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Sehlieren interferometry applied to a gravity wave in a density-stratified liquid 

F. Peters 

Lehrstuhl ftir Str6mungslehre, Universit~it l~ssen, D-4300 Essen, FRG 

Abstract. A stably density-stratified liquid is produced in a rect- 
angular glass tank by variation of the concentration of salt in 
water as a function of height. The glass tank is placed into the 
parallel beam of a schlieren interferometer with Wollaston prism 
adjusted to produce straight vertical fringes. A gravity wave of 
the cross wave type is excited and the resulting periodically de- 
forming fringes are recorded by taking photographs. A method is 
developed to obtain from the fringe patterns results about propa- 
gation of the wave in space and time and about amplitude 
attenuation. The results are compared with the linear theory of 
Thomas and Stevenson (1972) and excellent agreement is found 
within the limits of the linear approach. 
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I Introduction 

A light beam passing through a clear fluid of  non-uniform 
distribution of  refractive index 'is deflected and shifted in 
phase. Shadowgraph and schlieren methods are sensitive 
to the deflection. They produce images of  varying illumi- 
nation visualizing changes of  the refractive index in the 
fluid. Interferometric methods visualize and measure 
phase shift distributions that can be integrated to give the 
absolute refractive index in the field of  observation. For 
most fluids the refractive index can be converted into 
densi.ty by a simple relationship. The optical measurement 
of  density distributions can be applied to totally different 
cases of  moving or static fluid. In the field of  gasdynamics 
the density changes due to dynamic effects. It is uniform 
throughout the gas when the gas is at rest. In free buoyant  
flows with heat transfer the density is a function of  tem- 
perature only. When the heat transfer ceases the flow 
stops and the density gradients disappear. In stratified 
flows of  incompressible fluids a positive density gradient 
in the direction of  g exists already when the fluid is at rest 
and each fluid element sustains its density when set into 
motion. 

In this work we consider a case o fmo t ion  in a stratified 
liquid in which fluid elements represent harmonic oscil- 
lators swinging about their resting positions governed by 
the equilibrium of  buoyant  and inertia forces. At a fixed 
point of  observation this motion causes a small harmonic 
disturbance of  the strat ifcat ion density since the fluid 
elements that pass the station originate from different 
heights. The observed disturbance is proportional to the 
element displacement times the stratification gradient in 
the direction of  motion. At a neighbouring point of  
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Fig. la  and b. a Superposition of in- 
terferograms without (straight fringes) 
and with cross wave. b Close-up of 
one beam of the cross wave 

observation the harmonic disturbance might be shifted in 
phase. Then, there is a density gradient normal to the 
direction of motion and different from the stratification 
gradient. The interferometer with Wollaston prism ap- 
plied in this work measures this gradient as function of 
space and time. Given the direction of motion this result 
converts directly into the gradient of displacement. A 
linear internal gravity wave is a continuum of such 
harmonic oscillators. For a special type, the so-called cross 
wave (Fig. 1 for illustration of the name), a theory is 
available (Thomas & Stevenson, 1972) that provides a full 
solution for the density disturbance as function of space 
and time. The present experiments serve to verify this 
theory. 

The cross wave was first investigated by G6rtler (1943) 
who already took some schlieren photographs. Later the 
subject was taken up again by Mowbray (1967) who 
employed shadow and schlieren techniques. Thomas and 
Stevenson (1972) measured local displacement amplitudes 
by means of a microscope, however, could not 'get  mea- 
surements as function of time. Two iliterferometric in- 
vestigations on stratified flows are known. Debler and 
Vest (1977) studied the feasibility of holographic inter- 
ferometry in the case of horizontal stratified flow past a 
cylinder, and Stevenson et al. (1983) set up a six,mirror 
Mach-Zehnder interferometer to investigate the wave 
pattern behind a body moving at constant speed in a 
stratified liquid. 

The type of flow in inner waves, i.e. oscillations of 
small amplitude and low frequency, does not allow the 
application of standard methods like pressure probes, hot 
wire or Laser-Doppler Anemometry. Interferometric 
methods are so far the only way to determine wave vari- 
ables qualitatively in space and time. We believe that the 
present work is the first application of schlieren inter- 
ferometry to stratified flows. 

2 Theoretical background 

We consider a liquid in which the density 00 is a function 
o fy  0 only and require 00 (Y0) to satisfy 

~o2 = - ( g l o o )  ( d O o / d y o )  (1) 

for constant COo. When a two dimensional body having its 
long axis horizontal (a cylinder) is forced to oscillate 
laterally about its rest-position at a frequency co < coo, 
a 2-dimensional wave pattern shaped like two crossing 
beams will occur (Fig. 1 a). Fluid motion is restricted to 
these beams fading away with distance from the body and 
from the centerline of the beams. The angle between the 
beams and the horizontal increases with co. 

We are dealing with a system in which a harmonically 
oscillating body force is acting on a non-isotropic (with 
respect to density gradient) liquid. Under isotropic condi- 
tions one would expect disturbances confined to a narrow 
region about the body. In the non-isotropic case distur- 
bances can radiate away from the body as waves. The 
underlying effect is understood if the liquid is considered 
non-viscous. Then inertia and buoyancy can be balanced 
for a fluid element to let it swing like a mass-spring 
system at the natural frequency 

co = coo sin 0 (2) 

where 0 is the angle between the direction of motion and 
the horizontal. The wave is then a continuum of such 
swinging fluid elements which has to satisfy conservation 
of mass and momentum under the boundary conditions 
observed in the experiment. The latter can only be ful- 
filled if viscous forces are respected. The theory of 
Thomas and Stevenson (1972) reveals that these forces 
are, however, of a lower order of magnitude than the 
dominant forces inertia and buoyancy. In this asymptotic 
sense Eq. (2) applies to the real (viscous) wave. This 
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means first that 0 is equal to the angle between beam and 
horizontal and second that the direction of  mot ion is pre- 
dominantly parallel to the beams. The wave is a natural 
motion. To keep it up in a stationary state the secondary 
viscous forces are balanced by the pressure drop along the 
beam which again is balanced by the body force. Ap- 
proaching the body along a beam the wave region of  
dominant  inertia and buoyancy goes over into a transition 
zone where the pressure and viscous forces increase to the 
magni tude of  the dominant  forces and the natural motion 
of  the wave turns into forced motion which is perfectly 
attained on the body's  surface• The transition zone is 
made  visible in Fig. 2. 

Throughout  this work we consider half  a beam 
stretching upwards from the transition zone and fix co- 
ordinates as in Fig. 3. Every fluid element within the 
beam oscillates at the exciting frequency co, i.e. at any 
point (x,y)  the variables speed, density and pressure are 
proportional  to exp(icot) .  They are, however, phase 
shifted with respect to each other and each of them ex- 
periences a spatial change of phase• The theory of  Thomas 
and Stevenson (1972) provides speed, density and pressure 
as functions of  x, y and t. It is based on linearized equa- 
tions, i.e. only small changes of  the variables from the 
static values of  the stratification are admitted. Similar to 
boundary layer theory the solution is obtained asymptoti-  
cally for a small parameter  e in form of a similarity solu- 
tion. The coordinate t ransformation (Fig. 3) is 

1 (y/L) (3) 
rl = e ( x /L )  1/3 

with 

e = (2 Re cos 0) -1/3 (4) 

defined by the Reynolds number  and the angle 0. The 
angle 0 is assumed not to come close to z~/2 or zero so that 
small e means high Re, which takes the form 

Re = (9/000) L/v* (5) 

with the characteristic length 

L = g/co2. (6) 

We restrict to stratifications in which Y0 ~ L.  Then the 
exponential function ~0 (Y0) as required by Eq. (1) can be 
approximated  by the linear function 

Q0 = 0* (1 - y o / L )  (7) 

and the density disturbance ~ can be written in the form 

0 (x ,y ,  t) = (aQ*/cos 0) ( x / L )  -2/3 

• {& (r/) cos (~o t) + C1 (q) sin (co t)}. (8) 

The functions S and C are represented by integrals of  the 
form 

oO 

& = ~ k ~ exp ( -  k 3) sin (k 11) dk (9) 
0 

Fig. 2. Schlieren interferogram of cross wave with body and 
transition zone. The distance between the interference fringes is 
made infinite for this image 

Yo 
;I = const. 

transition ~ ~ " ~  
~ Z T ~  ~~arf ic le  path 

cylinder Xo 
Fig. 3. Coordinate system 

and 
oo 

C , ~ = S k r e x p ( - k 3 )  c o s ( k q ) d k ,  r = 0 , 1 , 2  . . . .  (10) 
0 

with the following properties: 

C r ( - ~ ) = C , . ( ~ ) ;  & ( - ~ ) = - £ ( ~ ) ,  (11) 

~Cr/~rl = - S r + l  ; 8Sr/Orl = Cr+l . (12) 

With these rules Q can be differentiated with respect to y. 
We get 

8O/Oy = (a O*/e cos O) x -1 

• {C2 (~/) cos (co t) - $2 (V) sin (co t)}. (13) 
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Differentiation of g with respect to x shows that 8g/Sx is 
of order 1 compared with order 1/e for O0/OY. For the 
experiments we will use therefore 

80/Oxo = - (SO/~y) sin 0. (14) 

As already mentioned the fluid moves predominantly in 
x-direction. Therefore, the relationship between 0 and the 
displacement { in x-direction is simply 

0 = -  ~ (dOo/dyo) sin 0. (15) 

An example of ~ (y) at a fixed time is indicated in Fig. 3. 

3 Experiments 

3.1 Properties and production of  stratification 

All experiments were conducted with brine in the density 
range 1.0 to 1.04 g/cm 3. For this range the density is 
proportional to the mass fraction m~ of the salt in the form 

go = (0.7078 g/cm 3) m~ + OOw. (16) 

The viscosity of brine was taken from Hodgman (1977). 
For the applied range at 20 °C it is approximately pro- 
portional to density. The kinematic viscosity v was there- 
fore considered constant and v* was set equal to 
1.04.10 .6 m2/s. The refractive index as function of den- 
sity was measured by a Michelson interferometer and is 
plotted in Fig. 4. For the lower density range 

n = 1.3322 + K ( g 0 -  ~0w) (17) 

applies with 00w (20 °C) = 0.9982 g/cm 3 and K = 
0.248 cm3/g. An apparatus as sketched in Fig. 5 was 
developed for convenient production of stratifications. 
Basically two fluxes Vw (fresh water) and 14, (salt water) of 
different density are mixed by a calibrated double valve 
to give a constant flux I) of varying density. 12 is about 
5 cm3/s allowing a small inlet velocity of about 1 mm/s  
through the manifold at the bottom of the tank. For the 
present experiments only uniform gradients [Eq. (7)] were 
produced up to 105 g/m 4. The produced gradients were 
checked by sampling at various heights of the tank. 

3.2 Experimental set-up 

Figure 6 depicts a top view of the principle set-up. A 
He-Ne-laser (,~ = 632.8 nm) with beam expander serves as 
the coherent light source. Its plane of polarisation is ad- 
justed to the Wollaston prism. The first mirror 1 makes a 
parallel beam of 243 mm diameter which enters the 
stratification tank normally. Front and rear wall are made 
from regular window glass framed to keep a distance of 
[ = 70 mm between the panes. The waves are excited by a 
cylinder ( ~  20 ram) attached to a thin strut connected to a 
crank mechanism so as to swing about its center position 
at the desired frequency. The amplitude of the cylinder is 
smaller than its diameter. Behind the tank the light beam 
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Fig. 4. Refractive index of brine as function of density measured 
by a Michelson interferometer 
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is refocussed by a second mirror 1 a distance w before the 
Wollaston prism with analyser. The prism is oriented to 
generate straight vertical fringes in the case of no wave. 
The wave, producing density disturbances, causes the 
fringes to distort. The distorted fringe pattern can be 
photographed at a rate of three exposures per second. For 
illustration and evaluation both patterns, the disturbed 
and the undisturbed, can be superposed as shown in 
Fig. 1 b. 

A few basic remarks on the Wollaston prism are neces- 
sary before going on with the present application. A more 
thorough analysis of the prism is found in Sernas (1977) 
or Merzkirch (1974). In the case of no density gradients in 
the fluid the Wollaston prism generates equidistant, 
straight interference fringes spaced at the distance 

= U M. (18) 
~w 

fl is a fixed prism angle and M is the image magnification 
on the screen. In case of density gradients the fringes are 
deformed and the relative displacement As/s of any point 
on the fringe is given by 

As l K  
A~. (19) 

s 2 

~JO is the density difference between two points in the 
fluid separated by the distance 

d =  ~ f  (1 + w/ f (1  - g / f ) ) .  (20) 

Their corresponding loci on the image lie (M.  d/2) to 
either side of the deformed fringe while their connecting 
line stands normal to the undisturbed fringes. When A~ is 
small compared with the total range of Q (when d is suffi- 
ciently small) AQ/d can be approximated by do/dz with z 
normal to the undisturbed fringes. In the present experi- 
ments the undisturbed fringes are oriented vertically. 
Therefore, there is no component of the stratification 
gradient normal to the fringes. The prism ignores the 
stratification gradient and we have 

6~ 2 As 
- - -  ( 2 1 )  

6Xo ldK s 

Q is already the density disturbance caused by the wave 
since 60o/6Xo = O. 

Before applying this formula three associated problems 
ought to be discussed. In principle, it is possible to orient 
the undisturbed fringes at any angle with respect to the 
vertical. The prism always measures the density gradient 
normal to the undisturbed fringes. It would recognize the 
stratification as a disturbance and react with a constant 
shift ds/s of all fringes assumed the stratification gradient 
is uniform. The wave would then disturb this shifted 

pattern (however straight) and evaluation could be per- 
formed. The reason for selecting the vertical position of 
the undisturbed fringes is that small irregularities of the 
uniform stratification gradient do not appear in the un- 
disturbed pattern. 

For the evaluation of the interference fringes we 
assume that the light penetrates the stratification parallel 
to the layers. However, in reality the light is deflected due 
to the gradients of refractive index. A deflected ray ex- 
periences an additional phase shift because it passes layers 
of different refractive index. The deflection can be com- 
puted by evaluation of Fermat's principle (Merzkirch 
1974). For gradients 6n/6z ~ n/l the ray displacement Az 
at the exit of the tank can be approximated by 

zJz = (12/2 n) (6n/6z) . (22) 

6n/6z is in the order of the stratification gradient, typi- 
cally 0.02 m -1. For n = 1.3322 and l =  70 mm we see that 
A z <  0.05mm. Since Az again is much smaller than 
d (> I mm) the additional phase shift is negligible. 

The use of the regular window glass for the tank raises 
the question if the thickness variation of the glass intro- 
duces an optical disturbance comparable to that being 
measured. A precis ionrequirement  is obtained from 
Eq. (19). The smallest detectable As/s is about 0.05 (Merz- 
kirch 1974). The product (IKAo) is replaced by 2Alnglass 
where Al is the thickness variation over the distance d. 
Then we have 

2AI 2 
- -  < 0.05. (23) 

d f/glass 

High quality window glass satisfies this requirement. It is, 
however, important to keep the glass walls parallel under 
water load otherwise the undisturbed fringes would not 
appear straight and equidistant. 

3.3 Evaluation procedures 

The basis for the comparison of theory and experiment 
are Eqs. (13, 14, 21) relating theoretical and experimental 
density gradients. The comparison could be carried out by 
integration of the experimental fringes for the explicit 
density disturbances Q. This is, however, disadvantageous 
because of inevitable large integration errors. Further- 
more, the integration would not produce any more in- 
formation than the direct comparison of the gradients 
which is applied here. Since As/s is simply proportional to 
60o/6Xo we go on with As/s and derive from Eqs. 
(13,14,21) 
L/s (24) 

- -  (x, r/, t) = - ~b~ (x) (C2 (*/) cos (co t) - $2 (*/) sin ((o t)) 
S 

with 

1 Here for the sake of simplicity replaced by a lens 
ldKo* atanO 1 

~b, (x) : (25) 
e2 x 
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This equat ion provides As/s in the entire flow field as 
function of time, however, it has yet to be decided which 
points As/s(x ,q , t )  make up a fringe. The problem can 
best be solved by a computer  program. In principle,  a 
reference line x 0 = const is chosen and As/s is computed  
along a line 1/= const until it  fits the distance between the 
point  of  computa t ion  and the reference line. The pro- 
cedure is repeated for as many lines r /=  const as necessary 
to complete  one fringe. The next fringe is then computed  
for x0 + s = const and so on. In Fig. 7 fringes successive in 
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/ r /2 

//I 1 

q , Y \  / T - ' , ,  

u 5~t I 

//I I~ 

// 

,/ 

i ! 

~1:1.77 r~2 --5.4.8 ~3:3.57 

Fig. 7. Computed interference fringes for one period at a fixed 
x 0. For clarity fringes at different times are drawn side by side 

Experiments in Fluids 3 0985) 

t ime are plot ted for a fixed x0. We note the following 
propert ies:  

a) Any two fringes of  phase shift ~ have identical zeros 
and their  max ima  lie on the same line i /=  const, 

b) for cot = 0; ~ the max ima  coincide with r /= 0 and 
zeros are found at t/1 : -}- 1.77 and rb = -+ 5.48, 

c) for m t = 3 /2~ ;n  zeros are found at q = 0 and 73 = 
+_ 3.57. 

We note that  zeros are part icular ly well detectable 
making them convenient observables for use in evaluation. 

F r o m  Eqs. (15, 21) we see that 8~/8y is equivalent  to 
As/s. Because of  the sine-like shape of  a fringe its integral 

has a s imilar  shape and so the fringe is an indirect  
visual izat ion of  the part icle displacement.  

4 Results 

in the first place we study where the wave propagates.  
Equat ion (2) states that  the beam of  the cross wave and 
the horizontal  form the angle 0. This is perfectly support-  
ed by Fig. 8. The angle 0 is measured between the center- 
line of  the beam (r/-- 0) and the horizontal.  The similari ty 
solution predicts the phase of  As/s [Eq. (24)] to stay 
constant on lines q = const which spread with x 1/3 [Eq. (3)] 
while the ampl i tude  attenuates with x -1. The ampl i tude  
var ia t ion is meaningless for zero points As = 0 which are 
therefore suited to measure the spread of  the wave. 
Figure  9 shows lines i /=  + 1.77; +_ 3.57 for 0 =  30 ° and 
0 = 60 °. The lines correspond to As = 0 at cot = 0; ~ and 
c~t=~/2;3 /2~ respectively (Fig. 7). The width of  the 
wave is greater for 0 =  60 ° than for 0 =  30 ° . This is so 
because e [Eq. (3)] depends on 0 and thus y / L  comes out 
greater  for the greater angle. Experimental  zero points 

obta ined from the interferograms are plot ted as circles for 

UO= 0.767 s 1 
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Figs. 8 and 9. 8 The angle 0 measured against cole% supporting Eq. (2); 9 The spread of the wave as predicted by the similarity curves 
~/= const and corresponding measurements of zero points (As = 0) of interference fringes. The big circles with cross indicate the location 
of the body. The left one pertains to 0 = 60 ° 
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0 = 30 ° and as dots for 0 = 60 °. We see that the spread of 
the wave is perfectly confirmed. 

However, this result involves two error sources which 
have to be pointed out. Neither a reference point in time 
nor the distance between the origin x = 0 and the body 
can be provided by experimental boundary conditions. 
This is an inherent feature of the linear theory which is 
confined to the natural wave motion independent of the 
body except for its frequency. Different bodies of the 
same frequency would produce identical waves. The 
waves require fictitious reference points in time and space 
which have to be localized in the actual interferograms by 
interpolation. The time problem can be solved by sys- 
tematic comparison of successive fringe patterns with the 
theoretical patterns. This way a certain point of time can 
be discriminated to lie between two successive patterns. 
The symmetry properties of any two fringes which are 
half a period apart (see Fig. 7) are very useful for this 
procedure. The accuracy of the method depends on the 
number of patterns per period. Practically an error to a 
1/50 of a period is achievable. The approach for the 
distance problem is the following. Knowing the zero point 
in time the points of Fig. 9 are plotted in the x - y  system 
starting at some arbitrary zero point for x. Then the r / - x  
system is shifted along x until Fig. 9 is obtained and thus 
the distance xs/L is fixed. The criterion for the final posi- 
tion of the r / -x  system ought to be a best possible fit of 
the points to the curves. Since the slope drl/dx is small the 
determination of x, is unsatisfactory. The error is in the 
order of Ax/L= 10 -3. The distance x~ depends on the 
amplitude A of the body under otherwise constant condi- 
tions. Figure 10 (solid symbols) shows for three different 0 
that xs/L increases with growing amplitude. The explana- 
tion is that the transition zone grows with A and goes over 
into a wider wave requiring a greater x and Xs respec- 
tively. The limit of the body's amplitude is found to be 

10 
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A 

[],. 13 = 60 ° 
[] 

• ~ Re 

o 

/x • [] 

A • 2 0 [ ]  

[] 

[] 

10 

• o Q-106 

5 

0 I 

0 10 A / r a m  20 

Fig. 10. The distance x s as function of the body amplitude A 
(filled symbols) obtained from plots of which Fig. 9 is an 
example. The open symbols give a(A) resulting from amplitude 
measurements like Fig. 12 

about its diameter (20 mm). Above that other waves come 
into the picture and the similarity system is distorted. 

A particular feature of the cross wave is that fluid 
velocity and phase velocity stand normal to each other 
(Lighthill 1978). The fluid moves parallel to x with no 
phase change while lines of constant phase (As = 0) move 
in negative y-direction as shown in Fig. 7. The phase 
velocity of the fringes is obtained from Eq. (24) when 
written in the form 

As/s = q~s (X) E 2 sin (co t - arctan (C2/$2)) (26) 

where 

E2 = ($22 + C2) 1/2 (27) 

is the envelope of the fringes, i.e. the maximum of As/s at 
any q and x. Implicit differentiation of the phase 
(co t-aretan(C2/S2)) using Eqs. (11, 12) gives the phase 
velocity as 

~ E2 
8 (co t) $2 $3 + C2 C3 (28) 

which turns out to be practically constant for the experi- 
mental range of r/. The distance-time relation appearing 
consequently as a straight line is compared in Fig. 11 with 
experimental results. Line and points represent zeros 
(As = 0) of the interference fringes which are precisely 
detectable. The predicted phase velocity is perfectly con- 
firmed. 

With Eq. (24) the theory predicts As to decay with 1/x 
along lines r/= const at fixed time. For experimental 
verification of this attenuation law we choose the maxi- 
mum of As at cot = 0 and along r/= 0. In Fig. 12 results for 
0 = 45 ° are displayed. The location of the points with 
respect to the body is determined like in Fig. 9. The 
curves correspond to Eq. (24). The free amplitude factor a 
is selected to allow for a best possible fit of curve and 
points. The four different sets of points correspond to dif- 
ferent body amplitudes A. We see that the deviation from 
the 1/x-law becomes evident with decreasing x and in- 
creasing A. In other words, the validity range of the linear 
theory is shifted away from the body with increasing A. 
The attenuation factor a being obviously dependent of A 
is plotted in Fig. 10 (open symbols) for three different 
angles 0. We find a to be roughly proportional to A for 
each 0. Among the angles 45 ° seems to be the most effi- 
cient for energy transfer from the body to the wave. 

After having shown where the wave propagates, how it 
moves in time and how its amplitude attenuates Fig. 13 
finally displays the development of a total experimental 
fringe over an entire period for one angle 0. The theoreti- 
cal fringes correspond to those of Fig. 7. We see that the 
coincidence of theoretical and experimental fringes is ex- 
cellent in the inner region of the wave, however, becomes 
worse towards the edge of the wave beam. Observations of 
successive periods show that these deviations do not 
repeat periodically. They rather fluctuate in an irregular 
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manner and seem to originate from weak reflections from 
the tank walls. 

5 Conclusion 

The schlieren interferometer with Wollaston prism is suc- 
cessfully applied.to a wave motion in an incompressible 
fluid. The basis for this application is the stratification 
density gradient which is already there when the fluid is 
at rest. When set into motion the fluid elements sustain 

their static density and by moving relative to each other 
they produce density disturbances in other than the 
vertical direction. The gradients of these disturbances are 
detected by the interferometer. It is shown that sufficient 
information can be obtained from the interferograms to 
determine the propagation of an inner wave in space and 
time including amplitudes. The shape of the fringe 
profiles suggests to reduce the information mainly from 
the zero points and maxima which are precisely detect- 
able. The displacement of the fringes is proportional to 
the density gradient of the disturbance which is analyti- 
cally derived from the theory of the investigated cross 
wave (Thomas & Stevenson 1972). The theory, consider- 
ing only small amplitudes, can in principle not provide the 
absolute amplitude and the relative position of body and 
wave in space and time. This requires interpolation giving 
rise to some experimental uncertainties. However, taking 
this into account the theory is extremely well supported by 
the experiments. The limit of the small amplitude ap- 
proximation appears clearly in the amplitude attenuation 
measurement. 

In conclusion, it can be said that the schlieren inter- 
ferometer with Wollaston prism is a highly effective 
method for visualization and quantitative measurement of 
inner gravity waves. The range of the static gradient is 
limited by light deflection. An extensiori of the method to 
other types of stratified flow is conceivable. 
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Announcements 

Third international symposium on applications of laser anemometry to fluid mechanics, 
July 7 - 9, 1986, Lisbon, Portugal 

The Symposium aims to present new results, of significance to 
fluid mechanics obtained by laser anemometry. It is intended that 
these results will improve present understanding of complex 
flows, both laminar and turbulent, and their implications for the 
solution of problems of fluid mechanics will be emphasised. Con- 
tributions to the theory and practice of laser anemometry will be 
presented where they facilitate new fluid-mechanic investigations. 

Approximately 12 formal sessions and panel discussions are 
planned. Contributed papers are welcome in the following areas: 
- jets, wakes and mixing regions, 
- boundary layer flows, 
- separated flows, 
- particle sizing, 
- reacting flows, 
- flows with imposed oscillations, 
- two phase flows, 

developments to optical and electronic instrumentation intend- 
ed to improve accuracy and range of measurements. 

Paper selection will be based upon a reviewed abstract of not less 
than 500 words which should be typed double spaced and state 
the purpose, results and conclusions of the work with supporting 
figures as appropriate. Five copies of the abstract should be 
submitted to: Professor D. F. G. DurSo, Dept. of Mechanical 
Engineering, Instituto Superior T6cnico, Avenida Rovisco Pais, 
1096 Lisbon, Portugal. 

Deadlines 

December 13, 1985 
February 28, 1986 
May 9, 1986 

Final date for receipt of abstracts 
Author informed concerning acceptance 
Final date for receipt of camera-ready manu- 
scripts 

All papers accepted for presentation will be incorporated in a 
Proceedings Volume which will be available at the time of the 
Symposium. It is intended that a bound volume subsequently be 
published and will contain a selection of extended papers. 


