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Abstract 

I t  is known that when one branch of a simple fold in a bifurcation diagram 
represents (linearly) stable solutions; the other branch represents unstable solu- 
tions. The theory developed here can predict instability of  some branches close to 
folds, without knowledge of stability of  the adjacent branch, provided that the 
underlying problem has a variational structure. First, one particular bifurcation 
diagram is identified as playing a special role, the relevant diagram being specified 
by the choice of  functional plotted as ordinate. The results are then stated in 
terms of the shape of the solution branch in this distinguished bifurcation diagram. 
In many problems arising in elasticity the preferred bifurcation diagram is the load- 
displacement graph. The theory is particularly useful in applications where a solu- 
tion branch has a succession of folds. 

The theory is illustrated with applications to simple models of  thermal self- 
ignition and of a chemical reactor, both of  which systems are of  l~mden-Fowler 
type. An analysis concerning an elastic rod is also presented. 
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w 1. Introduction 

The basic role of  a bifurcation diagram is to describe the solution set of  
some system of equations. However, it has long been realized that once a bifurca- 
tion diagram has been determined, either numerically or analytically, certain 
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conclusions concerning stability properties can be made with little or no additional 
analysis. The purpose of this work is to exploit the special structure of bifurcation 
problems that can be cast as variational principles to obtain particularly detailed 
predictions of stability properties. 

The main result is the following: 
Let F(u, 2) be a real valued functional depending on a variable u and a bifurca- 
tion parameter 2, and suppose that F has branches of extremals (that is solutions 
of  F,(., 2) = 0) of the qualitative form depicted in Figure 1. Then, given certain 
regularity and nondegeneracy conditions, the lower branch in part (a), and the 
upper branch in part (b), represent extremals of F that are not local minima. 
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Fig. 1 a and b. The two possible forms of a simple fold 

( To paraphrase, if the real valued functional --Fa i.e. -- is chosen as 

the ordinate in a bifurcation diagram, then the lower branch of extremals in a 
fold opening to the right, and the upper branch in a fold opening to the left, 
cannot represent local minima of the functional F. The result is proven in w 2. 

This theorem is obviously related to the "principle of exchange of  stability" 
(see CRANDALL • RABINOWITZ 1973, SATTINGER 1972, or WEINBERGER 1978). 
The standard result predicts that if one branch of a simple fold represents local 
minima, then the other does not; the result is not sensitive to the functional chosen 
in the bifurcation diagram, or, indeed, to whether the ordinate is considered as a 
schematic representation of a function space. The result described above does not 
require the knowledge that one branch represents local minima, but it does require 
that the shape of the branch in one particular bifurcation diagram be known. The 
new result identifies the real-valued functional --Fa as determining upper and lower 
branches in such a way that "stability" predictions can be made. 

The two theories are best contrasted when the branch of  extremals has two 
successive folds, as is depicted in Figure 2. 

Suppose that branch A is known to represent local minima. Then both theories 
predict that branch B cannot represent local minima. The standard theory can 
give no prediction concerning branch C, but the result presented above states 
that branch C in Figure 2(a) does not represent local minima. Moreover, with 
further genericity assumptions, the proof  described in w 2 can be used to demonstrate 
that branch C in Figure 2(b) does represent local minima. 

That the functional --Fa should play a distinguished role does, at first sight, 
appear strange. In fact the theory here presented can be rephrased in terms of the 
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Fig. 2 a and b. Two possible forms of two successive simple folds 

functional F(u, 2). The result is then the following: of the two branches associated 
with a fold, the one that realises the higher value of F(u, 2) is unstable. This state- 
ment is intuitively obvious, at least in the finite-dimensional case, but both the 
analytical proof  of the result, and its applications to the example of  this paper are 
more straightforward when couched in terms of the functional --F~. The functional 
F(u, 2) plays a more important role in the statement of the analogous results at 
bifurcation points. See MADDOCKS • JEPSON (1986). 

In many physical problems the functional F(u, 2) has the special form 

F(u, 2) = G(u) -- 2H(u), 

in which the parameter ). appears linearly. The distinguished functional is then 
just H(u). In particular, for many problems in elasticity that involve uniaxial 
loading, the resulting distinguished bifurcation diagram is the load-displacement 
graph. 

Isoperimetric problems, in which 2 plays the role of a Lagrange multiplier, 
are discussed in w 5; such problems have the form min G(u), subject to H(u) = 
const. The (H, 2) diagram can again be plotted, and the set of all extremals coin- 
cides with the extremals of min (G -- 2H). However, it will be shown that the 
folds critical to exchange of stability in the isoperimetric problem are the points 
of horizontal tangency to the solution branch, whereas points of vertical tangency 
are critical in the unconstrained problem. 

Simple examples illustrating the theory are described in w167 3, 4 and 6. It should 
be stressed that many of the results described in this work are already known in 
special cases and applications, to varying extents of generality and rigor. Prior 
works known to me are discussed in w 8. 

w 2. Proof of Result in I-Iilbert Space 

Consider the following minimization problem: 

min F(u, 2). 
uE,,~ 

Here ~ '  is a real Hilbert space, F: ~ • R ~ R 
dependence on both its arguments, and 

(2.1) 

is a functional with smooth 
;t E R is a bifurcation parameter. A first- 
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order necessary condition for u tO be a local minimum of F is that 

F'(u, 2) ----- 0, (2.2) 

which can be regarded as an equation in ~ involving the Frrchet derivative of 
F with respect to u. This condition is essentially the Euler-Lagrange equation; we 
shall sometimes refer to (2.2) as the equilibrium equation. 

It will be assumed that a branch of solutions to equation (2.2) is known; that 
is, there is a continuous curve of solutions (u(s), 2(s)) E ~f  • R, where s represents 
some parametrization. The choice of parametrization is deliberately left as general 

as is possible. It will be assumed that h(s) = ~ ' s  u E ~ and 2(s)E R exist, 

and that h 2 + ~ 2 = t  =0. 
A further necessary condition for u to be a local minimum of F (as opposed 

to merely being an extremal, or stationary point) is that the second variation of F 
at u be a nonnegative quadratic form. This second-order condition can be phrased 
as the requirement that the linear eigenvalue problem 

F"(u, 2) ~ /=  #~, ~7 E o~g', /z E R, Q/, ~/) = I,  (2.3) 

has only non-negative eigenvalues. Here F"(u, 2) (.) is the second Frrchet deriva- 
tive of F at the solution (u, 2); for each fixed u and 2 it is a linear self-adjoint 
operator ~ ~ .,~r Consequently all of  its eigenvalues are real. Equation (2.3) 
can be regarded as the eigenvalue problem associated with Jacobi's accessory 
equation, i.e. the linearization of the Euler-Lagrange equation. The eigenvalues 
and eigenfunctions will be assumed to depend smoothly on the parameter s. 

It is well known that equation (2.3) has the eigenvalue # = 0 whenever the 

solution (u, 2) is such that J. ---- 0. To see this, differentiate the equilibrium equa- 
tion along the solution branch to obtain 

F"(u, 2) it + ~F~(u, 2) = O. (2.4) 

Here and subsequently the suscript 2 connotes partial differentiation. Our focus 
of attention is the behavior of the critical eigenvalue close to points at which 

J.=0. 

Definition. A point (U(So), 2(So))E ~ • R on a smooth solution branch will be 
called a fold point if 

2(So) = 0. (2.5) 

Recall that the parametrization was assumed to be chosen such that /~2 + ~2 =t = 0. 
Accordingly, U(So) cannot be the null vector. A simple fold point satisfies the three 
additional conditions 

~(So) + 0, 

~ s f ~  =l=0 
S ~ S  o 

and 

zero is a simple eigenvalue of the operator F"(U(So), 2(So)). 

(a) 

(b) 

(2.6) 
(c) 
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This definition of a simple fold is essentially standard, see, for example, 
DECKER & KELLER (1981). Close to any simple fold point the --Fa vs. 2 bifurca- 
tion diagram must be of the form depicted in Figure 1, namely, there is a single 
smooth branch that lies either entirely to the left, or entirely to the right of the 
fold point. The --Fa vs. 2 bifurcation diagram need not have this form close to a 
fold point at which any one of conditions (2.6) fails. 

The main observation is that at a fold there is an elementary expression for 
/~, the derivative of the critical eigenvalue. Accordingly it is possible to characterize 
one particular branch as not representing local minima. To obtain the expression 
for/~, we write 

/t(s) = o~(s)~/(s) + ~(s), 0~(s) E R, (2.7)1 

where 

QT, ~/> = 1, <~, ~7> = 0, (2.7)2 

and r/is understood to be the critical eigenfunction. The inner product of ~7 with 
equation (2.4), then yields 

~ = - i<FL  ~>, 

which can be differentiated to provide the identity 

�9 d , 
&/z + ~/z = --~t<F~, ~> --2~-s (F~, ~/>. (2.8) 

At a fold # = 0 and ~ = 0, which implies that at a simple fold ~ = 0, or equi- 
valently /t = ~/.  Thus at a simple fold, (2.8) takes the form 

- d I o~2(s)/~(s) = 2(s) ~s  {--Fz(u(s), ;t(s))} ,=So" (2.9) 

The first result can now be stated precisely. 

P r o p o s i t i o n  2.1. Close to a simple fold opening to the right, the lower branch in 
a --Fz vs. 2 bifurcation diagram (cf. Figure l(a)), does not represent local minima. 
Similarly, close to a simple fold opening to the left (cf. Figure l(b)), the upper branch 
does not represent local minima. 

Proof. At a simple fold neither -- /~ nor 2 vanishes. The sign of _/6z can be chosen 
positive; this choice specifies that the parameter s is increasing as the fold is tra- 

versed from the lower to upper branch. The sign of)t determines whether the fold 
opens to the right or to the left. The result follows from relation (2.9), because the 
critical eigenvalue/z is zero at the fold, and fi is nonzero and its sign is determined. 

[ ]  

Remarks. (1) Analogous results for non-simple folds, are described at the end 
of this section. 

(2) The choice of --Fx as ordinate is crucial. The example of w 3, serves to 
demonstrate that upper and lower branches can easily be reversed by taking as 
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ordinate other perfectly natural functionals. KATZ (1978) recognized that certain 
bifurcation diagrams contain more information than others. His work is discussed 
further in w 7. 

(3) Expression (2,9) is the simplification of a more general formula that is 
valid in non-variational problems, see for example CRANOALL & RAmNOWlTZ, 
(1973), KELLER (1977), or the factorization theorems appearing in Iooss & JOSEPH 
(1980), and JOSEPH (1979). However, the more general case contains no natural 
identification of upper and lower branches. Consequently in a non-variational 
problem, although it can be proved that an eigenvalue crosses through zero at 
foldpoint, the direction of the crossing is not immediately available. 

(4) Throughout this work the branch (u(s), ;t(s)) and functional F(u, 2) are 
assumed to be smooth, and no attempt is made to state minimal regularity assump- 
tions explicitly. The underlying motivation for this omission is that the validity 
of each proof is best verified in the context of particular examples. For example, 
the proof of Proposition 2.1 is valid provided all the derivatives that are written 
down exist and are continuous. 

Now consider solution branches with two successive simple folds. Two such 
folds necessarily open in opposite directions. If  the bottom branch of one fold 
connects to the top branch of the other, the curve will be described as s-shaped 
(cf. Fig. 2 b). If the two top (or two bottom) branches are connected the curve will 
be called a spiral. 

Proposition 2.2. Consider a solution branch in a --Fa vs. 2 bifurcation diagram 
that has two successive simple folds. As a spiral branch is traversed the eigenvalues 
crossing zero at the folds move in the same direction. As an s-shaped branch is 
traversed the eigenvalues cross in opposite directions. 

Proof. Two applications of the proof of Proposition 2.1. [ ]  

Proposition 2. l and 2.2 describe the behavior of critical eigenvalues close to 
simple folds. In order to obtain information far from fold points two further hypo- 
theses are required: 
H1 : The bifurcation diagram includes all solutions bifurcating from the branch 
in question. 
H2: An eigenvalue cannot cross through zero unless bifurcation occurs. 
Hypothesis 1 is a strong requirement, but it is clearly necessary in order that any 
conclusions can be made. Hypothesis 2 is, on the other hand, very mild. For ex- 
ample, a simple eigenvalue cannot cross unless bifurcation occurs, and in 
problems with a variational structure, theorems guaranteeing the validity of H2 
at multiple eigenvalues are also available. See, for example, CHOW & LAUTERBACH 
(1985) or ZEIDLER (1984, w 45). 

For the moment, the following, somewhat naive, definition will be adopted: 

Definition. If  eigenvalue problem (2.3) has only positive eigenvalues, the solution 
(u, 2) will be called stable. 

Proposition 2.3. Let H 1 and H2 hold. Consider the spiral and s-shaped branches 
illustrated in Figure 2, and assume that the folds are simple. Suppose further that 



Stability and Folds 307 

branch A is stable. Then in the spiral case, branch C has two negative eigenvalues 
associated with it. In the s-shaped case, branch C is stable. 

Proof. The proof  employs hypotheses H1 and H2, taken with Proposition 2.2. 
In the case of the s-shaped branch it should be remarked that as the top fold is 
traversed upward, an eigenvalue crosses from negative to positive. But only one 
eigenvalue can do that, namely the lowest one, which becomes negative at the 
bottom fold. [ ]  

Results can also be obtained at nonsimple folds. Notice that the derivation 
of equations (2.8) and (2.9) is valid provided only that hypothesis (2.6)(c) holds, 
that is, provided only that the eigenvalue associated with the fold is simple. When 
either (2.6)(a) or (2.6)(b) fails, identity (2.9) yields the somewhat useless information 
/~(So) = 0. However, the analogue of  (2.9) that is obtained after repeated differen- 
tiation of equation (2.8), demonstrates that the sign at So of the lowest-order non- 
zero derivative of #(s) is determined, by the signs of the lowest-order nonzero 
derivatives of ;t and --F~. Of course, the lowest-order nonvanishing derivative of # 
determines the local behavior of #, and the lowest-order non-vanishing derivatives 
of ;t and --F~ determine the local shape of the solution branch in the --F~ vs. 2 
diagram. Consequently the local shape of the solution branch determines the local 
behavior of  the critical eigenvalue. 

For  example, suppose that the solution branch in the --Fa vs. 2 diagram is 
not a true fold, but is a monotone curve with an isolated vertical tangent, as is 
depicted in Figure 3. Then the first nonzero derivatives of 2 and --Fa must both 
be of  odd order. Moreover, they are of the same sign in the case of Figure 3(a), 
and of  opposite signs in the case of Figure 3(b). Differentiation of (2.8) then 
implies that the first nonzero derivative o f #  is even, and its sign is determined by 
the signs of the lowest-order derivatives of 2 and --Fz. Because the first nonzero 
derivative of/z is of even order, the critical eigenvalue only touches zero at the 
fold point and does not cross through. The sign of the first nonzero derivative o f #  
determines whether #(So) ---- 0 is a local minimum or maximum ofp(s).  The con- 
clusion stated in Figure 3 follows immediately. 

IL~_O 

J 2_ 
Fig. 3 a and b. Two degenerate fold points 

The shape of the solution branch in the --Fx vs. ;t diagram around a fold 
point can take many forms. The case most relevant to this development arises in: 
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Proposition 2.4. Propositions 2.1, 2.2 and 2.3 remain valid if  the hypothesis of  a 
fold being simple is replaced by hypothesis (2-6)(c), and the requirement that close 
to a fold point the solution branch in the --Fa vs. 2 diagram have the appearance of 
a simple fold, viz. Figure 1. 

Proof. The hypothesis on the shape of the curve is a convenient condition guaran- 
teeing that the first non-vanishing derivative of 2 at So is of even order, and that 
of --F~ is of odd order. Moreover, the sign of the lowest-order non-vanishing 
derivative of ;t is determined by the direction in which the fold opens. Hypothesis 
(2-6)(c) then suffices to guarantee that the proofs of Propositions 2.1, 2.2 and 2.3 
can be followed when equations (2.8) and (2.9) are replaced by their generaliza- 
tions described above. [ ]  

Remarks. (1) In the proof of Proposition 2.4 it is implicitly assumed that the 
derivatives of some finite order are nonvanishing. In general an analyticity as- 
sumption is required to guarantee this property. However analyticity is likely 
to be too strong a requirement. In any concrete application the failure of some 
derivative to vanish could be checked directly. (Cf. Remark 4 after Proposition 2.1). 

(2) Condition (2.6)(b) is the simplification to variational problems of a condi- 
tion that is sufficient to guarantee isolation of the solution branch through a fold 
point. See DECKER • KELLER (1981). When (2.6)(b) fails, it is possible for the fold 
point to be a true bifurcation point. For example, the branch (u(s), ;t(s)) under 
consideration could be the parabolic part of a simple pitchfork bifurcation. In this 

case --_F~ ----- 0, )~ :4: 0, and the stability properties do not alter as the branch is 
traversed through the fold, or bifurcation, point. Proposition 2.4 is not contradicted 
because the branch does not have the appearance of a simple fold in the --Fa vs. 

2 diagram: because --Fa vanishes and 2 is nonzero, the solution branch in the --Fx 
vs. 2 diagram has a cusp at the fold point. Notice that this lack of smoothness in 
the projection onto the --Fz vs. 2 diagram need not be associated with any lack 
of smoothness in the solution branch (u(s), 2(s))C H• 

If  the zero eigenvalue corresponding to the fold has multiplicity m > l, so 
that condition (2.6)(c) fails, another analogue of (2.9) can be obtained, namely 

ik-- (2.10) 
k = l  

Here there are m critical eigenvalues /zk, and m amplitudes ~k, but only one 
identity involving the derivatives ilk. Expression (2.10) demonstrates that at least 

one ik  has the same sign as ).(--F~), which is sufficient to prove Proposition 2.1 
with hypothesis (2-6)(c) omitted. Improved versions of Propositions 2.2, 2.3 and 
2.4 are not available. Notice that when the multiplicity is greater than one, there 
can be several branches with a common fold point (see DECKER & KELLER, 1980). 
Then equation (2.10) cart be derived for each branch, the relevant observation 
being that the differentiation entailed is with respect to a parametrization of a 
particular branch. 

The above results have been stated in the context of Hilbert space because 
that setting best reveals the structure of what is essentially a perturbation argu- 
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ment. In the illustrative examples below, the results of this section are applied 
without the problems being formulated in Hilbert space. It is a straightforward 
exercise to rederive the results in the context of each example, but those details 
are also omitted. One worthwhile remark is that each example is, or is reducible 
to, a single ordinary differential equation, and consequently it is easy to verify 
that condition (2.6c) is always satisfied. 

w 3. A Model of Thermal Self-Ignition 

Consider the system 

Au + 22e" = 0, u: M ~ R3---~ R, 
(3.1) 

u[0~ = 0, ~ the unit ball. 

This equation has a long history; the analysis which we follow is that of GEL'- 
FAND (1963), in which the system is interpreted as a model for thermal self-igni- 
tion of a chemically active gas in a spherical vessel. The first analysis of (3.1) 
is apparently due to EMDEN (1907) who considered the equation in an astrophysical 
context; see also CHANDRASEI{HAR (1939) and DAVIS (1962). 

Problem (3.1) can, without loss of generality, be reduced to the radial ordinary 
differential equation 

1 d du 
r 2 dr r2 ~ + 22e" ---- 0, (3.2) 

u'(0) = 0, u(1) = 0, (3.3) 

and GEL'FAND demonstrates that this system has the bifurcation diagram depicted 
in Figure 4(a) (see also JOSEPH & LUNOGREN, 1973): 

u(O) 

I 2= 

u(r)] 

o 1 7 
b 

Fig. 4 a and b. The bifurcation diagram, and a typical solution associated with system (3.1) 

The functional plotted in Figure 4a is u(0), which is the ordinate typically adopted 
in many similar problems. The bifurcation diagram comprises a single branch 
with an infinite number of folds centred on a critical value ;re, For our purposes 
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the important feature of the solution is that although u(r) is monotone decreasing, 
u'(r) is oscillatory. The demonstration of these facts depends upon a certain 
transformation: if uo(r) is a solution of equation (3.2), so is 

u(r, ~) = o~ + uo(r~12e). (3.4) 

Consequently, if one solution satisfying u0(0 ) = 0 can be found, then the two 
point boundary-value problem, can be solved by shooting from r = 0. We do 
not repeat all the details here, but refer instead to GEL'FAND (op. cit.). The analysis 
in w 4 below is a simpler example of the same method. 

The constant ~ appearing in (3.4) can be adopted as the parametrization of 
the solution branch, in which case it is straightforward to verify that all the folds 
are simple. Moreover Hypothesis 1 and 2 hold. 

It remains only to calculate the preferred functional. Because all solutions are 
radial, equation (3.2) can be obtained as the Euler-Lagrange equation of the func- 
tional 

1 

F(u, ~) = f {�89 u '2 --  22e ~} r 2 dr, u'(O) = O, u(1) = 0. 
o 

Accordingly, the preferred functional is 

1 

--F~ = 2 f 2eUr z dr. 
0 

But integration of (3.2) demonstrates that on solutions 

1 u'(1)  
2 f cur 2 dr - -  

o 2 

The analysis of  GEL'FAND (ibid., in particular Figure 15, p. 361) demonstrates 
that the bifurcation diagram with --F~ as ordinate has the qualitative form shown 
in Figure 5, namely an infinite spiral. The results of w 2 apply, and provide the 
information that as the spiral is traversed inward, an eigenvalue crosses from the 
positive to the negative half-line at each successive fold. Thus the only possible 
stable region is the lowest segment of the branch, and it is easily verified that that 
region is indeed stable. This example demonstrates that 

u'(1) 
2 

Fig. 5. The preferred bifurcation diagram for system (3.1) 
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the property of a branch being spiral or s-shaped in a bifurcation diagram is not 
preserved under change between two simple and natural ordinates. Stability 
predictions can only be fully made from the --F~ vs. ;t diagram. 

w 4. A Model of a Chemical Reactor 

Consider the following boundary-value problem, which is of l~mden-Fowler 
type: 

uxx = ~b2u p, p < - 1 ,  u(x) > 0, (4.1) 

ux(0) = 0, u(1) -- 1. (4.2) 

This system is a model for the steady-state solutions of a reaction-diffusion system 
governing the concentration u(x) of a substance disappearing according to a pth 
order isothermal reaction in an infinite slab of catalyst. Further details can be 
found in MEHTA & ARIS (1971). In this and analogous problems appearing in the 
chemical engineering literature, the bifurcation parameter 4) is known as the Thiele 
modulus. The delimitation on the range of the parameter p is not physically re- 
quired, but the other cases are not such suitable illustrations of the theory develop- 
ed in this paper. 

The complete set of solutions to (4.1) and (4.2) can be obtained straight- 
forwardly in a standard way. First change the independent variable to t = ~x, 
to obtain the boundary-value problem 

utt = u p, ut(0) = 0, u(~b) = 1, (4.2) 

and define y( t )  to be the solution of the initial-value problem 

Ytt =YP,  yt(O) = 0, y(0) = 1. (4.3) 

Then for any positive constant A 

u(t, A) = A~y(A t), 

is a solution of 

f l =  2 / ( p - -  1) (4.4) 

utt = u p, ut(O) = O, u(O) = A s. (4.5) 

Accordingly, boundary-value problem (4.2) can be solved by shooting from t = 0, 
while scanning all positive values of A. This procedure defines a one-parameter 
family of curves in the (u, t) plane; the envelopes of that family are determined 
next. 

Any envelope e(t) is of the form 

e(t) = u(t, A(t))  = AS(t) y (A( t )  t ) ,  (4.6) 

where the function A(t )  is defined by the condition 

y(At )  + A~ty'(At)  [ =  (4.7) = ~Aa- '  L ~ A 'y(At)]  " 0 
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Accordingly, 

S S ~ 
A(t) = 7 '  and e(t) = -~ y(S), (4.8) 

where the constant S is any positive root of 

fly(S) q- Sy'(S) = 0. (4.9) 

But the left-hand side of (4.9), when regarded as a function of S, has derivative 

(1 + D Y' + Sy" = (1 + D Y' + S y ,  (4.10) 

which is strictly positive because 

--1 < fl < 0 and y'  > 0. (4.11) 

As the left-hand side of (4.9) is negative at S ---- 0, it may be concluded that 
(4.9) has a unique root. 

Members of the family of solutions (4.4) are sketched in Figure 6. Let the 
number ~b* satisfy 

e(4~*)---- 1. (4.12) 

Then for 4> < 4~*, 4~ = 4~*, and ~b > q~*, boundary-value problem (4.1), (4.2) 
has, respectively, two, one and no solutions. In the case of 4) < 4~*, one solution 
touches the envelope for t < ~b, and the other for t > 4~. 

u(t)' ~ e ( t )  

Fig. 6. Two solutions and the envelope of initial value problem (4.3) 

Consideration of Figure 6 demonstrates that system (4.1) and (4.2) has the 
bifurcation diagram depicted in Figure 7. That is, for each value o f p  the bifur- 
cation diagram comprises a single fold, and the folds for differing values of p 
are nested. 

In the context of chemical engineering it is usual to introduce a functional 
r/(u) called the effectiveness factor that is defined by 

1 

,7(u) = f u" ds. (4.13) 
0 



Stability and Folds 

P3~ p2 
313 

Fig. 7. Bifurcation diagrams for system (4.1) and (4.2), with three values of p, Pl > P2 > P3 

On solutions 

1 
~/(u) ---- ~-~ Ux(1 ) . (4.14) 

The following fact will be used later in the development: at the fold point the 
value of ~/, ~* say, is given by the formula 

--fl 2 
~7" -- 4 ,2 ,  /3 (p -- 1) (4.15) 

This last expression can be derived from (4.8), (4.12) and (4.14), because when- 
ever 4 ----- 4" the solution and the envelope osculate at t = 1. 

Equation (4.1) is the Euler-Lagrange equation for the functional 

42 u p+I} dx 
0 

and 4 2 may be regarded as the bifurcation parameter rather than 4 itself. Then the 
preferred functional --F~ is 

1 1 
1)of u p+I dx.  (4.16) (p + 

Now, integration of (4.1), after multiplication by u, provides the relation 

1 1 1 

2 dx.  (4.17) 4 2 f u p+l d x =  f u u x x d x = u x ( 1  ) -- f ux 
0 0 0 

But equation (4.1) has the first integral 

4, 2 
�89 u2(x) -- (p § 1) (uP+'(x) --  uP+'(0))" (4.18) 

Upon setting x = 1 in (4.18), we obtain 

2 
2 _ _  ( 1  - -  U p + 1 ( 0 ) ) .  (4.19) 

42(p + 1) 
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Furthermore integration of (4.18) yields 

2 dx u p+ I(O), (4.20) u .+' d x = � 8 9  ux 
(p -k 1) o -F- (p + 1) 

and, upon combining (4.14), (4.17), (4.19) and (4.20), we obtain 

[p + 3~ I 2 
= -- q- (p + 1)" (4.21) 

That is, for the system (4.1), (4.2) with p ~ --3, or --1, the (p q- 1) th power of 
the L p+~ "norm" of any solution can be expressed as a simple quadratic function 
of the pth power of its L p "norm".  In particular, for p =~ --3 or --1, equation 
(4.21) expresses the functional --Fz in terms of the effectiveness factor ~/. 

In light of identity (4.21) the theory developed in w 2 can be applied without 
explicitly constructing the preferred bifurcation diagram; it suffices to plot the 

vs. ~2 diagram. This was done numerically by MEHTA & ARIS (op. cit.). For our 
purposes all that is required is the qualitative form of the folds, which information 
is deducible analytically, combined with the result expressed in equation (4.15). 

a 

77 , 

\PT 
\\\ 

? 

\ \  

\ \  \ 

b ;; 
Fig. 8a. Bifurcation diagram for system (4.1) and (4.2) with effectiveness ~ as ordinate, 

p2 < - 3  < pl;  b level sets of the function r/ -- 4~2~ 
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The r/vs. ~2 diagram is drawn in Figure 8 a; the solid lines represent solution 
branches, and the dashed line is the curve ~ /=  �89 ~k 2. In Figure 8 b the level sets 
of the function ~/-- ~2~/, have been plotted, with the curve ~ /=  �89 4~ 2, again 
being shown. This last curve is the locus on which the level sets of z/--  ff2r/2 
have vertical tangents; above that line the level sets have negative slope; below 
that lines the level sets have positive slope. 

Now equation (4.15) states that when -- 3 < p < -- 1 the fold point lies above 
the line z / =  �89 4) 2, and when p < --3 the fold point lies below the line. Accor- 
dingly, due to the form of the level sets, it can be seen that as a fold in the ~/vs. 4, 2 
diagram is traversed upward, the function ~/-- qb2~/ decreases or increases as 
p > --3 or p < --3, respectively. But because the factor p + 3 appears in 
(4.21) the functional --Fa increases in either case. Thus the top branch in the 

vs. ~2 diagram is unstable provided p 4= --3. Notice that the upper branches in 
the ~/vs. 4) 2 diagram correspond to the lower branches in the u(0) vs. ~2 diagram. 

The above analysis does not apply when p = --3, but the top branch in the 
z I vs. if2 diagram is also unstable in this case. This fact is readily verified because 
when p = --3, (4.1) and (4.2) have the simple solution 

_ _  _ _  X 2 
u ( x ) 2  - u(0y  + u(0)~' 

where u(0) 2 = �89 4- I/~ - -  ~2. There are two branches which exist for ~2 < $.2 
= �88 and explicit formulas for r/ and --Fa can be obtained. 

The example of this section demonstrates that the qualitative features of the 
--Fa vs. ~, diagram that must be known to predict stability transitions, may be 
deducible from another bifurcation diagram. 

w 5. Isoperimetric Problems 

Suppose that the functional F(u, 2) has the special form 

F(u, 4) = G(u) - -  ,~H(u), (5.1) 
2 C R,  G, H:  a~V'--+ R .  

This case is of interest for two reasons; firstly, problems in mechanics are often 
of this type, and secondly, this form encompasses two interpretations, an un- 
constrained problem as before, or an isoperimetric problem. 

The simplest isoperimetric problem is 

min G(u) subject to H(u) = C,  (5.2) 
u 

where C is a given constant. The theory of Lagrange multipliers asserts that 
the first-order conditions for problem (5.2) coincide with those of 

min {G(u) -- 2H(u)}. (5.3) 

That is, the extremals of both problems satisfy an Euler-Lagrange equation 

G' -- 2 H ' =  0. (5.4 
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Consequently, an extremal of (5.3) for given ;t is also an extremal of (5.2) for some 
C, and vice versa; the set of extremals in an H vs. 2 diagram is the same for both 
problems. In the isoperimetric case H(u) is specified and the possible values of ;t 
are determined by use of (5.4), whereas in the unconstrained problem ;t is specified 
and the possible values of H(u) are determined through (5.4). 

The theory of w 2 relates the shape of the solution branch in the H vs. ;t diagram 
to the question of whether the extremal is a local minimum. In the case where 2 
enters linearly another result is available, namely 

Lemma 5.1. Suppose that (u, 2) is a stable solution of (5.3). Then the slope of the 
solution branch at (u, 1) in the H vs. ;t diagram is non-negative. 

ProoL Differentiate (5.4), and take the innerproduct with h to obtain 

"2 d 
</t, (G" -- 2H"} &> = i <H', u> ---- 1 ~-~ H. 

But as the branch is assumed stable, the left hand side is non-negative. [] 

The analogous results for constrained local minima are now developed. Al- 
though the sets of extremals for the constrained and unconstrained problems coin- 
cide, the second-order conditions for an extremal to be a constrained or uncon- 
strained minimum differ. The necessary second-order condition in the isoperimetric 
problem is that the second variation be non-negative on the tangent space to the 
constraint surface H(u) ~ C. If  (u, 2) denotes a constrained extremal, this condi- 
tion can be written as 

(~, (G"(u) -- 2H"(u)} ~> ~ 0, V~ ~ 0 such that <H'(u), ~> = 0. (5.5) 

Here H'(u) E ~f~ is the first Fr6chet derivative of H at u, and G"(u) and H"(u) 
are the linear self-adjoint operators ~ ~ ~ that are the second Fr6chet deri- 
vatives of G and H. For brevity we shall introduce the notation 

L(u, 2) = G"(u) -- 2H"(u). (5.6) 

We shall determine when (5.5) holds with a sharp inequality. Condition, (5.5) 
with strict inequality will be referred to as condition (5.5)'. Recall the analogous 
unconstrained condition, (2.3) which can be rewritten as: 

all eigenvalues of Lr /= / , r / ,  r] E ~ ,  /z E R are positive. (5.7) 

Conditions of the form (5.5)' have been analyzed by many authors. Here we 
shall exploit some elementary observations and obtain a Lemma. 

Remarks. (1) Unless H'(u) happens to be an eigenfunction of L, condition (5.5)' 
cannot be stated solely in terms of the eigenvalues of L. 

(2) If  condition (5.7) holds, then condition (5.5)' holds. 
(3) If  L has two non-positive eigenvalues then (5.5)' fails. 

Lemma 5.2. Suppose that on some segment of  the solution branch, L is non- 
singular and has precisely one negative eigenvalue. Then condition (5.5)' holds if  
and only i f  the slope of the branch at (u, 2) in the H vs. ;t diagram is negative. 
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Proof. Provided that L has precisely one negative eigenvalue, the theory described 
in MADDOCKS (1985) (see also the simpler proof  described in MADDOCKS, 1984, 
p. 352) simplifies to state that (5.5)' holds if and only if 

(~:, L~ e) < 0, 

where ~ is defined to be the solution of  

L(z 0 ~ = H'(u). 

But differentiation of (5.4) shows that 

and 

(H' ,  it) dH 
( 2 ,  = = - d - s  " 

Notice that as L is assumed to be nonsingular 

i: 0. 
[] 

Remarks 1-3 and Lemma 5.2 can be summarized as follows. As before an 
extremal will be called stable if condition (5.7) holds; an extremal will be called 
c-stable if condition (5.5)' holds. All stable extremals are c-stable. The set of 
extremals that are c-stable, but not stable, is the union of those extremals on which 

dH 
L has precisely one negative eigenvalue and ~ -  is negative, and some exceptional 
extremals on which L is singular. 

Consider as an example the H vs. ~ diagrams drawn in Figure 9. Suppose that 
the folds are simple, that hypotheses H1 and H2 hold and that in each case branch 
A is stable. Then in case (a) the results of  w 2 imply that segment E is stable, and 
segments B, C and D are unstable. The results of  this section give the further in- 
formation that segments B and D are c-stable, but that segment C is not c-stable. 
In case (b), A is the only stable segment, and A and B are the only c-stable seg- 
ments. Segment D has two associated negative eigenvalues, so that it can be neither 
stable nor c-stable. Notice that c-stability is lost or gained at horizontal folds. 

C 

z2 B 

/ ' 7  
/ I 

a, b 

Fig. 9a and b. Possible bifurcation diagrams. The labelled segments have boundaries 
at the points with vertical and horizontal tangents 
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Examples in elasticity with uniaxial loading comprise one important class of 
problems that have the structure of (5.3). In this case 2 represents the magnitude 
of a load, H(u) is a displacement, and G(u) is the elastic stored energy. The ex- 
ample analyzed in w 6 is of this type. The unconstrained problem in which the load 
2 is specified is known as dead loading, and the isoperimetric problem in which the 
displacement H(u) is specified is known as hard loading. In either case, the theory 
here presented allows stability predictions to be made from the shape of the solu- 
tion branch in the H vs. 2 diagram. But this diagram is the load-displacement 
graph (actually the displacement-load graph), which is commonly computed or 
measured in experiments. 

It should be emphasized that load-displacement and stress-strain diagrams 
are almost always distinct objects. Confusion frequently arises over this point, 
perhaps because in the basic example of uniform extension of a one-dimensional 
bar (see e.g. ERICKSEN, 1975), the response curve in the load-displacement graph 
and the constitutive curve in the stress-strain diagram, happen to be identical. 
The confusion is exacerbated by the fact that there are instability results associated 
with non-monotone stress-strain curves; for example, Legendre's condition in 
the calculus of variations can often be viewed in this light. Non-monotonicity 
of the stress-strain law is associated with a loss of ellipticity in the linearized 
problem. The accompanying instability results are of a nature entirely different 
from that of the instability results developed here, which are associated with non- 
monotonicity of the load-displacement graph. The analysis of the next section 
provides an example in which the stress-strain curve is monotone, but the load- 
displacement graph is non-monotone. 

w 6. A Model of  a Cantilever 

In this section we shall analyze the following problem: 
1 

min f { W(4~s) + 3. cos 4~} ds, 
0 

6 ( 0 ) = ~ ,  0_< 0, _<-~-, 2__>0. 

(6.1) 

This example can be interpreted as a model determining the equilibrium confi- 
gurations of a uniform elastic rod when subject to cantilever loading. The situation 
envisaged is illustrated in Figure 10. The parameter 2 is the force applied to the 
end s = 1 of the rod. Specification of 2 corresponds to dead loading. Specifica- 
tion of the distance I corresponds to hard loading, in which case 2 enters as a La- 
grange multiplier and the condition 

1 

f cos ds = t, Ill < 1, (6.2) 
0 

must be added to (6.1). 
The function W(p) : R -+ R § is the strain energy density function, which is 

determined by constitutive properties of the rod. We shall assume that W is 
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smoo th  and satisfies 

W(O) = 0 (i), 

W"(O) - 1 

W'(O) = 0 (ii), W"(p) > O, Yp 

(iv), W/Ipl--->oo as p---~oo (v), 

W(p) = W ( - p ) ,  Yp (vi), 

(iii), 

(6.3) 

I 

/ 

Fig. 10. The system analyzed in w 6. An elastic rod is cantilevered at one end, i.e. cb(O) 
is specified. The other end is free to move horizontally, and no moment is applied, but 
vertical loading is present. In the case of dead-loading a vertical force ;t is prescribed, 

in the case of hard-loading the distance I is prescribed 

which are all s tandard  hypotheses.  Condi t ions (i), (iv) and (vi) are merely con- 
veniences. Condi t ion (ii) is the s ta tement  tha t  the unstressed state of  the rod  is 
straight. The  condi t ion W'(p*) = 0 for  p* :# 0 would correspond to an arc 
of  a circle as the unstressed state. The  methods  of  the subsequent  analysis can 
also be applied to that  case, which is of  some impor tance  in designing leaf springs. 
The  only change in formula t ion  is in the natural  bounda ry  condi t ion (6.5) below. 
Condi t ions (iii) and (v) are crucial;  they are the s tatements  tha t  the stress-strain 
curve is mono tone ,  and tha t  infinite strain implies infinite stress. We shall contras t  
possible behavior  depending on whether  or  not  the addit ional  consti tut ive as- 
sumpt ion  

is made.  

W'(p) 
W"(p) ~ ~ ,  Vp, (6.4) 

P 

The  first-order condit ions for  extremals of  (6.1) are the natural  bounda ry  con- 
dit ion 

if,(1) = 0 (6.5) 

and the DuBo i s -Reymond  equat ion,  which is the first integral of  the Euler-La-  
grange equat ion of  (6.1), 

% W '  - -  W = 2 (cos if - -  cos y) ,  (6.6) 

where 7 = if(l). Equa t ion  (6.6) has the phase-plane drawn in Figure 11 a. 
Extremals  of  (6.1) correspond to  trajectories in the phase-plane tha t  intersect 
the line i = o~ when s = 0, and intersect the line Ix = 0 when s---- 1. Accor-  
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dingly the problem is reduced to determining which of those trajectories satisfying 
the boundary conditions also have the correct arc-length. 

The first step is to invert (6.6) and solve for 4~s; hypotheses (6.3)(iii) and (v) 
ensure that this can be done. Equation (6.6) can be written in the form 

4,} = g ( a ( c o s  ~ - cos  ~,)), 

( 
-/6 c~ 

Fig. lla. Phase plane of equation (6.6) 

that is pW'(p)  -- W is regarded as a function F(p2), and g is the inverse of F. 
Then 

{~ ( cos  4, - co s  r)} �89 
4~s = f(2(cos r -- cos y)) ' (6.7) 

where the function f (x )  is defined by 

f (x )  = {x/g(x))�89 (6.8) 

The constitutive hypotheses (6.1) translate into conditions on the function f In 
particular, 

and 

f ( x )  "-+ 1/]/2 
as x--> 0, (i) 

f ' ( x )  -+ 0 

f - -  2 x f ' >  0 Y x  > 0, (ii) 

.f2/x--> 0 as x--+ oo (iii) 

f > 0  V x > 0 .  (iv) 

Furthermore, condition (6.4) becomes 

f ' ~ 0  Y x >  O. 

(6.9) 

(6. i o)  
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The prototypical example is that of linear elasticity in which W(p) = �89 and 
f(x) =- 1/~/'2. 

Due to the symmetry present in the problem, the arc-length associated with 
any relevant trajectory can be computed from the integrals 

o a ~s o { (  ~ -  ~)) 
and 

d ,  / f ( 2 ( c o s  ~b -- cos y)) 
L2(V, 2) = ~ . . . . . . .  ~ d4~. (6.12) 

o o 3 {~ (cos ~ - cos 7)s ~ 

The following properties of the functions L1 and L2 allow us to obtain the pertinent 
bifurcation diagrams: 

Lemma 6.1. (Monotonicity properties leading to existence results.) 

8L1 8L2 
(i) ~ < 0, -~2 < 0, ~- (L2 -- Lt) ~ O. (6.13) 

t~L1 
(ii) ~ < 0, and ~+~,-lim LL is finite. (6.14) 

(iii) (L1 q- L2) (y, 2) for fixed 2 has a minimum at y = 7*(2) > c~. 

7g 

(iv) limL2 = + cx~, and limL2 -- . (6.15) 

(v) I f  condition (6.10) holds, -~7L2 > O. (6.16) 

The proofs are effected by straightforward but lengthy computation, and use of 
(6.9)(ii). The function Lz(y, 2) has the same structure as an elliptic integral, and con- 
sequently calculations are much simplified if the transformation 

is introduced. Then 

Y sin ~ sin ~v = sin 4~/2 

L2(y, 2 ) =  ] / - ~  f12 f(22a cos2 ~._) 

(1 -- a s in  2/fl)2 

(6.17) 

(6.18) 

Y where a = s i n  2-~-. [ ]  

Remark 1. The limit (6.15) as y ~ 0 is the lowest Euler-Bernoulli buckling 
load. 

~L 2 
Remark 2. If condition (6.10) does not hold, ~ need not be of one sign. 
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For  example, f(x) can be chosen to be a smooth mollification of a monotone 
decreasing stepfunction for which hypotheses (6.3) on the associated W are 

OL2 
- - ,  satisfied, and each jump gives rise to a change of sign in ~,  

Consider problem (6.1) with o~ = 0. This is the classic buckling problem 
which has antecedents in the works of  EULER. T h e  bifurcation diagram has the 
form sketched in Figure 11 b. The trivial solution exists for all loads ;t and buckled 
solutions bifurcate at the Euler-Bernoulli loads 

(2n + 1) 2 7/; 2 
2 --  4 , n = 0 ,  1,2 . . . .  

Of  course, the first mode makes a quarter turn around the origin in the phase- 
plane of (6.6), the second a three-quarters turn, etc. Monotonicity properties 
(6.13) demonstrate that y = ~b(1) can be used as a parametrization of each 
buckled branch. This is because each value of ~, must have precisely one value 
of 2 such that L2(~ '  ,/1,) ~ -  1. However, whenever L 2 is not monotone in ), there will 
be values of  2 for which L2(~ '  , ~,) = 1 has multiple roots and the buckled branch 
will be folded, as is drawn in Figure 11 b. 

~(1) ~ 

Fig. 11 b. Bifurcation diagram for (6.1) when o~ = 0 

(1) 

Fig. 11 c. Bifurcation diagram for (6.1) with c~ > 0, and (6.4) valid 
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In the case o~ > 0, the bifurcation diagram drawn in Figure ll(c) is obtained. 
Here it has been assumed for simplicity that constitutive hypothesis (6.4), or 
equivalently (6.10) holds. Otherwise further folds could be present .Typical phase- 
plane trajectories corresponding to solutions in the segments A, B, C and D of the 
bifurcation diagram are labelled in Figure 11 a. When or 4= 0 there is no trivial 
solution, but there is a primary branch that exists for all 2 > 0, and which 
corresponds to trajectories in the phase-plane making less than a quarter turn. 
The fold point on the secondary branch corresponds to the value of  ;t at which 
(L~ + L2) (2, 7*(2)) = 1 (see Lemma 6.1 (iii) for the definition of 7*(2)). Notice 
that although Figure 11 c is an unfolding of Figure 11 b, there no assumption 
of smallness of c~ in this analysis. 

Stability properties of the various branches are now considered. To this end, 
note that 

1 

a(4') = - -  f cos 4, ds. (6.19) 
0 

The following lemmas will be assumed: 

Lemma 6.2. (Monotonicity properties leading to stability results.) 
Define 

and 

o~ 

f cos4' 
Q,(7, 21 =- 3 ~ d4' 

0 

= f cos 4' f(2(  cos 4' -- cos 7)) 

0 J {z (cos 4' - cos 7))�89 
d4', (6.20) 

Then 

Y 

Q2(7, 2) = f cos 4' -v-d4' 
0 

/ / c o s  4' f(2(cos 4' -- cos 7)) 

8 1  ((cos 4' - cos 7)}~ 
d4'. (6.21) 

8L~ 80, 
(i) - ~ -  < - ~  < O; 

8L2 8Q2 8(L2 -- L1) 8(Q2 - Q1) 
82 < ~ < 0; 82 ~" 82 < 0, 

(6.22) 

8LI 8Q1 8Q2 8Lz (6.23) (ii) ~ < ~ < 0; and < 
8--7" 87 

Proof. By laborious calculation. The derivative of (6.23) employs transformation 
(6.17), and one integration by parts. [ ]  

Lemma 6.3. A solution of(6.1) with n interior zeroes of the function 4's has at most 
(n + 1) associated negative eigenvalues. 

Proof. A straightforward application of conjugate point theory, and Sturm com- 
parison theory. Similar arguments can be found in MADDOCKS (1984). 
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Proposition 6.1. Let o~ = O. Then on the branch representing the first buckled mode, 
d~(1) 

the forward going segments, i.e. those segments for which - - ~  > O, are stable, 

and the backward portions are unstable under dead loading. The whole of the first 
branch is stable under hard loading. 

Proof. The assertion of dead loading stability is essentially standard. By Lem- 
ma 6.3 the first mode has at most one negative eigenvalue. Accordingly any series 
of folds must involve successive losses and recoveries of stability. The theory of 
w 2 applies to reaffirm this conclusion, because we shall show that H(40 increases 
monotonically as the branch is traversed outward. 

The theory of w 5 is required to obtain the conclusions concerning hard loading. 
But given Lemma 5.2, the result is immediate from the monotonicty of H(~) 
along the branch. To prove this monotonicity property recall that ~ is a parametri- 
zation of the branch. Moreover, 

d tgQ2 ~Q2 d2 
+ 

d2 
Consider a backward segment, so t h a t , -  v ~ 0. Then inequalities (6.22)(b) and 

/ 

(6.23)(b) imply that 

~Q2 OQ2 d2 8L2 8L2 d2 
~ -  + ~ -  dy < ~ + 82 d}, -- 0, (6.24) 

the last equality arising because L2(?, 2(7)) is constant on the branch. Inequality 
(6.24) demonstrates that H increases with 7 at each fold-point and on backward 
going segments, which combined with Lemma 6.3 is sufficient to complete the 
proof. A direct proof that Q2 is also monotone on forward going segments 
of the first buckled branch is not immediately available, but this monotonicity 
property is a consequence of Lemma 5.1. [ ]  

Proposition 6.2. Let 0 < o~ <= -~ . Then the forward going segments of the primary 

branch (branch A in Figure 12 b) are stable, and any backward portions are unstable 
under dead loading. The whole of the primary branch is stable under hard loading. 

Proof. The method of the proof of Proposition 6.2 can be applied to the func- 
tional Q2 - -  Q,. [ ]  

dH 
It is physically clear that for 2 sufficiently large, ~ -  is negative on both 

segments B and D of the secondary branch of solutions (cf Figure 11 c). More- 
over, the forward going portions of branch B are stable. Consequently, the 
secondary branch provides an example in which constrained stability is lost at 
a point of horizontal tangency in the H vs. 2 diagram. However, a detailed analysis 
is complicated, and the issue is not pursued here. 
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w 7. Discussion 

The thesis here presented is that bifurcation problems with variational struc- 
ture possess a natural bifurcation diagram that contains the maximum possible 
amount of information concerning the stability properties of solutions. This 
distinguished diagram is defined by specification of a particular functional that 
should be plotted as ordinate. That any functional should be so adopted is a 
somewhat disputable point; many authors prefer schematic bifurcation diagrams 
in which the ordinate represents a function space. This last approach has the ad- 
vantage that symmetries in the solution set can easily be indicated. Nevertheless, 
if stability properties of a folded branch are the main concern, the best choice oi 
bifurcation diagram is the one described in w 2. 

Theorems connecting the shape of solution branches with stability properties 
have a long history dating back at least to PO1NCARt~. That literature is not re- 
viewed here; only those works bearing directly on these results are mentioned. 
The main feature demarcating this presentation from the body of the literature 
is that stability of an immediately adjacent branch is not taken as a hypothesis. 
Consequently this theory is particularly useful on branches with a succession of 
folds. 

Another distinguishing feature is that this theory depends only on the shape 
of one branch close to a fold point; the presence or absence of adjacent branches 
is not exploited. The ramifications of this fact have yet to be fully explored. In 
particular, it remains to determine whether a variational structure allows an 
improvement to be made in the usual theory concerning stability exchanges at 
bifurcation points (see MADDOCKS & JEPSON, 1986). 

The results presented here are not new in their entirety. Rather, the claim is 
that a considerable unification and extension of previous work is achieved. The 
theory has antecedents both in the mathematical literature, and in more applied 
fields. The most relevant mathematical works were cited in Remark 3 of w 2; 
many of those authors obtain the non-variational analogue of formula (2-9), 
but the remaining analysis cannot be completed in the more general case. 

KATZ (1978, 1979) realized the significance of a particular bifurcation diagram 
to stability predictions in variational problems. He considered the minimization 
of a function F ( x l  . . . . . .  x,,, 2) depending on n coordinates xi, and a parameter 2, 
and proved the equivalent of the restriction to finite dimensions of Proposition 2.1. 
His proof was based on the assumption that the equilibrium conditions can be 
cast as a diagonal matrix equation. The method does not generalize to non-simple 
folds in any obvious manner. KATZ applies his results to various examples from 
astrophysics. 

THOMPSON (1979) provided a lucid exposition of Kgrz'  work, and analyzes 
several interesting examples. THOMSON also described the finite-dimensional 
version of the isoperimetric theory that is developed in w 5, and analyzed examples 
of deadloading and hardloading in elasticity. The theory presented here is more 
general and more rigouros than that of KATZ and THOMPSON. More importantly, 
I believe that it is appreciably simpler, even in the finite-dimensional case. 

The examples of w167 3 and 4 are included for their pedagogical value. No ori- 
ginality is claimed for the results concerning these examples although the deriva- 
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tions presented here are new. In the chemical engineering literature JACKSON 
(1973) has obtained relations between stability properties and the shape of the 
solution branch in the ~/ vs. cb bifurcation diagram (cf. w 4). 

It should be remarked that the results concerning stability in isoperimetric 
problems are generally accepted in the literature concerning pendant liquid drops. 
See WENTE (1980) and references therein. The equivalent of the isoperimetric sta- 
bility results have also been obtained in other special contexts, for example SHA- 
a'AH & STRAUSS (1985). 

The example of an elastic rod that is analyzed in w 6 has been a topic of in- 
vestigation by many authors, the most comprehensive treatment being that of 
Am'MAN & ROSENFELO (1978, 1980). A phase-plane analysis similar to the one 
adopted here is contained in JAMES (198l), which paper concerns the case where 
W is nonconvex. The fact that the buckled branches can possess many folds even 
when W is convex, and especially the role played by constitutive hypothesis (6.4), 
is one contribution of this analysis, the other being the stability results under hard- 
loading. 

It should be stressed that the only direct information furnished by the analysis 
of this paper concerns the eigenvalues of the purely static eigenvalue problem 
that arises when the Euler-Lagrange equations are linearized about an equilibrium. 
Accordingly, no rigorous stability result is immediately available. However, 
this static eigenvalue problem is important because in many physical examples it 
is the first step in a rigorous derivation of stability by Ljapunov's direct method. 
The expectations are that 

(i) the properties of the eigenvalne problem determine the properties of the 
associated second variation, 

(ii) the properties of the second variation determine whether the equilibrium 
is actually (in some sense) a local minimum of the energy, and 

(iii) the energy is a Ljapunov functional for the underlying dynamical system. 
It should be stressed that in addition to the purely static eigenvalue problem 

that is considered here, there is a second eigenvalue problem that bears on stability 
properties. This second eigenvalue problem is obtained from linearization of the 
underlying dynamic equations followed by separation of the time variable. In 
general this dynamic eigenvalue problem will be non-symmetric with complex 
spectrum. Nevertheless, in some physical examples it is possible to extract informa- 
tion about the location of the spectrum of the dynamic eigenvalue problem from 
the location of the spectrum of the static eigenvalue problem. Indeed, it would be 
highly disconcerting if the two eigenvalue problems gave different stability predic- 
tions. Further discussion of this point is deferred to a later work. 
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