constant. Introducing Eqs. (32) into Eq. (31) yields 

E V W =  ~ q . f u  + m . f q ~ ] d L + [ q '  bu + fit. Jdp] L=O,L=~ (33) 
S~ 

where 

q = qJ Ej, # =  ?IJ Ej, m = m~je~ x Ej, fit = rfi~je~ x Ej., (34a-d) 
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qJ=~p~godA + ~P~lR, sX R,3[ds ' ?lJ=~UedSe, (34e, f) 

m~j=~y~WbgodA+Iy~p~lRsXR,31ds ,  rh~j=~y~p~dSe. (34g, h) 

F rom the principle of virtual work, i. e., I V W  = E V W  (Washizu 1982), we obtain the linear momen-  
tum balance (LMB) and angular momen tum balance (AMB) conditions, expressed as: 

T 3 -~ q = 0, (for arbitrary 6u) 

M,, 3 -~- (X--~/ /) ,3  × T q -  m = 0 (for arbitrary 6q~). (35a, b) 

The associated boundary conditions are written as 

T = q; M =  th on S~, u = if; q~ = g~ on Su, (36 a-d) 

where ff and 47 denote the prescribed values on Su. 
It is well known that the displacement field and the variations of variables determine whether 

the energy method yields the same equilibrium equations as those derived by the static method.  In 
this paper, because of using 6R • R r as the rotational variation, we can derive the same LMB and 
A M B  conditions as those derived by the static method (Ericksen and Truesdell 1958; Reissner 1973). 
The consistent boundary conditions are also obtained in the process. It follows from the above 
derivation, Eqs. (33-36), that the "external moment"  vectors m (Eqs. 35 b, 34c) and th (Eqs. 36b, 
34 d] are dependent  on deformations even though the components  of external moments  mc, j and ~ j  
are independent of deformations. In the existing literature (Ericksen and Truesdell 1958; Reissner 
1973, 1981), where static method has been employed, the existence of an "external moment"  vector 
is assumed, a priori, and then the A M B  condition takes the same form as that  given by Eq. (35b). 

Next, for later convenience, we consider the "non-conservative" type follower forces defined by 

lob = fiJb e j; Pc =/3~ e j; Pe =/3~ e j, (37 a-c) 

where Pb is the vector of body force defined per unit  volume of  the undeformed beam, P~ the vector 
of distributed surface force defined per unit  area of the undeformed cylindrical surface of the beam, 
So; and Pe the vector of distributed surface tractions at the end cross section, Se. In this case, the 
E V W  is written as 

E V W =  ~ [~. ~ u + t h .  ~b]dL + [ ~f. 6 u + m "  ~b] L=0,L=~ (38) 
Sa 

where 

4= OJ ej; ~= ~J ej; th = rh~je~ x ej; t~= r~je~ x ej, 

gl j - -~PbgodA ~j + ~P{IR, s x R 3[ds; ~J = ~13JedSe, (39e, f) 

rh~,j=SY~P~godA + S Y ~ f i { l R , x  R31ds;  rn~,j=SY~fiJedS e . (39 g-h) 

Since I V W =  EVW, the equilibrium equations are obtained as 

T,3 "]- 4 = 0; M 3 Jr- (X- l - / / ) , 3  x T'-~-//~ =- 0 .  (40, b) 

The associated boundary conditions are written as 

T = q ;  M = n ~  on S , ,  u = g ;  ~b=47 on S, ,  (41a-d) 

As is well known, in the case of follower forces, not only the external moment  vector th but also the 
external force vector ~ are dependent  on deformations. 

In summary, the I V W  is given by Eq. (30); and E V W  is given in the case of fixed-directional 
('dead') loading by Eq. (33) while in the case of  follower loading it is given by Eq. (38). In both the 
cases of loading, the principle of virtual work is 

I V W -  E V W  = O. 

The question then arises if the above equation can be written, equivalently, as the stationary 
condition or the vanishing of the first variation of a well-defined functional. It will be shown in 
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Sect. 6 and 7 of this paper that when T and M are expressed in terms of appropriate kinematic 
variables, I V W  of Eq. (30) can be expressed as the first variation of an internal energy functional, 
written in terms of U and R. On the other hand, even in the case o f  conservative loading, the E V W ,  
especially of the moments,  i. e., the term m • f4~ [with the m as defined in Eq. (34 c) and 6 4~ as defined 
through fi4~ x I = fiR. R r] does not, on first sight, appear to correspond to the first variation of an 
external energy functional. This has certain implications in constructing weak solutions, say based 
on the finite element method.  It is well-known that if the governing equations of the problem can 
be written as the Euler-Lagrange equations corresponding to the vanishing of  the first variation of 
a well-defined functional, and if similar basis functions are used for the trial and test functions, the 
tangent-stiffness matrix at an equilibrium state is always symmetric. If arbitrary trial functions are 
used for R, and arbitrary and different test functions are used for f4~, it is seen from Eqs. (30), (33), 
and (34c), that  the geometric stiffness matrix derived from the principle of virtual work will be 
unsymmetric even for conservative loading. Further, the contributions to the unsymmetric stiffness 
arise not only from the I V W  of Eq. (30), but also from the m • fq~ term in E V W  of Eq. (33). In the 
case of non-conservative loading, the E V W  of Eq. (38) will in any case not correspond to the first 
variation of an energy functional, and will lead to a contribution to the unsymmetric stiffness matrix 
at an equilibrium state. 

In order to express (m. f4~) of Eq. (33) as the first variation of an energy functional, we adopt  
a strategy wherein (m. 640 can be expressed in terms of components  of m and 64~ in the undeformed 
basis, ~ .  Thus, from (34c) and the definition of f~b [i.e., &,b x I = f R .  Rr), we have: 

m ' f q ~ = m ~ j ( e ~ x E j ) ' f d ? = m ~ j E j ' ( f ~  x e ~ ) = m ~ j E j ' ( f R ' R r ' e ~ ) = m ~ j [ E j ' b R . E ~ ] .  (42) 

If further, one writes R in terms of Lagrangean components,  i.e., R = Rjk Ej Ek; then 
fR  = fRjk Ej Ek, and hence, 

m . f ~  = m~j f Rj~ = f [m~j Rj~], (43) 

where m~j are given constants as defined in (34 g). We assume that  the Lagrangean components  Rjk 
of R are expressed in terms of three arbitrary parameters cd, such that  (fir = Rjk;iEj Ek fez), where 
( );i denotes the differentiation with respect to cd. When a dead-load system of forces as in Eq. (32) 
is considered, the principle of virtual work I V W  = E V W  [with I V W  as in (30) and E V W  as in (33)] 
leads to the linear momen tum balance conditions as in (35a); however, the angular momen tum 
balance conditions corresponding to arbitrary variations fed become: 

Nj + rj = O, [AMB for (f~J)], (44) 

where 

Nj = Q1 (e3 . Ei)Riz;j + QZ(el . Ei)Ri3;j-k- Q3 (e2. Ei)Ril;j ' 

rj=m~iRi~;j; Q i e i = M 3 + ( X + u ) ,  3 x T, (45a-c) 

in which m~i are defined in Eq. (34g). The associated boundary conditions are written as 

L j = ~ .  onS~;  ~J=c~J o n S , ,  (46a, b) 

where c~J denote the prescribed values on S, and 

Lj = M 1 (e 3 • Ei) Ri2;j -q- -/1/12 (el • E i )  Ri3;j + M 3 (e2 " Ei) Ril;j. (47) 

The external moments  denoted by ~. are obtained from Eq. (45 b) by replacing m~i by rh~;, where DT/~i 
are defined in Eq. (34h). 

To show the equivalence of A M B  condition given by Eq. (35 b), associated with f4~, and by Eq. 
(44), associated with &d, we consider the tensor equations of A M B  conditions. 
Since 6R.  R r =  f4~ x I, we have 

{ M  3 -}- (X-}- U), 3 ;< T-'[- m }" f4~ = C : (fR" Rr) ,  (48) 

where the use of Eq. (45 c) is made and 

C = Q1 e3 e2 + Q2 ele3  _q_ Q3 e2 el + m~m Em e~. (49) 
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On the other hand, with simple manipulation,  we have 

(Nj + rj) 6eJ = { C : (Rj" R r) } &d. (50) 

As shown in Eq. (48), the AMB condition associated with 6q~ is that  C - C r = 0. While, as shown 
in Eq. (50), the AMB conditions associated with &d is that C : (R j .  R r) = 0. It is shown consequently 
that, since R.j. R r is a skewsymmetric tensor, the A M B  conditions associated with 6~b is equivalent 
to that  associated with a~J. 

6 Constitutive equations 

In a finite displacement theory, a variety of  stress tensor has been used. As a result, a number  of 
constitutive equations have been proposed. We postulate herein that  the present materials are 
homogeneous,  isotropic and linearly elastic. 

Equations (26) indicate that the use of the stress tensor t me yields the compact  definition for the 
stress resultants and moments.  Therefore, we utilize the stress tensor t me and the conjugate strain 
tensors 7me to construct the constitutive equations. The conjugate strain tensor Yme are given by 
(Appendix 2) 

7ma = am" en -- Am" En. (51) 

For one-dimensional beams, we assume the following relationships: 

t 3~ = G~3~; t 33 = E733, (52a, b) 

where G is the shearing modulus and E the Young modulus.  Substituting Eq. (51) and (52) into Eqs. 
(26) and modifying the shear rigitity yields 

] T 1 

T 2 

M 1 

- GAo 0 0 0 0 - GI1 

GA o 0 0 0 GI2 

EA Ell -EI2  0 

Elll -EI12 0 
Sym. EI= 0 

GJ 

-hi  

h2 

h3 

E2 
_~3 " 

(53) 

where 

h i = g s i n f i l ;  h2=gsinfl2; h 3 = g f l 3 - 1 ,  A=SgodA;  Ao=kA;  I~=SY~godA, (54a-f) 

Ii2 = ~ y1 y2g0dA; 111 = ~(YZ)Zg0dA; I22 = ~(Y1)2godA, J = SQgodA. (54g-j) 

The factor k is a shear-correction factor (Cowper 1966). It is worth noting that  if we introduce the 
constitutive equations expressed by the second Piola-Kirchhoff stress tensor and the Green strain 
tensor such that S~ ~ = Ge3~ and S~ 3 = Ee33 , the constitutive Eqs. (53) are not obtained. 

Next we consider the appropriate choices for the origin of coordinates ym. It is possible, even 
for a naturally curved and twisted beam, to choose the origin so that  I~ = I 1 2  ~-- 0. Another  way is 
to choose the origin so that  the coordinate y3 coincides with the fiber axis of  beams. In the latter 
case, the coefficients I,  and 112 do not  always become zero. 

For later convenience, we introduce the strain energy function Ws expressed as 

Ws = 21 GAo(hl)2 + 21 GA o(h2) 2 + 2lEA(h3)2+ EIl1(/~1)2 + ~ EI22(~2)2 + GJ(~3) 2 

+ EI1h3Fq - Elzh3E2- EI12~1kz-Gllhl~3 + GI2h2~3. (55) 

It should be emphasized that  the present strain energy function is derived from the stress-strain 
relationships given Eqs. (52). 
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7 General  mixed variat ional  principle 

As a basis of a numerical method,  a variational principle often plays an important  role. In finite 
elasticity, so far, the principle of stationary potential energy has been more widely used. The pure 
displacement formulation, however, has now been abandoned by most  researchers of  finite element 
formulations (Hibbitt 1986). Therefore, recently, the general mixed variational formulations are 
receiving a wide attention. In this section, we will derive the functional for general mixed variational 
principle for finitely deformed beams. Based on the resulting functional, we will present the incremen- 
tal functionals in the context of a total Lagrangian (TL) formulation and an updated Lagrangian 
(UL) formulation. 

As first shown by Fraeijs de Veubeke (1972), and later generalized by Atluri and Murakawa 
(1977), a general mixed principle, for a 3-dimensional elastic material, and involving the first Piola- 
Kirchhoff stress tensor tl, the right stretch tensor U the finite rotation tensor R and the displacement 
vector v as variables, can be stated as the stationary condition of the functional F 1: 

F1 (tl, U, R, v) = S [Wo(U) + tT: {(I + Vo v) r -  R .  U} 
oo 

- ~o/7. v]dVo - ~ /'" vds - ~ t" (v - ~)ds, (56) 
Sa Su 

where W0 is a strain energy function, 00 the mass density in the undeformed state,/Tthe body force 
vector per unit mass, t the traction on the boundary per unit  undeformed area and V0 the gradient 
operator in the undeformed state. 

The functional FI for a finitely deformed shell has been derived by Atluri (1984). Based on the 
resulting modified functional (Atluri, 1984), some numerical results have been obtained by Punch 
and Atluri (1986). However, to the best of  the author 's  knowledge, no studies exist on the functional 
F1 for a finitely deformed beam. 
We see that  the following relationships hold for the present problem of a beam: 

170( ) : A m (  ),m; I = A m a m ;  t l = t ~ A i a j ,  (57a-c) 

U = A ~ A ~ +  £ h + E 3 - Y Z k 3 E I +  y l k 3 E z + ( - Y l k 2 +  y2k l )E3}A3;  h = h m E  m. (57d, e) 

Since tl = SI • F T', $1 = S] s Ai Aj; F = aj A j (Atluri 1984), the components  S] s are numerically equal 
to the components  t~. r Since R • R = I, it follows that 11,3 • ] l  T is a skewsymmetric tensor. There 
exists, therefore, the vector/3 such that  R,3 • R r = / 3  x I. In terms of ¢o of Eq. (10c), the vector/3 is 
represented as (Pietraszkiewicz and Badur 1983) 

/3 sinco 1 -  cosco { 1  sinco} 
- ~,3 0~,3 x ~ + o~,3 ~ .  (58) 

Since e~, 3 =/3 x e~ + R .  E~,3, we have 

t ~ ' { I +  V0 v ) r - 1 1 " U ) } = t 3 J a j ' [ ( x + u ) , 3 - R ' ( h + E 3 ) + Y ~ 1 3 x e ~ - ( R ' i ~ ) x  Y~e j ,  (59) 

where k = km Era. (60) 

Using Eqs. (59) and (56), and employing the notations given earlier in this paper, the functional F1 
for a finitely deformed beam is expressed, after some algebra, as 

F1(T,M,h,  ff, u, 11) = ~[Ws(h,l~) + T" £ (x + u),3-11" (h + E3) } + M . { 1 3 - R - k  } 

- q • u] dL - [ T .  (u - u') + M .  (~  - 47)] z z-- ~o - [ #"  ulL:o,L =t (61) 
S u  S ~  

where/3 is a vector function of 11. We now consider the first variation of F b which is: 

C~Fl= T m (Shm+ \e~= - M m  cSkm+cST'{(x + u ) , 3 - R ' ( h +  E3) } 

+ aM" {/3 - R" £ }  - (T,3 + q) '  au - {M,3 + (x + u),3 x T}" a4qdL 

- [ S T .  ( u -  u') + a M .  ( ~ -  47)1~={~-- [ ( 4 -  V ) .  6 u - M .  6q~]~=~. (62) 
Su S~ 
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It can be seen that the stationary condition, 6 F  1 = 0, leads to the constitutive Eqs. (53), the 
compatibility Eqs. (17) and (21), the L M B  and A M B  conditions (35), and the mechanical and 
geometrical boundary conditions (36). It is reemphasized that no external moments  are included in 
F 1 • 

When external moments m, due to dead-load type of forces, as in Eq. (34 c) are present, as shown 
in Sect. 5, the functional F1, may be modified as: 

G l ( T , M , h , ~ , u , o ~ m ,  Lff)  = [. [Ws(h,~c)+ T . { ( x  + u ) , 3 - R . ( h +  E3) } +  M ' £ 1 3 - N ' ] ~ }  
- -  L=I - q .  u - m~,iRi~,]dL - [ T .  (u - u') + L + (cd - ~0]LL--~ -- [ #" U + m~iRijL=O, (63) 

Su Sa 

where Lf  is a Lagrangian multiplier and R and 13 are functions of c~ m. The first variation of G1 takes 
the form 

3G1 = k \Ohm Tm 3hm + ~",~'m -- Mm 31~m -Jr- 3 T "  {(x + u),3 - R"  (h + E3) } 

+ cSM-( 13 - R ' /~}  - (T 3 + q)" bu - (Nj + rj)baJ]dL 

- [ 6 T . ( u - u ' ) + 3 L f ( c d - # Y ) + ( L f - - L ) & d ] ~ S Z o  
Su 

[ ( 8 -  T) . 6u + (6 - L )  6aj]L=t (64) - -  L = 0  . 
Sa 

The physical meaning of the Lagrangian multiplier L f is clear from Eqs. (64). The stationary 
condition, 6 G1 = 0, yields the constitutive Eqs. (53), the compatibility Eqs. (17) and (21), the L M B  
condition (35 a) and A M B  condition (44), and the mechanical and geometrical boundary conditions 
(36 a), (46 a), (36 c) and (46 b). It should be stressed that the effects of the external moments due to 
a system of conservative forces, are taken into account in G 1. 

For an incremental approach, we construct the incremental functionals in the context of TL and 
UL formulation. Let Co be the initial known configuration of beams, and let CN and CN+I, 
respectively, be the configuration prior to, and after, the addition of the (N + 1)-th increment of 
prescribed loads and/or deformations. In the TL formulation, the fixed metric of Co is used to refer 
to all the state variables in each successive configuration. In the UL formulation, the variables in 
the state CN+ 1 are referred to the configuration in CN. Let ( )N denote the variable in CN and A( ) 
the incremental variable in passing from CN to CN+a. Note that all variables are referred to the 
convected coordinate system ym. 

(i) TL formulation. At first we consider the incremental functional of F1. In the TL formulation, 
the finite rotation tensor is required to satisfy the orthogonality condition that (RN+ AR) • (RN+ 
AR) T= I; or in a variational sense, 3AR. (RN+ AR) T is skewsymmetric. As a result, we obtain the 
incremental functional of F1 in the form 

AF1 (AT, AM, Ah, A/~, AR, Au) = S[AWs + AT. { Au,3 - R N" Ah - AR. (h N + E 3 + Ah)} 
cO 

-- T N.  { A R  . (h  N -q- JE 3 -]- ah )  ) --]- ( M  N + A M ) .  { AI3 - R N" AkT- A R .  ( / i~ N --~ a / - ~ )  ) 

_ AXe1 L = l (65)  --  Aq" Au] d L  [ A T'  ( A u -  Au') + ( M  N + A N / ) .  ( A S  - w ~ J  L = 0 - -  [ A ~  • Au] L = o , L  = l 

Su Sa 

where 

1 1 ~ ~ 12 1 Gj  (A/~3) 2 A W s =  ~GAo(Ahl)2 + ~GAo(Ah2)2 + EA(Ah3)2 + EI11(A/~1)2+ EI22(A/~2)2+ 

+ Ell l  JTNa]71 + EI22/7~A~r2 + GJk3NAk3 + E I l ( h  N + Ah3) AK~I -- EI2(h N + Ah3) A/~2 

-- G I  1 (h N + Ahl)A G + GI2(h N + ah2) A ~ -- EI12 £ A ~  (~YN + dl~)  + JTNAk.2}. (66) 

The linear and third order terms with respect to incremental values are included in AF 1 to satisfy 
the orthogonality condition of finite rotation tensor exactly. The variational equations corresponding 
to 6 AF1 = 0 are, as can be shown easily 
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 AWs 
=ATm; = M m + A M m ;  A u , 3 = R N ' A h n + A R ' ( h N + E N + A h ) ,  (67 a--c) 

A6 = RN • m/~-~ AR • (/~N + Aft); AT,3 + Aq =0;  (67 d, e) 

(MN + AM),  3 + (X+  uN + Au), 3 x (TN + AT) = O, (0 
A T = Aq: M " + A M  = 0 on S,; Au = A#; Aq~ = Aft on S,, (67 g-j) 

where the following relation is used: 

6A R .  (R N + AR) r = 3A~b x I. (68) 

The present incremental governing equations, except for Eqs. (67 b), (67 f) and (67h), are exact ones 
in the state Cn+ 1. The constitutive Eq. (67 b), the A M B  condition (67 f) and the mechanical boundary 
condition (67h) contain the constant terms associated with CN. This is, as shown by Atluri and 
Murakawa (1977), Atluri (1979, 1980) and Murakawa and Atluri (1978), due to the nonlinear 
orthogonality condition of finite rotation tensor. These constant terms in Eqs. (67 b, f, h) show the 
governing equations in the state C N. Therefore, these constant terms vanish if the state variables 
satisfy the governing equations in C N. Consequently, the present incremental functional AF1 leads 
to the exact incremental governing equation in CN+ 1. 

As can be seen from the functionals F 1 and G1, given in Eqs. (61) and (63), respectively, we can 
derive the incremental functional of G 1 by a slight modification of AF1. To obtain AG1 from AF1 
given in Eq. (65), one may introduce - (m N + Amai) ARia and (rh N + Arhai ) ARia into the integration 
and boundary term S~, respectively, and replace AR and ( M N +  AM).  (A~ - Aq~) on S, by Ac~ m 
and (L N+ + ALj +) (AeJ-  Ac~J), respectively. The stationary condition, 3 AG1 = 0, leads to the exact 
incremental governing equation in CN+ v 

(ii) UL formulation. In the UL formulation, the notation *( ) is used to emphasize that these 
values are referred to the configuration in CN. Since *R N = *I, the orthogonality condition of finite 
rotation tensor is written as 

6A*R. (*I + A*R)r = fiA*q~ x *I. (69) 

The incremental functional of F1 is obtained as 

A*FI(A*T, A'M, A'h, A*/~, A'R, A'u,) = y [A*Ws + A*T. { A ' H , 3  - -  A*h - -  A * R "  ( * I N +  A'h) } 
C N  

-- *T u. {A*R • (*XN + A'h)} + (*MN+ A'm).  (A*/3 - A*/~- A*R. A*/~) - A*q. A*uldL 

-- [ A * T . ( A * u - A * d ) + ( * M N + A * M ) . ( A * g d - A * ¢ ~ ) ] ~ = = ; I  [ A*4. A*u] L=*t 
- -  L = O "  

Su So- 

(70) 

where *X N is the position vector of the beam axis in the reference state CN, and 

1 1 1 EA (A'h3) 2 + 1 A * W  s = -~ GAo(A*hl) 2 + ~ a A o (  A-h2)2 + ~ -2 EI11(A*~c1)2 + Elzz(A*/~2) 2 

1 Gj(A,/~3)2 + EI1A ,h3A ,~  1 _ E[2A,h3A,~  2 _ GI1A,h lA , f f  3 + GI2A,h2A,f f  3 

- EII2 A*/~, A*E2 + *M1NA*]~I -t- *M2NA*]~2 + *M3NA*]~3 • 

The linear and third order terms with respect to incremental values are included in the incremental 
functional A'F1 so as to satisfy the nonlinear orthogonality condition (69). The Euler-Lagrange 
equations and natural boundary conditions of the statement 3 A* F1 = 0 are 

 A*Ws ~A* W s _ A* Tm; - *M mn , OA*hm OA,~ m + A*Mm; A* u 3 = A* h + A* R" (*X,~ + A'h) ; (72 a-c) 
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A*I 3 = (*I @ A'R)"  A*/?; A* 7 3 -]- A*q : 0; 

( * M N +  A ' M ) , 3  -t- (*XN+ A ' u ) , 3  x (*TN+ A'T) = 0; 

A*T=A*~;  *M2V+A*M=0  o n S , ;  A*u=A*~;  A*cp=A*q~ o n S , .  (72d-j) 

The constant terms associated with the reference state CN vanish if the state variables satisfy the 
governing equations in the reference state. Then Eqs. (72) present the incremental governing equa- 
tions. Note again that no external moments  exist in A'F1. 

The incremental functional of G1 is obtained by a slight modification of  A'F1. To obtain A'G1 
from A'F1 given in Eq. (70), one may introduce 

* N * * * - N  * -  * -- ( m~i q- A m~i ) A Ri~ a n d  ( m~i n t- A mc~i) A Ri~ 

into the integration and boundary term S~, respectively, and replace A*R and ( * M N +  A'M) • 
(A* ~b - A'47) on Su by A* c~ m and (*L} v+ + A*L +)  (A*eY - A* c~J), respectively. The stationary condition, 
6A* G1 = 0, yields the exact incremental governing equations in CN+l. 

8 Applications 

To investigate a validity of the present governing equations, we consider the problem of buckling 
of an initially straight beam subjected to the action of an axial compressive force P0 and a twisting 
couple M0, as shown in Fig. 2. As described before, the twisting couple is generated by external end 
forces. When the end forces, as shown in Fig. 3, are conservative, the resulting mechanical boundary 
condition for the moment  is dependent  on the deformations (see Appendix 3). 

In this example, we assume that the end forces are nonconservative so that  the torsional momen t  
along the beam is constant before the buckling. In the case of initially straight beams, it is possible 
to choose the origin of coordinate ym so that I~ = I12 = 0. As a result, it is easy to show that the 
nonvanishing stress resultants and moments  before buckling are the axial force, T 3 = E A h  3 = - Po, 
and the torsional moment ,  M 3 = GJk  3 = M O. 

Let A ( ) be the incremental value after the buckling. In the buckling problem, there exists at 
least one equilibrium position in the vicinity of  the original equilibrium position under the same 
boundary conditions. The equilibrium equations for forces and moments  in the direction of e, are 
written, from Eqs. (35), as 

T~3 - k3 r2 q- k2 T3 = O ; r23 --~- k3 r l  - ]gl r3 = o ; M!3 - k3 M2 .+ k2 M3 - ( l + h3) T2 -t- h2 T3 = O ; 

M2,3 + k 3 M  1 - k l M  3 + (1 + h3) T 1 - hi T 3 = 0. (73 a-d)  

3 

Figs. 2 and 3. 2 A straight beam subjected to axial forces and twisting couples. 3 Forces at the end 
cross section 
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These component expressions are the same as those of Reissner (1973, 1981). Keeping in mind that 
T 3, M 3, h 3 and 1~3 (= k3) do not vanish before buckling and retaining the linear terms with respect 
to the incremental values, we obtain the present buckling equations represented by 

AT13+ T3AF 2-  73aT2 = 0; AT,23 + ]~3AT 1 -  T3A]~I : 0; 

AM}3 - ~c3AM 2 + M3 A]~2 - (1 + h3)AT 2 + T3Ah2 = 0; 

AM,23 + ~3AM 1 - M3Affl + (1 + h3)AT 1 - T3Ahl = 0. (74a-d) 

Eliminating the incremental shear forces and using the incremental relations such as AM ~ = EI~ AE~ 
leads to 

Elll AE1 33 -t- Po q- - A]~I .q- . . . . . . .  A~2 3 = 0 
F 0 -  '  0-T;-o ' ' 

EA + ~ EA GA o 
1 - ~ +  G~ ° 1 1 -  Po + Po 

1 -  EI22"~ (M°)2 ] ( (12 ) o 
Eh2 A]~2 33 -1- P0 + - -- A]~2 + . . . . . . . .  A~I 3 = 0 (75 a, b) 

1_ Po--  P0 ' ~ o - - W  ' ' 
EA + GAoo EA GAo 

EA + ~ o  1 -  1 -  Po + Po 

The expressions (75) denote the buckling equations for the present problem. Following the way of 
Timoshenko and Gere (1961), it is easy to obtain the buckling load under the prescribed boundary 
conditions. 

For comparison with the existing results, we consider a simply supported beam with equal 
bending rigidities EI. Since A~ = 0 at y3 = 0 and l, we obtain the following expression: 

( ( 4 E l  +P0 1-E.E.d A + ~  + 1 -  ~ - 12 (76) 

The terms denoted ( )  and ~ indicate the effects of the twist and the stretch before buckling 
respectively and the term ( ) is the effects of shear deformations. Neglecting the twisting couple M 0 
in Eq. (76) yields the Eulerbuckling load in which the effects of shear deformations are taken into 
account. Ziegler (1982) and Reissner (1982) have discussed the Euler buckling load. It should be 
noted that the difference among those results depends only on the constitutive equations. The well- 
known Greenhill equation (Timoshenko and Gere 1961) is derived from neglecting the terms ( ) ,  
(.) and (..) in Eq. (76). 
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Appendix 1 

Following Atluri (1984), the differential force vector acting on the deformed cross-section is given 
as  

dT = godAA 3. (S 1 • F T ) .  (A. 1) 
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Since $1 = ST" Am An and F r = A i ai, integrating Eq. (A.1) leads to 

T =  S S~ m amgodA. 

Introducing Eq. (27) into Eq. (A.2) yields 

T =  ~ t 3r~ emgodA. 

Equations (26 a) and (26 c) are derived from Eq. (A.3). 
In a similar way, the differential moment vector acting on the 

represented as 

d M =  Y~ e~ x dT. 

After some manipulation, we have 

M =  S {t 3~ y2 el - t 3~ y1 e2 q_ (t3~ y1 _ t3~ y2)e  3 } godA. 

Equations (26 b) and (26 d-f) are derived from Eq. (A.5). 
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(A.2) 

(1.3) 

deformed cross sections is 

(A.4) 

(A.5) 

Appendix 2 

When we express the deformed base vectors as 

a m = gma en, 

the internal virtual work per unit volume is presented as 

STn c~emn = ~ STn 6(Km'f Knr)" 

Since S~ m = ST" and t m~ = S~ t Kin, we have 

ST" 6gmn = tmr (~ Kmr. 

Consequently, the conjugate strain tensors Ymri are defined by Eq. (51). 

(A.6) 

(A.7) 

(A.8) 

Appendix 3 

We consider, herein, the end forces which give rise to the twisting couple of constant magnitude M0. 
For simplicity, we consider a beam with circular cross sections subjected end forces, as shown in 
Fig. 3. If we treat the end forces as conservative ones defined by Eq. (32b), the mechanical boundary 
conditions at both end cross section are obtained as 

M 3 = P d  [Rll  (Rl l  R22 - Rt2R21) + R31 (R31 R22 - R21 R32)]/det I Rij l .  (A.9) 

On the other hand, if we treat the end forces as nonconservative ones defined by Eq. (37 b), the 
mechanical boundary conditions at both end cross sections become 

M 3 = P d .  (A. 10) 

As shown in Eqs. (A.9) and (A. 10), the end forces which give rise to the constant twisting couple 
must be nonconservative ones. 
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