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Abstract 

The problem of  minimizing a possibly non-convex and non-coercive functional 
is studied. Either necessary or sufficient conditions for the existence of  solutions 
are given, involving a generalized recession functional, whose properties are dis- 
cussed thoroughly. The abstract results are applied to find existence of  equili- 
brium configurations of  a deformable body subject to a system of  applied forces 
and partially constrained to lie inside a possibly unbounded region. 
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1. Introduction 

Many problems in Mathematical Physics can be formulated in terms of  
minimum problems: an integral functional describing the total energy associated 
to a configuration has to be minimized over the set of  all admissible configura- 
tions. 

Particularly interesting is the study of  the equilibrium configurations of a 
body s subject to a system of applied forces and constrained to lie inside a given, 
possibly unbounded, region. I f  we denote by u a vector valued function which 
describes the configuration of the system, then the corresponding energy may be 
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expressed in the form 
F(u) - (L, u), 

where F(u) is the stored energy functional, depending on the nature of the body, 
and the linear form (L, u) describes the action of the applied forces. The physical 
constraints and the regularity properties of the admissible configurations are taken 
into account by imposing that u varies in a suitable subset K of a Banach space X. 
In this way, the minimization problem we deal with is 

min (F(u) -- (L, u): uC K}. (1.1) 

By introducing the indicator function of K 

0 if x E K ,  
Z~(x)= + o o  i f x ~ K ,  

we see that problem (1.1) is a particular case of the abstract minimization problem 

min (G(u): u E X}, (1.2) 

when G(u) ---- F(u) -- (L, u) + gK(u). The simplest case in which existence theo- 
rems for problem (1.2) are well known occurs when the functional G is weak* 
lower semicontinuous and coercive, in the sense that G(u) goes to + oo as Ilull 
goes to + oo (TONELLI'S Direct Method [Tol], [To2]). Unfortunately, in many 
applications coerciveness is too restrictive. A first instance is the case of the Signo- 
rini problem in linear elasticity: u is the displacement of the body and the stored 
energy functional takes the form 

F(u) -~ f • aUhk(X ) eU(u ) e~(u) dx, 
~2 i,j,h,k 

where e(u) is the linearized strain tensor and aijhk are the components of the 
elasticity tensor. Existence theorems for this case have been given by FICHERA in 
[F1]. 

When dealing with problem (1.1) in the framework of non-linear elasticity, 
the model proposed by BALL (see [Ba]) for the stored energy functional of a hyper- 
elastic material is the following: 

F(u) = f W(x, u, Vu) dx, 

where u denotes the deformed configuration and the integrand W is assumed to 
be polyconvex. In this framework, the unilateral problem was studied for the 
first time by OARLET & NECAS in [CN1], [CN2]. 

Another mechanical situation leading to a minimum problem of the form 
(1.1) is the class of masonry-like problems in which the body is supposed not to 
react to traction but to behave elastically under compression. These problems 
have been recently studied by several authors (see, for instance, GAIQOINTA & 
GIUSTI [GG], ANZELLOTTI [A], ANZELLOTTI, BUTTAZZO • DAL MASO [ABD]), 
without unilateral constraints. 

Thus, in several interesting cases we cannot expect the functional G in (1.2) 
to be coercive. On the other hand, pure elimination of coerciveness may cause 
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problem (1.2) to have, in general, no solution. Therefore some supplementary 
hypotheses have to be added in order to get an existence theorem. For  instance, 
existence of a solution of problem (1.1) has been established when F is a quadratic, 
non-coercive functional, under suitable compatibility conditions involving F, L, K 
(see, for instance, FICHERA [F1] and [F2], LIONS • STAMPACCHIA [LS], SCHATZ- 
MANN [Sc], BAIOCCHI, GASTALDI • TOMARELLI [BGT2]). 

In this paper, we give conditions (weaker than coerciveness) on the be- 
havior at infinity of  the functional G in (1.2). If  G is convex, these conditions 
are based on the notion of recession functional G ~176 associated with G (see ROCKA- 
FELLER [R]); in the general case, we introduce the new notion of  topological 
recession functional Goo., associated with G and with a suitable topology (r on X 
(usually, the weak* topology). 

In Section 2 we give the definition and the general properties of the functional 
G . . . .  In Section 3 we consider problem (1.2) in a quite general framework and 
we derive a necessary condition for its solvability in terms of G . . . .  Again by 
means of  the topological recession functional, we give a general existence theorem 
based on some assumptions of  semicontinuity, compactness and compatibility 
(see Theorems 3.4 and 3.9). We also treat in detail some particular cases (for in- 
stance, when G is convex) in which these assumptions simplify. 

Sections 4, 5, 6 are devoted to the applications of the abstract existence 
theorems for the above-mentioned unilateral problems in linear elasticity, non- 
linear elasticity and masonry-like materials, respectively. In each of these theories 
our method enables us to consider the equilibrium of a body constrained to lie 
inside a non-convex region, possibly containing entire directions. 

Special attention is devoted to the set K of admissible configurations: in 
particular, in Sections 4 and 5 we allow the constraint to be imposed only on a 
part E of the elastic body (usually, a subset of its boundary). This requires us to 
work "up to subsets of zero capacity": hence we introduce a capacitary essential 
representative E~ s of E (which coincides with E when this is the closure of an 
open set or a smooth manifold of codimension 1). The properties of the set Less, 
along with a capacitary version of Korn's  inequality, are proved in the Appendix. 

2. Preliminaries and notations 

In this section we introduce the tools we will need in what follows, along with 
their main properties. 

Consider a 
Hausdorff topological vector space (X, a) 

and a functional G: X---> ]--  co, -k co]. As usual, set 

dom G = {xE X: G(x) < -k co): 

if dom G ~ O, the functional G is said to be proper. 
I f  G is proper, convex and ~r lower semi-continuous (abbreviated o'-l.s.c.), 

then its behavior at infinity can be described in terms of what is called the recession 
function, defined as follows. 
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Definition 2.1. Let G: X - +  ]-- oo, +oo]  be proper, convex and a-l.s.c. The 
recession function G ~~ of G is defined by 

1 
G~176 = lim G(xo q- 2x), (2.1) 

~.-+-b oo T 

where Xo is any element of  dom G. 

We remark that the limit in (2.1) exists and that the definition above is in- 
dependent of  Xo. Moreover, the value of G ~176 at any x of X can be expressed by 
(see [R], Theorem 8.5 for the finite dimensional case; see [Bou] for arbitrary 
topological vector spaces) 

1 
G~176 = lim [G(xo + 2x) -- G(xo)] = sup (G(z + x) -- G(z): z E dom G} 

2~+oo -~- 

1 
= sup -~- [G(xo + 2x) --  G(xo)], 

2>0 

where Xo is any element of dora G. 
The functional G ~ turns out to be proper, convex, a-l.s.c, and positively homo- 

geneous of degree 1, say 

G~(2x) = 2G~*(x), v2  = 0, Vx E X. 

The definition we have recalled is not suitable for general functionals; the one 
we are going to give requires neither convexity nor semi-continuity; rather it depends 
on the topology of X. 

Definition 2.2. Let G: X--~ ]--  c~, + oo] be any functional; we call topological 
recession function of G the function G~o,o defined by 

1 
G~,.(x) = I'--(a) fiminf--ff G(xo + 2x), x E X, 

where Xo is any element of  X and the F-limit is defined by 

1 1 
F-(a)  lim inf-5-- G(xo + 2x) = sup lim inf inf--= G(xo Jr 2y) 

2"->- + oo I~ EENo(x) a-+ + oo yEE ~ 

(N~(x) denotes the family of neighborhoods of  x in the topology a). 

For the definition and properties o f / "  limits, see for instance [D], [DF], [Bu]. 
Here we just give an explicit representation of  G~o,, as follows. For  a fixed x of  X, 
introduced the set of nets 

t~ 

S(x) = {(~, x~)~c_~: 2~ --- + ~ ,  x~ --- x}, 

where E denotes an arbitrary direct set. Then 

1 } 
Goo,o(X) = inf/ l im inf-z-- G(xo -k 2~x~) : (2~, x~)~z E S(x) . (2.2) 

t bE- Z~ 
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Remark 2.3. The functional Goo,, is ~r-l.s.c. and positively homogeneous of  
degree I. Moreover, it is not difficult to see that the definition of  Goo,, does 
not depend on the choice of  Xo E X (for this reason, we often choose Xo = 0). 

Throughout  this paper we use the following notation: 

Ker  G~,, = {x E X: Goo,~(x) = 0}. 

Note that Ker G~,~ is not a subspace of  X, in general. Anyway, due to the homo- 
geneity of  degree 1, it is a set of semi-directions. 

Remark 2.4. It is possible to prove (see the references quoted above) that in 
(2.2) the infimum is actually a minimum, that is, for all x, Xo of X there exists 
an element (;re, x~)eEZ E S(x) such that 

1 
G~,~(x) = lim inf.--:- G(xo + 2~x~). 

~Ez A t 

The recession function may be compared with the topological recession function 
only for convex functionals. In this case, they actually coincide, as the following 
proposition shows. 

Proposition 2.5. Let G: X--> ]-- o0, + o0] be proper convex and cr-l.s.c. Then 

c~176 = co~,o(x), v x  E X .  

Proof. Fix an element x E X and Xo E dom G. Take an element (2~, x~)r of 
X o .  

S(x) with xe = x q--~-~, by (2.2), we get 

Goo,~(x) ~ lira inf . - -  a(;t~x~) = l iminf  a(xo + 2~x) -=-- Goo(x). 

Let us prove the opposite inequality. Consider an element (2~, xe)ecz of S(x). 
Due to the convexity and ~-l.s.c. of G, for all 2 > 0 we get 

G(x~ -I- 2x) < lim inf G [ ( 1 B 2 ~  ~Ez -- Xo + -~ ]2~x~ 

=< lim~zinf 1 -- ~ G(xo) + ~ (2~x~) 

1 
= G(xo) + 2 lira inf-r-  G(;t~x~). 

~E-~ A s 

Since this inequality holds for all elements of S(x), 

1 1 
G(xo + 2x) "< 7 G(xo) -}- G~,~(x). 

Taking the limit as 2 ~ q- o0, we get Goo(x) <= Goo,o(x) and the proof  is com- 
plete. [ ]  
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Besides functionals defined on X, we will be interested in subsets of X and 
particularly in their behavior at infinity. Again, the simplest possibility is provided 
by a convex subset; the following definition is well known. 

Definition 2.6. Let K be a non-empty, convex, a-closed subset o f  X. We call reces- 
sion cone of K the set (a-closed, convex cone) 

1 
K~ = ~ "5-(K -- ko), 

�9 ~,>0 iL. 

where ko is any element o f  K and K -- ko denotes the set (k --  ko : k E K}. 

Remark 2.7. The asymptotic behavior of a convex, a-closed subset K of X 
can also be described in terms of the recession function of the indicator of K, say 
the function 

0 if x E K  
ZK(x)= q - o o  i f x ~ K .  

Indeed, it is easy to see that 

K ~ : dom (ZK) ~, say Z ~  : (ZK) ~ . 

For the general case we give the following definition. 

Definition 2.8. Let K be a subset o f  X. We call the set of topologically unbounded 

family  (K -- xo) directions of K the Kuratowski upper limit (as 2 --> + ~ )  o f  the _ _  -~ , 
say 

K~,o = ~ cL L/  5 - ( K  - -  Xo) , 
/*>0 12>/ ,  -~ 

where Xo is any point o f  X and clo denotes the topological closure with respect to a. 

As in the case of the functional G . . . .  the definition of the set K~,~ does not 
depend on the choice of Xo E X; moreover, as for convex K the unbounded 
directions of a subset K of  X may be characterized in terms of the recession 
function of its indicator. Indeed the following lemma holds. 

Lemma 2.9. Let K be a subset o f  X. Then 

K~,~ = dom [(ZI0~,~], say 

or equivalently 

K~,~ = {x E X: 3(2~, X~)~EZ E S(x) with 

for  any Xo E X. 

Z~,o  = (ZK) . . . .  

Xo+2r  V~E3} (2.3) 

Proof. The result is trivial if K = O; hence we prove it only for a non-empty K. 
Let x be an element of K~,~ and let E be a neighborhood of x in the topology a. 
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[1 ] 
Then, for every/z > 0 there is a 2 > / z  such that E • 7 (K -- Xo) is not empty. 

By Definition 2.2, this implies that (X~)~,,(x) = 0; hence Koo,, C dom [(ZI0~,~]. 
Conversely, let x be an element of dom [(ZK)oo,,]. Then there is a net {2~, xe} E 
S(x) with Xo-k-2~xr E K, for all ~ E ~. Thus, for every a-neighborhood E 
o f x  and for every # > 0  we can find ~ E 3  such that 2 ~ > / z  and xeEE.  

Hence not empty and this proves that x E K  . . . .  Thus 
L ' ' ~  d 

K~,~ = dora [(gK)oo,~]. By (2.2), this is equivalent to (2.3). [ ]  

Remark 2.10. The set Koo,, is a a-closed cone (not convex, in general), i.e. 
2x E Koo,, for all 2 ~ 0, whenever x E K . . . .  

Further properties of K~o,, are the following. 

Lemma 2.11. Let K be a non-empty subset of  X. Then 
(i) i f  K is convex and a-closed, then K ~ 1 7 6  Koo,~; 

(ii) Koo,~ : (K -- T)~,, : (K k) T) . . . .  for all bounded subset T of  X, T =~ O; 
(iii) i f  K is bounded, then Koo,~ : {0}. 

Proof. Property (i) follows from Lemma 2.9, Remark 2.7 and Proposition 2,5. The 
proof of (ii), (iii) follows from the definition of K~.~ and of boundedness in a 
topological vector space. [ ]  

The following lemma lists some properties of the functional Goo.o. 

Lemma 
Then 

(i) 
(ii) 

(iii) 

(iv) 

2.12. Let G, H be funetionals defined on X with values in ]-- cx~, -Jr- ~] .  

dora Goo,~ C (dom G)oo.~; 
(G + H)oo,,>~ G~o,o + Hoo,o; 
i f  H is positively homogeneous of  degree 1 and a-continuous, then 
(G + H)~,~ -~ aoo,~ -~ H; 
i f  G is non-negative, positively homogeneous of  degree greater than 1 and 
a-Ls.c., then 

q- oo i f  G(x) =~ 0 
G~,~(x) 

0 i f  G(x) -~ O. 

Proof. The proof follows very easily from Definitions 2.2 and 2.8. [ ]  

Remark2.13. From Lemma2.12(i) and Lemma2.11(iii) it follows that, if 
dom G is bounded, then 

G~,o(x) = + ~ V x E X , x ~ O .  

The inequality in Lemma 2.12(//) may be strict; this we will show in the example 
below. On the other hand, in some cases the inequality becomes an equality, as 
shown in case (iii). Another interesting case is considered in the following propo- 
sition. 
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Propos i t ion  2.14. Let  J :  X - +  ]-- o% + cx~] be proper, convex and a-l.s.c. ; let K 
be a non-empty convex (r-closed set. Then 

( J  q- ZK)oo,~ = ( J  + ZK) ~176 = j~o -k (ZK) ~176 = j~o _}_ ZK e~ 

Proof. The proof is an easy consequence of Proposition 2.5, of Remark 2.7 and 
of Definition 2.1. [ ]  

Example 2.15. Let X = Hi(0, z 0 be the usual Sobolev space of the (classes of) 
functions which are square integrable over the interval ]0, :~[ along with their 
first derivative. Take as K the following set: 

K = {v E X:  v(x) = n + sin nx for some n E I~} 

and consider the functional G = d + ZK, where 

J(v) = f Jv'(x)l 2 dx. 
0 

Then, denoting by a the weak topology of X, we obtain the function Vo = 1 
belongs to Koo,~ and JO~ = J(vo) = 0, while G~o,,(Vo) = + oo. This shows 
at once that both the inclusion in Lemma 2.12(/) and the inequality in Lemma 2.12 
(ii) may be strict even if J is convex. []  

Finally, we give an example of integral functionals for which the evaluation of 
the recession functional reduces to evaluating the recession function of the inte- 
grand. 

Example 2.16. Let N, M be positive integers; let O be an open subset o f R  N and 
let [Wl'v(.Q)] M, p > 1, be the Sobolev space of the (classes of) vector valued 
functions which belong to LP(12) along with their first derivatives. Finally, let 
f :  O• [0, q- oo] be a Borel function. 

For all u C [Wl'V(f2)] M set 

F(u) = f f ( x ,  Vu(x)) dx.  
.f2 

Assume that: 
(a) for almost all x of O the map "q -->f(x, q)" is convex and l.s.c, on RNM; 
(b) there is a Uo E [W1'P(O)] M such that F(Uo) < -k cx~. 

It is well known that under these assumptions the functional F turns out to be 
proper, convex and 1.s.c. with respect to the weak topology of [Wl'P(f2)] ~r. More- 
over, 

F~176 = f f~176 Vu(x)) dx, u C [W"P(f2)I ~ ,  
O 

where ff~ -) is the recession function off(x,  .). 
In fact, because of the convexity of f ,  for all Uo, u E [W1'P(~2)] u the function 

1 
g(x, Z) = -~- [ f (x ,  ~Tuo(X) + 2, Vu(x)) - - f ( x ,  Vuo(X))] 
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is non-decreasing with respect to 2, for almost all x E so2. Therefore, the Beppo 
Levi theorem gives 

1 
F~(u) = lira [F(uo q- ;tu) -- F(uo)] = lim f g(x, ,~) dx 

2-++00 ~ ~-++ cx~ s 

= f f ~ ( x ,  Vu(x)) dx. [] 
s 

Remark 2.17. When working with sequences instead of nets, we can define a 
sequential recession functional r of  a given functional G: X ~ ]--  ~ ,  q- ~ ] :  ~ o o t l  

GZq, o(x) ---= inf/lira i n f - -  G(xo q- 2.xn) : 2~ ---. + cx~, x.  ~-- x x, Xo E X ,  

where {2.}N, (x.}~ are sequences. 
The inequality 

Goo,~(x) <= a~q,~(x), x E X 

is immediate. Moreover, the functional ~seq is positively homogeneous of degree 1. voo,o 
By analogous proofs, we may obtain for ~eq results similar to those given in voo ,~  

Proposition 2.5 and Lemma 2.12 for G . . . .  
Let K be a non-empty subset of X: we call set o f  sequentially unbounded direc- 

tions o f  K the set 

It is easy to see that 

Kseq = ( x E X :  

seq --oo,~[~eq __-- dom [(;r 

3 (2.)N, "a (x.)~, with 2. --* -t- cx~, x.  ~ x 

and xo q- 2nx. E K, Vn E N}, 

for any Xo E X; moreover, a statement analogous to Lemma 2.11 still holds. 

3. The abstract existence theorems 

In this section we give some necessary or sufficient conditions for the existence 
of  solutions of  quite general minimum problems. 

Let (X, a) be a topological vector space and let G: X ~  ]-- oo, q- ~ ]  be a 
functional. Consider the following problem: 

f ind y E X such that G(y) = rnin {G(x): x E X}. (3.1) 

We begin by stating some necessary conditions for Problem (3.1) to have a solu- 
tion. More precisely, the conditions we are going to give are necessary for G to 
have a lower bound. In general, they do not suffice to guarantee either that 
Problem (3.1) has a solution or that G is bounded from below, as we will show. 
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Proposition 3.1. Assume that inf {G(x): x E X} > -- oo. Then 

G~,~(x) >: 0 V x  E x .  (3.2) 

Proof. For all x of X and for all nets (2r x~)e~_~ E S(x) we have 

' ] lim inf.--- G(2~x~) > lim inf [ 1  inf G(z) = O. 

Taking the infimum over all nets of S(x) and recalling (2.2) we get (3.2). [] 

Remark 3.2. In view of Lemma 2.12(i), condition (3.2) imposes restrictions upon 
the behavior of G only at the elements of (dom G)~,o; elsewhere the inequality 
(3.2) is automatically satisfied. Furthermore, if G = J § ZK, where J is a proper, 
convex and o'-l.s.e, functional, the condition (3.2), is satisfied if 

J~(x) >= 0 for all x E Koo,~; 

this follows from Lemma 2.12(ii) and from Proposition 2.5. Note that this condi- 
tion may be easier to verify than (3.2). 

The following example shows that the functional G may be unbounded from 
below, even if it satisfies condition (3.2). 

defined on the space 
Clearly 

/ ~ G~,o(x) = 6 ~ ( x )  = + 

Example 3.3. Consider the functional 

- - logx  if x > 0 
G(x)---- + o o  i f x ~ 0  

X = R, endowed with the usual Euclidean topology e. 

i f x ~ 0  

if x < 0 .  

but  G is not bounded from below. [ ]  

A sufficient condition is obtained by adding to the necessary one further re- 
quirements on the functional G, namely semicontinuity, compactness and com- 
patibility, in a sense which we will specify. 

We begin by stating an existence theorem in quite an abstract framework. 
We point out that the hypotheses and the steps of the proof generalize the 
arguments used in the literature to prove several existence theorems under con- 
vexity assumptions (see, for instance, [F1], [F2], [LS], [Sc], [BGT1], [BGT2], 
[GT]). 

Theorem 3.4. Let (X, I[" [I) be a normed space (denote by r the topology associated 
with the norm). Let ~r be another linear (Hausdorff) topology on X, coarser than 7, 
such that for every R > 0  the ball { x E X  : ]]x]I ~ R }  is ~-compact. Let G: 
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X ~ ]-- cx~, q- cx~] be a proper functional. Finally, assume 

semieontinulty: G is a-Ls.c, on all r-bounded sets; (3.3) 

[for all nets {2~}z with 2~ ~ q- ~ and all 

compactness: / z-bounded nets {xr with x~ -~ x, (3.4) 

[ t f  G(2r is bounded from above, then xe ~ x; 

(i) G~,o(x) ~ O for all x C X; 

compatibility: (ii) for all z E Ker G~,~ there exists t t = It(z) > 0 (3.5) 

such that G(x -- Itz) <~ G(x) for all x C X.  

Then Problem (3.1) has at least one solution. 

Proof. We divide the proof into several steps. 

Step 1. For every R > 0, consider the problem 

(PR) to find xR E BR such that G(XR) = min {G(x): x E BR}, 

where BR = (xE X: I[xl[ ~ R}. In view of the semicontinuity hypothesis (3.3), 
(PR) has a solution xR. Furthermore, again by (3.3), we can choose xR such that 

I[xRH = min {J[YRI[: YR solves (PR)). (3.6) 

Step 2. We distinguish two cases, that in which {xR}~ is bounded (in norm) 
and that in which it is not. In Step 3 we will prove that only the former case may 
occur; we claim that in this case there is a solution of (3.1). For, if (xR) • is z- 
bounded, then there is a subnet of {XR}R (which we still denote by (XR}R), ~r-con- 
verging to some z E X. Due to the a-l.s.c, of G, 

G(z) <= lim inf G(XR) = inf {G(x): x E X}; 
R - + + ~  

hence z solves (3.1). 
Step 3. It remains to show that the case (xR}g unbounded cannot occur. 

For contradiction, assume that (a subsequence of) [lxR[[ tends to infinity. In 
xR 

this case, the normalized vectors yR = []Xn[[ are bounded; hence there exists a 

subnet of {YR}~ (which we still denote by {YR}R), a-converging to some y E X. 
We will get a contradiction with the compactness and compatibility assumptions. 
First, we note that 

y C Ker G . . . .  (3.7) 
In fact, since 

G(xR~) <= G(xR~) for all R~, R2 with R~ ~ R2, (3.8) 

we see that G(xR) is bounded from above; hence 

1 1 
G~,~(y) < lim i n f - -  G([IxRII yR) = lim i n f ~  G(xR) < O. 

= R - ~ + ~  IIxRII R - ~ + ~  llxRJI = 

Recalling the necessary condition (3.5)(i), we get (3.7). 
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Step 4. Let us exploit the compactness assumption. We have l[xR [1 -+ § ~ ,  

Yn f "  Y, and G(IIxRII y R ) =  G(xR) is bounded from above (again, by (3.8)). 
Thus, by assumption (3.4), we conclude that the convergence of YR to y is actually 
strong, say I[YR -- yll -+ 0. This prevents y from being zero, because Ily~l[ = 1 
for all R. 

Step 5. From (3.7) and (3.5)(ii) we get that there exists /z = #(y) > 0 such 
that 

G(xR -- tzy) <= G(xR). (3.9) 

By using the strong convergence of YR to y and the unboundedness of {xe}R, we 
obtain 

I1 x~ - ~yll = x~ 1 -- ~ -l- #(YR -- Y) 

(1 --[{--~RI])llxR[I + / z  IIyR - y l l  = Itx~]l + #(I[YR - - Y l l -  1). =< 

The right hand side of the last equality is eventually strictly less than IIxRl[ and 
this is impossible because of (3.6), of (3.9) and because y @ 0. The proof of the 
theorem is now complete. [ ]  

Remark 3.5. In view of Proposition 3.1, the condition (3.5)(i) is necessary 
for the inferior boundedness of G. 

The compactness hypothesis (3.4) is used only in Step 4. As shown in Step 3, 
the condition (3.5)(i) makes the normalized net or-converge to an element of Ker 
G~,~; it follows that we may impose the compactness hypothesis only for nets 
a-converging to elements of Ker G . . . .  In Step 5 we might use weaker forms of 
the compatibility condition (3.5)(ii); for instance 

for all zE Ker G~,~ there is a 0 ~- ~(z) > 0 such that for all xE  X, with IIxll >= o, 

there is a # -~ i~(x, z) > 0 such that G(x -- #z) <= G(x) and # < ]Ix N . 

Remark 3.6. Theorem 3.4 includes the classical results of Tonelli's type, which 
provide a solution of problem (3.1) under the following assumptions: 

(a) G is a-Ls.c, on all T-bounded and proper sets; 
(b) there are or > O, h E R ,  such that G(x) >= or Ilxl[ + b for all x~  X. 

In fact, (b) implies that 

2~ ~ + ~ ,  x~ ~ x, a (~x~)  < C ~ II x~l[--" 0 and x = 0. 

Thus the compactness hypothesis (3.4) is satisfied. On the other hand, it is 
Goo,o(x) > o~ Ilxll for all xC At, and so Ker G~,~ = {0} and the compatibility 
conditions (3.5) hold trivially. 

In particular, (b) holds if dom G is bounded. More generally, assume (a) and 

(c) for some ~ C R,  Gr = {x E X: G(x) <= ~} is non-empty and bounded, 
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in this case, the minimum problem may be handled in the same way, since 

min {G(x): x E X} = min {G(x): x E G~}. 

Remark 3.7. By using sequences instead of nets, we obtain a necessary condi- 
tion weaker than (3.2): 

if inf {G(x) : x E X} > -- e~, then G~q~(x) >= 0 Yx  E X.  

Analogously, we may give a sequential version of Theorem 3.4, by requiring that 

(i) the z-bounded subsets of  X are sequentially or-relatively compact; 
(ii) G is sequentially a-l.s.c, on all z-bounded sets; 

(iii) the compactness hypothesis (3.4) holds for sequences; 
/'-~=seq instead of G~,o. (iv) the compatibility hypothesis (3.5) is given on . . . .  

Remark 3.8. In some applications (see Sections 4 and 5), X is the dual of a 
normed space V, 7: is the strong topology of X and cr is the weak* topology of 
X. In this case, by Theorem 3.4 and by Remark 3.7, we get the following theorem. 

Theorem 3.9. Let the following assumptions hoM: 

either X & reflexive or X = V', with V separable 

(denote by r the weak* topology of  X); (3.10) 

semicontinuity: G is sequentially ~r-l.s.c. and proper; (3.11) 

compactness: for all sequences {2n}N with 2~ --, + oo and all sequences 

{Xn}t~ with x~ ~ x, i f  G(AnX~) is bounded from above, then (3.12) 

x~ ~.x;  

compatibility: (i) G~q~(x) >: 0 for all xE  X; 

(ii) for all z E Ker (7"sea there is a t z = #(z) > 0 such that 

G(x -- #z) <: G(x) for all x E X. 

Then problem (3.1) has at least one solution. [] 

(3.13) 

An immediate consequences of Theorem 3.4 is the following corollary, which 
gives a "condition of Lions-Stampacchia type" [LS]: more precisely, when this 
corollary applies, the set of solutions of (3.1) is bounded. 

Corollary 3.10. Let X, % a, and G be as in Theorem 3.4. Assume (3.3), (3.4) and 

G~o.,(x)>O for all x E X ,  x @ O .  (3.14) 

Then problem (3.1) has at least one solution. [] 

Again, we state the corresponding sequential version as follows. 
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Corollary 3.11. Let X, 3, ~, and G be as in Theorem 3.9. Assume (3.11), (3.12) and 

G~a,~(x) ~ 0 for  all x E X, x ~= O. (3.15) 

Then problem (3.1) has at least one solution. [] 

Convexi ty  assumpt ions  on G allow us to give sufficient condit ions for  the existence 
of  minima,  easier to verify than  (3.5)(ii). 

Theorem 3.12. Let G: X - +  ]-- (x~, q- oo] be a proper, convex, tr-l.s.c. (respectively, 
sequentially a-l.s.c.) functional. The condition (3.5)(ii) (respectively, (3.13)(ii))is 
satisfied i f  we assume that 

Ker  G ~176 is a subspace o f  X .  (3.16) 

Proof .  We  shall p rove  that  (3.5)(ii) holds with /z ---- 1, say 

G(x -- z) ~ G(x) for  all x E X, for  all z E Ker  G ~176 

Fix Xo E d o m  G, zE Ker  G ~~ x E  X. By (3.16) we conclude tha t  - - z  belongs to 
Ker  G ~176 hence 

�9 1 
 !im -T C(Xo - = 0 

Since G is convex and a-l.s.c., we find tha t  

G(x - -  z) =< lira infaa~+~ 1 - -  x + 7 ( x o  - -  ;tz) 

< lira inf  __1 - -  G(x) + a ( x  o - -  ;tz) = a (x ) .  
= a~+oo L\ 

The sequential s ta tement  works  in the same way. [ ]  

I f  G is not  convex, condi t ion (3.16) does not  make  sense. Its na tura l  substi tute 
would be:  

if  v E Ker  G . . . .  then - - v  E Ker  G . . . .  

However ,  this p roper ty  m a y  hold even if G has no minimum, as the following 
example  shows. 

Example  3.13. Let  X = 1%2 with T = a = Euclidean topology;  let G = J -~ Z~, 
with 

J(x, y ) = y  and K ~ - -  {(x,  y )E  1%2: y ~ 1 } 
: 1  + x  z " 

The funct ion G satisfies (3.3) and (3.4); moreover ,  

Ke r  G~,~ : ((x, y) E 1%2: y ---- 0} 

is a subspace of  X. Nevertheless,  G has no min imum in X. [ ]  
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From now on, we consider a situation which arises for instance, in elasticity 
problems (see Sections 4, 5 and 6). Precisely, we suppose that the space X satisfies 
hypothesis (3.10) and that the functional G is given by 

G(x) = r (x )  --  (L,  x )  + X~(x), x E X ,  (3.17) 
where 

F: X - +  [0, +oo ]  is a proper, sequentially a-l.s.c, functional, 

L: X - +  R is a linear, a-continuous functional, (3.18) 

K C X is non-empty and sequentially a-closed. 

Then Problem (3.1) takes the following form: 

to f ind y E K  such that F(y) --  ( L , y )  <~ F(x) --  ( L , x )  for  all x E K .  (3.19) 

When F and K are convex, the abstract compatibility assumption (3.13) becomes 
a "Fichera type condition" (see [F1], [F2]), as shown in the following theorem. 

Theorem 3.14. Assume (3.17) and (3.18), with both F and K convex. Let  the com- 
pactness hypothesis (3.12) hoM for  the functional G defined in (3.17). Finally, assume 
that 

F~(x)  ~ (L, x)  Vx E K ~; (3.20) 

Ker ( F  ~ -- L) A K ~~ is a subspace. (3.21) 

Then Problem (3.19) has at least one solution. 

Proof. We use Theorem 3.9: we just have to verify that (3.13) holds. Since 
G~qo(x) = F~~ -- (L,  x )  + XKoo(x) (see Lemma 2.12(iii) and Proposition 2.15), 
(3.20) implies (3.13)(i) and (3.21) implies (3.16) and hence (3.13)(ii). [ ]  

Remark 3.15. Theorem 3.14 contains in particular the case of  quadratic func- 
tionals studied by BAIOCCHI, GASTALDI & TOUARELLI in [BGT1] and [BGT2], 
that is 

F(x) = �89 a(x, x), x E X ,  

where a(., .) is a bilinear, continuous, non-negative form defined on X •  In 
this case, the positive homogeneity of degree 2 of  F implies that 

Ker (F ~~ -- L) = Ker F/"x ker L.  

Note that this equality also holds when F is positively homogeneous of degree 
strictly greater than one. 

Theorem 3.16. Assume (3.17), (3.18) and the following growth condition for  F: 

there exist g E E ,  a seminorm P : X - + [ 0 , + o o [  and a 

convex, l.s.c, function ~b: [0, -k cx~[-+ [0, + cx~] such that (3.22) 

~(~) 
lim -- + oo and F(x) > o~ + ~[P(x)] 

~ + o ~  /~ z �9 
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Let  the compactness hypothesis (3.12) hoM for  the functional G defined in (3.17). 
Finally, assume that 

~L, x )  < 0 for  all x E Ker P A ~seq . (3.23) 

for  all z E Ker P /5  Ker L f~ K~,q~ there exists t z : #(z) > 0 
(3.24) 

such that, for  all x E K, F(x  - -  #z)  <~ F(x)  and x - -  tzz E K.  

Then Problem (3.19) has at least one solution. 

Proof. As in the previous proof, we use Theorem 3.9 and we just have to verify 
(3.13). Recalling Proposition 2.5 and Lemma 2.12, by (3.22) we have 

a~?~(x) _> F~,~(x) -- ~L, x) + Z~,~(x) > [~ op]~o (x) -- ~L, x) + Z~,~ (x) 

= --(L,  x)  if x E Ker P /5  gs~q and q- oo otherwise. (3.25) 

In particular, (3.23) implies (3.13)(i). Finally, (3.13)(1"/)follows from (3.24) because 
(3.25) yields Ker r-;,~eq [ ]  ~ , ~  C_ Ker P f~ Ker L [5 k'~q 

4. Applications to unilateral problems in finear elasticity 

In this section we apply the abstract results of the previous one to unilateral 
problems in linear elasticity. 

Let s be a non-empty bounded connected open subset of R N, with a Lipschitz 
boundary 80. Let X ---- [Hi(g2)] N be the usual Sobolev space of the real vector- 
valued distributions which belong to LZ(g2) along with their first derivatives; let o" 
denote the weak topology of X. 

Consider a fourth order tensor (aUhk(X)} (i, j, h, k ---- I, . . . ,  N) of real valued 
functions aijhk E L~176 with 

aijhk(X) = ajihk(X) = ahkji(X) 

for all x in O. Assume that the following ellipticity condition is satisfied (here 
and in the following the summation convention over repeated indices is adopted): 
there is strictly positive 0r such that 

aijhk(X) ~ijShk ~ O~ l~l 2 V x E  ~2 (4.1) 

and for all N •  N symmetric matrices 8. 
As usual, for every v E X we denote by vi, j the derivative of vi with respect 

to the variable xj and by e(u), (r(u) the linearized strain and stress tensors given by 

eij(V ) = �89 (1)i, j -~ 1)j,i) , ~Tij(l) ) = aijh~ehk(V). (4.2) 

The elastic energy is then given by the functional 

F(v) = ~ f (Yij(1)) ~ij(U) d x  = 1 f a,jhk(x) 8ij(l)) 8hk(V) d x .  (4.3) 
t2 
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Before introducing the set of constraints, for every subset E of R ~v we define the 
capacity of E by (see for instance [DaL]) 

cap E ---- inf {[I u I[HI(RN) : U E I-II(RN), u is l.s.c., u(x) ~ 1 Vx E E}. 

We remark that this definition of capacity is slightly different from the usual 
one (see, for instance, [LeS], [FZ]), although both definitions provide the same 
class of Borel sets of zero capacity. 

We say that a property P(x) holds quasi-everywhere (in short, q.e.) if the set 
(x E RN: P(x) is false) has zero capacity. It is well known (see for instance [DaL]) 
that for every u E X the limit 

1 
u*(x) = lira f u(y) dy 

exists for q.e. x E ~.  The function u* is called the quasi-continuous representative 
of u. 

Now consider two subsets Q, E of R u such that Q is closed, cap E > 0 and 

E C ~ C Q .  

The set of constraints is then defined by 

K(Q, E) = (v E X: x + v*(x) E Q, for q.e. x E E}. (4.4) 

In the following, we will render the dependence of K upon Q and E explicit only 
when necessary, otherwise we will write K. We note that K(Q, E) is not empty; 
in particular 

0 E K(Q, E). (4.5) 

Let L be an element of X' (the dual space of X). Throughout this chapter we 
consider the functional 

G(v) = r ( v )  - -  (L ,  v)  + ZK(V), 

where F is given by (4.3). G is called the total energy functional, and we shall 
study the following minimization problem: 

to find u E X such that G(u) ---- min {G(v): v E X}. (4.6) 

We will refer to Problem (4.6) as Generalized Signorini-like Problem in Linear 
Elasticity, or GSP. The physical interpretation is the following: 

(a) ~Q is the reference (initial) configuration of an elastic body whose part E 
is constrained to lie inside the box Q. We assume that the reference configu- 
ration is a natural state, there being no stress in absence of deformation. 

(b) u(x) --- (ul(x) . . . . .  uN(x)) is the displacement of the particle x E ~2 (that is, 
after deformation x becomes x + u(x)) and e(u), (x(u) are the linearized strain 
and stress tensors respectively. In the framework of the linear approximation, 
e(u) and or(u) are given by (4.2). 

(c) F(u) is the elastic energy corresponding to the displacement u; note that 
F(0) = 0, according to the assumption made on the reference configuration. 
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(d) L is a vector field of dead forces, a field of applied forces acting on the body, 
whose direction does not depend on the deformation but only on the initial 
coordinates. For  instance, we assume that L = f + g, where f E  [L2(O)] N 
are the body forces and g E [H-�89 N are the surface stresses. 

Remark 4.1. In the literature (see [Si], [F1], IF2], [DL], [KID, the set of ad- 
missible displacements in the actual Signorini problem is given by 

(u E X: u(x). v(x) ~ 0 on E}, 

where E (the potential contact area) is a subset of 812 and v is the outward unit 
vector, normal to ~2 :  this set is always convex. In our approach we use a different 
geometric condition expressed through the set K defined in (4.4): in particular, 
we note that K is convex if and only if Q is convex (a particular case, the "box 
condition", was considered by KINDERLEHRER in [K2], where Q is a half space and 
E = SO). Our approach will be adopted also in the next sections, devoted to 
unilateral problems of non-linear type. As a matter of fact, from the mechanical 
point of  view, condition (4.4) suits non-linear elasticity better than linearized elas- 
ticity. Nevertheless, from the mathematical point of view, GSP has an interest in 
itself and the sufficient conditions for the existence of solutions may be easily 
interpreted in terms of physically meaningful quantities (see below). At the end of 
this section a conjecture concerning a statement of  non-existence is reported. 

Let us come to the question of existence of solutions for GSP. The difficulty 
is due to the failure of the functional F to be coercive; indeed, this provides in- 
formation only upon the L 2 norm of the strain tensor e(u). However, in some 
special cases existence is very easy to prove, notwithstanding the non-coerciveness. 
For  instance, if L ---- 0 then the null deformation is obviously a minimizer of the 
total energy G. 

Remark 4.2. A direct argument gives existence for any L when E ---- O and Q 
is bounded. For this provides an a priori estimate on the L ~176 norm (hence, on 
the L 2 norm) of a minimizing sequence. Hence we get a uniform bound for the 
H t norm of the sequence (and the weak limit turns out to be a solution of GSP), 
by using the fundamental Korn inequality (see [Te], p. 20): 

[I v IItwl,p(~)IN --< c($2, p) [11 v IltLp(a)lN + l[ ~(V)[ItLP(a)IN• (4.7) 

valid for all pE  ]1, + cx~[ and all vE [Wl'P(12)] N. 
A refinement of this argument suffices to prove that GSP is solvable for 

all systems of applied forces L ifQ is bounded. In the Appendix (see Proposition A.5) 
the proof  of this assertion is derived by means of the"capacitary Korn's  inequality" 
in H 1 : 

IIvll 2 __< C{F(v) + [v]2e}, 

valid for all v of X, where the "capacitary essential supremum" [']E is a seminorm 
defined as 

[v]E : inf{2: Iv*(x)l -<_ 4, for q.e. x E  E) .  
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In what follows particular attention will be paid to the set 

R B M  = {v E X:  F(v) : 0} 

= {v E X:  vi(x) = aijxy q- hi, aii, b~ constant with a i i =  --aji}. 

RBM is usually called the space of the rigid body motions, though it is actually 
the finite version of the space of  the infinitesimal rigid displacements. Indeed, 
also large displacements belong to R B M .  We remark that an element v E R B M  
corresponds to a rigid displacement of the body if and only if it is a translation, 
i.e. v is a constant. 

If  N = 3, we may equivalently represent R B M  as follows: 

R B M  = {v E X:  v(x) = o~ • x + fl, ~x, f ie  Rs}. (4.8) 

To unify the notations, we still represent R B M  by (4.8) also for N = 2. In this 
case,/5 is a 2-dimensional vector, while o~ may be interpreted as a vector ortho- 
gonal to R 2, when embedded into R s. 

Now we are going to state two existence theorems for GSP:  the first requires 
the convexity of the box Q and permits the presence of entire directions in Q; 
the second applies to possibly non-convex boxes, provided they have no entire 
directions. We note that a unified, more general treatment could be effected, which 
applies, in particular, if the box is non-convex and has some bilateral recession 
directions, provided an invariance condition along these directions is satisfied. 
This approach will be adopted in the following sections. 

In our framework, the constrained region E is a general subset of L) with 
positive capacity. In view of  the existence theorems, it is convenient to introduce 
a canonical representative orE,  which coincides with E whenever it is, say, a smooth 
closed manifold of  ~s or the closure of an open subset of X-2. 

Definition 4.3. For every subset E o f  R u we set 

E~s ~ = A {C: C is closed and cap (E \ C) = 0}. 

Proposition 4.4. The set E~s satisfies the following properties: 

(i) Eess is a closed subset o f  if,; 
(ii) cap (E \ Less) ----- 0; 

(iii) the three following statements are equivalent: cap E = 0, E~ss = O, 
cap E~s.~ = 0; 

(iv) cap (E A E ~ )  = 0, whenever E is closed; 
(v) f o r  all closed sets M ~ R N and all continuous functions v: R N--> R u it 

is v(x) ~ M for  q.e. x E E i f  and only i f  v(x) C M for  all x ~ E ~ ;  

(vi) f o r  all continuous functions v: R u ~ R N 

v(x) = 0 f o r  q.e. x E E i f  and only i f  v(x) = 0 f o r  all x E Eess. 

Proof. See the Appendix. [ ]  
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Now we are able to state our first existence theorem for GSP which we prove 
by applying the results of  Section 3; actually, the same procedure could be used 
starting from the results of  [BGTZ]. By co A and ri A we denote respectively the 
convex hull of  a subset A o f R  N (say, the intersection of the convex sets containing 
A) and its relative interior, that is, the interior of  A with respect to the affine hull 
of  A (see [R]). 

Theorem 4.5. Assume N----2,  3. Furthermore, assume that 

Q is a closed convex set; (4.9) 

there exists a point P E ri (co Eoss) such that (L, o~ • (x - -  P)} = O, for all o~ E R 3 ; 

(i) (L, fl} ~ 0 Vfl E Q o o, 

(ii) i f  fl E Q O~ and ~L, fl} = O, 

Then GSP has a solution. [] 

(4.10) 

then - - f i e  Q~. (4.11) 

We point out that  ri (co Eess) is not empty because E has positive capacity 
(see Proposition 4.4(iii)). 

Let us state an essentially new existence theorem for the case of  a non-convex 
box Q. By Q~,e we denote the set of  topologically unbounded directions of  Q 
(see Definition 2.8; e denotes the Euclidean topology in RN). 

Theorem 4.6. Assume N ---- 2, 3. Furthermore, assume (4.10) and 

(L, fl} < 0 Vfl E O . . . .  fl =~ O. 

Then GSP has a solution. [] 

(4.12) 

Remark 4.7. The condition (4.12) is equivalent to the existence of  a point c o 
of  R N and of a cone C of R N such that 

Q Q Co + C and (L, c) < 0 u  E C, c =~ 0. 

In particular, if c belongs to C and does not vanish, then - - c  cannot lie in C. 

Let us provide a mechanical interpretation of the assumptions on the system 
of forces we made in the two existence theorems 4.5 and 4.6. 

Let us call resultant of the sys temL the vector R E R N such that Ri ---- (L, e;}, 
with {ei)i=l,..., N the canonical basis in R u. Then the condition (4.11) requires 
that the angle between all recession directions of  Q and a non-vanishing resultant 
R is obtuse, allowing it to be a right angle only if the recession direction is entire. 
Actually, Theorem 4.5 applies to systems of forces with zero resultant only i f  
the recession cone of the box Q is itself a subspace o f R  N. On the other hand, for 
non-convex boxes the case R ---- 0 can be studied in Theorem 4.6 when Q is bounded 
and hence Q o~,e ~ (0}. 
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Assume that R @ 0; then the central axis of the system is defined as the line 
parallel to R such that the momentum of the system L with respect to each point 
of it is constant and has the smallest possible modulus. Thus condition (4.10) 
states that the resultant momentum with respect to the central axis vanishes and 
there is no couple effect; moreover, it prescribes that the central axis intersects 
the relative interior of the closed convex hull of Eoss. In [F2] it is shown that this 
intersection condition is necessary for GSP to have a solution when Q is a half 
space and E is a subset of ~Q. 

The proof  of Theorem 4.5 (respectively 4.6) will be carried out in several 
steps, showing that under its assumptions Theorem 3.14 (respectively Corollary 3.11) 
may be applied. 

We begin by considering the set of constraints. The study of the properties of 
that set can be carried out in a more general scheme, say, substituting K(Q, E) 
with the set 

K = {vE S:  x + v*(x) E Q(x) for q.e. x E E}, (4.13) 

where, for every x E E, Q(x) is a given closed subset of R N. Obviously, 
K(Q, E) = K by choosing Q(x) ~ Q. 

Proposition 4.8. The set K given by (4.13) is sequentially weakly closed in X. 

Proof. See the Appendix. [ ]  

Proposition 4.9. The set K given by (4.13) satisfies 

Kseq C (v E X: v*(x) E Qoo,e(X) for q.e. x E E}. o o  , cr 

Proof. By definition we know that v belongs to .~,ol, "seq if and only if there are (2,}~r 

and {v,}N such that 2 , - - ~ + o o ,  v , ~ v  and 2,v, E K  for all n E N ,  that is, 

x + 2 , v * ( x ) E Q ( x )  for q.e. x E E  and for all h E N .  (4.14) 

By Lemma A.1, for q.e. x E E there is a subsequence {V,k}k~S, such that v~(x) 

converges to v*(x). This, together with (4.14), implies that v*(x)E Ooo,e(X), for 
q.e. xE  E. [ ]  

Proposition 4.10. Assume that, for q.e. x E E, the set Q(x) is convex. Then K is 
convex, closed and 

K ~176 = {v E X: v*(x) E Q~(x) for q.e. x E E}. 

Proof. By Propositions 2.5, 4.8, and 4.9 we have only to prove that 

v*(x) E Q~(x) for q.e. x E E ~ v E K ~. 

Let v be such that v*(x)E Q~(x) for q.e. x E E; it follows that 

x q- 2v*(x) E Q(x) for q.e. x E E and for all ;t > 0. 

Taking a sequence 2n-+ § oo, wefind that 2nvEK for all n E N ;  hence vE K ~. 
[] 
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Lemma  4.11. The compactness assumption (3.12) holds. 

Proof .  Let (2,}~-, {x,}.~ and x be such that  2, ~ + co, x ,  ~ x and G(2,x,) =< c 
for  some constant  c; we claim that  x , - +  x strongly in [H~(.Q)] N. In  fact 

C ~ G(2nXn) ~ F(,~nXn) -- (L,  ,~nXn). 

Because F is positively homogeneous  of  degree 2, sequentially a-l.s.c, and non-  
negative, we conclude tha t  

1 
0 < F(x)  < lim i n f F ( x , )  < lim sup F(x~) = lim sup -~- F(2,Xn) 

1 
lim s u p - ~  [c + (L,  2 .x . ) ]  = 0 

- -  n ~ + ~  A n 

Hence x E R B M  and F(x,, - -  x)  : F(x,,) ~ O. On the other  hand,  since x .  -+  x 
weakly in [H~(~2)] N, then I]x. - -  XI[[L~(o)IN---~ 0. Using K o r n ' s  inequality (4.7), 
we conclude that  

Ilx, - 2 XII[H,(~)IN ~ c(.Q) ([Ix. - -  X[I~L~(a)IN -1- F(x  n - -  x)} -+  0 

and the p r o o f  is complete.  [ ]  

Remark  4.12. Let  us briefly summar ize  some propert ies  of  rigid body  mot ions  
we will need in the following. 

(i) I f  v belongs to R B M ,  then v(x) = ~ • x q- fl, with ~,/3 constant  vectors 
(see (4.8)). 

(ii) I f  v belongs to R B M  #~ Lrseq then v(x) E Q . . . .  for all x E E~s (see 
Proposi t ions  4.9 and 4.4(v)); since v is linear, this implies tha t  v(x)E 
co Q . . . .  for  all x E co E~s s. 

(iii) Assume that  there exists a point  P E R N such that  (L,  ~ • (x - -  P ) )  = 0, 
for  all o~ E R N. I f  v(x)----o~• x q-/3 belongs to R B M ,  then (L ,  v) = 
(L,  o~ • P + / 3 ) .  Not ice  tha t  (L ,  or • (x - -  P)~ ---- 0, for  all o~ E R 3, if 
and only if L • ( x -  P )  is the null element o f  X ' .  

(iv) Let  v belong to R B M  and satisfy v(x) = 0 for  all x E co Eos~. Then  v 
vanishes identically because cap E > 0, and hence cap Ee~ > 0 (Pro-  
posi t ion 4.4(iii)); thus the affine space spanned by Eo~ has at least 
N - -  1 dimensions.  

Lemma  4.13. Assume that 

there exists a point  P E co Ecss such that 

( L , o ~ •  = 0  f o r  all o~ERN; 

<t,  b> ~ 0 u  E Qo~,.. 
Then 

< L, v> < 0 V v E R B M  A l~seq - - -  a O O t t ~  �9 

(4.15) 

(4.16) 

(4.17) 
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Proof. Let v belong to R B M  A l~eq In view of Remark 4.12(i) and (ii), 
or • x q- fl E co Q . . . .  for all x E co Eoss. Thanks to (4.15), we may take x ---- P, 
whence o~• q- fiE co Q . . . .  and (4.16) implies ~L, o~• § fl) _< 0. Recalling 
Remark 4.12(iii), we obtain (4.17). [ ]  

Proof of  Theorem 4.5. By a translation it is not restrictive to assume P = 0  in 
hypothesis (4.10). Let us show that the abstract result of  Theorem 3.14 applies. 

(a) X is reflexive and F is convex and sequentially 1.s.c. with respect to the weak 
topology; all we have to verify is the convexity and closedness of K. This follows 
from Proposition 4.10. 

(b) The compactness assumption (3.12) is a consequence of Lemma 4.11. 
(c) Necessary condition (3.20). We have to prove that F~(v) ~= (L, v), for 

all v E K ~. Since F is positively homogeneous of degree 2 (see Lemma 2.12), 

0 if F(v) = O, 
F~(v) ~ -~- oo if F(v) ~= O. 

Thus, all we have to verify is that 

(L, v) <: 0 Vv E R B M  A K ~176 

According to Lemma (4.13), this follows from (4.10) and from (4.11)( 0. 
(d) Condition (3.21). In view of  Remark 3.15, recalling that K ~ is a cone, this 

condition is equivalent to the following: 

vE R B M A  K e r L / 5  K ~ - - r E  K ~ 

Let v belong to R B M •  K e r L  A K ~~ Because of  Remark 4.12(0, (ii), 

o~ >( X -/- fl E co Qoo.e : Q~176 for all x E co Eess. (4.18) 

Thanks to (4.10), we may take x ---- 0, whence fiE QOO. Now, since v belongs to 
KerL ,  Remark 4.12(iii) entails that (L, fl) ---- 0; hence (4.11)(if) implies that 

- - f i e  QOO. (4.19) 

To complete the proof, it is enough to show that 

--o~ • x E Q~, for all x E co Ees~. (4.20) 

Indeed, since Q~ is a cone, (4.19) and (4.20) imply that - - ~ •  --  fiE QOO, for 
all xE  coL~s;  hence - - v E K  ~176 

Let us prove (4.20). From (4.18) and (4.19) it follows that 

o~• ~176 for all xE  coEes s. (4.21) 

Let y belong to co Less. Due to (4.10) there is a /z = # ( y ) >  0 such that --/~y 
lies in co Eels; hence (4.21) gives /zo~ • ( - -y)  E Q~. Because Q~ is a cone, it follows 
that --o~• Q~O. This holds for all yE  co E~s; hence (4.20) is true. The proof  
is thus complete. [ ]  

Proof  of  Theorem 4.6. Again, we may assume P ---- 0 in hypothesis (4.10). Let  
us show that we may apply Corollary 3.1 I. 
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Semicontinuity and compactness hold as in the proof  of Theorem 4.5. Let 
us prove (3.15), say G~q~(v) > O, for all vE X, with v =~ 0. To this end, we no- 
tice (see Lemma 2.12) that 

~ q  = (F + ~ q  

On the other hand, using the 2-homogeneity of F, we easily find 

( F - -  ~ q  , F(v) + O. ~- ZKJo~,~ (v) = + eo if either v ~ KZ q or 

Hence 

G~q,~(v) --- -k oo if v-~ R B M  A v,~q 

G~q~(v) > - - ( L ,  v) if v E R B M  f~ lcseq 

From Lemma 4.13 we know that under our assumptions 

G~q~(v) > - - ( L ,  v) > 0 Yv  E R B M  A ][~seq 

I t  remains to show that (L, v) 4= 0 whenever v E R B M  #~ ~s,q does not vanish. 
Taking such a v and recalling Remark  4.12(ii), we see that 

v(x) = a~ • x -? fl E co Q~.e Vx E co E~s. (4.22) 

Taking x = 0, we see that fl E co Q ~ , .  Since (L, v) = (L, fl) (Remark 4.12(iii)) 
the desired result follows by (4.12) if we show that fl 4= 0. By contradiction, 
assume fl = 0; this implies that 0~ q= 0, for otherwise v = 0. By Remark  4.12 (iv), 
there is an x ~ E c o E ~  such that 0~• 4=0. From (4.22), we find that 
o~• so that (4.12) implies that ( L , o ~ x x ~ , ) <  O. Finally, we use 
(4.10) to find a # > 0 such that --/tx~ E co E ~ .  The preceding argument may 
be repeated to conclude that - - ( L ,  o~ • x~) < 0, which yields the contradiction. 
Thus /3 @ 0 and the proof  is complete. [ ]  

Let us end this section with some curious results. Consider a heavy, homo- 
geneous, isotropic elastic ball in p 3  and two different boxes: the half space 

Q1 = {(xl, x2, x3): xa ~ 13} 

and a cone with vertex at the origin, lying on the plane ((xl, x2, x3): x3 = 0}, 
for instance, the cone 

02 = {(xl, x2, x3): x2 > o, x3 >= o, x2x  >= 

With this choice, let the reference configuration of the ball be 

{(xl, x2, x3): ~ + (x2 - -  2) 2 + (x3 - -  1) 2 < 1} 

and consider the unilateral condition with E---- a$2. 
The following alternative holds: 

(i) either the solutions of the equilibrium problem for the half space are "ir- 
regular" in the sense that a large subset of  0$2 is mapped into a segment, 

(ii) or the equilibrium problem for the cone cannot have solutions (this we con- 
jecture to happen). 
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To prove this alternative, let (GSP)I,2 denote the equilibrium problem with ad- 
missible set K~,2, corresponding to the box Q~,2, respectively. A theorem of 
KINDERLEHRER [K2] states that, if u solves (GSP)I, then the corresponding "con- 
tact region" / '  = {x E ~I2:x3 q- ua(x) ---- 0} has positive capacity. In particular, 
if the "final contact region" (x q- u(x), x E F} is part of a straight line, then (i) 
must occur. Thus the alternative follows as soon as we prove that, if (GSP)2 is 
solvable, then (GSP)I has solutions whose final contact region (in the above sense) 
lies on a straight line. Obviously, to prove this it is enough to show that 

every solution of  (GSP)2 must solve (GSP)~. (4.23) 

As a matter of fact, if u solves (GSP)2, then u E K t .  Let w E K L A C ( f f ) ;  
clearly, for all # ~> 0 there is a 2 > 0 such that v =/~u q- w q- (0, 2, 0) belongs 
to K2. Since (L, (0, 2, 0)) = 0, 

F(u) -- (L, u) <= F(v) -- (L, v) = F(w) -- (L, w) + 1~2F(u) 

+ t z f aijhk(X) eli(U) ehk(W) dx -- #~L, u).  
0 

Letting # -+ 0, we find that 

F(u) -- (L, u) ~ F(w) -- (L, w), for all w E K1 f~ C(~)). 

By a density argument this implies that u solves (GSP)L; hence (4.23) is proved 
and the alternative follows. 

5. Applications to unilateral problems in non-linear elasticity 

In this section, we consider a unilateral problem of the same kind as in the 
preceding one, apart from the elastic energy functional. Instead of (4.3), we will 
consider integral functionals of the form 

F(u) = f f ( x ,  Vu(x)) dx, 
I2 

where f need not be quadratic in Vu. We refer to [Ba], [C] for the discussion of 
the physical motivations of the model. 

Let .C2 be a non-empty, bounded connected open subset of R u with a Lip- 
schitz boundary ~ .  s represents a hyperelastic body, a particle of which is la- 
beled by x; let u(x) be the displacement of the particle x and let ~p(x) ---- x + u(x) 
be its final position. 

We denote by X the usual Sobolev space [WI'P(-Q)] N, by X '  its dual and by o" 
the weak topology of X. In this section we assume 

p > l .  

In the following, q.e. will stand for quasi-everywhere with respect to t h e p -  
capacity Capp defined as follows 

capp (E) = inf(l[uHwt,pcRN): uE Wt'P(Rn), u is 1.s.c., u(x) => 1 YxE E}. 
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Let Q, E be subsets of pjv such that Q is closed, E has positive p-capacity and 

EC ~TCQ. 
Define the set of constraints in the following way: 

K = ( v ) E X : w * ( x ) E Q  for q.e. x E E } ,  (5.1) 

where ~p* is the quasi-continuous representative of ~p. 
Finally, consider the elastic energy 

F(~o) = f W(x, VW(x)) dx. 

We point out that the stored energy W depends on the gradient of the final posi- 
tion instead of on the gradient of  the displacement. On the functional F we assume 
that 

F is sequentially a-l.s.c, on X; (5.2) 

there exist ~ > 0 and b E LI(-Q) such that 

W(x,s)~=~ls[P--b(x ), f o r a l l s E R  N• a.e. xE ,Q .  (5.3) 

Let L E X' be a system of applied forces acting on the body. The total energy is 
then given by 

G(~) = FOp ) -- (L, ~p) -j- Z~(~p). 

The problem we are interested in is the following: 

to find q~ E X such that G(~0) = min (G0p): ~p E X}. (5.4) 

We will refer to Problem (5.4) as the Nonlinear Signorini-type Problem in Elas- 
ticity, briefly NSP. 

Remark 5.1. If  one imposes the additional constraint ~p : ~Po on a subse t / "  
of S,Qwith positivep-capacity (that is, the mixed displacement-traction problem) 
then the energy functional turns out to be coercive and existence for NSP follows 
directly from (5.2) and (5.3). This result has been proved in [Ba] for the model 
of non-linear elasticity with polyconvex stored energy. Here we are interested 
in the non-coercive situation; that is, we consider Signorini or Neumann condi- 
tions. 

Remark 5.2. In the framework of BALL'S model, problem (5.4) has been con- 
sidered recently by CIARLET & NE~AS in [CN1] and [CN2] for a non-bilateral 
box. In particular, in [CN2] the question of  the global invertibility of  solutions 
of NSP is studied. 

Let us discuss sufficient conditions for the solvability of NSP. As usual, some 
compatibility conditions on the data Q and L are needed. A comparison with the 
preceding section suggests imposing a condition of the following type: 

(i) (Z, fl) ~ 0 u E Q~,e; (5.5) 

(ii) if fl E Qoo.e and (L, fl) ---- 0, then --fl E Q~,e. 
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As we are going to see, (5.5) actually implies existence of a solution for NSP, at 
least when Q is convex. But, if we admit complete arbitrariness on Q, (5.5) is no 
longer sufficient, as shown in the following example. 

Example 5.3. Let N = 3 ,  p > 3 ,  L = (0, 0, --1) and 

{ 1 / 
Q =  x = ( x l ,  x2, x3):x 3 >  : 1  q-xl  z + x ~ '  xl, x2ER . 

Assume that NSP has a solution, say % We claim that, for some 7 ~ 0 large 
enough and some e ~ 0 small enough, it is 

G(~0 +/3)  < G(~), 

where l : (7, 0, --e). Note that this inequality contradicts the fact that ~0 is a 
solution. Since 

G(~0 q- t3) = G(q~) + Z~(~0 § t3) -- (L, i )  

and (L,/3) : e meas (.Q) > 0, then the inequality G(9~ q- 8) < G(q~) follows 
as soon as we prove that ZK(~0 -5/3) ---- 0, say ~v § (7, 0, --e) E K. The existence 
of 7, e such as to render this condition satisfied follows from the fact that ~03 has 
a strictly positive minimum (indeed, ~o is continuous on ~c~, because of the Sobolev 
embeddings). Thus a contradiction is reached, hence NSP has no solution. [ ]  

Thus we add some geometric restrictions on Q. Specifically, we assume that 

if tEQ~,e and - - i E Q  . . . .  then q §  for all q E Q .  (5.6) 

This condition is obviously satisfied either if Q is convex or if Q~.e contains no 
entire directions or, more generally, if Q is invariant along its entire directions 
of recession. We just note that (5.6) is not satisfied in Example 5.3. 

Remark 5.4. The pair of assumptions (5.5) and (5.6) is equivalent to 

(i) (L, fl) ~ 0 Vfl E Q . . . .  

(ii) if f ie  Q~,e and ( L , l ) = 0 ,  then q +  ;tilE Q for all qE Q and all 2 E B .  

(5.7) 

The following existence theorem holds. 

Theorem 5.5. Assume (5.2), (5.3), (5.7). I f  G is proper, then NSP has at least one 
solution. 

Proof. It is obvious that NSP has a solution if and only if the following problem 
is solvable: 

~v---> min {F(~p) + af b(x) dx -- (L, ~v) + Z~(~) : ~I'E X} . 
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Then in (5.3) we may assume b = 0. In order to apply Theorem 3.16, we have to 
show that conditions (3.12), (3.18), (3.22)-(3.24) are satisfied. Indeed, (3.22) follows 
from (5.3), if we take P(~0)= 11~TvellLP~) and ~ ( 2 ) =  2 p. Furthermore, the 
semicontinuity assumption (3.18) is guaranteed by (5.2) and by Proposition 4.8 
(adapted to the case X : [WI'p(,.Q)] N, p > 1). 

Let us prove the compactness assumption (3.12). Let {2,)N, (q~,)N be two 

sequences such that 2, ~ + ~ ,  ~p, ~ ~0 and G(2,q~.) <= c, for some constant c. 
Due to the compact embedding of [WI'P(,Q)] N in 0LP(.Q)] N, we know that 

] [ ~ n  - -  99 II[LP(O)] u -+ 0. (5.8) 

Recalling (5.3), we also conclude that 

f I V~0.(x)I" dx < ~'-~/L = ,,, \ , q~,) + 2~Pc. 
.Q 

From this inequality, taking (5.8) into account and recalling that p > 1, we find 
that ~0 is constant and that the convergence of % to ~ is strong in X. 

It remains to verify the compatibility assumptions (3.23), (3.24). First, we 
note that ~p E Ker P if and only if ~p is a constant. Due to Proposition 4.9 (again, 
adapted to the case X [Wl'p(O)] N, p > 1), if~p is constant, and belongs to ~r~q 
then it lies in Q~,~. Thus (3.23) follows from (5.7)(i). 

Finally, let ~p E Ker P n Ker L n ~s~q As before, we conclude that the 
constant ~p belongs to Q~,e; hence (by (5.7)(ii)), 

q -- ~p E Q for all q E Q. (5.9) 

Let vE K; from (5.9) it follows that v * ( x ) - - ~ 0  E Q, for q.e. x E E; hence 
v -- ~p E K. Since F(v - -  ~o) = F(v), we find that (3.24) holds with # = 1 and the 
proof  is complete. [ ]  

Remark  5.6. The assumption (5.7)(ii) is motivated by the abstract assumption 
of Theorem 3.16. In particular, we may weaken it by requiring that 

f o r  all fl E Q~,e, with (L ,  t3) = O, there exists  I z = #(z)  > 0 such that q - -  i~fl E Q, 
for  all q E Q. 

The following corollary deals with a special case. 

Corollary 5.7. Let Q be given by 

Q =  { x E R N : x N > =  O}. (5.1o) 

Let  G be proper and assume (5.2), (5.3). I f  

. (L, ~p) < 0 f o r  all constants ~p with ~PN > 0, (5.11) 

then NSP has a solution. 

Proof. The proof  is very easy and hence it is omitted. [] 
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Remark 5.8. Suppose that Q and L satisfy the following condition: 

<L, t3> < 0 for all t3 E Q~,~ with t3 =~ 0. (5.12) 

We see at once that (5.7) is satisfied, and so we have the following conclusion. 

Let G be proper; i f  (5.2), (5.3) and (5.12) hold, then NSP has a solution. 

This is essentially the theorem given in [CN1]. Note that (5.12) is equivalent to 
the existence of a point Co of R N and of a convex cone C containing no entire 
directions such that Q Q Co q- c .  

Some discussion about hypothesis (5.2) is necessary. The sequential cr-l.s.c. 
of functionals of the form f W(x, VW(x)) dx has been widely studied in the liter- 

ature. When W is finite-valued (and satisfies some growth conditions depending 
on p), a necessary and sufficient condition for (5.2) to occur is called quasiconvexity 
(see, for instance, [M1], [M2], [AF]) of the function W(x, z) with respect to z, 
that is 

f W(x, z q- V~(y)) dy ~ meas (D) W(x, z) 
D 

for almost all x E R  N, for all z 6 R  N• for all bounded open sets D Q R  N 
and for all ~ 6 [C~(D)] N. 

In non-linear elasticity the energy functional cannot be finite-valued; as a 
matter of fact, this would prevent any singular behavior of W(x, z) when det z 
tends to zero (compressible materials), or when det z =~ 1 (incompressible 
materials). 

To overcome these difficulties, in [Ba] the notion of polyconvexity is intro- 
duced. For instance, in the case N = 3, the function W(x, z) is said to be poly- 
convex with respect to z if 

W(x, z) = ~(x, z, adj z, det z) for all x 6 R a, z E R 9 , 

where r z, a, 6) is convex in (z, a, 6); by adj z we denote the adjugate matrix 
of z, i.e. the transpose of the matrix of cofactors of z. We recall that, when W is 
finite-valued, polyconvexity is a particular case of quasiconvexity (see [Ba]). 

More precisely, the three dimensional non-linear elasticity model proposed 
in [Ba] for the energy integral is the following: 

FOp ) ----- f ~(x,  Vw(x), Adj V~0(x), Det V~o(x)) dx, (5.13) 

where Adj V~0 and Det VTJ are the adjugate and the determinant of V~p in the 
sense of distributions (see [BAD; the function 4 :  ~ 2 • 2 1 5 2 1 5  [0, + ~ ]  
satisfies the following properties: 

(a) ~(x, z, a, 6) is a Carath6odory function (i.e. measurable in x and continuous 
in (z, a, 6)); 

(b) qi(x, z, a, 6) = + ~ if 6 ~ 0 and q~(x, z, a, 6) -+ + ~ as z ~ zo, a -+ o~o, 
6--~-0 +, for all x, Zo, Or 

(c) (polyconvexity) for all x 6 s the function q~(x,., -, .) is convex on its domain 
(which is not necessarily convex; thus convexity has to be understood in the 
sense of BUSEMANN, EWALD & SHEPARD [BES]); 
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(d) (growth condition) 

qS(x, z, a, (3) >= o~(] z[P -? [a [q + (3") - -  b(x) ,  

1 1 4 for some o~>0 ,  bELl(f2) ,  p > 3 ,  q >  1, r >  1 with - -  -/- - -  < ~-. 
P q 

Under these assumptions, the functional (5.13) is sequentially a-l.s.c, on [WI,P(D)] 3 
(see [Ba]); hence our theorem of existence for NSP applies. 

R e m a r k  5.9. Let ~0 be such that F(~0) < + ~ (in particular, this is true if G 
is proper and ~o solves NSP). By (d), the distributions Adj V~0 and Det V~o are 
actually in [Lq(s 9 and Lr(g2) respectively (and Det V~0 > 0 a.e. in s however, 
whether they coincide with the functions adj V~o and det V~0 defined pointwise is 
not known. 

1 1 
R e m a r k  5.10. If  in assumption (d) we have p ~ 2 a n d - -  + - -  ~ 1, then the 

P q 
sequential a-l.s.c, result still holds for the functional (5.13) if Adj V~o and Det V~, 
are replaced respectively by adj V~p and det V~0 defined pointwise (see [Ba], 
Lemma 6.1 and Theorem 7.7). 

R e m a r k 5 . 1 1 .  Theorem(5.5) applies also to incompressible materials; for 
them assumption (b) must be substituted by 

(b') ~(x, z, a, (3) = + cx~ if (3 =l= 1. 

6. A non-reflexive example: masonry-like materials 

Our aim in this section is to minimize, under some unilateral constraints, 
the stored energy functional of masonry-like materials (see, for instance, [GG], 
[A], [ABD]). These materials have the characteristic feature of not resisting to 
traction though they behave eIastically under compression. 

In this section we use the following symbols (here and in the following the 
summation convention over repeated indices is adopted): 

A:  B = AijBij denotes the scalar product of the N •  N matrices A, B; 
sym A denotes the symmetrized matrix of A: (sym A)ij = �89 (.4 U + Aji); 
u �9 v = u~vi denotes the scalar product of the vectors u, v E RN; 
u | v denotes the tensor product of the vectors u, v E R N :  

(u | v)~j= uivj; 
u(~ v = symu | v denotes the symmetrized tensor product of the vectors 

hi, ~) ~ ]pN: (bl Q) l))i J : �89 (LliU j -~- bljVi) "~ 
[.1 denotes the Euclidean norm either in R N or in ]~N• 
S denotes the set of symmetric N •  matrices; 
S_ denotes the cone of negative semidefinite symmetric N •  

matrices; 
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denotes the cone of positive semidefinite symmetric N •  N ma- 
trices; S+ coincides with the polar cone of S_, say the set of 
all matrices A E S  such that A : B = < 0  for all B E S _ ;  
is the orthogonal projection onto S_ and satisfies ]P(A)]2 = 
]dist (A. S+)[~; 
is a non-empty, bounded, connected open subset of R, N with a 
Lipschitz boundary &Q; 
is the convex hull of A, A C RN; 
denotes the ( N -  1)-dimensional Hausdorff measure on 8/2; 
is the space of (N•  N matrix valued) measures on ~ with bounded 
total variation; 
denotes the total variation of the measure /~ E M on /2; 

is the linearized strain tensor, with components eij(u) = �89 (u,. a + uj.i). 

Consider the Banach space 

X = BD(O) = (u E [LI(Q)]~v: e(u) E hi), 

endowed with the norm 

IlullBo(~) ---- IlulItL.(~)1N + f I~(u)l. 

In the following we denote by a the strong [L~(O)] N topology on BD(D). We recall 
that 

f I,(u)l = sup{{ ff [u,%,.,+ u,~ij.e]dx: ~E [C~(O)]N• = 0  on 8s l~ol ~ I}. 
t2 

We also mention the following properties of X = BD(J2) (see, for instance, 
[We]). 

(a) Sobolevembedding: x C  [LP(12)] N, Y p E / , , . ' - : - ~  ,/, with compact injec- 
N k l v - - J - j  

tion if p < ) V - -  1" 

(b) Trace theorem: there is a linear, continuous, surjective operator Vo: X--> 
[1,1(8/2)] N such that 

7o(U) = u[ea for all uE X A  [C~ N. 

(c) Korn type inequality: there is a linear continuous operator r from BD(/2) 
into RBM (notation of Section 4) and a constant c(~2) depending only on ~2 
such that 

II u - r O O l l B ~ ( , , )  ~ c(O) f 14u) l. 
J2 

As a consequence of this property, 

II ullB,x,,) ~ f 14u) l + p(u). 
D 

where p is an arbitrary semi-norm, which is a norm on RBM. By the way, 
we recall that [C~ N is not dense in BD(f2) with the strong topology. 
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(d) Green formula: for all vE BD(12) and all H E  [Cl(ff)] N• 

f H : e ( v )  = -- f v . d i v ( s y m H )  d x +  f H :  [yo(V) O*,]dH~_l, (6.1) 
/2 /2 ~D 

where v denotes the outward unit vector orthogonal to 80.  
The model proposed in [A] and [GG] for the stored energy functional of masonry- 
like materials is 

f IP(~(u))12, 
D 

where, for u E BD(f2), the correct definition of the integral is in the sense of 
convex function of a measure (see, for instance, [Te], [A], [ABD]). 

For completeness, we briefly recall this definition. Letting f :  R k ---> [0, + ~ ]  
be a convex, 1.s.c. function and letting # be a k-vector valued measure on fJ, we 
set 

/2 ta l~ : l  (x) d l , : l  (x) 

where # = #a(x) dx + #* is the Lebesgue decomposition of # in terms of the 
absolutely continuous part #a and of the singular part #*, I#* I is the total variation 

s d# s 
of / ,  ' d - - ~  is the Radon-Nikodym derivative of #s with respect to I# s] and f ~  

is the recession function o f f i  
Let Q be a closed subset of R N such that ~ C Q. Consider the set 

K = { u E X : x + u ( x ) E Q  for a.e. xEf2}, 

where a.e. stands for almost everywhere in the sense of the Lebesgue measure 
in R N. Thus we are led to the following minimization problem 

[ f iP(e(u)) l  2 -  f h'udx-- fH:e(u) : u EK / ,  (6.2) r a i n  
t o  /2 .I-2 ! 

where hE [LN(~Q)] N and H E  [C(L))] NxN. Note that, by Green's formula (6.1), 
for the load term we have the equality 

f h .  u dx + f H: e(u) = f (h -- div (sym H))-  u dx -}- f rI: b,o(u) o v] dHu_l ; 
.Q /2 /2 (3.Q 

in this form (h -- div (sym H)) and H represent respectively the body forces and 
the surface stresses. Note that the following analysis applies when the body forces 
are derivatives of continuous functions and the surface stresses are continuous. 
Setting 

F ( v )  ---- f IP(e(v)) 12 - f H: e(v), 
D /2 

<L, v> = fh.vdx, 

G(v) = F(v) -- <C, v> q- Zx(v), 

we see that problem (6.2) becomes the following: 

find u E X such that G(u) = min {G(v): v E X}. (6,3) 
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We will refer to Problem (6.3) as the Signorini-type Problem for Masonry-like 
Materials, briefly MSP. 

In order to apply the abstract existence theorems of Section 3 to MSP, we 
make the following assumption: 

There are 7 > 0 and b E LX(f2) such that for all ~ E S 

IP(r  2 - I-I: ~ >_ ~, 1r - b(x) for a.e. xE 12. (6.4) 

It is not difficult to see that condition (6.4) requires that 

sym H(x) E S_ for all x E t2. 

Conversely, (6.4) is satisfied if 

sup max 2~(x) < 0, 
xEt2 i 

where 2,(x), i = 1, 2, 3, are the eigenvalues of the matrix sym H(x). Thus a 
necessary condition for the validity of (6.4) is that the matrix sym H(x) is negative 
semidefinite for all x E 12, and a sufficient condition is that it is negative definite, 
uniformly in x E 12 (in other words, the load H is safe, in the sense of [GG] 
and [A]). A refinement of condition (6.4) is given in [ABD] by use of the notion 
of demicoercivity. 

Theorem 6.1. Let N = 2, 3. Assume that condition (6.4) holds and that 

there is a point P E co 12 such that (L, c~ • (x -- P))  = 0 for all o~ E R 3 ; (6.5) 

h(x) . fl ~ 0 for a.e. xE 12 and for all fiE Qo~,; (6.6) 

i f  fl E Qoo,e and (L, ~) ----- O, then q -b Aft E Q, for all q E Q and all ). E R. (6.7) 

Then MSP has at least one solution. 

Proof. A translation enables us, with no loss in generality, to assume P : 0 in 
hypothesis (6.5). Our aim is to apply the abstract result of Theorem 3.4. Let us 
verify the hypotheses. 

(a) By the Sobolev embedding theorem, every bounded subset of X is (r-relatively 
compact. 

(b) The lower semicontinuity assumption (3.3) follows from [A], [ABD], [Te] 
and from (6.1). 

(c) Compactness assumption (3.4). Let {2,}N, {v,}N and v be such that 2, -+ + oo, 

v, ~ v and G(X,v,) is bounded from above. Then ;t,v. E K and by (6.4) 

2. 9, f [*(Vn) l - ~.,, f h(x) . v.(x) dx - f b(x) dx ~ e, 
$2 ~ 12 

with c constant. Hence v(x)q Qoo,e, for a.e. x E f2 and 

~, f I,(,)1 - f h(~). ~(x) dx =< O. 
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By (6.6), we find that v E RBM. Moreover, 

lira sup ~, f l e(v,)l ~ lira sup ~, f l e,(v)[ -- f h(x) .  v(x) dx 
n ~ + ~  t2 n-++ e* -(2 -Q 

= limn_~+ oosup D' ~ f [*(v.) I -- ~f h(x)" ~.(x) dx] 

lim sup =- c + j b(x) dx 
- -  n~+oo X n 

and so v, ~ v strongly in BD(/2). 
(d) Necessary condition (3.5)(0. For  all wE X we have 

(e) 

= 0 ,  

G=,~(w) >= F=(w) -- 
(L, w) + ; ~ , o ( w )  (see Lemma 2.12(ii) and Proposition 2.5); hence it is 

enough to show that F ~ ( w ) ~ ( L , w )  for all w E K  . . . .  Let wEKo~,~; 
then w(x)E Q ~ , e  for a.e. x E /2  and, by (6.4), 

F~176 >~ lim l e(Aw)] f b(x) 

= r f [e(w)[ ~ 0 ~ f h(x). w(x) dx : <L, w>. (6.8) 
s D 

Condition (3.5)(ii). From step (d), if wE Ker G . . . .  then wE Ko~,~ and 
F~(w) = (L, w). Hence by (6.8) we conclude that w E R B M  and (L, w) =0 ,  
so that, by (6.6) 

Ker Goo., Q R B M / 5  {v E X: v(x) E Qo~,e and h(x). v(x) ~ 0 for a.e. x E/2}. 

(6.9) 

We will prove (3.5)(ii) with /~ = 1, that is G(v -- w) ~ G(v) for all v E X and all 
w E Ker G . . . .  The inequality being trivial if v q K, we let v E K and w E Ker G . . . .  
By (6.9) we obtain w(x) : o~ • x + fl and G(v -- w) = G(v) + ZK(v -- w). Thus 
we have only to prove that v -- w E K, say 

x § v(x) -- (~ • x + fi) E Q for a.e. x E/2 .  (6.10) 

Since x § v(x)E Q for a.e. x E / 2 ,  (6.10) follows if we show that 

q - - ( o ~ •  for a.e. x E / 2  and all q E Q .  (6.11) 

We will use the following result, proof  of which is given below. 

Lemma 6.2. (6.6) and (6.7) hold if and only if the following conditions are saris- 
fled: 

h(x) �9 b ~ 0 for a.e. x E /2 and for all bE co Q~,e; (6.12) 

i f  b a n d  - - b E c o Q  . . . .  then q +  2bEQ, for all q E Q  and all ~.E~; (6.13) 

bE co Q~,e and (L, b) = O, then --bE co Q~,e. (6.14) 
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By (6.9), it is or215 for all x E D ,  thus, use of (6.13) shows 
that (6.11) is a consequence of 

--(o~• + /3 )E  co Q . . . .  for all xE s (6.15) 

Since co Ooo,e is a convex cone, (6.15) follows from 

(1) --/3 E co Ooo,e ; 

(2) -o~• for all x E D .  

(1) By linearity, it is o~• q-/34 coQ . . . .  for all xE co .Q, so (6.5) (with 
P =-0  and x = 0) implies that /3EcoQ~,e. Since (L,/3) = 0, by (6.14) we 
get that --/3 E co Qo~,e. 

(2) For  every ff E co ~2 it is ~ • ff E co Q~,e : in fact, it is ~ • ~ + /3  E co Qo~,~ 
and, by (1), - - f l E c o a ~ , e  ; finally, coQ~,~ is a convex cone. Let xE-Q:  by 
(6.5), there exists 2 > 0 such that --2x E co -(2, hence ~ • (--2x) E c o  Qo~,e. 
This implies that --0r • x E co Q . . . .  hence (2). The proof  of the theorem is then 
complete. [ ]  

Proof of Lemma 6.2. The equivalence between (6.6) and (6.12) is trivial. (6.13) 
and (6.14) imply (6.7). In fact, let f ie  Q~,e be such that (L,/3) = 0. By (6.14) 
we get --f ie coQe~,e and, by (6.13), q q- 2/34 Q, for all qE Q and all 2 E R .  

To complete the proof, assume (6.6) and (6.7). First, we show that 

if bE c o  Ooo.e and <L, b ) =  O, then q -  bE Q for all q E Q. (6.16) 

In fact, if b E c o Q  . . . .  then there are 2 ; ~ 0  and biCQ ... .  i =  1 . . . . .  N +  1, 
N +  1 

suchthat  ~] 2, = 1 and b = 2~b i. By (6.6) we find that (L, hi) <= O, for all i; 
i = 1  

hence, if (L, b) = 0, then (L, b~) = 0, for all i. Thus (6.7) implies that q -- 
2ibiEQ for all q E Q  and all i .  Hence, q - - b E Q ,  for all qEQ,  and (6.16) is 
proved. 

(6.6) and (6.7) imply (6.13). Let b be such that -q-b E co Q~,e. By (6.6) 
(L, b) = 0; thus from the fact that co Q~,e is a set of directions, (6.16) gives 
q - k 2 b E Q ,  for all q E Q  and all 2 E R .  

(6.6) and (6.7) imply (6.14). Let bEcoQoo,e be such that ( L , b ) =  O. By 

(6.16) we find that q -- nb E Q, for all q E Q and all n E 1~. Setting b n = ~ - -  b, 
n 

we conclude that --b---- lim b n and nbnEQ, so that --bEQ~,e. [] 
n--~ ~- oo 

Remark 6.3. Roughly speaking, assumption (6.4) means that the system of 
applied forces does not allow mutual separation between portions of the body. 
Note that the term H does not affect the resultant force nor the resultant momentum: 
both of them depend only upon h. In particular, assumptions (6.6) and (6.7) 
assert that, at every point, the resultant must be orthogonal to the bilateral reces- 
sion directions of  Q and it must be strictly opposite to the non-bilateral ones. 
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Remark 6.4. We claim that (6.6) is necessary for the existence of minima (still 
better, for boundedness of G below), at least when Q is convex and H ~ - 0 .  
Indeed, assume that there is a f ie  Q o o =  Ooo,e and a set B = ( x E / 2 :  
h(x) .  fl > 0} with finite perimeter and positive measure. Let v be in K; the 
function 

v in / 2 \ B  
v~. = = v + ~./~ZB 

v + 2 f l  in B 

belongs to BD(/2) for all 2 ~ 0. Since (L, ~ZB) > 0, we conclude that 

lim G ( v ~ ) = - - ~  whenever B + 2 f l A / 2 \ B = 0  q 2 > 0  
) . ~ + ~  

A p p e n d i x  

This Appendix is devoted to the study of some properties of  the capacity. 
The notations are those of Section 4. 

We begin by giving the following result, convenient in the proof  of the pro- 
perties of the set of constraints K defined in (4.13). 

Lemma A.1. Let {v,}N be a sequence in [H1(/2)] N, weakly converging to some v. 
Then 

l iminflv*(x ) -- v*(x)l = 0 for q.e. x E / 2 .  
n--~ + oo 

* v* [. The sequence {Yn}r~ converges weakly to zero in Proof. Set Yn = [vn - -  
1 k 

Ha(/2) and so there is a subsequence (Ynk}~ such that Wk = -'~ .i~_l Yni converges to 

0 strongly in H1(/2) (Banach-Saks theorem). By [DaL] (Proposition 1.6), there is 
a subsequence {Wkj}N such that 

lim w~.(x) = 0 for  q.e.  x E ~ .  
j - + +  oo 

Thus for q.e. x E ~ we have 

0 <~ lim infyn(x) < lim infY.k.(X) :< lim inf Wk,(X) = O, 
- -  n---~q-oo = j - ->-+oo J j - - ->+oo s 

and the proof  is complete. [ ]  

We just note that an analogous result holds if we replace [I-I1(/2)] N by 
[Wl.P(/2)] n, p > 1 ; this is used in Section 5. 

P r o o f  o f  P r o p o s i t i o n  4.8. Let {vn}N be a sequence in [H1(/2)] n which converges 
weakly to some v E [H1(/2)] N. Assume that for all n E ~ ,  x + v*(x) belongs 
to Q(x), for q.e. x ~ E; we must show that x + v*(x) belongs to Q(x) for q.e. 
x E E .  
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Since Q(x) is a closed subset of R N, it is enough to prove that for q.e. 
x E E there is a subsequence (V,k}gEr~ such that v*~(x) converges to v*(x), say 

lim inf [v*(x) - -  v * ( x ) [  = 0 f o r  q . e .  x E E .  

This follows from Lemma A.1. [ ]  

Let us come to the set Er and to its properties. 

Proof of Proposition 4.4. (i) Eo~ is intersection of closed sets; moreover, in Defi- 

nition 4.3 we may take C = /~ ,  hence E~s C J~. 
(ii) To shorten notations, for all A ( R s set A ~ = R, N \ A. Then 

E \  E~ss = E A  [A(C:  C is closed and c a p ( E \  C ) =  0)] c 

= E ~ [kJ (C c: C is closed and cap (E \ C) = 0)]. 

By the Lindel6f theorem, the union between brackets may be effected over a 
countable family, say (C,}N, such that 

E \ E ~  = E f~ {(C,,)c: C n is closed and cap (E \ C,) = 
I 

+c o  

---- ~ (E \ C,: C, is closed and cap (E \ Cn) ---- 0}. 
n = l  

Since capacity is countably subadditive, we get (ii). 
(iii) Let E have zero capacity. In Definition 4.3 we may take C ---- O; thus, 

Er = 0 and hence cap E~s = 0. Conversely, by (ii) it follows that if cap Eo~ = 0, 
then cap E ~< cap [E \ Eo~] -b cap [E~ A E] = 0. Thus, all equivalences are 
proved. 

(iv) Since E is closed, by (i) we have Eos~ C E and hence cap (Ecs~ \ E) ---- 0. 
Recalling (ii), we find that 

cap (E A Er ---- cap [(E\ Ee~) L/(Er \ E)] ~ cap (E \ Eels) -k cap (E~s~ \ E) = 0. 

(v) T h e / f p a r t  follows immediately from (ii). Conversely, let v be continuous 
and assume by contradiction that v(y)~ C for some y of E~ .  Since v is con- 
tinuous and C is dosed, v(x)~ C for all x of an open neighborhood B(y) o f y .  
Since, by hypothesis, v(z) EC for all z of E \ N  with c a p N = 0 ,  we get 
B(y) C (E \ N) c. Hence E \ N C [B(Y)] c, say cap {E \ [B(y)] c} ~ cap N ~- 0. 
Since [B(y)] c is closed, in Definition 4.3 we may take C ----- [B(y)]~; hence E~s~ ( 
[B(y)] ~. This is impossible, because y belongs to Er A B(y). 

(vi) follows immediately from (v), taking C = {0}. [ ]  

I f  E is not closed, then E, ss may be considerably different from E or from 

(/~)~ss. For instance, let E ( R  be the set of all rational points in [0, 1]; then all 

closed sets C such that cap (E \ C) = 0 must contain E; hence Eels = (~?)~s~ 
= [0, 1]. Clearly, (EA Ee~) ----- (E~s~ \ E) is the set of irrational points in [0, 1] 
and it has positive capacity. 
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On the other hand, the set EQP~ 2 of points in [0, 1]• [0, 1] with rational 

coordinates has zero capacity; hence E ~  = O, while (/~)~ = / ~  = [0, 1 ] • [0, 1 ] 
has positive capacity. 

Finally, let us detail the argument mentioned in Remark 4.2 in order to show 

that GSP is solvable for all L when Q is bounded and E is any subset of .Q with 
positive capacity. 

As already noted, we need a capacitary version of Korn 's  inequality; this 
requires in turn the definition of a "capacitary essential supremum" along with 
a technical lemma, as follows. 

Definition A.2. Let u belong to [H~(f2)] Ar and let u* be its quasi-continuous repre- 
sentative. Set 

[u]e = inf (AER:  [u*(x)l ~ 2  for q.e. xE  E}. 

Lemma A.3. Assume cap E > O. Let  (w,JN be a sequence in [HI(.Q)] x, such that 

(a) {w,}~ converges strongly in [Hi(O)] N to some w, 
(b) [w,]E converges to zero. 

Then w*(x) = 0 for q.e. x E E. I f  in addition w is continuous in ~ ,  then 

w(x) = 0 for all xE  E ~ .  (A.1) 

In particular, i f  w belongs to RBM,  then it vanishes identically in f2. 

Proof. By (a) and by [DaL] (Proposition 1.6), there is a subsequence, which 
we still denote by {Wn}N, such that w*(x) ~ w*(x), for q.e. x E E. On the other 
hand, from (b) we easily conclude that w*(x) --~ O, for q.e. x E E, so that w*(x)=0 

for q.e. xE  E. Furthermore, if w is continuous in -Q, then w* = w and (A.1) 
follows from Proposition 4.4(vi). The last assertion follows from Remark 4.12(iv). 

[ ]  

The following temma gives the capacity version of the Korn inequality suitable 
for our purposes. 

Lemma A.4. Suppose cap E > O. Then there is a C > 0 such that for all v of  
[H'(.Q)] N 

II v it 2 < C{ll e(v)[Ib<~) + [v]~}. (A.2) 

Proof. For contradiction, assume that for all n E N there exists v~ E [HI(f2)] N 
with 

[I v, II 2 > n{] I e(v,) IIL:(m2 q_ [Vn]2). 
Un 

Setting w n = II v.ll '  we find that: 

(1) 1[ wn II = 1, hence (without relabeling subsequences) there is a w such that 
w n --~ w weakly in [HI(.Q)]u; 

(2) ][e(wn)llL~(~)-+ 0, hence w is a rigid body motion; 
(3) [w,]z-+ 0. 
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By (1), (2) and by the Korn inequality, we have wn-+ w strongly in [H1(s N. 
Using (3) and recalling Lemma A.3, we find that w vanishes identically. This is 
impossible, because the strong convergence and (1) imply Ilwll = 1. []  

Thus we are able to prove the theorem we stated. 

Proposition A.5. Assume cap E > O. I f  Q is bounded, then GSP/s  solvable for all 
systems of applied forces L. 

Proof. Let/3 be any positive number. Then G~ = {v E [HI(O)]N: G(v) ~ fl} ~ O. 
We claim that G~ is bounded. Indeed, G~ is obviously a subset of K, so that for all 
vEG~ it is G ( v ) = F ( v ) - - ( L , v ) ;  hence 

F(v) <= t3 -f- [(L, v>[. (A.3) 

On the other band, boundedness of Q implies existence of a number M such that, 
for all v E K, I v*(x) l < M for q.e. x E E; hence [vie < M. Thus, recalling 
(A.3) and Lemma A.4, we find that, for all v E G,, 

Ilvl? < C(F(v) + [v] 2) <~ C(fl q- M2+ I(L, v>l ) <~ C x + C 2 llvll, 

with C1, Cz constant. Therefore, Ga is bounded and Remark 3.6 gives immediately 
the existence of a minimizer of G. [ ]  

By means of analogous proofs, we can give similar results for the Signorini- 
like problem in non-linear elasticity NSP (the notations are those of Section 5). 

Lemma A.6. Assume that p > 1 and cape E > O. Then there is a 
that for all v of [Wl'P(O)] ~ 

Iloll ~ ~ C(llVvll~pt~) + IriS). 

C > 0 such 

[] 

Proposition A.7. Assume capp E > 0 and G proper. I f  Q is bounded then N S P / s  
solvable for all system of applied forces L. [] 
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