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Abstract 

Under suitable hypotheses we obtain various theorems concerning the existence of 
positive solutions of the equation 

Au -- u + Q(x) u p : 0  

in R ~, where p > 1 and Q(x) is a given potential. If Q is radially symmetric, our result 
is particularly simple and general. We also study symmetries of solutions of the above 
equation in a ball with the boundary condition u = O. 

w 1. Introduction 

The semilinear elliptic equation in R" 

(1.1) A u  - -  u + [ u f  -1 u = O, 

p ~ 1, arises in various branches of  applied mathematics (see e.g. [B, L] and 
references therein) and has been studied extensively in recent years (IN], [S], 
[B], [St], [B, L]). A typical existence theorem states that equation (1.1) with 
1 < p < (n + 2)/(n -- 2) has infinitely many solutions which tend to 0 at infinity 
and one of  them is positive. However, all these known solutions are radial and 
indeed, any positive solutions which are small at infinity are necessarily radial 
([G, N, N1]). Whether equation (1.1) has a non-radial solution which is small at 
infinity remains an open problem. The difficulty in treating equation (1.1) arises 
because the domain R ~ is unbounded and therefore we lack compact embedding theo- 
rems of  Sobolev type. However, if we restrict attention to the class of  radial func- 
tions, "compactness" of  such a kind is regained and "s tandard" variational 
approaches work (see [N], [S], [B, L]). Naturally, this method does not seem to 
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apply to the more general equation 

(1.2) Llu - u + O(x)  lu[  " -~  u = o 

where Q(x) is a non-radial "potential". It should be remarked that if Q(x) -+ 0 
at infinity, once again some "compactness" exists and standard variational argu- 
ments deliver existence theorems (see [St]). 

In this paper we consider equation (1.2) (and its generalization (2.1)) where the 
potential Q(x) (orf(x,  u) in (2.1), respectively) is neither radial nor necessarily small 
at infinity. We shall consider positive solutions only (the so-called "'ground states"). 
The method we use may be described roughly as follows. First, using the Moun- 
tain-Pass Lemma, we solve, for each k, the Dirichlet problem 

(1.2)~ 
Au -- u + Q(x) u p : 0 

u > 0 in Bk and u ---- 0 on 6Bk 

where Bk is the ball of  radius k centered at the origin. We then establish some upper 
bounds, independent of  k, of  the solutions of  (1.2)k we have obtained; this will 
ensure that a subsequence of  solutions {u~,} converges as k ~ oo. The major step 
in this approach is that we then have to show that the limit of  this convergent sub- 
sequence is positive. We present three different approaches to reach this property 
under different assumptions on Q; this is done in w 3. In w 2 we derive the above- 
mentioned uniform upper bounds and some preliminaries. In w 4 we consider 
radial Q. A corollary of  our main result in w 4 reads as fo l lows: / f  1 < p < (n + 2)/ 
(n 2) and 0 ~ Q(r) ~ C(l + fl) where r = Ix[, C is a positive constant and 
0 ~ l < (n --  1) (p --  1)/2, f o r  all r > O, then equation (1.2) has a positive radial 
solution which tends to zero at oo. This conclusion seems to contain all preceding 
theorems in the radial case (as far as existence is concerned) and seems to be opti- 
mal. We also include in w 5 some discussions of  the classical approach to (1.2) 
and (l.2)k through maximization, which does not seem to apply to the more general 
equation (2.1). 

We mention that some of the ideas and methods developed in this paper also 
apply to the more delicate equation 

(1.3) Au + K(x)  u (~+2)/('-2~ = O, 

u > 0 in 1R", n ~ 3, which arises in the problem of  finding conformaI metrics 
with prescribed scalar curvatures in Riemannian geometry (see [Ni]). Equation 
(1.3) with K bounded between two positive constants is treated in [D, N]. 

While preparing this paper, we were informed that D. ZHANG [Z] had also 
obtained some results concerning equation (1.2). After this paper was written, we 
were informed kindly by P.-L. LIoNs that he had some related results [L]. 

The major conclusions reported in this paper were obtained in 1983 while 
the DING was visiting Minnesota. He acknowledges the warm hospitality he 
received from the School of  Mathematics at the University of  Minnesota. He is 
especially grateful to JAMES SERRIN, to whom this paper is dedicated, for inviting 
him to Minneapolis. 
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w Preliminaries and uniform upper estimates, 

We consider the following equation in Rn: 

(2.1) d u -- a(x) u + f(x,  u) : O, 

which generalizes (1.2). Let Ek denote H~(Bk), i.e. Ek is the closure of  smooth 
functions with supports contained in Bk in the norm 

[lul[n,t~,) = [R f (IVu[2 + /'/2)] 1/2- 

Let ~qk be the first eigenvalue of  --A! + a(x) on Bk with Dirichlet boundary data. 

Assume that a(x) >~ 0 is locally H61der continuous and that there is a ~ > 0 
such that 

(2.2) A l k  ~ ~ for all k ~ 1. 

It is easy to see that (2.2) is satisfied if there is an ao > 0 such that 

(2.2)' a(x) >~ ao for all lxl _> r, for some 7 > o. 

Let E be the closure of  smooth functions with compact support in the norm 

F- -  2 1 I /2 

It is easy to verify that under (2.2) E is a Hilbert space and ~/  Ek is dense in E.  
Note the obvious inclusions k>t 

E1 C_E2 C_... C_E. 

For  f(x, u), we assume that f is locally H61der continuous and that 

(a) lim f(x, u.____)_ 0 uniformly in x E R  n, and there is an open set 
u ~ 0 +  /./ 

U C R ~ such that lim f(x, u) _ = oo uniformly in x E U. 
u--~ oo /,/ 

(2.4) (b) 0 ~ f(x, u) <= C(1 + u p) for all x E R ~, u E R +, where C > 0 is a 
n + 2  

constant and 1 < p <  n -- 2" 

(c) there is a number 0 < 0 < �89 and a function 
0 ~ A(x) E LIO~ n) A C(R ~) such that for all x E R ~, u > 0 

// 

we have A(x) + Ouf(x, u) >= F(x, u) ~ f f(x, t) dr. 
0 
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Hypotheses (2 .2)and (2.4) (a), (b), (c) shall be maintained throughout w 2 and w 3. 
It is clear that the variational functional 

4 u ) -  �89 f ( I V u l  = + au 2) -- .f F(x, u) = �89 [[ulff - -  f F(x, u) 
Rn R n Rn 

is well defined and is continuously differentiable on E. Let Jk denote the restriction 
of  J to the subspaee Ek. 

Since we seek only positive solutions of (2.1), it is convenient to define f (x ,  u) ---- 0 
for u =< 0 and x E R ". Then by the strong maximum principle, any nontrivial 
critical point uk of Jk is necessarily a positive solution of  

A u -- a(x) u + f (x ,  u) = 0 in B k 
(2.1)k 

u = 0 o n  8 B  k. 

Likewise, any nontrivial critical point fi ~ 0 of J is necessarily a positive solution 
of  (2.1). 

Lemma 2.5. Assume that (2.2) and (2.4) hold. Let u k be a critical point of  Jk and let 
Uk converge weakly to Ft in E. Then u is a critical point o f  J. 

The proof  of  this lemma is somewhat standard (assumption (2.4) (b) is used 
here) and is thus omitted. (See e.g. the arguments used in the proof  of  Lemma 2.19, 
p. 161, in [R]). 

Now we shall solve (2.1)k and derive a uniform upper bound for the solutions 
we obtain. From (2.4) (a), (b), we see that for any e > 0, there is a constant 
C, > 0 such that 

0 < F(x, u) <= eu 2 -}- Ceu 2n/(n-2) for all x E R ' ,  u > 0. 

Choosing e < 2[4 (~ appears in (2.2)), we have, for u E Ek, 

S(u) = J~(u)> �88 f ( I V u l  2 + au 2) + - -  f u 2 - f (~u ~ + c ,  lul 2"/("-=)) 
B k 4 B  k B k 

Bfk ) n/(n-- 2) >= �88 Ilull 2 - c "  IVu[ 2 

>= �88 lint? - C~ flull 2~:<"-2) 

where the constant C" is independent of  k. Since ~] Ek is dense in E, 
k~_l 

J(u) ~ �88 Ilu[] 2 -- C~ ]lull 2"1(~-2) for all u6  E. 

Therefore, there are positive constants (~ and ~ such that 

(2.6) J(u) ~ -d > 0 on [I u II = ~ in E. 

On the other hand, (2.4) (a) implies that (with no loss of  generality, we may as- 
sume that UA B~ is not empty) there is an e E Et  such that e ~> 0, supp e _ U 
f~ Bx, Ilell > ~ and J(te) < 0 for all t > 1. Now define F(Fk) as the set of  all 
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continuous paths in E(Ek, respectively) connecting 0 and e, and let 

~ = i n f m a x J ( u )  
7EF uE~ 

(2.7) 

and 

(2.8) 

Since 

(2.9) 

0~k ---- inf max J(u). 
~'~Pk u~, 

irk CC_ Fk+ 1 C F, we have 

~1,=>0~k+1~o~-->~>0 for all k ~  1. 

Moreover, it is not hard to prove that or k -+ o~ as k ~ cx~ since k J Ek is dense 

in E. By the well known Mountain-Pass Lemma [A, R], o~1, is a critical value of  Jk. 
Let uk E Ek be a critical point of  Jk corresponding to o~ k, i.e. Jk(Uk) = ~k and 
J~(u~) = 0. We have, in particular 

Js Uk = Ilukl? - f u k f ( x ,  u~) = 0 
nj, 

(2.10) 

and 

(2.11) J(uk) = �89 [I uk [12 _ f F(x, Uk) ----- o;1,. 
nk 

(2.10) and (2.4) (c) together imply 

0 [lUkl[ 2 = fOUkf(X, UK) >= f F ( x ,  Uk) -- f A ( x ) .  
nl, nk Bk 

Combining with (2.11) and (2.9), we obtain 

(�89 - 0)Ilukll 2 =< 0,~, + a ~ oq + A 

where A ~ f A(x). Thus 
Rn 

(2.12) IJukll 2 = (�89 - 0)" 

Passing to a subsequence of  {Uk} if necessary, we may assume that Uk converges to 
weakly in E. Lemma 2.5 then implies that fi is a critical point of J;  thus fi ~ 0 

is a classical solution of  (2.1) by standard theorems on elliptic regularity. Showing 
that fi ~ 0 under various circumstances is the major theme of  our next section. 
Summing up, we have the following 

Theorem 2.13. Assume (2.2) and (2.4) hold. For each k, the Dirichlet problem (2.1)k 
possesses a positive solution Uk with J(uk) = C~k and o~ k -+ o~ ~ -~ ~ O, in which 
uk and o~ are given by (2.7) and (2.8). Moreover, {Uk} is uniformly bounded in E and 
so it contains a subsequence that converges weakly to Tt ~ 0 in E. 

A natural question arises: is J(~) = c~ ? and, is o~ achieved by a path containing 
ff i n /1?  An obvious necessary condition is ~ ~ 0 (since o~ > 0). The following 
proposition gives a sufficient condition. It will be useful in w 3 and such a result 
seems to be of  interest in its own right. 
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Proposition 2.14. In addition to (2.2) and (2.4), assume that 

(2.15) �89 uf(x, u) ~> F(x, u) for all x E It", u >= O, and 

(2.16) f (x ,  u) is nondecreasing in u > O, for each x E R". 
u 

Then, i f  the weak limit 7t o f  (Uk} is nontrivial, there is a path 7 E P with 
E 7 such that 

(2.17) J(~) = m a x J ( u ) = ~ .  
u(7 

Proof. Since J'(-fi) ~ = O, i.e. 

(2.18) 

we conclude that 

(2.19) 

Similarly 

(2.20) 

I1 ~11 ~ : f ~f(x, u~ 
Rn 

J (~)=  f [�89 ~) --F(x,~)] .  

J(uk) = f [�89 ukf(x, uk) - F(x, u~)] = ~ ,  

Now, the integrands in (2.19) and (2.20) are nonnegative by (2.15). Since uk ---> 
a.e. in It", we conclude by Fatou's Lemma that 

(2.21) J(~) =< lim inf J(Uk) = lim % = o~. 

Set, for t ~ O, 

g(t) :~ J(tu--) = �89 t 2 I1~11 ~ - f F(x, tu-). 

Differentiating with respect to t, we have 

g'(t) = t I[~112 = f ~f(x, tu--) 

= f [tuf(x, ~) -- ~tf(x, tu-')] 

= f t~ 2 [.f(~ ~) f(x,  tu--)] 
tuJ ,  

where the second equality follows from (2.1:8). Now, (2.16) implies that g'(t) ~ 0 
if  t E(0,  1) and g'(t) <= 0 if  t ~ 1. Thus :g(1) = J(~) is the (absolute)maximum 
on the  half-line 1 = ( t~t  t _-> 0). 

Let V + be the set {a~z +,be I a ~ 0, b ~ 0) and let V be the 2-dimensional 
subspace of  E spanned by ~ and e. Let S be a circle on Vwith radius R so large that 
J ~ 0 on S /3  V + (this follows from (2.4) (a)~nd a standard compactness argu- 
ment on V § and ~ and e lie inside S. Suppose l and ll = {tel t >= 0} intersect 
S a t  v and vl respectively. Then; let ~ be the path  that consists of  the segment on 
l with endpoints 0 and v, the arc S A V + (connecting v and vl), and the segment 
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on ll w i t h e n d p o i n t s v l  and e. It is clear that u E y  and ~ E F  and 

J ( u )  = max J(u). 
uEy 

Thus, J(u--) ~ o~ by the definition ofo~. This, together with (2.21), gives J ~ )  = oc. 
Q.e.d. 

w 3. Main existence theorems 

In this section we shall prove several existence theorems concerning positive 
solutions (in E) of equation (2.1). By Theorem 2.13 we have only to show that 

~ 0 (where ~ is given by Theorem 2.13). The methods we use to achieve this 
are diverse, and so we divide this section into several subsections, in each of which 
we present one method. 

w167 3.1. In this subsection we shall prove some existence theorems by using 
comparison arguments and the variational approach of w 2. 

Let h(x, u) >= O, z~ 0 (therefore with no loss of generality we assume that 
h(x, u) > 0 for some (x, u) E B~ • and that it is H61der continuous and 
satisfies the following conditions: 

(3.1) uhu(x, u) >= (1 +e)  h(x,u)>=O for x E R  n, u~>0 ,  

n + 2  
(3.2) h(x, u) =< C(1 + uP), 1 < p < ~ n  -- 2 for x E R", u > 0 ,  

where ~ > 0, C > 0 are constants independent of x E R". Again, we set 
h(x, u) ~ 0 for x E R ", u =< 0 for convenience. Set 

I(u) = �89 Ilull 2 - fH(x, u) 
Rn 

where 

H(x, u) = J h(x, t),tt. 
0 

We choose e :> 0 in Et (defined in w 2) so that J(te) < 0 and I(te) < 0 for all 
t > 1. Observe that this change does not alter the value g. (See the last paragraph 
in the proof of Proposition 2.14.) Let 

fl = inf max I(u), ~'EP uEy 

Ms 
l~,n ! 

and 

Mn ----{uE E \  {0) ] Ilull2 = fuh(x, u)}. 
lq, n 

From (3.1) we see that h(x, u)/u is strictly increasing in u > 0 if h(x, u) > 0; 
in fact, h(x, u)/u I+* is nondecreasing. Thus it is easy to verify that if {xER" I 
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h(x, u(x)) > 0} is not empty, then the half-line lu = {tul t >: 0} intersects Mn 
at exactly one point ~u. Moreover, I q u ) >  0 is the (absolute) maximum of l 
on l,. Using the arguments in the last paragraph of the proof of Proposition 2.14, 
we conclude that 

(3.3) fl ~ fl*, 

where fl* ~ inf I(u). Similarly, we define ~* ~ inf J(u). 
uEM h uEMf 

Theorem 3.4. Suppose (2.2), (2.4) and (2.16) hold. Suppose in addition that there 
is an R > O such that 

(3.5) f(x, u) <= h(x, u) for all x C R" \ BR, u > O. 

Then ~ ~ 0 implies that o~ ~ fl*, where u, o~ are given in w 2. 

Theorem 3.6. Under the hypotheses of Theorem 3.4, i f  ~ < fl* then 0 < Ft E E 
is a solution of  (2.1). 

Theorem 3.6 follows immediately from Theorem 3.4. We shall give some use- 
ful corollaries and examples to illustrate Theorem 3.6 later. 

Proof of Theorem 3.4. 

Since fi ~ 0, (Uk} converges to 0 weakly in E. Thus as k --~ ~ ,  (a subsequence 
of) u k-+ 0 uniformly on compact sets by elliptic regularity estimates. Hence 

0 ~ ek ~ f ukf(x, Uk) --~ O. 
SR 

(Note that R is fixed.) It was observed earlier that for each k, there is a unique 
t~ > 0 such that tt, uk E Mh; i.e. 

tk 2 [[ Uk [[2 = f tkukh(x, tkUk). 
I~ n 

On the other hand, by (3.5), 

IlUk[I 2 = f ukf(X, Uk) = ek + f Ukf(X, Uk) 
1~ n Ixl > R  

< ~ + f ukh(x, Uk). 
Ixl > R  

Therefore, if t~ :> 1, then 

tgek + tg f u~h(x, Uk) 
[x l>R 

>= f tkUkh(x' tkUk) 
I x I>R  

>= f tg+*u~h(x, uk); 
Ix l>R 
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the last inequality comes from the fact that 

h(x, tu) >: t ~+~ h(x, u) 

for all x E R  n, t ~  I and u ~  0, which is a consequence of (3.1). Hence 

t2ek ~ (t 2+~ --  t 2) f Ukh(X, Uk) 
Ixl > R  

(t~ +~ - tT,) f ukf(x, Uk) 
[x I>R 

= (t 2+" _ t 2) (11 ukll 2 - ~ )  

>: 0~(tk 2+~ -- t2), for large k, 

since ek-+O as k - + o o  and Ilukl[2>:2Jk(Uk)=2~k>:2~. Thus, 

ek >-- ~ ( t ~  - 1 ) ,  

and t k ~ 1 as k ~ oo. In particular, (tk} is a bounded sequence. Consequently, 
(tkUk} converges to 0 weakly in E. Next, observe that J(uk) is the maximum of J 
restricted to 1,k (by (2.16), see the proof  of  Proposition 2.14), and then 

o,k = ](u~) >= J(tkuk) 

= �89 t,~ [lull[ ~ - 

_>- �89 t~ IFu~I[2 - 

>= I(tkUk) -- f F(x, tkUk) 
nn 

>= ~* - f F(x, tkUk) 
B R 

f F(x, tkUk) -- f F(x, tkUk) 
Ixl "~ R B R 

f H(x, tkuk) --  f F(x, tkuk) 
[xl > R  B R 

by (3.3) and the fact that tkU k E Mh. As before, the integral 

f F(x, tm~) -~ o 
B R  

as k--~ oo since tkU~ converges weakly to 0 in E. Letting k - +  cx~, we obtain 
~ = > ~ * .  

Q.e.d. 

In practical situations, the quantities ~*, fl* are often much easier to compute 
than ~, fl thus it seems desirable to have the following 

Corollary 3.7. Under the hypotheses of  Theorem 3.6, suppose in addition that f 
satisfies (3.1) also. I f  ~* ~ fl*, then (2.1) has a positive solution Ft in E. 



292 W.-Y. DING & W,-M. NI 

Proof. Since under the additional hypothesis uf~(x, u) >= (1 + e ) f ( x ,  u) >= 0 for 
x E B", u > O, we also have o~ ~ o~* (see the arguments which lead to (3.3)). 
Thus ~* < fl* implies o~ < fl* and then Theorem 3.6 applies. 

Q.e.d. 
Now we come back to the equation 

(3.8) Au --  u + Q(x) u p = O, u > O, 

in R", assuming that Q(x) >= 0 and ~ 0, 1 < p < (n + 2)/(n -- 2). For  pur- 
poses of  comparison we also consider 

(3.9) A u  --  u + K(x)  uV = O, u > 0  

in R", where K(x)  ~ O. That is, we set f ( x ,  u) = Q(x) u p, and h(x, u) = K(x)  u p, 
both Q and K are bounded functions on R n, and Q(x) < K(x)  for all Ix] >_-- R, 
for some R > 0. Thus all the hypotheses of  Corollary 3.7 are satisfied, and 

I(u) = �89 II ull ~ 1 f KuV' 
P +  1R~ 

J(u)  = �89 I[ull ~ 1 f OuP++l 
P +  1R~ 

 o}i ,lu,:-- s Qua,+'} 
Rn 

where 
Ilull 2 = f ( I V u l  2 + u2), u+(x) = m a x  {u(x),  0},  

Rn 

and E = Hol(Rn). Now, for any u E E, there is at most one t > 0 such that 
tu E M r. This number t may be calculated explicitly as follows 

(3.10) 

Therefore 

i .e. 

(3 .11)  

= L Ilue ] ~  
, i f -~++,  . 

I..Rn 

.~Mf p + 1 ~. 

) ,, ,, ~ 2(p+ 1) 
~,__ ~ _  1 inf [ -  ~ , . I  ~ 
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Similarly, 

(3.12) 

Thus we have 

= (�89 - ' [ ,1 
p -p-1 u,E,(o} I( f Ku~-+')"~i 

l ~Rn # j 

Corollary 3.13. Suppose that Q(x) >= O, K(x) ~ 0 in R" with Q(x) <= K(x) for 
Ix I > R, R being some positive constant. Then (3.8)possesses a positive solution 
in Ho1(B ") /f  

(3.14) inf ]lull ~ , < inf IIull 
O-~uEH~(R'5 Qup++ i -F4i XuP++ , p+ , 

",Rn 

Corollary 3.15. Given Q(x) >= 0 in R,", equation (3.8) possesses a positive solution 
in i f  

(3.16) inf IIull < l i m  
o.u,n~(~.),fQup++iXp~it ) n_+~o[ inf Hull 1 "/" 

Proof. Take K(x) : t Q(x) if [ x I > R, 
/ 0  if ]xl__<R; 

the result follows from the preceding corollary. 
Q.e.d. 

It is clear that the following corollary is another reformulation of Corollary 3.15. 

Corollary 3.17. Given Q(x) ~ 0 in R", equation (3.8) has a positive solution in 

(3.18) sup f Qu~++' > R-~oolim [sup f QuP++I] . 
I lu l l= l  1% n L!lu[l=l  I x l > R  

We should remark that the case Q ~ 1 is not included in (3.18), but 
]im Q(x) = 0 is obviously included. Also, if Q(x) ~ ao > 0 for Ix I < Ro 

lxl--> oo 

and Q(x) <: a~ for Ix[ > Rt where ao >> al, then (3.18) holds and equation 
(3.8) can be solved. 

Corollary 3.19. I f  

(3.2O) lim Q(x)= inf Q(x), 
Ixt ~ o n  x~ E n 

then (3.8) has a positive solution in H~(Rn). 
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Proof. Set 

m =  lim Q ( x ) :  inf Q(x). 
ixt~o0 xER n 

I f  Q ~ constant, then it is clear that 

-~-- s u p  f Qua_ +1 > ~m ~ s u p  f muP+ +1 
[lu[l=l Rn Itull=l R n 

since or m is attained by some positive function. On the other hand, 
e > 0, there is an r large enough that 

given any 

thus 

Since 
If  Q -~ constant, 

o~, ~ sup f QuP+ +1 :< (m + e) sui3~ jf u p+I+ 
]lul[=l [x[>r ul]=l lxl>r 

m + ~  
- -  OCm; 

m 

m + ~ ~  
lim ~r :< - - o ~ .  
, - ~  m 

> 0 is arbitrary and 0r m < ~ ,  ( 3 . 1 8 )  holds. 
the result is well known (see Theorems 3.23, 4.8). 

Q.e.d. 
Let 

= lim sup Q(x), Qr : min Q ,  
[xl~oo Ix l~r  

: l i m  zr ,  = sup f + 
r-~ Oo i[Ul[ H l  (Br ) = 1 Br 

Coro l l a ry3 .21 . / f  Q,r, > Qr for  some r ~> O, then (3.18) holds and (3.8) has a 
positive solution in Hd(Rn). 

The proof  is straightforward since 

~ O,r, > 0 r  :> lim oc r . 
r---~ o o  

Remark. Observe that in (3.11), (3.12), (3.14), (3.16), (3.18) and the definitions o f  
~, O~m, r , . . .  etc., one can replace u+ by [ u I without altering any of  those numbers 
since u and lul have the same Hi-norm. 

w167 3.2. In this subsection we use the well known technique of  the "moving  
parallel plane" to obtain a uniform positive lower bound on uk in Theorem 2.13 
and therefore we have ~ > 0. This technique goes back to A. D. ALEXANDROV, 
and has been used by various authors; see, e.g. [Se], [G, N, N1] and [G, N, N2]. 

We start with a few definitions. Let ~2 be a convex domain in R" which is sym- 
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metric with respect to the hyperplanes 2 7 ~ { x =  (xt . . . . .  x~)ER ~ ] xi = 0 ) ,  
i = 1 . . . . .  n. Let e~ denote the unit vector pointing along the positive xraxis. Let 

> 0 be a real number. Define E(Q, [2) to be the set of  all functions u on -(2 
satisfying u(y + tei) <= u(y + (22 -- t) el) for all t --> 2 > ~ or t --< --2 =< --~, 
y E Z'~ t% [2, 1 <-- i <-- n, provided y + tei and y + (22 --  t) ei E [2. The follow- 
ing lemma is an easy consequence of  Theorem 2.1' in [G, N, N2]. 

Lemma 3.22. Let [2 be a bounded convex domain in R ~ which is symmetric with 
respect to Zi, for all 1 ~ i <-- n, and let g be a continuous function which is locally 

Lipschitz in u. Let uE C2([2) F~ C(~) be a solution of  Au + g(x, u) = 0 with 
u > 0 in F2 and u : 0 on ~[2. I f  g(., s) E E(e, [2) for all s > 0 and g(x, O) ~ 0 
for all x E ~[2, then u E E(9, [2). In particular, u attains its maximum in the cube 
co = (x  = (x ,  . . . . .  x . ) E R "  I Ix l ~ O ,  1 --< i - -  < n}. 

Theorem 3.23. Let (2.2) and (2.4) hold, and let f (x ,  u) be locally Lipschitz-continuous 
in u. Assume that there is a 0 >= 0 such that 

(3.24) --a(x)E E(9,R ~) and f ( x , s ) E  E(9,R ~) for all s > 0 .  

Then equation (2.1) has a positive solution ?t E E A E(~,Rn). 

Proof. Let Uk be a solution of  (2.1)k obtained in Theorem 2.13. By (3.24) and thus 
Lemma 3.22, we have Uk E E(~, Bk) and Mk = max Uk is attained in the cube CQ, 
say, at Pk. We claim that there is a positive constant ~ such that Mk >= ~ for all k. 
Indeed, from J~(Uk) Uk = 0 we conclude that 

Thus 
f ukf(x, Uk) = Ilukll 2 ~ ~fu~. 

f uk(f(x, Uk) --  uk) => 0. 

Now our assertion follows from (2.4) (a). 

Suppose that C e C BT, for some k. By standard arguments on regularity (and 

(2.4) (b)), we conclude that there is a constant M, depending only on p, ~ and k, 
such that 

[[ U k [[CI#'(Co) ~ M 

for all k ~ k. Thus, some subsequence (Ukj) converges in CI(Ce) to u* E Cl(Ce). 

Since ukj-~ u weakly in E by Theorem 2.13, Ukj-+ U almost everywhere, and 

u* ---- u. It is obvious that uE E(e ,R n) and is a classical solution of (2.1) with 
max ~ ~ ~. 

Q.e.d. 

In particular, this theorem covers the well-known special case Q ~ 1 in equa- 
tion (3.8). 

w167 The "geometrical" theorem in ~ 3.2 is somewhat "rigid"; we shall 
extend it in this subsection. 
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Theorem 3.25. Let (2.2), (2.4) and (2.16) hold. Suppose a~(x) and fs(x, u) satisfy 
(2.15), (2.16) and the hypotheses of Theorem 3.23. I f  there are functions bl(x) and 
b2(x ) such that 

(3.26) as(x) -- bs(x) ~ a(x) <= a,(x) 

(3.27) fs(x, u) <:f(x, u) <:fl(x, u) q- b2(x) (u + u p) 

for all x E R", u > O, where b~(x) E C(R") with 

(3.28) b~(x) -+ 0 as Ix[ ~ oo, i = 1, 2, 

then equation (2.1) has a positive solution in E. 

Proof. The basic idea is to compare functionals J(u) (defined in w 2) a n d  

where 

j~(u):l �89 f ([Vul ~ + asu 2) - f Fs(x,u) 
R n lq, n 

u 

Fs(x, u) = f fs(x, s) ds. 
0 

Note that the induced norm 

is equivalent to the norm II u[[ defined by (2.3) in view of (3.26) and (3.28). Choose 
e ~ 0 in E~ (as in w 2) so that J(te) < 0 and Jl(te) < 0 for all t > 1. Observe 
once again that this new choice of e does not change the value o~ defined in (2.7) 
(a l though/ 'k  and _P are changed, and we shall denote also the new ones' by /'k 
and P). This is clear by the last paragraph in the proof of Proposition 2.14. Let 

flk = inf max Jl(u), 
~,Er k uE~, 

fl : infmax Jl(u). 
~'E/' uEy 

By Theorem 3.23 and Proposition 2.14, we see that fl is a critical value of Js 
and there is a ~'s E -P such that 

(3.29) fl ---- max Jl(u). 
uE~'l 

It is clear that J ( u ) ~  Jj(u) for all u C E; thus o~ _<__ft. 
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i.e. 

Case 1. o~ = ft. 
Then 

~ max J(u) <: max Jl(u) = fl = o~ 
uE~'t uE~'l 

o~ = max J(u),  
uE~t 

that is, also 0~ is achieved in ~,~ E / ' .  Next we assert that there is a ut E Yt such 
that J t (u l )  = 0 and J(uO ---- ~. Suppose this is not so. Then, we can find an 
e > 0  and a 6 > 0  such that [ [ J ' (u ) l l~O on y , ~ y a f ~  J - l [ c x - - e ,  0c--}-e]. 
Thus 11J'(u]tl => ~/2 on some neighborhood U, of  ~,,. Consider the deformation 
~(t, x) defined by the "gradient flow" 

~t = --7"(W) J'(r/)/l[ J'(~)II and 
(3.30) 

~/(0, x) ~ x for all x E E ,  

where 7" is a cut-off function so chosen that 7' is positive in U, and vanishes iden- 
tically outside U~. Now, on the deformed path ~(1, ~q), we have J <  0~; thus 

max J(u) < o~, 
uE n( ! ,~, 0 

a contradiction. This proves our assertion. 
A few remarks are in order. First, our argument concerning the deformation 

(3.30) is rather sketchy since such a deformation is somewhat standard; see, for 
example, the p roof  of  Theorem 1.9 in [R], pp. 148-153. Also observe that some 
"compactness"  conditions, such as the well-known "Palais-Smale condition", 
are usually assumed in treating this kind of  deformation. In our case, the functional 
J does not enjoy compactness of  that kind in E. However, we get around this 
difficulty by constructing an explicit path ~'t which achieves o~ and is naturally 
compact. 

From our assertion above, we see that o~ is a critical value of  J and u~ is a non- 
trivial critical point of  J. Furthermore,  the construction of  ~,~ (as in the p roof  of  
Proposition 2.14) makes ul nonnegative in R"; thus, by the maximum principle, 
u t must be positive in R". 

Case 2. or < ft. Let Uk, O~k and ~ be as in Theorem 2.13. It  suffices to show that  
~ 0 in E. Suppose the contrary, ff ~ 0; i.e., suppose that Uk converges to 0 

weakly in E. From (3.26) and (3.27) we deduce 

[u s lulp+'  
d(u)> �89 (IVu? +awZ)-- f F,(x,u)--�89 f blu 2 -  f 

(3.31) 

>__ J,(u) - f b(u 2 + lu7 +') 
b ~ b ~ + b 2 - + O  at cx~. 

Sincefsatisfies (2.16), we see from the proof  of  Propo-  
where 

Let Ik = {tUe [ t ~ 0). 
sition 2.14 that 

(3.32) J(Uk) ---- max J(u).  
uEt k 
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Suppose 
is bounded. 

(3.33) 

where C =  

allk,  i.e. Il uk ll >= 
by (2.16) applied 

(3.34) g~,(t) <= 

=< 

since Uk Z> 0 and 
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,/111 k attains its maximum at t~uk. We claim that the sequence tk ~ 0 
Set gk(t) = Jl(tuk), t >= O. Using (2.4) (c) for f l ,  we have 

g',(t) : t llUkl[~ - f Ukfl(x, tUk) 

I 1 
~ t  Ilukll~ -- -~ f Fl(x, tuk) q- ~ f A,(x) 

= -- 1 t [ l u k H ~ + ~ J l ( t u k ) + 7 ~ T f A , ( x  ) 

1 1 
<= - c t  + 7F-[gk(t) + ~l f A,(x) 

(~0--~---1) C' and C ' > 0  is a uniform lower bound for,[uk[[, for 
/ 

C' > 0 for all k since J(Uk) = O~k ~ O~ > 0 .  On the other hand, 
t o f a ,  when t ~ l  we have 

t llukl[~ -- t f  UkA(X, Uk) 

t [llukl[ 2 + f blu 2 -- f ukf(x, Uk) + f b2(u~ + u~+l)] 

(t, + J) t f b(u~ + u~ +~) 

[[UkH 2 = f ukf(x, Uk). 

Next, we claim that 

(3.35) ek =- f b(u~ + u~ +l) ~ 0 as k - +  cx~. 

We postpone the proof  of  (3.35) till the end of  this subsection. From (3.34) and 
(3.35) we observe that if t ~ 1, 

gk(t)~ gk(l) + (p § 1) ek t2 . 

By (3.31), 

gAl)  = J~(uk) =< J(uk) + ek = ~k + e~- 

Now, (3.33) gives, if t ~ 1 

g'~(t) < -- ( C - ( p  + Ot t + C 

where the constant C is given in (3.33) and C is some constant. By (3.35) we can 
find k o ~  I, T >  1 such that g'k(t)<O for k~>ko,  t=>T,  andTis indepen-  
dent of  k ~ k o .  Since g~(tk)=O, tk<~T for all k ~ k o .  This proves our 
assertion. 
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In view of  (3.31), (3.32) and (3.35), we see that 

Jl(tkUk) ~ J(uk) -}- T p+I f b(u~, + u~ +l) 

-= o~ k + e~T p+l . 

Since c~ k converges to 0~, which is smaller than fl, we have 

max Jl (u) ~< fl -- 
u~ltc 

for k sufficiently large, where ~ < fl is some positive constant. Now we can con- 
struct a path ?,g E/~k based on lk such that 

max Jl(u) <- fl -- -e. 
u ~ '  k 

The construction of  such a path ?'k is similar to the arguments in the last paragraph 
of  the proof  of  Proposition 2.14 and is therefore omitted here. By the definition 
of  ilk, we then have flk <= f l -  ~ for all k sufficiently large. Letting k---> cx~, 
we see that fl =< fl -- ~, a contradiction. To finish the proof, it remains to show 
(3.35) (assuming ~ ~ 0). Indeed, given any e > 0, there is an R > 0 such that 
b(x)<=e/2C, for I x l ~ R  where C > 0  is acons tan t  such that 

f (u~, + uf, +') <= C 
for  all k ~ 1. (The existence of  such a constant follows from (2.12) and the 
following well known Sobolev-type inequality 

llull,~+l _-< C llVull~.r a Iluli~.~ for  all uE C~(R') ,  
where 

Then 

( ') a = l - -  �89 p + l  n . )  

l x l _  Ixt  _ 

= 2 + f + . 
Ixl  < R  

Since Ug converges to zero weakly in E, the second integral over the domain 
l xl =< R converges to zero as k ~ oo by the Sobolev compact embedding theo- 
rem. This completes the proof. 

Q.e.d. 

w 4. The radial case 

We consider the following equation 

(4.1) Au -- a(r) u + f (r ,  u) = 0 

in P~", where r = [x]. We still need to assume that a(r) andf( r ,  u) are locally H61- 
der continuous and (2.2) holds. Instead of  working in E, we shall deal with the 
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subspace E, of  E which consists in all radial functions in E. For  f ,  we assume that 
f ( r , u ) ~ O  if  u ~ 0  and 

(a) f E  C ( R •  +) and f(r, u) is locally Lipschitz-continuous in u, 
and f ~  0, 

(b) there is a p  such that I < p < ( n + 2 ) / ( n - - 2 )  and 

0 <=f(r, u) <~ C,(r) (1 -~ u p) 

for all r > 0 ,  u > 0 ,  where Cl(r)>O is continuous, 

(c) there are constants q > 1, ~ > 1 such that 

f(r, u) ~ C2(r) u q 

for all r > 0, u E (0, 6), where C2(r) is continuous and satisfies 

(4.2) 0 < C2(r) <= C(1 + r t) 

where C is a positive constant and for all r > O, 
0 =< l <  �89 -- 1)(q -- 1), 

(d) there are a 0 E (0, �89 and a continuous A(r) > 0 such that 

AI :~ f r"-iA(r) dr < c~ 
o 

and 

A(r) + Our(r, u) >: F(r, u) 

for all r > 0 ,  u > 0 .  

Note that there is no restriction on the growth of  Ca(r). An example of a non- 
linearity satisfying (4.2) is 

f(r, u) = (1 -t- r2)l/2u p, 0 ~ l < �89 (n -- 1) (p -- 1). 

Therefore it is not clear that the variational functional 

J ( u )  = �89 f [ lVU[  2 -~ a ( l X [ )  u 2] - -  fF([x[, u) 
R n R n 

where, as before 

u 

F(Ix[, u) ~ f f( ixt ,  s) ds, 
0 

is well defined on E ,  However, J is well defined on each subspace E,,, where E,, 
is the subspace of  Ek which consists of  all radial functions in Ek. (The spaces Ek 
and E are defined in w 2.) Let 

then the analysis (in w 2) in deriving (2.12) and in proving Theorem 2.13 carries 
over. That is, the sequence {[[ Uk[[}, Uk being a critical point of  Jk obtained by use 
of  the Mountain-Pass Lemma (as in w 2), is still uniformly bounded. Thus, by 
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passing to a subsequence if necessary, we may assume that Uk converges weakly 
to ~ in Er. Let B be a (fixed) ball in R". Using (4.2) (b) and standard interior L p- 
estimates and Schauder estimates for solutions Uk, we conclude that (passing to 

a subsequence again if necessary) Uk converges to ~ in the space C2(B). Therefore 
is a nonnegative classical solution of (4.1) in B. Since B is arbitrary, ~ ~ 0 

is a solution of (4.1) in R' .  
The remaining task is to show that ~ ~ 0, for then the strong maximum 

principle will guarantee that ~ > 0 in R" and ~ will be a desired solution of (4.2). 
Condition (4.2) (c) will be used in establishing this fact. We shall also need the 
following estimates due to WALTER STRAUSS (see e.g. [S]). 

Radial Lemma. For any radial function u in Hi(R"), n ~ 2, 

[u(r) I ~ C[lUlIH,(R,)r (1-")/2 for  r >= 1, 

in which C depends only on n. 

Note that under (2.2), E is continuously embedded into HI(Rn). Since (IJukll) 
is bounded above, 

(4.3) Uk(r ) ~ Cr(l-.)/2 

for r :> 1 and for all k. On the other hand, we observe, just as in the proof Of 
Theorem 3.23, that 

k 

f r '- 'uk(r)  If(r,  uk(r)) - -  Xu (r)l dr > 0.  
0 

Thus, there is an rk C [0, k) such that f (rk,  uk(rk)) > 2uk(rk). 
Let S = (k I uk(r~) < 5}. Then, by (4.2) (c), we have, for k E S, 

 u (rk) <_ C:(rk) q 

<= C(1 + [Uk(rk)lq; 
i.e., for k E S, 

1 

(4.4) Uk(rk) ~ C(1 -t- r q-i 

I f  rkj ~ oo, kj E S, then by the range o f / ,  we deduce from (4.4) that 

"-.___.! r ! i - i  t rk f u,~j(rkj ) >= constant- --~ - q--=T) ~ oo as kj ~ oo, 

contradicting (4.3). Thus there is an R > 0 such that rk <= R for all k E S. 
This, together with (4.4), implies that there is a positive uniform lower bound fl 
for uk(rk), k E S, i.e. 

(4.5) Uk(rk) >= fl > 0 for all k E S. 

Next, we wish to obtain similar bounds for rk'S and Uk(rk)'S for k r S. We 
proceed as follows. For k r S, we have Uk(rk) >= ~. It follows from (4.3) immedi- 
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ately that there is an R > 0 such that r k "< R for all k r S. Therefore, there is 
a constant R such that rk <= R for all k and uk(rk) >= min (fl, 6) > 0 for all k. 
By the compactness of BR, there is a subsequence rkg that converges to } <= R 
and 

%(rkj) ~ ;,~) 

as j ~ c~ since Uk converges to ~ uniformly on B~. Thus, ~(r) :> min {fl, d~} ~> 0 
and ~ ~ O. We have thus proved the following 

Theorem 4.6. Suppose (2.2) and (4.2) hold. Then equation (4.1) has a positive radial 
solution in E,. 

We now return to our model equation 

(4.7) du  -- u § Q(r) u p = O, 

From Theorem 4.6, we have 

n + 2  
l < p < ~  

n - - 2 "  

Corollary 4.8. I f  Q >= 0 in [0, o0) and satisfies the growth condition 

(4.9) Q(r) <= C(l + r t) for  r >= O, 

C > 0 being some constant and l < (n -- 1) (p -- 1)/2, then equation (4.7) has 
a positive radial solution in H~(Rn). 

The solutions obtained in Corollary 4.8 must tend to zero exponentially fast 
at infinity. This standard fact follows from the Radial Lemma and a well known 
result of T. KATO [K]. 

w 5. Maximization 

For equation (3.8) a natural approach exploits the classical method by maximi- 
zation (or, equivalently, minimization). That is, let 

(5.1) ~ sup ~ fO_(x)lu[ p+' 
[I IIHt(Rn)= 1~ n 

and try to show that M is attained by some element in HI(B"),  which would then be 
a solution o f  (3.8). For equation (4.7), the same idea applies, except we now re- 
strict attention to the class of radial functions, letting 

(5.2) Mr = sup f Q ( I x l )  lul p+~ 
Ilull 1 n = ~ l p . n  

Hr(R ) 

where Hr1(R n) is the set of all radial functions in H~(Bn). 
We first look at the radial case. For equation (4.7), we assume that (as in Corol- 

lary 4.8) Q could actually grow at infinity. Thus it is not clear that Mr, given by 
(5.2), is finite. Even if Mr is finite, it is not at all clear that 5/, is always assumed. 
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Corollary4.8 follows from Theorem4.6 directly; however, the approach 
we have been using in this paper employs the Mountain-Pass Lemma, which is 
quite general and therefore is good for obtaining general theorems of  existence. 
We shall sketch a second proof  for Corollary 4.8 by use of  the maximization me- 
thod which is simpler although the exact homogeneity of  the term u p is used (to 
eliminiate a Lagrange multiplier). Furthermore, this second proof  also has several 
by-products and one of  them is the finiteness of  (5.2) under the growth condition 
(4.9) on Q. 

A sketch of  the proof of  Corollary 4.8 by maximization 

Define 

(5.3)k nk.,  ---- , sup fQ(x )  In[ ~ 
ll"'lnd,,Cnk ):Ink 

It is not hard to see that 

(i) Mk, , < cx~ and Mk,, is assumed by an element Uk > 0 in Hlo,,(Bk) with 
I[U~[[H~,,Cnk ) : 1, where H~,~(Bk) is the set of  all radial functions in H~(Bk). 

(ii) uk is a solution of  

Au - u + 2Qu p =  O in Bk, 
(4.7)~, 

u :> 0 in Bk and u = 0 on 0Bk, 

where the Lagrange multiplier 2 = 1/Mk,,. Thus 

~ (~-~--~"-' Uk Wk \ z vi k,r ! 
(5.4) 

solves 

(4.7)k 

(iii) Mk,r 

du -- u § Qu p = O in BI,, 

u > 0 in Bk, u : 0 on ~Bk. 

increases monotonically with k and thus 

(5.5) II WklIH~R,~ = V " k . J  = M I . , )  ' 

i.e. ~Wk} is uniformly bounded (above) in H,I(R"). Standard elliptic estimates 
guarantee that (by passing to a subsequence which we still denote by {Wk}) 
the sequence {Wk} converges to a limit w in H)(R ") and the convergence is 
uniform in C2(12) for any compact subset .62 in R ~, and w ~ 0 is a solution 
of  (4.7). 

(iv) It remains to show that w ~ 0. To this end, set 

Ak : {XE Bk [ Q(x) w~-l(x) 2> 1}. 
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Clearly, A k is not empty. For  x E ,4k,  we have 

(5.6) Wk(X) >: p-I ~ t 
I x ? - '  

for Ix[ ~ 1, by (4.9). On the other hand, by (5.5) and the Radial Lemma, we 
have 

C 
(5.7) Wk(X) < ._ ,  

Ixl 2 

for Ix[ > 1. Combining (5.6), (5.7) and the condition o n / ,  we see immediately 
that Ak is contained in a f ixed ball of  radius s. Thus 

lWk[r~(asl > Min P-I ~> O 
= Bs 

for all k. Thus w ~ 0 and the proof  is complete. 
As a consequence, we have the following 

Proposition 5.8. Let Q >: 0 in [0, oo) with Q(r) ~ C(1 + r t) for  r >: 0 where 
1 ~ (n -- 1) (to -- 1)/2. Then the number Mr defined by (5.2) is finite. 

Proof. Since Mk.r (defined in (5.3)k) tends monotonically to M, as 
suffices to show that Mk., is bounded above. Otherwise Mk,,--* oo as k - +  oo. 
Then, by (5.4) 

[I wkllx,k~.>-+ 0 as k --~ oo. 

Since Wk converges to w in C2(g2) (12 is a compact set), we see that 

II WllH,k ) = k--~c~lim II WkIIH C ) <= lim II wklI r ) = 0, 

i.e., w ~ 0 on .(2. Since .(2 is arbitrary, w ~: 0 on R n, a contradiction. 

k - +  oo, it 

Q.e.d. 

A natural question arises: does the conclusion of  Proposition 5.8 still hold 
if l >  ( n -  1 ) ( p -  1)/2? The answer is negative as the following example 
shows. 

Example 5.9. For each integer m > 0, define 

Urn(r) : 

1 
m ( n _  D/2 �9 e(r-m)12,  r ~ m ,  

1 
r(n-1)12 , m < _ r < m +  l ,  

1 
(m + 1) ("-1)/2 

. e ( m + l - r ) / 2  r > m + l .  
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It is routine to verify that u m E HI(R ") and that there is n uniform upper bound 
for [lUmlfn,~R.; However, if  Q(r) = (1 + rt), 

m + l  r l _ ~ . { p + l ) + n _ l  dE 
f Q(x) tumf~ ' dx >: f 

Rn m 

m + !  
: f rt-(n-l)(p-I)12dr 

m 

m + l  
>= m t-("-l)~p-1)/z f dr---> cx~ 

m 
as m - +  cx~, 

thus M, = ~ .  Incidentally, this example also shows that the Radial Lemma is 
sharp�9 

Our second consequence of  the above proof of  Corollary 4.8 is the following 

Proposition 5.10. Suppose that Q >: 0 in [0, oo), Q -+ oo as r --~ cx~ with 

Q(r) <= C(l + r  t) for r > O, 

where l < (n -- 1) (p -- 1)/2. Then for every large k the problem (4.7)k has a 
positive solution which is not radially symmetric�9 

Proof. Define 

Mk : sup f Q(x) lul ~+'. 
IlUl]Hlo(Bk )=1 B k 

It is clear that M k ~ O O  as k ~ o o  since Q ( r ) ~ o o  as r-+cx~. Thus, for 
large k, with Mk,r given by (5.3)k, Mk.r =[: Mk. Since both Mk,r and M k are assumed 
(this is a rather standard fact whose proof  we omit here), say; by Uk and u~' re- 
spectively, we see that u~' can not be radially symmetric. Rescating, we have 

~ l Vl k,r ] 
- -  

and so for large k there are two positive solutions of  ( 4 . 7 ) k  , o n e  of  which is radial 
while the other is not. (The fact that both Uk and u~' are positive in B k is also stan- 
dard.) 

Q.e.d. 

Remark 5.11. The procedure (i)-(iii) in the above proof  of Corollary 4.8 does not 
have to be restricted to the class of  radial functions. Everything carries over with- 
out change if we simply drop the restriction to radial functions�9 

Finally, we take up the question whether (5.1) is assumed for bounded Q's. 
As an easy example, we state t h a t / f  Q(x) is bounded, radial and monotonically 
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increasing, then M in (5.1) is not realized. This is essentially a special case of the 
following result, which is not restricted to radial functions. 

Proposition 5.12. Suppose there is an Ro > 0 such that 

(5.13) Min Q(x) > MaxQ(x) 
2R~_IxI~4R : [xl <R 

for all R >= Ro. I f  Q ~y constant, then the number 

M ~  sup f Q(x) lul'+' dx 
luIHt(Rn)= 1 Rn 

is not attained. 

Remark 5.14. Condition (5.13) may be replaced by the following slightly more 
general one: 

There are two sequences R/, ]' 0% S k t  oo such that 

Min Q(x) > Max Q(x) for all k. 
Rk_Sk~ lX t<Rk+S  k = ixl~Sk 

In fact, one can easily formulate various weaker assumptions from the sufficient 
but not necessary ones used in the proof. 

Proof of Proposition 5.12. Suppose Mis  attained by u. Define ~R(x) ~- u(x -- xR), 
i.e., uR is a translation of u by xR, where xR = (3R, 0 . . . . .  0). Then ~R also has 
Hi-norm one and for R ~ Ro, 

(5.15) fQ(x) l~RI "+' ~ f Q I~./,+' 
Rn n#xR) 

=> [ 'nQI & 
L BR(xR) / 

__> MinQ �9 f lul "+' 
2R~lx[~4R BR(O ) 

~ M a x Q .  f lu[ "+' 
BR(O) BR(O) 

= B/~oQ(x) lu] .+ '  + a(R), 

in which b(R) is defined by the last equality. It is clear that 

6(R) = f [ M a x Q - Q ( x ) ]  lut p+ t>=0  
n#o) L B#o) J 
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is nondecreasing in R and ~ ~ 0 since Q ~ constant. Let 

t~(oo) : lim ~(R); 
R---~- eo 

then there is an Rt ~ Ro such that t~(R) > �89 t~ (oo) and 

f Q lul p§ > n -  �89  (oo) 
BR(O) 

for R ~> Ri. By (5.15), we see that 

fa ]~RI p+I > M, 
Kn 

a contradiction. 
Q.e.d. 
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