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1. Introduct ion 

E. & F. COSSE~T (1909) developed a theory in which the mechanical inter- 
action between portions of a body  across a surface in it is considered to consist 
not only of forces distributed over the surface, but  also of distributed couples. 
TRUESD~LL & TOUPIN (t960) have reformulated and developed this theory in 
modern notation. In  a recent paper, TouPIN (t963) has derived constitutive 
equations for finite deformation in which it is assumed tha t  a strain-energy 
function exists for the material  which depends only on the first and second order 
deformation gradients. A similar constitutive equation was previously derived 
by  GRIOLI (t960). MINDLIN & TIERSTEN (t963) have linearised TOUPIN'S con- 
st i tutive equations and solved a number  of problems in the linear theory of 
elasticity with couple-stresses. 

In  the present paper,  we develop a theory of grea ter  generality. In this 
theory, we assume tha t  the force system acting on the body may  consist of dis- 
t r ibuted surface and body forces and surface and body force multipoles of various 
orders. The lat ter  are defined as force systems whose rate of working in an 
arbi t rary  deformation field is given by  an expression of the form F~li,...ip~ vi, il...i p 
where v~,~...~p is the /~tu gradient of velocity vi in a rectangular Cartesian co- 
ordinate system. F~_.O ~ is then a tensor describing the multipolar force, which 
is called a simple force multipole of the first kind*. The definitions of force 
and stress multipoles given here are effectively special cases of those used by  
rRUESDELL & TOUPIN (t960, w 292). 

* Previous work is concerned with the case when ~.. . ipi  is a skew symmetric 
-econd order tensor. 
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Although, in this paper, we discuss only simple force multipoles of the first 
kind, this discussion invites generalization to the case of compound force multiples 
of the first, second, third . . . .  kinds. A compound force multipole of the first 
kind may be defined as a force system for which the rate of working is given 
by an expression of the form Fi, i,...~p~P~6...~p, where P~...i# is a function of the 
velocity gradients of various orders. In order to define simple and compound 
force multipoles of a kind higher than the first we must define multipolar de- 
formation fields. These suggested further generalizations will be presented later*. 

Notation and definitions of kinematic qu~tit ies are given in Section 2. In 
Section ) we discuss the effect on these quantities of superposed rigid body 
motions. Multipolar body forces are defined in Section 4 and multipolar stress 
fields in Section 5. In Section 6 we postulate the equation of energy and the 
entropy production inequality. We then systematically apply to the energy 
equation invariance conditions which arise from consideration of superposed 
rigid body motions and deduce the classical equation of motion and an equation 
of vector moments. In the classical case in which no multipolar stresses and 
body forces are present but only the usual stress tensor and body forces, the 
equations of motion are usually derived from a separate postulate about the 
balance of linear momentum, and the symmetry of the stress tensor is derived 
from a postulate about balance of moment of momentum, An energy equation 
is then assumed in addition to the postulates of linear momentum and moment 
of momentum. The present work shows that these latter postulates can be 
derived from the equation of energy b y  making full use of invariance conditions 
under superposed rigid body motions**. 

In Section 7 a particular class of constitutive equations appropriate to gen- 
erMizedelasticity theory are considered, and a complete set o f  equations is 
derived from the energy balance equation and the entropy production inequality 
of Section6. An alternative form for these equations is given in Section 8. 
The results of Section 8 are expressed in a more general notation in Section 9, 
and conditions at the surface of the body are discussed when only stresses and 
multipolar stresses are present. In Section t0 we ex~-nine a more general class 
of constitutive equations involving a relation between multipolar stress tensors 
and kinematic gradients at time t of various orders, and we reduce these equa- 
tions to a canonical form with the help of invariance principles arising from 
consideration of superposed rigid-b0dY motions. 

In Section t t, we demonstrate by means of an example the manner in which, 
we can derive a system of force multipoles acting at a single point, which are 
energetically equivalent to a system of monopolar "forces acting at a number 
of different points. Finally, in Section t2 we give some consideration to the 
restrictions imposed on the form of the strain-energy function if the material 
is isotropic. 

* To be presented in a forthcoming paper in this Archive. 
** Since writing the above Professor W. NOLI~ has sent us a proof copy of a 

paper, written in t960 and to be published in the proceedings of "Colloque sur 
l'axiomatique", in which he obtains the classical equations of motion and moments 
for forces from other postulates, but his ideas do not appear to be the same as 
those used here. 
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2.  N o t a t i o n  

We refer t h e  motion of the continuum to a fixed system of rectangular 
Cartesian axes. The t~osition of a typical particle of the continuum at time 
is denoted by  x~(T) where 

Xi (T)=xI (XI ,  X , ,  X3, T) (-- o o < ~ t ) ,  (2.1) 

and X a is a reference position of the particle. We also use the notation 

x , =  x,(t) i (2.2) 

If this deformation is to be possible in a real material, then 

o,  [ ax,(~) 1 de. l - - ~ - - ~  ] > o. (2.3) 

For some purposes it is convenient to express xi(z ) in terms of the current 
position of the particle at time t so that  

x~ (T) = x~ (x x, Xa, xs, t, T), (2.4) 
and 

aot[ l>o 
Displacement gradients taken with respect to the position XA are denoted by  

~ai(T) (fl = I-, 2 . . . .  ), (2.6) Xi'Ax"'A# (~) -- OXAt ~XA . . . .  ~XA$ 

and we use the notation 
x~,ai...a$ = x~,a,...a, (0. (2.7) 

Displacement gradients taken with respect to the current .position x~ at time ~ are 

~ x l  (3) (1~ = t ,  2 . . . .  ). (2.8) x~'~J'"'b (~) - Ox~, Ox~,... Ox6, 
We observe t h a t  

x~,~, (0 = ~,,,  (2,9) 
x,, ~...,, (0 = 0 (~ > I), 

and that the gradients in (2.6) and (2.8) are symmetric with respect, to 
A I , A s . . . . .  A# and i x, i2 . . . . .  i# respectively. 

The components of veloci ty at the point x~(T) are denoted by  v! x) (~)-----vi(~) 
so that  

v!l)  ( T ) _  Dxi(r) v!X) ( t ) = v i ( l ) = v i ,  
Dlr ' 

where D/Dlr denotes differentiation with respect to ~ holding Xa fixed in (2.t), 
o r  xi(t ) and t fixed in (2.4). More generally, n ta velocity components may be 
defined as 

v!, ) (~) --  D" xi (~) v! ") (0 = v! -), ~o) (~) = xi (~). (2. I 0) 
D T s ' 

From (2.8) and (2.t0) we have 

' ~ " ~ ' " " ( ~ )  ~"!")(~) = ,,(') �9 ( . ) ,  (2 .~)  D T ~ ~ s, .I ... t~ Oxe, #x~,... ax 0 
23* 
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and we use the n o t a t i o n  
v!~)~...i# (~) = v!~)~...i# (2A2) 

for gradients of the n tb velocity components at time t with respect to coordi- 
nates at time t. Also 

vq ~ . 13~ vl0~ = o  ( /~> t ) .  (2A3) ,.~...,# ~ , = xi,~...i# (3), ,,~...,~ 

In view of (2.3), we may write xi, A (3) in the polar form 

x~. n (z) = R i ~  (3) MBa (x), (2.14) 

where MBa (3) is a positive definite Symmetric tensor and RiB (3) is a rotation 
tensor, so that  

RiB (3) Ri:l (3) ----- OjB, Ria (3) Ria (3) = tSii, det Ria (3) = t .  (2.t 5) 
Also 

RiB=RiB(t ) ,  MaS-----MAB (0. (2.t6) 

In general, throughout the paper, lower case Latin indices i, i t . . . .  are asso- 
ciated with coordinates x i(z) or x i and take  the values t,  2, 3: upper case Latin 
indices A, A t . . . .  are associated with coordinates X~t and take the values t ,  2, 3- 
The usual Cartesian summation convention is used. 

3. Superposed rigid-body motions  
W e  consider motions of the continuum which differ from those given by 

(2.1) only by superposed rigid-body motions, at different times. Thus 

�9 * ( 3 . ) -  4' (3*) + Q,i(3) [x; (3) - ~ (~)], (3.~) 

where ci(r ), c*('c*) are vector functions of 3 and z * = ( r + a )  respectively, a is 
an arbitrary constant and Qii(3) is a proper orthogonal tensor which depends 
on r. In Section 2 vectors and tensors are defined in terms of the motion (2.t) 
and we denote corresponding quantiti.es defined from (3A) by the same letter 
to which'we add an asterisk*. Then 

x*.~,...~, (3") = (?,. (3) x~ ~,...~, (3), (3.2) 
and 

a##&(~*) 

~,q ... o:,?, - q,,,,(3) q,,, q~,,.., ql, i, x..i,...~, 0:), (~.3.) 

where Qii = Qii (t). Hence 

E~',,l,a,...d, (z'*) = Ea ..,1, A,..:,,I, (3), (3.4") 
and 

E&,.....~, (3*) ---- (2~i Q,,i, "" Q,,/,.E~i,i,...i, (3) , (3.5) 
where . 

E A AtAz~I.A# (I~) =. X,,m,A.(T ) Xm, AzA,...4 $ (3), (3 "6) 
�9 E,,....i, (3) =.x,.A3) x,.~....~, (3). 

Equations (3.4) and (3:5) are valid for all values of z. In particular 

~ *  (3*)= q .  qj,F.,, (~) 
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and if we differentiate both sides of this equation p-times with respect to z 
(assuming that  the derivatives exist) and then put z * =  r =  t, we have 

A * ~ ) - - o  o A ~) ~J -- ~ ,  ~i, , , ,  (3.7) 

where A ~ ) = A ~  ) (t) are the Rivlin-Ericksen tensors given by 

D A!~ -1) 
y - . . , . _  m (3.8) 

with v~)~=~,i.  Similarly, by differentiating (3.5) /~-times with respect to z ,  
putting 7 * = z = t  and using (2At)--(2A3), we obtain the relation 

A*~%, Q,j0~;. o . .  AI~.). (3.9) 
= " " " "~$$Ip 7h ..4p ' 

where 

AI~) ' 2 (~  r v(~)' " (~ = 2, 3 . . . .  ). (3.t0) *h-. .*p : "  ~ ]  m,* m,~. . .*p  

The tensor A!~4.. .~p is completely symmetric with respect to the indices i 1, i 2 . . . . .  ip 
and is a natural generalization of the Rivlin-Ericksen tensors A!~). Taking 
Q~i=(~i we see, from (3.9), that  the tensors (3.i0) are unaltered by superposed 
rigid body velocities and angular velocities of all orders, the continuum occupy- 
ing instantaneously the same position at time t. Other tensors with the same 
property can be defined which are related to those in (3A0) and we mention 
one other group of such tensors below. We first observe, however, from (3.i0), 
that  

A(~.) . _--v(~'), ... �9 4- g'~ (~'~ vO,-~O v~),:,... 0 
*h, . .Le * h $# - -  ~a_~X~. ] ra,$ 

and hence, by  repeated application of this formula for/~ = t,  2 . . . .  and given fl, 
we have 

v~) . --AI~.) . ~ polynomial in v~)~ and A(~-) �9 (3.tt) $~$x...$ ~ - -  SSx...$~ ~ a , SSx...$p ~ 

I0r ~ = t ,  2 . . . . .  / z - - t ;  f l=2 ,  3 . . . . .  
We define Bih~,...ip{7 ) by the equation 

x~,~,4...O (z) = x~, i(7) Bib4... 0 (7) (fl = 2, 3 . . . .  ) (3.t2) 

and observe that  Bih...ip(0=0 (fl>2). The definition of B~...~(7) is unique 
dnce xi, i is non-singular. We differentiate (3.t2)/~-times with respect to z and 
~ut z----t to obtain the equation 

(3.t3) $,h...$~ ~ $,~ ~%...$~I "" 

~1 

chere B~!,..O denotes the value of the ~r B~4...~(7 ) at the time 
'=  t. In particular, 

B ~x-) - (3A4) ~Yi, ix. . . i~ ~ ~h. . ,$~" 

~xplicit expressions for the tensors B!~..I, , ,  for ~ = 2 ,  3,,  . . . .  which a re  sym- 
netric in the indices ix, i~ . . . . .  i a, can be obtained by repeated application of 
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(3.13). Also, f rom (3.3) and (3.t2), we have 

B?~... , ,  (3*) = Q , i  Qid, . . . Qi t i ,  Bih. . . i ,  (v), (3.15) 
and hence 

B* {~) ",.. .0 = Qii Qi, i, �9 �9 �9 Qip~., BI~I,,,...,, (~ = t,  2 . . . .  ) . (3.t6) 

A simple relation exists between the tensors AC,) and B (~-1 - Since " ~ i i t ; . . i p  t h . . . t $  " 

E,i,...ip (v) = E i i ( z  ) Bii, . . . i ,  (3) ( f l=2 ,  3 . . . .  ), (3.t7) 

we m a y  differentiate th is / , - t imes  with respect  t o ,  and then pu t  T = t, to obtain 
the r e l a t i o n  

Aq".~ - = X-'/~q A~".-"~ BI~.~ . (/~ = 2, 3 . . . .  ) (3.t 8) ,~...,p , ~ 1  ,, ,,,...,p 

To close this section we repeat  one known result which will be used later. 
F rom (3.t) we have 

~f'(~*) = ~ ?  (3*) + q , ; (~)  [~A~) - ~A~)] + ~ , , (T)  [x,*(~*) - ~,* (~*)] 0 . t 9 )  
where 

(),i (,) =~2~, (r) q , i (v ) ,  ~2~i(,) = - ~ 2 i , ( ,  ) . C}.20) 

F rom (3A9) we have 

av*(**)lOx*(r*) = O,, ( r ) ~ i , ( , )  Ov,(~)lOx,(,) + ~ , d ~ ) .  (3.2~) 

In  part icular  we can recover the result (%7) from this w h e n / , = t ,  where 

A i i = vl, i + vL i.  (3.22) 
In  addition, if 

co,; = v~, j - % ~, ( 3 . 23 )  
then  

o.,*. = (?~, (?i,a,,,  + 2Q~i.  (3.24) 

4. Multipolar body forces of the  first  kind* 
If F i is a vector  and v~ an a rb i t ra ry  veloci ty field, and if the scalar 

v~ (4.1) 

is a ra te  of work, per unit  mass, at  t ime t, then the vector  F~ is called the body  
force vector,  per uni t  mass. The  total  ra te  of work of a body  force 'F  i, per  uni t  
mass, dis t r ibuted throughout  a volume V of the cont inuum, is 

f ~ ~, v, dY ( 4 .2 )  
V 

where 0 is the dens i ty  (at t ime t). 

If  Fi,...~v~ is a tensor and t~,i,...i v an a rb i t ra ry  set of velocity gradients,  and 
if the  scalar 

F,,~..,, v~.~,...~ (4.3) 

:is a ra te  of work per unit .mass, then the tensor F~,...~,~ is called a s i m p l e  d i s t r ibu ted  
I 

* A possible motivation for the definitions presented here is given in Appendix t. 
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body ]orce 2"-pole o/ the ]irst kind, per unit mass. More briefly, it is a simple 
body ]orce 2"-pole o] the ]irst kind, per unit mass. We observe that  .F~...r,~ may  
be taken to be symmetric in the indices i t ,  i 2 . . . . .  i, without losstof generality, 
provided the order of differentiation in the velocity gradient is immaterial. 
When v =  r we may also call the force system a simple body ]orce dipole v] the 
[irst kind; when v =  2, a simple body ]orce quadripole o] the ]irst kind. For uni- 
formity, when v=O, we may call it a simple body ]orce monopole which is the 
same as a body force vector. Generically, we may call simple body force 2"- 
poles of the first kind: simple body ]orce multipoles of the ]irst kind. Throughout 
this paper we shall be restricted to the first kind of multipoles and for brevi ty 
the words "first kind" may frequently be omit ted.  

The total rate of work of a body force  2"-pole, per unit mass, distributed 
throughout a volume V, is 

f 0 F~...,,, v,,~...i, dV. (4.4) 
V 

5. Multipolar stresses of the first kind 

Consider a surface A whose unit normal at the point x i, in a specified direc- 
tion, is n i. If t i is a vector and if, for all arbi trary velocity fields v~, the scalar 

t, v~ (5.t): 

is a rate of work. per unit area of A, then the vector t~ is called the distributed 
force, per unit area. The total rate of work of this surface force over the whole 
Surface A is 

f t, v+ dA. (5.2) 
A 

If t~,.i.~,~ is a tensor and if, for all arbi trary velocity, gradients vi,~...~, the 
scalar 

t~...,,~ v~.~...~ (S.~) 

i s a  rate of work per unit area of A, t h e n  the tensor t~...~,~ is called a simple 
distributed r 2"-pole o/the/irst  kind, per unit area or, more briefly, 
a simple sur/ace/orce 2"-pole o/the ]irst kind, per unit area. The tensor t~...~ 
may  be taken to b e  completely symmetric in the indices i x . . . . .  i, without loss 
of generality. 

The total  rate of work o f a  surface force 2"-pole, over a surface A, is 

f t~...~i vi,~...~,dA . (5.4) 
A 

When v = O  we recover (5.2). 

The tensor t~,...~,~ at x i is associated.with a surface whose unit normal at  
the point is n i, so t h a t  if n i is altered the tensor is altered. When n i is a unit 
normal to the xFplane through the point we denote the corresponding tensor by  

~ . . . ~ .  (5.5) 

The se  are the components of a simple surface stress 2"-pole tensor of the first 
kind on an element of area at  the point, normal to the. xFaxis. In particular, 
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when v= O, we recover the usual Classical stress tensor o/i .  The r a t e  of wor,~ 
of the 2"-pole surface tensor (5.5) is 

~.~...~ v~,~...~, (5.6) 

per unit area of the surface normal  to the x/-axis. 

The first index/" is not necessarily a tensor index under change of axes, but  
indicates the surface on which the stress acts, the surface being fixed. 

6. The energy equations and entropy production inequality 
We consider an arbi t rary  material  volume V of the continuum bounded by  

a surface A at  t ime t. We assume tha t  simple body force 2~-poles (~ = 0, l . . . . .  v) 
of the first kind, pe r  unit  mass, act throughout V and tha t  Simple surface force 
2~-poles ( a = 0 ,  t . . . . .  v) of the first kind,' per unit area ,  act  across A. We also 
assume tha t  there is an internal energy function U per unit mass, an entropy 
function S, per unit mass, a h e a t  supply function* r per unit  mass and unit 
t ime (absorbed by  the material  and furnished by  radiation from the external  
world), a local temperature  T, which is assumed to be always positive, and a 
heat  flux vector** Qr where Q~ is the f lux  of heat  across a plane at  x~ per- 
pendicular to the xcaxSs, p e r  unit  area, per unit time. All these functions 
depend on X 1, X~, X 8, t. We postulate an energy balance in the form*** 

s  v, ,dv + :  s 
v v v # - o  �9 - (6.t) 

-.:hd.4 + f 
A A #=0 

where h is the heat  flux across the surface A, per unit area, whose unit out- 
ward normal is n~ and a dot denotes material  t ime derivative. We also postulate 
an entropy production inequality 

f Q dv - f dv + f dA o (6 2) 
v g A 

We now take the volume V in (6A) to be a te trahedral  element bounded 
b y  a plane with arbi t rary  unit  normal ni and b y  planes through the point x i 
parallel to the coordinate planes. I f  dA" is the area of the plane of the te t ra-  
hedron normal to n i, and  dA i is the element of area of the plane of the te t ra-  

, hedron no.rmal to the xi-axis; then 

dAi=nidA. . (6.3) 

�9 See COLEMAN & NOLL (t963). 
�9 * We restrict attention here to the usual heat flux vector although it may be 

possible to define multipolar heat flux tensors. 
�9 ** For completeness the kinetic energy should also contain a quadratic form 

in velocity gradients of all orders up to v, but this is omi~ed, in the present paper. 
The resulting inertia terms can, however, be included by replacing multipo!ar body 
forces by: multipolar body forces minus the appropriate multipolar inertia terms. 
This will be assumed throughout the paper even when it is not stated explicitly. 
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If we apply equation (6.t) to the tetrahedron and let the tetrahedron shrink 
to zero while preserving the orientation of its faces, we obtain the equation 

( t s - - n i a i s ) v ~ +  ~ . ( t~ , . . .Os - -n ia jh . . . sps )v~ ,h . . . o - -h -kn iQs=O,  (6.4) 
0=X 

if we use (6.3) and assume that  the contributions from the. volume integrals 
tend to zero more rapidly than those from the surface integrals. 

Equation (6.4) is valid for all velocity distributions. We assume that  the 
multipolar stress tensors t~...spi, ais,...sps, the heat flux h, and the hea t  flux 
vector Qs are unaltered by constant superposed rigid body velocities*. If we 
use equation (6.4) with v s replaced by  v s + a s, where as is an arbitrary constant 
velocity vector, we have 

(t~ - -  n i a i s) ,(vs + as) + ~ (t~... 0 ~ - -  ni  ~/~--. st s) vs, ~... 0 -- h + n s Qs = 0. (6.5) 

Hence 
( ts--n~o~s)as'; 'O 

for all arbitrary as, and since t s - - n i a i s  is independent of a s, 

and (6.4) reduces to 
ts = n i a i s, (6.6) 

p • = "  x(t~...!p s -- ni ai~... 0 s) vs, ~...O -- h + n s Qs = o. (6.7) 

With the help of (3.8), (3A0), (3.22) and (3.23), equation (6.7) becomes 

n i a i~)  (as~ + wss,) + ~ ( t ~ . . .  0 s - -  n i  ai~.., st s) Ash... st -- h + n~ Qs = o. (6.8) �89 

We next assume tha t  t~...sts, ai~...sps, )~ and Qs are unaltered by superposed 
uniform rigid body angular �9 the continuum occupying'the same posi- 
tion at time i. Under these conditions we see, from Section 3, fhat  Asi~...st a r e  
tmaltered but  that  oJs~ becomes o ~  where, from (3.24), 

o~'~=ws~ + 292s~ (6.9) 

when Qsi=6si.  Hence, from (6.8) we deduce that  

(6,s - n ia j~3  Q . ,  = 0 

for al l  arbitrary anti-symmetric tensors Ds~, so that  

6 ~ -  t~s-- nj(~js~- ai~s) = o, (6.to) 

s.;nce this expression is independent o f / 2 . .  Also, equation (6.8) reduces to 

~(t~s-njaj~s)&~ + Y.(t~, s,s-niaj~...s,3as~...~,-h+nsQs=O. (6.tl) 
~ 2  "". . 

* The independent thermodynamic variable, which can be taken to be either 
S or T, is assumed to be unchanged. 
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I t  appears to be impossible to make any further deductions from (6.it) 
until, constitutive equations have been obtained for the multipolar stresses and 
the heat conduction vector. 

We return to the energy equation (6A) and use equation (6.4), tO obtain 

f (ov,~,+O(J)dV= e r +  F~,...,,,v,.,,...~, d V - - f n ,  q ,dA+ 
v A 

+ f nj v,.,...,, aA 
A #=0 

for all arbitrary volumes V. By transforming the surface integrals to volume 
integrals in the usual way and making appropriate smoothness assumptions, 
we obtain the equation* 

(Ciii, i ~- e Fi - -  e v  i) Vi ~- e f ~ Qi, i - O ( f  -~- (~ji|i,i ~ o Fi, i - ~  olti) Vi, lt'~- 

+ E' (aii,...i,i.i + aOi,...i,_li -F ~ .Fi,...Oi) vi, i,i..i, + (6.12) 
#=2 

"~- (Yiv:xia...ivi Vl, ia...iv~,+t = O. 

We recall that  aii,...ip~ (and t~...i~i) are completely symmetric with respect to 
the indices i t . . . . .  i# (p=2 ,  3 . . . .  ), but  not necessarily with respect to the index j. 

In addition to the invariance restrictions already imposed on tl,...~#i, aii~...ini, 
h and Qi when the motion is altered by superposed uniform rigid body velocities 
and angular velocities, the continuum occupying instantaneously the same posi-  

tion at time t, we assume that  U is unaltered by such rigid body motions and 
tha t  the body forces F/, Fi, i . . . . . .  and hea t supp ly  function r are unaltered by 
superposed uni/orm rigid body velocities. We observe that  ~ is unaltered by 
such velocities so that  by considering equation (6A2) for *all velocities v~+a i, 
where ai is an arbi t rary constant, we see that  

o i~ , i+e  F~=0 ~,, (6A3) 

the classical equation of motion. Also, equation (6A2) reduces to 

r - q~, ~ - ~ 0 + �89 (~i~,i + ~ F~,~ + ~,~) (A~ + oJ,~) + 
P 

+ ~' (aii,...O~,i ~ ai#i,,..~#_,~ + O.F~...,#~) A~... 0 + (6A4) 
#=S 

+ ai,+t!~...i4iAii~...~,i,+ t = O. : 

If we make the additional assumption that  r and the multipolar body forces 
F/,...O~ (/~ = 2, 3, --.-, ~) are unaltered by superposed uniform rigid body angular 
velocities, the body occupying the same position at  time t, then we see that** 

* The prime in ~ '  denotes that the termsunder the summation sign are omitted 
when v---- t. 

** This is the classical vector moment equation. When dipolar stresses and 
body forces are absent we recover the usual result that a~/a is symmetric. When multi.  
polar inertia terms are included then we assume that  multipolar body forces minus the 
appropriate inertia terms are unaltered by superposed uniform rigid body angular 
velocities. 
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ai, , ,  i + a , ,  + 0 F , ,  = aj~,~,~ + a ~  + ~ ~ i ,  (6.t 5) 
and 

0 r -- Q~, ~ -- 0 0 + a~,+,i,...~ A,,.. .i~+, + [ (aii,~,i + ~ F~i + ai,~) A , ,  + 
�9 (6.t6) 

+ 

I t  appears that  information about the constitutive equations for stresses, 
the heat conduction vector and internal energy is required before any further 
deductions can be made from equation (6A6). A case of some interest arises 
when these quantities do not depend on velocity gradients Of any order and 
this will be discussed in more detail in Section 7. In general, constitutive equa- 
tions must be postulated for t~....~, h, ei~...Oi, Q~ a n d U  and then (6A0), (6.1t), 
(6A5) and (6A6) provide restrictions to be imposed on these equations. 

7. Generalized elasticity 

Here we suppose that  xl and S are specified functions'of X I ,  X2~ X s and t 
and we define a generalized elastic material as one for which the following 
constitutive equations hold at each material point X i and for all time t: 

U =  U(S,  Xi, A,, Xi, a,a, ,  . . . .  Xi, a,a,...A~), (7.t) 

ai~,...~p~ =aii,...~p~(S, xl, a,, x,,a,~,, . . . .  x~,a,a,...a,), (7.2) 

ti,...~p~ = ti,...o~(S, n i, xi, a,, xi, a,a, ,  . . . .  x~,a,a,...a~), (7-3) 

T = T(S ,  xi, a,, x~,A,,4,, . . . .  x~,alA,...a~), (7.4) 

Qi = Qi( S, xi.at, xi, Ata,, . . . .  Xi, n~a~,...n~,, T,i  I , T, iil, , . . . .  T i, i,...G), (7.5) 

h = h (S, x,,a,,  x,.ala,, . . . .  x , ,A ,a , . . .a , , .T , , ,  T , , , , ,  . . . .  T , , , , . . . , , ,  hi) ,  (7.6) 

where f l=0 ,  1 . . . . .  v and/~>__v+ t, and all functions are assumed to be single- 
valued and sufficiently smooth*. 

For a given deformation, the rate of deformation tensors A ~ ,  A~d,, ..... A~,...~ 
in (6At) may be chosen arbitrarily and independently Of each other so that  
(repeating equation (6.6) for completeness) 

ti = n i ai~, (7.7) 
ti,...ipi = n i aii,...@~, 

and 
h=n~O~.  (7.8) 

Equation (6AO) is now satisfied automatically. 

From (7.7) we see that  ai~...O ~ transforms as a tensor with respect to all 
indices, including /', under changes of rectangular Cartesian axes, where the 
multipolar stresses in each coordinate system are assocmted with the three 
coordinate planes in that  system. 

* The multipolar stresses may also depend on the multipolar body forc~ F~...ip i 
(fl---- t ..... ~). See the footnote on p. 349 for an improved form of constitutive assumptions. 
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Using (7.8) in equation (6.2), transforming the surface integral to a volume 
integral, and making the usual smoothness assumptions, we have 

-y -+  , ~ o  
or 

Q~ 0r O,,i OiT~ 
- -  -T- "~- T - -  T* ~ 0 ( 7 . 9 )  

since (6.2) applies for all arbitrary volumes V in the continuum. 

Substituting for r from (6.16) into (7.9) and recalling that  .T> 0 we obtain 
the inequality 

1 
(T ~ -- r)) -- ~ + ~,+1~...~,~A~...~,+1+ h- (~i~,i + q F~ + ~ )  A~ + 

(7.~o) 
r + Y (~.~...~,,.j + %~...~p_,~ + ~ ~...~p ,) A~...~ > o. 

p=2 

Before making further deductions from this equation, it is convenient to 
make use of the invariance property of U under superposed rigid body rotations. 
Using the notation of Section 3 the function U satisfies the condition 

U(S, x~.A., x~,~,...~,) = U(& ~*~, :~i.A,..,~,)* 

where fl takes the values 2, 3 ,  . . . .  #. In view of (3.2) this equation becomes 

U(S, x~,,~,, x~,a,...,~) = U(S, Qi] x~,.~,, Q~I x],,~,....~t), (7.it) 

for all proper orthogonal values of Qo" I t  follows directly, as a special case 
of a result obtained by  Pn'xIS & RIVLIS (t959), that  U must be expressible 
as a single-valued function of S and E~, . . . a t  ( f l= t  . . . . .  #), thus: 

U =  U( S, EaA,, . . . .  E ~ .... ,~,,). (7.t2) 

Alternatively, the Schrnidt orthogonalization procedure may  be used to obtain 
(7A2) from (7A t) in a manner analogous to that  employed in a different context 
by  PiPm~ & RIv~.m (196t). We shall sketch here another procedure for ob- 
taining (7.t2) whicl~ is simila~r to that  used by  NOLL (t955) in another connection. 

Since we are concerned with the value of U at a particular particle X~ we 
may take the special value RiA for Qai in (7At), so that  

U = U(S, MaA,, RiA xi, a,...a,) . (7.t~) 

= U (S, Maa,, M ~  xi,, ~ xi,,~,...aa), 

since M~B is non-singular. We recall * the definitions (3.6) for E~a,.. .~ (fl-~ t, 2 ...) 
and observe that 

EAB=Maa,MA,~. (7.14) 

Since MaB is a positive definite symmetric tensor satisfying (7A4), a single- 
valued function of Ma~ can be replaced.by a single-valued function of Ea~, 
so that  (7A3) can be replaced by  the different form (7A2). We can verify that  
this satisfies the condition (7A l) for arbitrary proper orthogonal values of 0i~'. 

�9 E~ ~ is symmetric in A, B and Eaa,... a,  is completely symmetric in Ax, A ~, . . . ,  A~. 
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In order to illustrate the use of equation (7.t0) we consider, for simplicity, 
�9 the case when only monopolar and dipolar stresses and body forces are present. 

The general case follows in a similar manner apart from extra algebraic com- 
plexity. Equation (7A0) reduces to 

o ( r ~ - / 0  Q , r ,  t T + ~ ( % ' h l ,  i + O F ~ i + o ~ i ) h i h + o i ,  l, i hu ,  i ,>O,  (7.t5) 

where 
0 ~v �9 0V L ~ +  0v LA.A,+ 

= ~ g  S + ~ _ 0Saa, a ~  
OU (7.t6) 

+ " "  + OEAA,... A. /~AAI... A. ~ > 2). 

To avoid ambiguity we assume that  U in (7.t6) i s  arranged as a symmetric 
function of EAa, and a symmetric function of Eaa,...ap ( f l=2 . . . . .  #) as far 
as the indices A t . . . . .  A 0 are concerned. From Section 3 we have 

EaB=A~i  xi, A XLB, (7.t7) 

Eaa la ,=  �89 Ai i (x i ,  A Xi, AIA, + xi, a xi, a,A,) + A~i~i.xi, a x~,a, xi,,a,, (7.t8) 

so that, with the help O f (7.t6), the inequality (7.t5) becomes 

t [ oU 
+ -ff ~ri~'~'i+OF~i+~ri' i--O(~i'ax~A'a'+xh'Axi'a'A') OEaa, A. 

(2.t9) OU l 
--  2~ xi, A xi,,B O--O-E~aB ] Ai~ --  

OU 
OU - F-'Aa,A,A, --  . . . .  ~ OE,4&...aj, Eaa'""~, ~- O. 

Q O E A A t A t A  * 

For a giver~ deformation and entropy, at  a particular time, this inequality 

must be satisfied for all arbitrarily* assigned values of S and velocity gradiefits 

Ai~ ,Ai~ i , ,  . . . .  Ai~...~,,. Now EaA~...A, ( # > 3 )  can be expressed in terms of 

Ai~...i p ( f l = # , # - - t  . . . .  ), We choose S, A ~  . . . . .  Aiit...G_ t to be zero so that  
(7.t9) becomes 

Qi T ~ OU 
T '  O OEa&...,l~, xl, axi~ '&'"xG,  a~'Aii~'"i~,>O 

for all arbitrary values of A,~...~,, positive or negative. In general this will 
only be possible if 

OU 
O E A & . . . A I ,  Xi, a Xi~,& . . .  Xi~,,Aj, = 0 

or, since xi, A is non-singular, 
OU 

= O. t7.2o) OEAA~ ... A~ 

Subject to symmetries m the radices which are already taken into account by 

the manner in which U has been symme~ized. We ~n choose S independently of 
the velocity gradients and then r, the heat supply, is determined from (6.t6). 
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Hence U is completely independent of Eaa,...A,. Similarly, we can show that  
U is independent of EaAI...A,=,, . . . .  EaA, a,A,. Equation (7.t9) then reduces to 

9 ( T -  y$-)OU "s -- Q'TT + (at,,,, __ 9 x,,a x~,,~ x,,,,~, OEa,4:.4, ) A,~i, 

)EA-~ ~, (7.2t) 

OU -- 2~ xi, a x~,,~ ~ ]  A , , , ~  0 

for all arbitrary values of S, A , , ,  A,,~,, at a given deformation and entropy, 
at a particular time, where now 

U =  U(Ea~, E.~A,A,, S). (7.22) 

Following an  argument similar to that  used aboge we see tha t*  

T - v  OU (7.2)) 
OS ' 

OU (7.24) a(~)i = p Xi, a X~,& xi,,A ' OEAA,~,'" - 

OU 

(7.2S) 
OU 

+ 2qxi,  a ~,,~ ~E,~. ' 

and 
-- Q, T ~ ~ 0, (7.26) 

where at/,i,) i is the part of a/,;,i symmetric with respect to i 1, i , .  Moreover, 
if we substitute the results (7.22)--(7.26) into (6 . t6) for  the case when only 
monopolar and dipolar stresses and body forces are present, we have 

.q r -- Q,,, -- ~ r S = O. (7.27) 

We observe that  equation (6.15) is now satisfied identically by (7.25). 

From (7.24) we see that  only the symmetric part a(~,i,)i of a;,~i is given in 
terms of the internal energy function U, while the skew symmetric part a[i,~]i 
is undetermined. I f  the body force F~i is specified then  equation (7.25) shows 
that  the stress a/,i is 'undetermined to the extent of an additive stress --a[//.]i,i" 

Since (7.28) (~ffil]i~iil ~--0 

it follows that  the stress --a[/~,]~;i makes no contribution to the equations of 
motion (6.13), Moreover, the rate of working of the stress --aft/d/, / and the 
dipolar stress a[~,i,]~ over any closed surface A inside the' body, or over the 
complete boundary of the body, is 

f (--  nk afik] i, i vl + nk a[k j] i vi, i) dA 
a _fn~(a[ki]~v~),idA=f(a[ki]~v)),ikdV=.O" (7.29) 

A V 

* The multipolax body forces F/,i... axe assumed to be given a t  time t. The 
arbitrary choice of velocity gradients of all orders at .the particle x i is possible if 
the body force F~ is chosen suitably throughou~ the ),olume. 
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In deriving the equations of the present section from the equations of energy 
and entropy balance, we made assumptions (7A)--(7.6). When we confine at- 
tention to stress and dipolar stress we see, from (7A9), that  it is only necessary 
to assume* that  a(i,~}~ and a ~  + 0 F~,~ + ai~, i depend on the functions displayed 
in (7.2). I t  follows that  the undetermined part  av, id ~ of the dipolar stress may  
be regarded as an arbitrary function of position and time, with a corresponding 
contribution --at/~d ~,i in the stress ai,~, We shall see in Section 9 that  the surface 
values of this system of stresses and dipolar stresses play an important  role 
in determining correct boundary conditions. 

Formulae for the general case when multipolar surface forces and body 
force s up to order 2' are present may  be found by  a similar process. I t  is, how- 
ever, somewhat more convenient to obtain such results in a different notation, 
and details of this are given in Section 8. 

For some purposes it is useful to express stresses in terms of the Helmholtz 
free energy function 

A = U - -  r s ,  (7.30) 

where, with the help of (7.23), S is expressed as a function of T and E az ,  EaA, a,, 
and A is also expressed as a function of these same quantities, so that  

A = a ( E a n ,  Eaa, A,, T ) .  (7.31) 

From (7.23), (7.30) and (7.3t) we then have 

S = -  a__A_A (7.32) 
OT" 

Also, (7.24) and (7.25) become 
O.4 

a(id,)i --~ e xi, a xi,.al xit, a, 0Eaala, ' (7.33) 

aA ~A (7-34) 
---- O(xi, a xi~'a'a' + xi"a xi'a"4") OEaa,.4-------~ + 2Oxi, a -'q,,B OEaB " 

8. EI~sticity: Alternative form 
In this section we give an alternative formulation for the theory of gen- 

eralized elasticity discussed in Section 7, which is more convenient when multipolar 
stresses of order greater than 2 are present. As in Section 6 we consider an arbitrary 
material volume V in the continuum bounded by  a surface A a t t i m e  t, and 
we suppose that  V 0 is the corresponding volume in the initial undeformed state 
of the continuum, bounded by a surface A o. Let  the outward unit normal 
at A o be.n A , referred to our fixed rectangular frame of reference. We now define 
a force vector Pi, associated with the surface A but  measured per unit area 
of the surface A0, in a manner similar to that  used in Section 5 in defining t~, so 
that  the rate of work of this surface stless, per unit area of A o, is 

p~ v~ (8.t) 

and the total rate of work of this stress over the whole surface A is 

f p~ vi dA o. (8.2) 
A, 

* See  a l so  S e c t i o n  t0.  
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Similarly ib~,...A~i is a distributed surface force 2'-pole of the first kind, as- 
sociated with the surface A but measured per unit area of A 0, if P&...a,i is a 
tensor such that  

P~,...~,i v~,A,...a~ (8.3) 

is the rate of work of the multipole*, per unit area of Ao, ~ and 

f px,...a,r dA o (8.4) 
A, 

is the total rate of work of the multipole over the surface A. In (8.3) and (8.4) 

a'vi (8.5) ~)i, Ax. . .A, , , -  ~ X A t . . .  a g A v  " 

The surface force multipole Pa,...avi is associated with a surface A but  meas- 
ured per unit area of A 0 whose unit normal is n a . When n B is a unit normal 
at X a to the XB-plane through this point we denote the corresponding stress 
multipole b y  

~BA,...A,~. (8.6) 

This is a stress multipole associated with an element of area at the point x i 
in V whose original position in V 0 was perpendicular to the XB-axis, and meas- 
ured per unit area of this surface in V 0. The rate of work of such a stress multi- 
pole is 

~eB&...av~ vi,&...a, , " (8.7) 

per unit area of surface in Vo, normal to the Xn-axis.  

Body force F~ per unit mass may be defined as in Section 4 and the total 
rate of work of Fi throughout the volume V can be put  in the alternative form 

f qoF i  v~ dVo (8.8) 
v, 

where ~o is the density of the initial volume Vo. Similarly, multipolar body 
forces ~,...a~r per unit mass, may  be defined so that  their rate of work is 

Fa,...a,~ v~,~,..A. (8.9) 

per unit mass, for all arbitrary vr and total  rate of work throughout V is 

f eo Fa, . .a. ,  v,,al...a.dVo. (8.t0) 
v. 

The energy equation (6.t) i s  now replaced by  

f OoV, i:,dVo + S ~o udvo = f [Oo r + ~okFA...&,,v,.a...a#]dVe--ShodAo + 
r r r #=o r (8.!0 

+ f Y,, PA,...a,~ vi,.4,...a, dAo, 
Ao p~O 

* p&...a,i is completely symmetric with respect to the indices A t, A t , . . . ,  A , .  
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where h o is the flux of heat across the surface A, measured per unit area of A 0. 
The entropy production inequality (6.2) becomes 

f,oSd o--f f aAo > o. (8.t2) 
V, V,. A, 

W e  also assume that  the heat flux vector in the volume V is qa such that  the 
flux of heat across a surface in V, whose original l~osition in V 0 is perpendicular 
to the Xa-axis, is qa measured per unit area of the surface in fr o. 

We now take a volume V which is such that  in V 0 it was a tetrahedral element 
bounded by a plane with arl~itrary unit normal n a , and by planes through the 
point X a parallel to the coordinate planes. Then, with an argument similar 
to that  used in obtaining (6.4), we have 

(P, - na nA 3 vi + Y, (Pa~...ap, " n B  nBa,...ap~) v~,A,...ap - h0 + na qa = 0. (8.13) 
#=l  

We restrict further attention* only to the generalized elastic case in which 

#a. . . .ap,  = Pa~...Api(S, riB, xi, a , ,  . . . .  xl, a l . . . a , ) ,  (8.t4) 

nBal...a,, = nBa,...ap~(S, x~,a,, . . . .  z~,al...a,), (8.15) 

qa = q a  (S, . . . .  T a , ,  . . . ,  Ta , . . . a , ) ,  (8.16) 

h e = h o ( S ,  xi ,  a ,, . . . .  xi, a,...a ~ , T a ̀  , . . . .  T , a , . . . a , ,  nB), (8 .17)  

in addition to assumption (7.1) for U. Since (8113) i s ' then  true for all v~, 
v~,a,, . . . .  vi, A,...ap, which can be chosen arbitrarily and independently of each 
other subject to symmetries in Ax, . . . ,  Ap, at a given state of deformation at 
time t, we have 

Pl =nB ~B~, 

#al...Ap, =nB ~Ba,...A~i, (8.t8) 

ho=naqa .  

With the help of (8.t8), equations (8.11) and (8.12), applied to a n  arbitrary 
volume Vo, yield 

(~B i. ~, + #o Fi  - -  #o 01) v, + #o r -  qA,A -- #o U + 

+ (:~nA.~. B + #o FA., + ~.4.,) vi.,4. + 
(8.19) 

#=it 

~-  ~rEA,+tAt...A~,i 7)i, At...Av+ t = 0 ,  

* Most  of the  resul ts  in t he  res t  of this  sect ion are not,  in general,  va l id  for ot~xer 
kinds of  cons t i tu t ive  equat ions .  Assumpt ions  (8.14) and  (8.15) could be replaced 
by  the  assumpt ions  t h a t  the  mul t ipo le  stresses do no t  depend  expl ic i t ly  on ve loc i ty  
gradients  of  al l  orders up  to  v. See also Sect ion  10. 
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and 

qA,A qA T a > 0. (8.20) 
+ r - T ,  - -  

If we combine (8.t9) and (8.20) and use the assumption (7.t) about the form 
of U, we obtain the inequality 

r "F'(~e~.~+5o~--5o~)v~+ 
~U + 

"' 7t 8U ")1-Z ( BAt...A#i,B'4- 7~A#A*...AJI--ai'4- 501;'A*...APi-- 50 @Xi, At...A# ] Vi'A*'"AJI "31- (8.2t) 
oU 

+ (:~A,+~A,...A,!-- 50 OX,,~--~...,~,,+ ")V,,.'l,...a,+, - 

oU OU 
5o Ox~,.4,...a~+, v~,~,...a,,+,.. .  - -  5o ax~,A,_...~,, vi 'a'""4" > O. 

For a given state of deformation and, entropy at time t this inequality must 

be valid for all values of S, v~, vi, A,, . . . .  vi, A,,..~ which can  be chosen arbi- 
trarily and independently (r then being determined from (8.t9)). I t  follows 
that  U in (7.t) reduces to 

U: U(S, xi, A,, . . . .  X~,A,...Av+,), (8.22) 

and hence by the discussion of Section 7 it can be further reduced to the (different) 
form 

v = v ( s ,  E ~ , ,  E ~ , A . ,  . . . .  E A , 4 , . . . , 4 , + , )  �9 (8.23) 

The classical equation of motion 

;r ~,~ + 5o~ = 5o "3~ (8.24) 

follows from (8.19) by the same argument as that used in obtaining (6.13) from 
(6.12). Also, from (8.21), we have 

T-- oU 
o s  ' (8.25) 

OU (8.26) 
=A,~+ 5o F,4,~ + =~A,~,a = 5o Ox~,a, ' 

OU (8.27) 7g(AsA,)'i -~ 50 l~A,Asi -~ 7r AtAsi, B = 50 aXi. A, As ' 

au (8.28) =(a,,.a,...aV-,)~ + 5o F,4,...A~ ,4- OZB ,4,...a~, B = 5o 0x~,,4,....4~ ' 

a u  (8.29) ~(Av+,A,...Av)i ~ 50 OXi, A,...Av+, ' 

' '--- qa T, a a O ,  (8.30) 

where ~(~+,a,...~)~ (fl= t,  2 . . . . .  ~) isthe completely symmetric part of ~ + , ~ , . . . ~  ~, 
the multipolar :stress already being symmetric in the indices A x . . . .  , Ap. With 
the help of (8.24)'(8.29), equation'(8.tg) reduces to 

5or . q ~ . A  - -  5o T S = O .  (8.3t) 
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The classical equation of moments which corresponds to (6.i5) has not been 
written down explicitly in the present notation. It can, however, be shown 
that such an equation is satisfied identically by the expressions (8.26)--(8.29) 
in view of the form (8.23) for U. 

When ~----t, so that only stresses and dipolar stresses are present, we have 

0U 
o*~.~,a~)~ = ~o o,~. A.A,' (8 .32)  

oU 
z~a,~ = - -  ~ [ ~ , ] ~ , ~  - -  ~ , ) ~ , ~  - -  qo F~,~ - -  0o O.~,~. ' (8 .33)  

where ~[SA,] is the undetermined anti-symmetric part of n s ~ .  These results 
are equivalent to those obtained in Section 7 and will not be discussed further 
here. In order to interpret the formulae (8.26)--(8.29) when ~ t  we consider 
in more detail the case v=  2. 

When ~ 2 we have 

OV (8.34) 

where ~(~,~,A,)i is the completely symmetric part of n~,A,~,~. We shall now 
write this latter quantity as ~A,(~,~,)i to emphasize that it is symmetric in the 
indices A x, A,, and we have 

=B~A,~,)~ = =I~A,~,)~ + ~ {2  ~a,A, )~--~*,~*, )~--~A,~A,)~} .  (8.35) 

The completely symmetric part ~(sA,,4,)~ of the multipolar stress 0~B(A,,4,)~ is 
given in terms of U by (8.34) but the part in brackets { } in (8.35) is undeter- 
mined. Next, from (8.27), we have 

~r3 (8.36) ~rg(A,A1)~ = - -  ~0 FA, A,i - -  O'gBA,A,i,B - -  ~0 ~X,i,A,A ' �9 

Since 
~A,A. ~ = ~A,.4,) ~ d- ~CA,A,I ~ (8.37) 

we see, from (8.36) and (8.37), that if the multipolar body force F~,~,i is pre- 
scribed then s~j~A, ~ is given in terms of this and the internal energy U, apart 
from an undetermined additive multipolar stress 

(8.38) 

The stress xA,i is then given by (8.26) in terms of multipolar body forces and 
the internal energT U apart from an undetermined additive stress 

- ZCEc.~,l~,c + �89  - z~.4,cBc)~ - ~CCBA, )~ } ,~C .  (8 .39)  

The undetermined additive stress (8.39) makes no contribution to the equa- 
tions of motion (8.24). Also, the rate of work of the undetermined parts of 
the stress and multipolax stresses over any closed surface inside the body, or 
over the complete boundary of the body, is zero. The actual values of these 
stresses on the surface of the body play an important part in determining correct 
boundary conditions. 

24* 
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Apart from extra algebraic complexity the general case in which we have 
multipolar stresses of all orde/'s up to 2" yields similar results. The multipolar 
stresses are given in terms of the internal energy U and multipolar body forces, 
apart from undetermined multipolar stresses which make no contribution to 
the rate of work over any closed surface in the body, or over the complete 
boundary of the body. The surface values of these undetermined multipolar 
stresses contribute to the surface conditions. 

In the next section we examine the question of surface conditions for the 
case when only stresses and dipolar stresses are present. An examination of 
the general case will follow similar lines but will be considered later., 

9. BOundary conditions 

Before considering boundary conditions it is convenient to put the results 
of the previous section in a more general notation. Let points of the inffial 
body be defined by a general curvilinear system of coordinates ,9 a. At each 
point in the initial body we then have base vectors ga and ga with correspond- 
ing metric tensors gaB, gab such that 

g~" g,---- ga,. ga .gn gae, ga, g, = ~a. (9.t) 

The displacement and velocity vectors u, ~ of a point ~ of the body may then 
be expressed in the forms 

u = u A ~  = u A  gA; . = t~ = r A g  A = v a  gA. (9.2) 

Since coordina4~s xl of points in the deformed body are functions of Xa, t 
we may also regard them as functions of 0 A, t, and #a = constant also form 
surfaces in the deformed body. Associated with a surface A we may define 
contravariant components" of surface force and multipolar surface force px, pa,...a# 
(fl = l,. 2, . . . ,  v) which are such that their rate of work per unit area of a surface 
A 0 in the initial body, whose unit normal is o n ,  is 

p~ vK, l:'"':'x ,:~,iA,...A,, (9.3) 

respectively, per unit area of A 0. In (9.3) vxl,4,...a# denotes covariant differentia- 
tion with respect to O ~ using Christoffel symbols obtained from the metric 
tensor gAB. ~ince the space is Euclidean the order of covariant differentiation 
is immaterial and pA,...a# i will therefore be completely symmetri c in the indices 
A t . . . . .  A#. We shall alsoput 

on = n~ gA = nA 9 a . (9.4) 

When on is a unit normal to a.OB-surface in the initial body we denote thel 
corresponding contravariant components of the stress multipole by 

~rna,.-.a, K, .(9.5) 

acting on the ~-surface in the deformed body. If we have an elastic body 
then equation~ (8A8); in the ,present more general notation, give 

p~ = nn a nK, (9.6) 
pa,...a, x. = nn n nA''''a' K- 
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I f  F A''''a#~: are contravariant  components of body force per unit mass their 
rate of .work is 

F At ' ' 'A#K VKI&...A a �9 (9.7) 

The function U in (8.23) can be expressed as a different function 

where 

/ �9 OXB~ 
U =  U kS, ~AB, YAAtAt, . . . .  YAAx...Av+t' t~,l ], 

for f l = 2  . . . . .  v + t .  

t OX c OX D (EcD__f~CD)  
~ a B =  2 O0 a OOB 

_ t [Ox, Ox, OX D OXD] 
2 O0 a O0 B O0 a O0 B " 

(9.8) 

(9.9) 

OX B OX B, oxB# 
~AA,...A# ~ ~ 0  A OOAt O~gd # E B B t . . B p ,  (9.t0) 

Formulae (8.26)--(8.29) are now replaced by  

ou (9.tt)  Ov4'K + qo F a ' r  + ~ a ' r [ B  = Oo 0urta, ' 

0U (9.t2) ~rta,a,)K + Oofa, A,K + ~a,a,KIB = qo ouKta,a, ' 

~u 
~Z(av&'"a*-l)S + 00 Fa ' ' ' ' av i  + YL'BAt'"AvKJB = O00UKM,...A, , (9.13) 

0U . (9.14) ~(Av+tAx...Av)K = O~ 0 ~K[AI...Av+x 

We restrict our at tention here to an examination of surface conditions when 
only monopolar and dipolar surface forces are present, so tha t  

where 

~ , K  = _ nraa,]K[B + / a , K ,  

~ ,A,K = ~[A,A,]K + vr(a,a,)K, (9.t5) 

oU 
s~(a'a'IK = 0o 0uK,A.A, ' (9.16) 

ou  (9.t7) /a,K = _ qOFA, K _ ~BA,)K[B + qo aUK,A, " 

The  dipolar stress ~(A,A,)K is given in terms of U and p4,K is given in terms of 
U and F A,K. 

We suppose tha t  the initial body is bounded by  a surface A o. We choose 
t h e 0  a coordinate system so tha t  the surface A 0 is given by  O a = 0  and so tha t  
the vq3-curves are normal to the surface, The 04 coordinates, where Greek letters 
take the values t ,  2, form a curvilinear net on the surface A o with corresponding 
metric tensors a~,#, a ~'0 and curvature tensor b~#, all these tensors being sym- 
metric. �9 Also for the surface A o, 

n l = n , = O ,  n 3 =  i ,  (9.t8) 
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so that, from (9.6) and (9;t5), 

(9.t9) 
= _  cn,]K i 

Covariant differentiation in (9.t9)is with respect to ~ using Christoffel symbols 
formed from g,~n, and evaluated on ~ = 0 .  The second expression in (9A9) can 
be  replaced* by 

(9.20) 

where the vertical line in (9.20) denotes covariant differentiation** with respect 
�9 to ~ using Christoffel symbols formed from the surface metric tensor a~ .  In 
obtaining (9.20) we have also used the fact that ~[nalr is anti-symmetric in 
A, B so that ~ss l r  is zero. From (9.20) and (9A9), we have 

(9.2t) 

The right-hand sides of equations (9.2t) are known functions of F an and U, 
and hence of F ~n and derivatives of displacements. Covariant differentiation 
in (9.2Q is still with respect to surface coordinates ~ .  

The rate of work of surface forces and dipolar surface forces at the surface 
A 0 depe.nds on three components of pK and nine components of par. The first 
of equations (9.t9) involves six unknown functions ~r taplK and equations (9.20) 
involve these and their surface derivatives.. If the twelve quantities p r  ~bar 
take prescribed values on the surface A0 then three equations (9.20) and nine 
equations (9.t9h are, in general, sufficient to determine the six unknowns ~r ~*]K 
and also to provide six conditions to be satisfied by derivatives of the displace- 
ment. in fact, these latter conditions are given by equations (9.2t), and (9.22) 
(see below) which do not involve ~r ~alr, values of ~r ~*]~ then being given by 
(9.t9)x for A ---- t, 2. Surface values of the undetermined dipolar stress ~[pslx thus 
play an essential part in the surface conditions and enable us to prescribe values 
for all the components of surface force and dipolar surface force pr, par on A 0. 

Instead of prescribing values of the surface force and surface dipolar force 
we can prescribe values of  the surface displacements and the surface dipolar 
forces. This gives twelve conditions which, with the help of (9.t9)t, enables 
us to find the six surface values of n[a~lr and six conditions on' the surface 
values of the displacements and their derivatives. Since 

pax_  ~(s s)r (9.22) 

do not involve ~[~,]r the six conditions on the displacements and their deriv- 
atives at the surface are given by the specification of ~a and ntss)r at the surface. 

A discussion of the general case when dipolar surface forces up to order 2" 
are present is postponed, but sufficient work has been done to indicate that 
when ~----2 we have enough unknown functions to enable us to prescribe values 
for thirty multipolar surface forces ~b r ,  par, ~ S r .  

* See, e.g. Gnash  & ZERN~ (t954), p. 36. 
** Covariant differentiation in the surface is not independeflt of its order. 
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10. Constitutive equations 
In this section we discuss t h e  formnlation of constitutive equations which 

may, in certain cases, be appropriate to theories in which multipolar forces- 
are present and which are not included in the restrictive assumptions of the 
previous Sections 7, 8. For convenience we collect here all the basic equations 
of Section 6. We have first the equations of motion (6.13) and surface con- 
ditions (6.6) : 

~,oi+~=o~,, (lO.0 
6=niai~. (lO.2) 

Next, adopting the notation 

a(~.~...~._,~ + 0 F~,...~.~ + a~...~.~,; =~.~. . .~ ._ ,~ (a = 2 . . . . .  v), (to.3) 

o'(~,,+~,... ~)~ = ~+t~ . . . ~ ,  

where (~(i,~,...~,_t)~ is the completely symmetric part of q~,~,...~,_,~ with respect 
to the indices i x . . . . .  ia_ t,  i~, and ff~,/~...~,_~ (at= 2 . . . . .  v + 1) is completely sym- 
metric with respect to i x . . . . .  i~, equation (6.16) becomes 

or--O, i ,~--oU +�89 +a~=~i,h...i,_,iA~,...~ +~i,+,h...~,~Aih...i,+:= 0, (10.4) 

where, from (6.15), we see, that  

e ~ = e ~ .  
Also, if 

h--niQ~---h, 

then, from (6.tl) and (6.t0), we have 

,.,as,, , . - i = 0 ,  

The entropy production inequality remains in the form (6.2) 

(10.5) 

(to.6) 

(10.7) 

(lO.8) 

fo dv--fo- dv+.f4-da _Oi (109) 
V V A 

The quantities ~,...i.i are tensors which are completely symmetric with respect 
to the indices i 1 . . . .  , i~ but, in general, ~i~...g.~ are tensors only with respect 
to the indices i 1 . . . . .  i , , ,  i, being completely symmetric with respect to j, i 1 . . . . .  i~. 

An inspection of (10.4) and (t0.7) suggests that  constitutive equations are 
required for the quantifies t~...~.~ and ~i~...~.i- Here we restrict our attention 
to materials for which [~...~.~ (a----t, . . . .  v) and h do not depend explicitly on 
velocity gradients of all orders 1, 2 . . . . . .  v, and hence do not depend explicitly 
on A ~  . . . . .  A,,...~ . Since these latter quantities can be chosen arbitrarily and 
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independently of each other, subject to symmetry restrictions, it follows from 
equation (t0.7) that  t'~...~,i ( ~ = t  . . . . .  v) ahd h are zero and that  

k...~,i=niaj~,...i,~ (~--I  ..... ~), 
(1o.1o) 

h = n i Q i "  

Another way of obtaining equations (t0A0) is to assume, as a part  of our con- 
stitutive equations, that  the multipolar forces ti,...~,~ (~= t . . . . .  v) depend linear- 
ly on the unit vectors n k. Since these are ak~l...~,~ when n k is normal to the 
xk-plane, equations (10.t0)1 follow, and then (t0.7) yields the result (t0.t0)~. 
From equations (t0.t0)1 we see that  ai~,. . .~,  ~ transforms as a tensor with respect 
to all the indices, including /', under changes of rectangular Cartesian axes, 
where the multipolar "stresses in each coordinate system are  associated with 
the three coordinate planes in that  system. It  follows from (t0.3) that  ai~...;,i 
( ~ = t  . . . . .  v) and ~i,~ transform as tensors with respect to all the indices (we 
already know that  a&i is a tensor). 

We now suppose that  the  multipolar stresses ai i , . . .~ ,  i (0(=0, t . . . . .  v) asso- 
ciated with the xi-planes at time t correspond to a deformation of the .con- 
t inuum given by  (2.1), and that  corresponding to the deformation (3.t) we have 
multipolar stresses a~...i,~. If the superposed rigid body motions for all time 
do not change the values of  multipolar stresses, except for orientation at time 
t, then* 

~*~...~,~ = (2, Q ~ , i ,  �9 �9 �9 (?~,J, Q , ,  ~i,...J,J, (Io.I I) 

and hence, from (t0.3), 

if we assume that the multipolar body forces F~i ... . .  Fi,...i,i are unaltered, 
except for orientation**. 

Suppose now that  all the multipolar body forces F~...i,i ( ~ = t  . . . . .  v) are 
specified and that  constitutive equations have been obtained for a~.-.i,i ( x =  
t,  2 , . . ,  v + 1), where ~;,...~,i is completely symmetric with respect to the indices 
i~ . . . . .  i~. The multipotar stresses a~,~,...~,_,~ ( x = i  . . . . .  ~ ,+ t ) ,  with stress a~,~ 
corresponding to r e= t ,  are symmetric with respect to the indices i x . . . . .  i ,_x, 
and in order to see what information we have about these stresses we "consider 
the special case of equations (10.3). with v = 2 .  Thus, the completely symmetric 
part  of ai,(~,~,l~ which, as indicated b y t h e  brackets, is symmetric in i x, i , ,  is 

a(~,~,~,)~ = a~ ,~ ,~  = e~v.~.~ ( tOA3)  
and is known. We put 

- -O"  _1 a~,(~,)~ -- (i,~i,)i+ s {2a~,(~,)~-- ai~(~,i,)~ - -  ai,(/,~)~) (t0.t4) 

�9 We have already used the assumption that a i i~ . . . i , i  is unaltered by superposed 
uniform rigid body translations and rotations, the boay occupying the same position 
at time ~. This is now included i.n our prese~ut assumption as a special case. 

~r~ More generally, multipolar forces minus appropriate inertia terms are un- 
altered, except for orientation. An alternative approach is to assume that U, Qi, 
~ . . . . i , - ~  (~t=t . . . . .  7+1), ~...i,i (ct=i . . . . .  ~) and h are unaltered by superposed 
rigid body motions, .apart from orientation at time ~, so that the left-hand sides of 
(t0.4) and (i0.7) are then unaltered. 
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so that,  from (~0.3), we have 

o~.~I~ = ~.~.~ - ~ ~,~,~- ~j~.~,~,j- �89 {2~i~,~- ~i~i~.~- ~.~;ix~}, j. (I 0.15) 
Also 

al.i.~ = ~{~.~,)i + ~[~.id i, (t0.t6) 

where r is skew symmetric in i x, i 2. It follows from (I0.3) and (10A6) that 
the stress cr~.~ is determined apart from an additive streffs 

1 2 --  a~]~,j + ~ ( aj(~,~)~ - o~(jk)~ - ak(j~)~), ik, (t0A 7) 

which does not contribute to the equations of motion.. The rate of work of the 
undetermined parts of the surface force and muttipolar surface force over a n y  
closed material surface inside the body, or over the complete boundary  of the 
body, is zero. As in Section 9, the val~e of these forces on the surface plays an 
important  role in determining correct boundary conditions. Apart from extra 
algebraic complexity the general case in which we have multipolar surface 
forces up to some order 2" yields similar results. When mult ipolar 'body forces 
i~nd the values of 8i,..,i~i (~-----t, 2 . . . . .  v + 4 )  are known, the stress and multi- 
polar stresses can be found, apart  from undetermined multipolar stresses which 
make no contribution to the rate of work over any closed surface in the body, 
or over the complete boundary of the body. The surface values of these un- 
determined multipolar stresses contribute to the surface conditions. 

We next consider a class of constitutive equations* for 8i,...i~i (~= ~ . . . . .  ~ + ~) 
where 8i,...i~i is symmetric with respect to il . . . . .  i~. We restrict our attention 
here to the assumption that  8~,...~,~ depdnds on the deformation gradients, the 
velocity gradients . . . . .  N th velocity gradients, (say) of all orders (up to the /~th), 
all measured at time ~, so that  

- �9 v ~) v (to) ~ (t 0.~ 8) ~fi . . .Gi-~-~i~. . .*, t~ p,A~...A a, P,q~"'q# . . . .  ' P, qx...q#! 

for 0 t = t , 2  . . . . .  , , + t ;  / 5= t  . . . . .  i ~. 

With the help of (3At) equation (~0.t8). can be expressed in the different 
form 

- v (1) v ~n) A I~) . .  A { ~  ~ (t0.t9) a i* ' " i ' i ' ~ -qPi*" ' i* i (XP 'A 'Xp 'A ' " 'A~  ' P,q . . . . .  P,q' Pq*...qa' "' Pq*...q#! 

for 0~---- t ,  . . . ,  ,, + ~ ; ~---- 2 . . . . .  /~, where ~vi,...i, i i~ a single-valued or polynomial 
function of its arguments accoMing .as ~,...i,~ in (~0.18) is a single-valued or 
polynomial function of its arguments. 

We now consider another motion of the continuum given, b y  (3A), with 
z*----z, which is such that  at time t the continuum occupies the same position 
as for that  defined by (2.t). Then, using equation (~0.t2) and the results of 
Section 3 with Q i i = ~ i ,  we have 

~v~,...~,i(x~, a xo,.~,...~,v~,[~) , * ~ 0  A(~) A ( ~  
, ,~ . . . .  ~ 0 , ~ ,  o ~ , . . . o  . . . . .  ~ , . . . ~  ( ~ 0 . 2 0 )  

x v {x) . . . .  v (~ A (~) A {N) ~'-----~i,...iffii(Xp,A, p ,A, . . .A~,  p,q,  P,q' P q * . . . q a ' " "  Pqx.. .q~'  

since, from (3-9), a*{~) _x0 , )  "*oo , . . . ~ - - "~ , . . . o~  (3 -~2) when Q~i=~ii.  

�9 In Section 7 the constitutive assumption (7.2) should, at this point, be applied to 
~6...i.i instead of ah.. . i , i .  
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The limitations on the function ~...r implied by (10.20) can be made ex- 
plicit by the procedure adopted by RIVLm & ERICKSEN (1955) or. GREEN & 
RIVLIN (1960). We can conclude that  ~...r can depend on v 0) ,p,q . . . ,  v~q only 
through t h e  components of N symmetric Rivlin-Ericksen tensors ACp~, - . . . .  ACp~ 
defined in (3.8). Thus (10.19) may be replaced by the form 

a , . . . A , ,  (10.21) �9 " " ~ P q s . . . q $ 1  

where ~----t . . . . .  ~ + t ,  f l = 1 , 2  . . . . .  ~ and where the functions ~...~.~ are, in 
general, different from those in (10.t9), but are single-valued or polynomial 

t 

according as those in (t0.19) are single-valued or polynomial. 
We again consider the motion (3.t) but now Q~i~:~i .  Using (t0.12) and 

the results of Section 3, we see that  

... , .  , (  p,a, ... a , , A , �9 �9 . 4  ... 

= Qh~ Qi,,, "" Qi.~, Oj~ ~i,...i.i (Qt,,,, x , ,a, . . .at ,  (t0.22) 

~P~$a t S l " ' $ ~  ' " " " ' " " " ~ P a s $  rsa...sal 

for all proper orthogonal Qo" FoUowing a method similar to that used in discussing 
the internal energy U in Section 7, we choose the value Ria for Qa i in (10.22) 
and assume that  9i,..~,~ is a single-valued function of and either 
single-valued or polynomial function of A~,...qp . . . . .  ..pq,..q~.a(N~'a'"a~Then using thea 
result 

Ria = xi, B MB'~ 
we see that  (t0.2t) reduces to 

~ i t . . . i . i  = X i t ,  R t ' ' "  X i . , R .  X i ,  R ~ R t . . . R . R ( E A A t . . . A , '  O ~ , . , . q # ) ,  (10.23) 

where ~r . . . . .  v + t ;  f l = t  . . . . .  #;  M = t , 2  . . . . .  N ;  EAa,...A# are defined in 
(3.6) and 

X , , P  x , , , o ,  , , , . . . , , .  A ~ (t6.24) 

Also #R...R.R is a single valued function of Eaa...a~ and a single valued or 
M and ~)Rx...RaR is completely symmetric with polynomial function of D~ ~,.. 0~, 

respect to the indices Rx . . . . .  R~. 
If, in  equation (10.18), the displacement gradients are absent the consti- 

tutive equation refers to a fluid. We can obtain this case by taking the reference 
state to be the state at time t so that  X~= x~. The corresponding final form 
for ai,...i,i is found, from (10.23) and (t0.24), to be 

- _ ( M )  a~. . . i , i -  #~...i,i(Ap#,...#,, O) (t0.2~) 

where r162 . . . .  , v + t ;  ~----t . . . . .  la; M = t , 2  . . . .  , N .  Moreover, ~ . . . i , i  is now 
a hemihedral isotropic function of its arguments, and ~ is the density of the 
fluid at time t .  

11. Appendix 1 

Let Ix . . . . .  IN be a system of forces acting on particles at Qx . . . . .  Q~ with 
vector positions az . . . . .  aN relative to a point Q. Let ~" be the  position vector 
of Q relative to another fixed point 0: L e t  us suppose that  the particles at 
Qx . . . . .  Q~ are moving with velocities vx . . . .  , v~. Then the rate R at  which 
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work is done by  the system of forces is given by  
N 

R =  y, b .vp. (tt a) 
P--1 

We now suppose that  the velocities v e are functions of position in space 
and time. Let v be the velocity at Q. Then, using Cartesian tensor notation, 
we have 

73! P) = r  a!V, ' . . .  atP. , v,,i,... ,. + K~ P,, (tt.2) 

provided the velocity ~ at Q has continuous spatial derivatives up to order 
+ 1 in some neighborhood of Q, where K~ P) is a remainder term. Introducing 

(tl.2) into (t1.t), we have 
N 

R =  X F~...,., v,,,,...,. + Z ~e)K!e), (11.~) 
~=0 P--1 

where 
N 

.t ~ a!P' a~ ) ~P). (1t.4) F,I...,., = ~ . . .  
P = I  

If we define F~,...i.~ as given by  (tt.4) to be a simple force 2a-pole of the first 
kind, then the rate of work R of the system of forces /1 . . . . .  [N is equivalent 
to the rate of work of simple force 2~-poles (~=  0, t . . . . .  v), provided the re- 
mainder term in (tt.3) can be neglected. In (tt.3) the rate of work of a simple 
force 2a-pole of the first kind is 

F,I...~.~ v~,~,...~. ( t t . 5 )  

We may now generalize the definition of a simple force 2a-pole of the first 
kind by  assuming that  if, for all arbitrary velocity gradients v~,~,...~., the ex- 
pression (tt.5) is a scalar which is a rate of work, then F~,...r is a tensor called 
a~aplea force U-pole of the first kind. Without loss of generality it can be  

t to be completely symmetric in the indices i x . . . .  , i~. 

12. Appendix  2 

We consider an elastic material for which the internal energy U is expres- 
sible in the form 

u =  u ( s ,  EAA,, . . . .  EAA,...,~,). (t2.t) 

T h e n  from (8.26)--(8.29), we obtain* 

oU 
~(a,...a,~ = Oo x~,a (p > t) ,  ~.Ea~...a,, 

- ~U 
7[(A,...Av)i + 00 FAI...A,i + ~Bat...Avi, S -'~ QO Xi, A OEAAt...Av ( t 2 . 2 )  

0 , = 2  . . . . .  ~ - t ;  ~>2)~  

�9 OU t, ~ U  

a~ ~ = t ) .  ~zali ---- 20o xi'a 0Eaa, 

* Before using formulae ( t2 .2)  U must be suitably syrnmetrized. 
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If the elastic material is symmetric in its reference state, U must be a scalar 
invariant of the tensors EAA,, . . . .  EAA,...a, under the group of transformations 
describing the symmetry. In the particular case when the material is isotropic, 
the group is the full or proper orthogonal group accordingly as the material 
does or does not possess a centre of symmetry. 

N 
We shall consider that  U is a polynomial in the tensors E~A,...~p (fl= t . . . . .  /z) 

defined by 

E,'IA, = EAA, -- ~AA,, 
(12.3) 

EAA~...Ap = EA~,...Ap (fl = 2, . . . , /~).  
Then, it must be expressible in the form 

U=ZKAA,...~,B~,...B.,...Cc,...c. F-AA,...A. EBB,...B. ...Ecc,...C. , (,2.4) 

where the K's are constant tensors. If the appropriate symmetry group is the 
full orthogonal group, the K's  in (12.4) may be expressed as the sum of outer 
products of Kronecker deltas with scalar coefficients. Then, only terms for 
which #,q-/z~-k . . .  -k/~,-k~=X, say, is even can occur in (t2.4) and a typical 
term in the expression for U is 

Const. x ~p,p, ~p,p,... ~p~_,p~ EAA,...~,~ EBB~...B,... Ecc,...c~, (t2.5) 

where Pl Pz ..-Pz is a permutation of A A  1 ... A u . . .  Cz .  In writing down such 
terms we may bear in mind that  EAA~...ap is unaltered by permutation of A~ ... Aa 

(fl~2) and ffSaa ~ is symmetric in A, A x. 

If we assume /~Aa,...a, (~= t . . . . .  /~) to be small enough, we may approxi- 
mate (12.4) by 

U = C  + ZHaa,.. .a, gaa,...A,+ Z Ka,~,..:a,ns,...s, ff-aA,...a,E"nn,...n,, (t2.6) 
# = 1  # , v = l  

where C, the H's and K's are constants. We may, without loss of generality, 
omit the constant term C, since the forces, monopolar or multipolar, involve 
U only through its derivatives. If, further, we assume that  when the deforma- 
tion gradients and body forces of all orders are zero the stresses of all orders 
and their spatial gradients are zero, the H's in (IZ6) are zero. We then obtain 

U = ~ KaA,....'I# n/h...Bv EaA,...A# EBn,...n,, (t2.7) 
0,~,=1 

where we may, without loss of generality, take the K's  to be  unaltered by inter- 
change of the A's and B's and completely symmetric with respect to A x . . . . .  A B 
and B x . . . . .  B r for fl, 7 ~ 2 .  Also KAa, nn, is symmetric with respect to A, A x 
and B, B x. 

Introducing (t2.7) into (t2.2)x, we obtain 

n(a,...A,)i = 200 Xi, A~IKAAx...A~,B'B,.,.B v EBBt...B~, Q~ > t) .  (t2.8) 

We now write 
x ~ = X i +  e u i (t2.9) 
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in the expression for /~a&...ap and neglect terms of higher degree than the 
first in 8. We then obtain 

Ea&...A, ~U.4.A,...a, ----- 2eaa,...A, (/~> t ) ,  
(t2.to) 

/~aa, ~ u~,a~ + u&,a = 2eA&. 

Introducing (t2.9) and (12.t0) into 02.8) and neglecting terms of higher degree 
than the first in e, we obtain 

•{a,...a,)i = 4Qo~ KiAt...Aj, B Bs...B~, eB B,...B v. (t2.t4) y=l 
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