Simple Force and Stress Multipoles

A.E.GREEN & R. S. RivLIN

Contents Page

1. Introduction . . . . . e e e e e e e e e e e e e e e e e e e e 325
2.Notation . . . . . . . . . e e e e e e e e e e e e e e e e e e e e 327
3. Superposed rigid-body motions . . . . . . . . . ... 000 L. . . 328
4. Multipolar body forces of the firstkind. . . . . . . . . . . . .. ... 330
5. Multipolar stresses of the firstkind. . . . . . . . . . . .. . ... .. 331
6. The energy equation and entropy production inequality . . . . . . . . . 332
7. Generalized elasticity . . . . . . . . . ... 00000000 335
8. Elasticity: Alternativeform . . . . . . . . . . . .. ... .. 339
9. Boundaryconditions . . . . . . . . . .. 0.0, see .. 344
10. Constitutiveequations . . . . . . . . . . . .00 0000 ... 347
1. Appendix 1. . . . . L L o L e s e e e e e e e e e e e 350
12.Appendix 2. . . . . L L L L . e e e e s e e e e e e e e e e 351
References . . . . . . . & & ¢ v v v v e e e e e e e e e e e e e e e e 353

1. Introduction

E. & F. CosSERAT (1909) developed a theory in which the mechanical inter-
action between portions of a body across a surface in it is considered to consist
not only of forces distributed over the surface, but also of distributed couples.
TrUESDELL & TOUPIN (1960) have reformulated and developed this theory in
modern notation. In a recent paper, TouPIN (1963) has derived constitutive
equations for finite deformation in which it is assumed that a strain-energy
function exists for the material which depends only on the first and second order
deformation gradients. A similar constitutive equation was previously derived
by GRIOLI (1960). MINDLIN & TIERSTEN (1963) have linearised TOUPIN’s con-
stitutive equations and solved a number of problems in the linear theory of
elasticity with couple-stresses.

In the present paper, we develop a theory of greater generality. In this
theory, we assume that the force system acting on the body may consist of dis-
tributed surface and body forces and surface and body force multipoles of various
orders. The latter are defined as force systems whose rate of working in an
arbitrary deformation field is given by an expression of the form F;, .,:;,..i
where v;; ;, is the B gradient of velocity v; in a rectangular Cartesian co-
ordinate system. E, _;,;is then a tensor describing the multipolar force, which
is called a simple force multipole of the first kind*. The definitions of force
and stress multipoles given here are effectively special cases of those used by
TrRUESDELL & TOUPIN (1960, §232).

* Previous work is concerned with the case when F; wipi is a skew symmetric
:econd order tensor. '
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Although, in this paper, we discuss only simple force multipoles of the first
kind, this discussion invites generalization to the case of compound force multiples
of the first, second, third, ... kinds. A compound force multipole of the first
kind may be defined as a force system for which the rate of working is given
by an expression of the form F; i, P .is» where E;, ..iy 1s a function of the
velocity gradients of various orders. In order to define sunple and compound
force multipoles of a kind higher than the first we must define multipolar de-

formation fields. These suggested further generalizations will be presented later*.

Notation and definitions of kinematic quantities are given in Section 2. In
Section 3 we discuss the effect on these quantities of superposed rigid body
motions. - Multipolar body forces are defined in Section 4 and multipolar stress
fields in Section 5. In Section 6 we postulate the equation of energy and the
entropy production inequality. We then systematically apply to the energy
equation invariance conditions which arise from consideration of superposed
rigid body motions and deduce the classical equation of motion and an equation
of vector moments. In the classical case in which no multipolar stresses and
body forces are present but only the usual stress tensor and body forces, the
equations of motion are usually derived from a separate postulate about the
balance of linear momentum, and the symmetry of the stress tensor is derived
from a postulate about balance of moment of momentum. An energy equation
is then assumed in addition to the postulates of linear momentum and moment
of momentum. The present work shows that these latter postulates can be
derived from the equation of energy by making full use of invariance conditions
under superposed rigid body motions**,

In Section 7 a particular class of constitutive equations appropriate to gen-
eralized -elasticity theory are considered, and a complete set of equations is
derived from the energy balance equation and the entropy productxon inequality
of Section6. An alternative form for these equations is given in Section 8.
The results of Section 8 are expressed in a more general notation in Section 9,
and conditions at the surface of the body are discussed when only stresses and
" multipolar stresses are present. In Section 10 we examine a more general class
of constitutive equations involving a relation between multipolar stress tensors
and kinematic gradients at time ¢ of various orders, and we reduce these equa-
tions to a canonical form with the help of invariance principles arising from
consideration of superposed rigid-body motions.

In Section 11, we demonstrate by means of an example the manner in which
we can derive a system of force multipoles acting at a single point, which are
energetically equivalent to a system of monopolar forces acting at a number
of different. points. Finally, in Section 12 we give some consideration to the
restrictions imposed on the form of the strain-energy function if the material
is isotropic.

* To be presented in a forthcoming paper in this Archive. o

** Since writing the above Professor W. NoLr has sent us a proof copy of a
paper, written in 1960 and.to be published in the proceedings of ‘‘Colloque sur
I'axiomatique”, in which he obtains the classical equations of motion and moments

for forces from other postulates, but his ideas do not appear to be the same as
those used here.



Simple Force and Stress Multipoles 327

2. Notation

We refer the motion of the continuum to a fixed system of rectangular
Cartesian axes. The position of a typical particle of the continuum at time 7
is denoted by x,(tr) where

5D =2,(X1, Xy, X5, 1) (—o0<7=1), (2.4)
and X, is a reference position of the particle. We also use the nqtétion
2,=x;(t). (2.2)
If this deformation is to be possible in a réal inaterial, then
det [ 0% (v) ] >0. (2.3):

For some purposes it is convenient to express %,;(7) in terms of the current
position of the particle at time ¢ so that

xi(r)’:xi(xlt x2’ X3, t, T), (24)
and
9x;(7) _
det —37,.—]>0- (2:5)

Displacement gradients taken with respect to the position X, are denoted by

P
xi',Al...A‘ (T) = aXA‘ axj’(r) aXA, . (ﬂ =1, 2; .. ) > (2‘6)

and we use the notation
Xi Ay dg=%i 4,...45 (F)- (2.7)

Displacement gradients taken with respect to the current position x; at time ¢ are

()= Pu(T) =
iy tiynip ()= B, %, .. Oy B=12..). (2.8)
We observe that
Xiiyig (§) =0 (B>1),

and that the gradients in (2 6) and (2.8) are symmetric with respect. to
Ay, As, ..., 4g and 4y, 14,, ..., 15 Tespectively.

The components of ve10c1ty at the point x,(t) are denoted by i (z)=v,(7)
so that

@ () = P#(7) O @) =v,(t) =v,
Yy (T) - D“r ’ Yg (t) = (t) =1,
where D/D < denotes differentiation with respect to 7 holding X, fixed in (2.1),

“or x;(f) and ¢ fixed in (2.4). More generally, n velocity components may be
defmed as

PE=250, Po=i, PE=x@. @10
From (2.8) and (2.10) we have

B .ip(7) ()
D - 6x,-‘ ax,-. cee ax,

=of¥. ig(T), (2.11)

23*
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and we use the notation
vy‘zx .18 (t -vs"'. RY] - (2'12)

for gradients of the #® velocity components at time ¢ with respect to coordi-
nates at time ¢. Also

vs 2, ip (T) Xiyiy.ip (T) vso‘;l .ip =0 (ﬂ> 1) . (213)
In view of (2.3) we may write #; ,(7) in the polar form
% 4(V)=R;p(r) Mp,(7), (2.14)

where My, (7) is a positive definite éymmetric tensor and R,z(7) is a rotation
tensor, so that

Rip(t)Rig(v) =845, Ryu()R;4(v)=0;;, detRy(r)=1. (2.15)
Also :
R,;z=R.5(t), M p=M, (). (2.16)

In general, throughout the paper, lower case Latin indices 4, 7, ... are asso-
ciated with coordinates x,(t) or x; and take the values 1, 2, 3: upper case Latin
indices 4, 4,, ... are associated with coordinates X, and take the values 1, 2, 3.
The usual Cartesian summation convention is used. '

3. Superposed rigid-body motions -
We- consider motions of the continuum which differ from those given by
(2.1) only by superposed rigid-body motions, at different times. Thus

2P () = (7% + 045 () [%; (1) — ¢; ()], CB3a)

where c; ('r) ¢} (7*) are vector functions of 7 and 1*=(r+4a) respectxvely, ais
an arbitrary constant and Q;;(z) is a proper orthogonal tensor which depends
on 7. In Section 2 vectors and tensors are defined in terms of the motion (2.1)
and we denote corresponding quantities defined from (3.1) by the same letter
to which 'we add an asterisk*. Then

xm, A,...45 (T*) = Qnm (1) xu, A Ag (t) ’ (32)
and e
{f"—‘,} = Ouin(®) Ou i~ iy iy (0 3.3)
where Q= Q, ;(t). Hence
E% 4 4,.4,(t")=E, 4,4,..4,(7), (3.4)
and ) i
) E;'a_,s',._..i, (7*) = 0s; Qisjy - - Gigip Eifria.is (@, (3.5)
where : )

Egpa,..a,(7) = %p 4(T) %m 4,4,..4, (T),
Bt ig (0 = %o, (1) oy (0
Equatlons (3.4) and (3. 5) are valid for all values of 7. In particular
E}(t0)=0:,0;.E,(7)

(3:6)
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and if we differentiate both sides of this equation u-times with respect to <
(assuming that the derivatives exist) and then put r*=17v=/ we have

A?f(”)=Qi’i QisAy.‘t)’ (37)
where A=A (f) are the Rivlin-Ericksen tensors given by
-8 DAyY
4 = 5 (B) ootis? = 2 A0, 4 A0, B

a=0

with 9);=4,,;. Similarly, by differentiating (3.5) u-times with respect to 7,
putting v*=1v=¢ and using (2.11)—(2.13), we obtain the relation

) Afi,(ff.)i, = Qs Qi+~ Qipip A,(f,)...j, ) ‘ (3.9)
where
1 .
Aslifl)...i', = Z (l;) v%:a) vs:,)ﬁ...i, (ﬂ =2, 3) v ') t (3‘10)
a=1

The tensor Aﬁ‘:},-‘__,; , is completely symmetric with respect to the indices 4y, 75, ..., %
and is a natural generalization of the Rivlin-Ericksen tensors A{). Taking
Q;;=09;; we see, from (3.9), that the tensors (3.10) are unaltered by superposed
rigid body velocities and angular velocities of all orders, the continuum occupy-
ing instantaneously the same position at time ¢. Other tensors with the same
property can be defined which are related to those in (3.10) and we mention

one other group of such tensors below. We first observe, however, from (3.10),
that '

pn—1 .
A ., = ¥ i+ > (f:) U

a=1

and hence, by repeated application of this formula for u=1, 2, ... and given 8,
we have '

o i, =A% ;, +a polynomial in off); and A8 ,,, (3.11)

for a=1,2,...,u—1; =2,3,....
We define B, ;, ;,{7) by the equation

Tty D =% ;0 Biiirois@  (B=23,..) (3.12)

and observe that Bj,,..i,(()=0 (8=2). The definition of Bj; ,(7) is unique
since #; ; is non-singular. We differentiate (3.12) u-times with respect to 7 and
>ut 7=t to obtain the equation

“ ‘ -
W= (&) Bihsy . (B=23...), (3.13)
a=1 .

vhere BS,“,‘}M,-, denotes the value of the a-derivative of B, ;, (i) at the time
‘=¢. In particular, : .
Viiyrip = B$‘.~3....-,_- (3-14)

ixplicit expressions for the tensors BY . for «=2,3,..., which are sym-

netric in the indices 4;, 15, ..., %5, can be obtained by repeated applicatibr; of
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(3.13). Also, from (3.3) and (3.12), we have

Bi*tx ip( *) = QifQilf, see Qipiﬂ th.” (T) ’ (3'15)
and hence
B =0 0uiy - Qigis B iy (@=1,2,...). (3.16)
A simple relation exists between the tensors A% , and B ,,. Since
Ei.iy(0)=E;;(v) B, iy (7)) (B=2,3,...), - (3.17)

we may differentiate this u-times with respect to 7 and then put v=¢, to obtain
the relation

F3
A =248, (B=23..). (3.18)
a=1

To close this section we repeat one known result which will be used later.
From (3.1) we have

o} (v%) =88 (%) + 04;(0) [0(0) —4;(0)] + 2, (0) [#F (=N —* @] (319)

where

, Oif(T)=Qn(T) Q,;(7), Qif(?)=_9fi(7)- (3-20)
From (3.19) we have
ou} (v%)[0x} (v*) = Qs (7) Qjs (7) 07, (2) [0 %,(7) +£2,5(7). (3.21)
In particular we can recover the result (3.7) from this when u=1, where
A,-,-=v,-‘7-+v,-',-. (3.22)
In addition, if
0= ;i — Y 5 (3-23)
then

wq=Qierswrs+2‘Qii' (324)

4. Multipolar body forces of the first kind *
If E, is a vector and v; an arbitrary velocity field, and if the scalar

F‘. v; (4-1)

isa rate of work, per unit mass, at time ¢, then the vector F; is called the body
force vector, per unit mass. The total rate of work of a body force F;, per unit
mass, distributed throughout a volume V of the continuum, is

JeEvav (4.2)

where g is the density (at time #).

If F,_;,;is a tensor and v, _; an arbitrary set of veloc1ty gradients, and
if the scalar ,
E, . iiYiiyd, (4.3)

is a rate of work per unit.mass, then the tensor E,_; ; is called a simple distributed
— - - .

* A possible motivation for the definitions presented here is given in Appendix 1.
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body force 2’-pole of the first kind, per unit mass. More briefly, it is a simple
body force 2-pole of the first kind, per unit mass. We observe that F, ; ; may
be taken to be symmetric in the indices %,, 4,, ..., %, without losstof generahty,
provided the order of differentiation in the velocxty gradient is immaterial.
When v=1 we may also call the force system a simple body force dipole of the
first kind; when v=2, a simple body force quadripole of the first kind. For uni-
formity, when ¥=0, we may call it a simple body force monopole which is the
same as a body force vector. Generically, we may call simple body force 2’-
poles of the first kind: simple body force multipoles of the first kind. Throughout
this paper we shall be restricted to the first kind of multipoles and for brevity
the words “first kind” may frequently be-omitted.

The total rate of work of a body .force 2’-pole, per unit mass, dlstnbuted
throughout a volume V, is

Vf@ E, iV, 4V . ' (4.4

5. Multipolar stresses of the first kind

Consider a surface 4 whose unit normal at the point %;, in a specified direc-
tion, is n;. If £; is a vector and if, for all arbitrary velocity fields v,, the scalar

tv; . (5-1).

is a rate of work per unit area of A, then the vector ¢, is called the distributed
force, per unit area. The total rate of work of this surface force over the whole
surface 4 is

ft,- v, dA. - (5.2).

If 4 . is a tensor and if, for all arbitrary veloc1ty gra.dJents Yi 4,4, the
scalar

LiiniVigiy iy _ (5.3)
"is a rate of work per unit area of 4, then the tensor li,..s,i is called a simple
distributed surface force 2'-pole of the first kind, per unit area or, more briefly,
a simple surface force 2’-pole of the first kind, per unit area. The tensor #,_;
may be taken to be completely symmetric in the indices ¢, ..., ¢, without loss
of generality. =~
The total rate of work of a surface force 2’-pole, over a surface 4, is

Af b tyi Vigiyni, @4 : (5-4)

“When »=0 we recover (5.2).

The tensor #, ;; at x; is associated with a surface whose unit normal at
the point is #;, so that if #; is altered the tensor is altered. When #,; is a unit
normal to the x;-plane through the point we denote the corresponding tensor by

Oiyeniyic - (5.5)

"These are the components of a simple surface stress 2’-pole tensor of the first
kind on an element of area at the pomt normal to the ¥;-axis. In partlcular
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when »=0, we recover the usual classical stress tensor 6j; . The rate. of work
of the 2’-pole surface tensor (5.5) is

Gjiy.iyi Uiy iy (5.6)

per unit area of the surface normal to the x;-axis.

The first index 7 is not necessarily a tensor index under change of axes, but
indicates the surface on which the stress acts, the surface being fixed.

6. The energy equations and entropy production inequality

We consider an arbitrary material volume V of the continuum bounded by
a surface 4 at time . We assume that simple body force 2*-poles (xa=0, 1, ..., )
of the first kind, per unit mass, act throughout ¥ and that simple surface force
2%-poles (x=0, 1, ..., %) of the first kind, per unit area, act across A. We also
assume that there is an internal energy function U per unit mass, an entropy
function S, per unit mass, a heat supply function* » per unit mass and unit
time (absorbed by the material and furnished by radiation from the external
world), a local temperature 7, which is assumed to be always positive, and a
heat flux vector** Q,, where @, is the flux of heat across a plane at x; per-
pendicular to the x,axis, per unit area, per unit time. All these functions
depend on X, X,, X,,¢. We postulate an energy balance in the form***

fgv,-z');dV+fgI}dV=f [9'+02E,...;,¢'Uii,...i,] av —
14 v 14 =0 ‘ ’ (6.1)

_,4f hdd +Af ﬂgotil... i § Viiy iy A,

where & is the heat flux across the surface 4, per unit area, whose unit out-
ward normal is #; and a dot denotes material time derivative. We also postulate
an entropy production inequality '

fgédv—fg%dwrf%m >0. 6.2)
v 1 4 A4 :

We now take the volume V in (6.1) to be a tetrahedral element bounded
by a plane with arbitrary unit normal #; and by planes through the point x;
parallel to the coordinate planes If dA-is the area of the plane of the tetra-
hedron normal to #;, and d4; is the element of area of the plane of the tetra-
hedron normal to the x;-axis, then

dA;=ndA. - (63)

* See CoLEMAN & Norr (1963).

** We restrict attention here to the usual heat flux vector a.lthough it may be
possible to define multipolar heat flux tensors.

**x For completeness the kinetic energy should a.Iso contain a quadratic form
in velocity gradients of all orders up to v, but this is omitted. in the present paper.
The resulting inertia terms can, however, be included by replacing multipolar body
forces by: multipolar body forces minus the appropriate multipolar inertia terms.
This will be assumed throughout the paper even when it is not stated explicitly.
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If we apply equation (6.1) to the tetrahedron and let the tetrahedron shrink
to zero while preserving the orientation of its faces, we obtain the equation

(ki —mj0;5)v; +ﬂ21(ts'....|"i — MOy igs) Yiiyipg — B+ 1,0,=0, (6.4)

if we use (6.3) and assume that the contributions from the. volume integrals
tend to zero more rapidly than those from the surface integrals.

Equation (6.4) is valid for all velocity distributions. We assume that the
multipolar stress temsors % .,i, 0ji,. i, the heat flux 4, and the heat flux
vector @, are unaltered by consfant superposed rigid body velocities*. If we
use equation (6.4) with v, replaced by v;+ 4;, where 4, is an arbitrary constant
velocity vector, we have

(t;—m;0;,) (v;+a)) +ﬂ21(ti....i,£_ i Gjiyigi) Viiyip— B+ 1,0;=0. (6.5)
Hence A
(t;—mn,;

H 11)4""0

for all arbitrary g,, and since ¢;,— is independent of a,,

77'

=m0, : (6.6)
and (6.4) reduces to
ﬂZl(t,-,....-,,- — MGy igs) Yiyiyip— B+ 1, Q;=0. (6.7)

With the hélp of (3.8), (3.10), (3.22) and (3.23), equation (6.7) Becomes
i‘(ti.s'—”'aji,i) (Aii, + @45) +ﬂ22(ti,...i,i_”io}'i,...i,i) Aeq...i,—h'*'”;Qi:O- (6.8)
We next assume that biigis Ojiyigis % and Q; are unaltered by superposed

uniform rigid body angular velocity, the continuum occupying the same posi-
tion at time ¢ Under these conditions we see, from Section 3, that 4;

iiy...ip 2TE
unaltered but that w;; becomes wf;, where, from (3.24),
of=w;;,+292;, (6.9)
when @;;=4,;. Hence, from (6.8) we deduce that
(tii — 1;044,3) 25,=0
for all arbitrary anti-symmetric tensors £2;; , so that
b, — b — (0555, — 0j5,5) =0, . (6.10)

since this expression is independent of £;;. Also, ‘equation (6.8) reduces to
i —ni0) A +- Z (t.',....',.' —n; Uﬁ,....',e) A iy—h+n;0;,=0. (6.11)

* The mdependent thermodynam1c vanable which can be taken to be either
S or T, is assumed to be unchanged.
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It appears to be impossible to. make any further deductions from (6.11)
until- constitutive equations have been obtained for the multipolar stresses and
the heat conduction vector.

We return to the energy equation (6.1) and use equation (6.4), to obtain
‘! (eviv;+o U') av = f (0 r+ QZ El...i,i vi,i,...t',) av —Af n; Q;dA +
+ f Z" 75, 1,;”1,;, ..ipdA

for all arbitrary volumes V. By transforming the surface integrals to volume
integrals in the usual way and making appropriate smoothness assumptions,
we obtain the equation*

(Giii+QF' Q'U)'l) +Q’—Qt 1_9U+(ajllt,1+gE,s+0ﬁ1) i.h+
+Z Gjtl lpl1+o'ipt, lp_.;l+e l, i‘t) 1,1,...l‘+ . (6'12)

+ Oiy iy emivi Vi by iy fyps = 0+

We recall that Oji...ig' (and ¢ _,,,-;,;) are completely symmetric with respect to
the indices ¢, ..., 45 (8=2, 3, ...), but not necessarily with respect to the index j.
In addition to the invariance restrictions already imposed on 4, _,:, ji,...ipis
h and Q; when the motion is altered by superposed uniform rigid body velocities -
and angular velocities, the continuum occupying instantaneously the same posi--

tion at time ¢, we assume that U is unaltered by such rigid body motions and
that the body forces F;, F,;, ..., and heat supply function » are unaltered by
superposed wniform rigid body velocities. We observe that 9, is unaltered by
such velocities so that by considering equation (6.12) for ‘all veloc1t1es v;+a,,
where a; is an .arbitrary constant, we see that

o;;i+e Fi=9”i- (6.13)

the classical equatién of motion. Also, equatioh (6.12) reduces to
r—Qii—e U+ 3055 i+ 0 Fi+05,0) (Ais, +oi3) +
+ ﬂz;:; (Oiy..cipig + Gigiynipys T 0 Fiipi) Aty + (6.14)
+ Uiv;,;,.“;‘;;Aaa....e\.i‘,“L, =0.

If we make the additional assumption that r and the multipolar body forces
E, iy (=2,3, ..., %) are unaltered by superposed uniform rigid body angular
velocities, the body occupying the same position at time ¢, then we see that**

* The pnme in X' denotes that the terms under the summation sign are omitted
when v=1.

*« This is the classical vector moment equation. When dipolar stresses and
body forces are absent we recover the usual result that o;; is symmetric. When multi-
polar inertia terms are included then we assume that multipolar body forces minus the
appropriate inertia terms are unaltered by superposed uniform rigid body angular
velocities.



Simple Force and Stress Multipoles 335

Giit‘,,i+”ii,+9Eu, ojlli,1+ah'+g (X} (615)
and

er—Qii—o0 U + 60y ivividiin iy, TG0 Byt 035 Ais +

v (6.16)
+ﬁZz (G54, .cigini T+ Oigirigyit @ By igi) Aiiy iy =

It appears that information about the constitutive equations for stresses,
the heat conduction vector and internal energy is required before any further
deductions can be made from equation (6.16). A case of some interest arises
when these quantities do not depend on velocity gradients of any order and
this will be discussed in more detail in Section 7. In general, constitutive equa-
tions must be postulated for %, _.,;, 4, 0j;,..i54, Qs and U and then (6.10), (6.11),
(©. 15) and (6.16) provide restrictions to be imposed on these equations.

7. Generalized elasticity
Here we suppose that x; and S are specified functions of X;, X,, X, and ¢
and we define a generalized elastic material as one for which the following
constitutive equations hold at each material point X; and for all time #:

U=U(S, %, 4,» %i 4,4, -+-» %i,4,4,..4,) (7.1)
Cjiy.igi = iy igiS) X5, 4,0 %o 4 Ays > %i A, 4y 4,) 5 (7.2)
b igi =biy.igi (S, 1y, %5, 40 %i 4,4, xi,A,A,...A-,,)' (7.3)
T= T(S, %, 4,0 % 4,4, -+ -5 % ,4,..4,) » (7.4)

Qi=0Qi(S, % a, %iayays - Xty Lis Do o0 Tiiy ) s (7.5)
h=h(S, % a4, %i g ays - %, gy Ayt Dois Toiigr oo Toiiins ), (7.6)

where §=0,1,...,v and /tZ'v—H, and all functions are assumed to be single-
valued and sufficiently smooth*. _
_ For a given deformation, the rate of deformation tensors A, Agiiys -0 Ay i,

in (6 11) may be chosen arbitrarily and independently of each other so that
(repeating equation (6.6) for completeness)

Li=n,0;;

1954 (77)

.ti, ipt = n’ Gyh... l‘:' »
and
h=n;Q,. (7.8)

Equation (6.10) is now satisfied automatic‘ally.

From (7.7) we see that g;;_;,; transforms as a tensor with respect to all
indices, including 7, under changes of rectangular Cartesian axes, where the
multipolar stresses in each coordinate system are associated with the three
coordinate planes in that system.

* The multipolar stresses ma.y also depend on the multipolar body forces K, s
(B=1, ..., ¥). See the footnote on p. 349 for an improved form of constitutive assumptions.
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Using (7.8) in equation (6.2), transforming the surface integral to a volume
integral, and making the usual smoothness assumptions, we have
5= +(9) im0

or

QS—K-I- Qi,f Q|T| =0 (79)

since (6.2) applies for all arbitrary volumes V in the continuum.

Substituting for » from (6.16) into (7.9) and recalling that 7> 0 we obtain
the inequality

. . 'T 1
e(TS—U)— art. + 05y iii i, ’v+1+'{("iﬂi,i+91':;.i+0i,i)‘4u.+
, (7.10)
+ﬁ§2("i4‘1...i,e,i+U,j,c....;,_,.'-i-'QEI...;,,.-)A,,I 4y 0.

Before making further deductions from this equation, it is convenient to
make use of the invariance property of U under superposed rigid body rotations.
Using the notation of Section 3 the function U satisfies the condition

U(S, %;, 4, %i,4,..45) = U(S, 24, %} 4,...4,)

where f takes the values 2,3,...,u. In view of (3.2) this equation becomes

U(S, % a4, %, 4,...45) = U(S, Q;; %, 4,1 Qij %, 4,..45)» (7.11)

for all proper orthogonal values of Q,;. It follows directly, as a speéial case
of a result obtained by PIPKIN & RIVLIN (1959), that U must be expressible
as a single-valued function of S and E,g, . 4, (8=1, ..., u), thus:

U=U(S,Ega,»---»Eaa,..a,)- (7.12)

Alternatively, the Schmidt orthogonalization procedure may be used to obtain
(7.12) from (7.11) in a manner analogous to that employed in a different context
by PipkIN & RivLIN (1961). We shall sketch here another procedure for ob-
taining (7.12) which is similar to that used by NoLL (1955) in another connection.

Since we are concerned with the value of U at a particular particle X, we
may take the special value R;, for Q,; in (7.11), so that

U = U(S, MAA‘; R]A xi,A,...A,) .

_ (7.13) .
=U(S, MAA,,MAle A%, 4.4 )

since M,  is non-singular. We reca.ll * the definitions (3.6) for E, Ardy (8= 1 2...)
and observe that
E p=M4s M, 5. (7.14)

Since M,y is a positive definite symmetric tensor satisfying (7.14), a single-
valued function of M,z can be replaced by a single-valued function of E,p,
so that (7.13) can be replaced by the different form (7.12). We can verify that
this satisfies the condition (7.11) for arbitrary proper orthogonal values of Q,;.

*E, pis syrhmetric in A, Band E44, .. 4, is completely symmetricin 4,, 4,, ..., 4g.
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In order to illustrate the use of equation (7.10) we consider, for simplicity,
- the case when only monopolar and dipolar stresses and body forces are present.
The general case follows in a similar manner apart from extra algebraic com-
plexity. Equation (7.10) reduces to

Q(Té - U) - 9’—1-& + 4 (074,45 + QE,."l‘@s’) A 05,4044, 20, (7.15)

2
where .
s U &, U g U o
U—-ﬁ- +m EA_B+m~EAA,A.+ 746
aUu : )
Tt 0EA4,..4, Bas..a, (k=2).

To avoid ambiguity we assume that U in (7.16) is arranged as a symmetric
function of E44, and a symmetric function of E,, 4, (B=2,...,4) as far
as the indices 4,, ..., Ag are concerned. From Section 3 we have

Ep=A4,;%; 4%;p, (717)
EAA,A. =3 A4;;(% 4%, a,4,F %4 % a,4,) F Aiiii %i 4 %4, %y 4, (7-18)

so that, with the help of (7.16), the inequality (7.15) becomes

U\ & T U
Q(T — K) S — Q’T K] + (O'i,i,i—‘ QX 4%i,4, x;,ydlm) A“:". +
! oU

+ 2 [aﬁ‘i’i teR it o — (% 4% aa,t %oa%iaa) 0EAs4,

U (7.19)
—20%; 4 x;‘,Bm] A‘.,.‘ —

oUu . U .

T 0GB ag, Pt~ T g a4, 20.

For a given deformation and entropy, at a particular time, this inequality
must be satisfied for all arbitrarily* assigned values of S and velocity gradients
Aiis Aiiys -5 iy i, - Now E.AA‘.__A“'. (#=3) can be expressed in terms of
A iy B=p,u—1,...). We choose S, 4;, «voy Aiiy.i,_, to be zero so that
(7.19) becomes

=t — e Faa

A

. x,-m A,

iy =0
for all arbitrary values of A, positive or negative. In general this will
only be possible if

oU

.7 L. 7% N 7 =0
0EAd4,..4, A TwA T T dn T

or, since ¥; 4 is non-singular,
U

'* Subject to symmetries in the indices which are already taken into account by

the manner in which U has been symmetrized. We can choose S independently of
the velocity gradients and then », the heat supply, is determined from (6.16).
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Hence U is completely independent of Ey,.. 4,. Similarly, we can show that
U is independent of E 4, 4, -, ---» E44,4,4,- Equation (7.19) then reduces to

U
Q(T — —) S Q’ 4 + (0'1.5,1 Q%44 %\, 4, x‘nﬁn m) $hdy +
1 . U
4+ > [a,-,-,,-,,- +oE+a,;— Q(";'.,A iy Aydyt %4 % 4,4,) 9EAA 4, (7.21)

—20%; 4 %,8 aaTU—] Ay 20
for all arbitrary values of S 4;;, A,,l,, at a glven deformation and entropy,
~ at a particular time, where now
U=U(E, 5, E4a,4,, S)- ' (7-22)
Following an argument similar to that used above we see that*
i '

=235 (7.23)
U
Ttiniadi = @ %, 4 %t iy 4, 5 (7.24)
| ' oU
0.1'1"+ Ojiyi,j + e E,i = Q(xi,A xi,,AlA,+ X, A xi,AlA') 2Eadd. +

' ‘ e 2

+20%; 4 % 520 (7.25)
. Q i4 % B GE
- and

—-Q,T,;=0, (7.26)

where oy;,;,; is the part of o;,; symmetric with respect to 4, 7,. Moreover,
if we substitute the results (7.22)—(7.26) into (6.16) for the case when only
monopolar and dipolar stresses and body forces are present we have

gr—Q,,—gTS 0. (7.27)

We observe that equation (6.15) is now satisfied Ldentlca_lly by (7 25).

From (7.24) we see that only the sylmnetnc part o) of 0;,;; is given in
terms of the internal energy function U, while the skew symmetric part ay;,;,j;
is undetermined. If the body force F,; is specified then equation (7.25) shows
that the stress o; ; is' undetermined to the extent of an additive stress —oy;i,;-

Since .
O%5414,74, =0 (7.28)

it follows that the stress — 0Ofjiy)i;; Makes no contribution to the equations of
motion (6.13): Moreover, the rate of working of the stress —ay;;,;; and the
dipolar stress oy;,;;; over any closed surface 4 inside the' body, or over the
complete boundary of the body, is

Af (— M4 0tj5y5, Vi + M O 15 s, ) 44

,. (7.29)

=f”k(°'[k,‘]i § dA- f "[k:]- ), jxdV =0.

* The multipolar body forces F, ;... are assumed to be given at time . The

arbitrary choice of velocity gradients of all orders at .the particle #; 1s possible if
the body force F, is chosen suitably throughout. the volume.
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In deriving the equations of the present section from the equations of energy
and entropy balance, we made assumptions (7.4)—(7.6). ‘When we confine at-
tention to stress and dipolar stress we see, from (7.19), that it is only necessary
to assume* that oy;;,; and 0;;+ ¢ F,,; 4+ 0;; ;, ; depend on the functions displayed
in (7.2). It follows that the undetermined part oy ,,; of the dipolar stress may
be regarded as an arbitrary function of position and time, with a corresponding
contribution — oy;4,,; in the stress ¢; ;. We shall see in Section9 that the surface
values of this system of stresses and dipolar stresses play an important role
in determining correct boundary conditions.

Formulae for the general case when multipolar surface forces and body
forces up to order 2" are present may be found by a similar process. It is, how-
ever, somewhat more convenient to obtain such results in a different notation,
and details of this are given in Section 8.

For some purposes it is useful to express stresses in terms of the Helmholtz
free energy function : '
A=U-TS, (7.30)

where, with the help of (7.23), S is expressed as a function of T and E g, E 44, 4,,
and A4 is also expressed as a function of these same quantities, so that

A=A(E p, Egyg4,, T)- (7.31)
From (7.23), (7.30) and (7.31) we then have
_ o4
S= 5T - (7.32)
Also, (7.24) and (7.25) become
’ o4
Oliyig)s = @ %4, 4 %4, 4, %y, A FEana, (7.33)

i+ %t e By
_ 24 &4 (7.34)
=0(%; 4 %ip a4, F %ip 4 %iaa) 55 —— T 20% 4% B —-
. aEAA,A. aEAB

8. Elasticity : Alternative form

In this section we give an alternative formulation for the theory of gen-
eralized elasticity discussed in Section 7, which is more convenient when multipolar
stresses of order greater than 2 are present. As in Section 6 we consider an arbitrary
material volume V in the continuum bounded by a surface A at time ¢, and
we suppose that 1} is the corresponding volume in the initial undeformed state
of the continuum, bounded by a surface 4,. Let the outward unit normal
at A, be n,, referred to our fixed rectangular frame of reference. We now define
a force vector p;, associated with the surface 4 but measured per unit area
of the surface 4,, in a2 manner similar to that used in Section § in defining ¢;, so
that the rate of work of this surface stress, per unit area of 4,, is

Piv; (8.1)
and the total rate of work of this stress over the whole surface A4 is
Jp;v;d4,. (8.2)
4,

* See also Section 10.
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Similarly $,4,..4,¢ is a distributed surface force 2"-pole of the first kind, as-
sociated with the surface 4 but measured per unit area of 4,, if p, 4,5 a
tensor such that

Pa,AyiVidp.d, (8.3)

is the rate of work of the multipole*, per unit area of 4,, and
AfﬁA....A\,i‘vi, 4..4,84, (8.4)

is the total rate of work of the multipole over the surface 4. In (8.3) and (8.4)

S i’ B (8.5)
t,d;...4y aXA;---aXAv M N

The surface force multipole g, 4, is associated with a surface A but meas-
ured per unit area of 4, whose unit normal is #n,. When 7, is a unit normal
at X, to the Xg-plane through this point we denote the corresponding stress
multipole by

TCBA,...Ayi* ' (8-6)

This is a stress multipole associated with an element of area at the point x;
in V whose original position in ¥, was perpendicular to the Xp-axis, and meas-
ured per unit area of this surface in V. The rate of work of such a stress multi-

pole is .
B A, ... Ayi Vis 4y Ay (8.7)

per unit area of surfacé in ¥, normal to the Xp-axis.

Body force F; per unit mass may be defined as in Section 4 and the total
rate of work of F; throughout the volume V can be put in the alternative form

Vf eoFiv;dVy (8.8)

where g, is the density of the initial volume ¥,. Similarly, multipblar body
forces F, 4,;, per unit mass, may be defined so that their rate of work is

Ey o a,i% a4, (8-9)

per unit ma.és, for all arbitrary v; 4 . 4,, and total rate of work throughout V is
l;"Qo Ey . a,iVi4,..4,4V. (8.10)

The energy equation (6.1) is now replaced by

[eovi;aV+ [ 0o 0‘1%:.{[@0'4‘@02 Ey . 454 vi,A;...A,]dVo“fhodAo‘!' :
Vs 1A Y B=0 i ) Ve (8.11)
+ [ 2 P4, apiVia,..4,840,

A4, p=0 .

* ba,.. A6 IS, completely symmetric with respect to the indices A4,, 4,, ..., 4,.
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where h, is the flux of heat across the surface 4, measured per unit area of 4,.
The entropy production inequality (6.2) becomes

'fgos'dvoff ot dVo+f%dAogo. (8.12)
1A Ve 4,

We also assume that the heat flux vector in the volume V is ¢, such that the
flux of heat across a surface in V, whose original position in V, is perpendicular
to the X -axis, is ¢, measured per unit area of the surface in V.

We now take a volume ¥ which is such that in V} it was a tetrahedral element
bounded by a plane with arbitrary unit normal »n,, and by planes through the
point X, parallel to the coordinate planes. Then, with an argument similar
to that used in obtaining (6.4), we have '

(Pi—ma7mq,) v; +ﬁzl(PA....A,i — Mg a,.. Api) Vidy.. 4y — o+ 1494=0. (8.43)

We restrict further attention* only to the generalized elastic case in which |

Pay..agi=20a,..4,i(S "5, %5 4, -, %i 4, 4,)» (8.14)
TB ;... Api = TBA,.. . ApiSs ¥iays-es %iay..4,)» (8-15)
=94 (S % a,s - iyt Toays -0 T, 4,..4,) (8.16)
ho=ho(S, % ap s ¥ia a0 T,a05 -2 T, 4,8, M8) s (8.17)

in addition to assumption (7.1) for U. Since (8.13) is then true for all v;,
Ui 4y» +-+» %, 4,..45» Which can be chosen arbitrarily and independently of each
other subject to symmetries in 4,, ..., 44, at a given state of deformation at
time £, we have )

pi=npng,,
Pa,..4pgi =MBTBA, . Apis (8.18)
hy=mn,4q,.

With the help of (8.18), equations (8.11) and (8.12), applied to an arbitrary
volume V,, yield | :

(7358 + @0 F;— 0o¥:) Vi + 007 — 44,4 —Qo(}'*'

+ (®payi, B+ Qo Fayi + Ta,s) vi 4, +
(8.19)

k4 .
r
+p§2 (7B 4,...4piBF Mg Ay...dpoyit Qo LA, a53) Uity ap +

+ ay oty a,i ViAo, =0,

* Most of the results in the rest of this section are not, in general, valid for other
kinds of constitutive equations. Assumptions (8.14) and (8.15) could be replaced
by the assumptions that the multipole stresses do not depend explicitly on velocity
gradients of all orders up to ». See also Section 10.
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and
. T
905_3%1+11f1_%_.¢go. (8.20)

If we combine (8.19) and (8.20) and use the assumption (7.1) about the form
of U, we obtain the inequality

U\ & T : .
QO(T—ﬁ) S— qATA + (-”‘Bi,s'l"QoFi—Qo”i) v+

N au
+ (nBA,i,B + 00 Fy i+ ®upi — Qom) Y4, T

S U I
+p§g(ﬂ34.mdﬁ,3 + Rapa,..45_iT Qo F4,. 45— Qo it ds ) Vi 4.4, + (8.21)
oU
+ (n“"f"*""‘vf' ~& m) Uity s —

ou au

=0 Y; cer — _Y 20.
90 3xi,A,...Av+, YAy Avia 00 a/’ﬁ,A,mA,‘ b dy Ay =

For a given state of deformation and: entropy at time ¢ this inequality must
be valid for all values of 5:, Vi, Ui 4, --> Ui 4,..4, Which can be chosen arbi-
trarily and independently (» then being determined from (8.19)). It follows
that U in (7.1) reduces to

U= U(S) xi,A, RS xi,A,...Av.H) ’ (822)

and hence by the discussion of Section 7 it can be further reduced to the (different)
form ’ -

U=U(S,Egs, Esn,4,s > Enay..4,,,)- (8.23)
The classical equation of motion
7,5+ Qo Fi=00¥; - (8.24)

follows from (8.19) by the same argument as that used in obtaining (6.13) from
(6.12). Also, from (8.21), we have

T— %‘S’l (8.25)

g i+ Qo Fuyi+ Apayip = Qo% ) (8.26)

Ma,ayi+ 0o Fayayi+ B aya,i 8= Qoafgz , (8-27)
“(A.,-A,...A‘,_,);_-l- CoFy. a,it B4, 4,i8= Qo%: ) (8.28)
ToA i dy AP = 9°_8;§:4%: ) (8.29)

—aT 420, (8.30)

where %4, . 4,..45)i (B=1,2,...,%)is the completely symmetric part of ;g 4,.. 44i»
the multipolar ‘stress already being symmetric in the indices 4,, ..., 45. With
the help of (8.24)—(8.29), equation (8.19) reduces to

06” —qu,4— 8T S=0. (8.31)
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The classical equation of moments which corresponds to (6.15) has not been
written down explicitly in the present notation. It can, however, be shown
that such an equation is satisfied identically by the expressions (8.26)—(8:29)
in view of the form (8.23) for U.

When »=1, so that only stresses and dipolar stresses are present, we have

ou
T4, 48 = 9°—___6x.-, ' (8.32)
au
M= — B Aa3i,B— TB 4B — CoFai— Go5—, (8.33)
ax"A‘

where g, is the undetermined anti-symmetric part of mg,,;. These results

are equivalent to those obtained in Section 7 and will not be discussed further

here. In order to interpret the formulae (8.26)—(8.29) when »>1 we consider

in more detail the case y=2, '
When »=2 we have

_ oUu

= %4, 4,4, 4, °

Trdy 4, 43 (8.34)
where 74, 4,4,: 1 the completely symmetric part of 7, 4 4,;. We shall now
write this latter quantity as my, (4, 4,); to emphasize that it is symmetric in the
indices 4,, 4,, and we have

7B (4,4,)i =B A A)i T % {2"3 (A3 45)5 — TA, (B A — nA.(BAgi} . (8-35)

The completely symmetric part g4 4,; of the multipolar stress 7g 4, 4,); is
given in terms of U by (8.34) but the part in brackets { } in (8.35) is undeter-
mined. Next, from (8.27), we have
(4,4 = — Q0 Fa, 4, — B 4, 4,6, B — QogxfTU:;'- (8.36)
Since
Ty Ay i = T4, 4,y T T4, 4,05 8.37)

we see, from (8.36) and (8.37), that if the multipolar body force F, 4 ; is pre-
scribed then 7, ; is given in terms of this and the internal energy U, apart
from an undetermined additive multipolar stress

a4, — {278 (4, 4,0 — Tay(Bayi — Toa (B AY},B- (8.38)

The stress 7, ; is then given by (8.26) in terms of multipolar body forces and
the internal energy U apart from an undetermined additive stress

—RcayicT %‘{2”3(4,0)6 — R4,(BC)i — TC(BA,)if ,BC* (8-39)

The undetermined additive stress (8.39) makes no contribution to the equa-
tions of motion (8.24). Also, the rate of work of the undetermined parts of
the stress and multipolar stresses over any closed surface inside the body, or
over the complete boundary of the body, is zero. The actual values of these
stresses on the surface of the body play an important part in determining correct
boundary conditions.

24*
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Apart from extra algebraic complexity the general case in which we have
multipolar stresses of all orders up to 2” yields similar results. The multipolar
stresses are given in terms of the internal energy U and multipolar body forces,
apart from undetermined multipolar stresses which make no contribution to
the rate of work over any closed surface in the body, or over the complete
boundary of the body. The surface values of these undetermined multipolar
stresses contribute to the surface conditions.

In the next section we examine the question of surface conditions for the
case when only stresses and dipolar stresses are present. An examination of
the general case will follow similar lines but will be considered later.-

9. Boundary conditions
Before considering boundary conditions it is convenient to put the results
of the previous section in a more general notation.’ Let points of the initial
body be defined by a general curvilinear system of coordinates #4. At each
point in the initial body we then have base vectors g, and g# with correspond-
ing metric tensors g, 5, g*% such that

94 95=84B> gt g% =¢*%, g'-gz=165. (9-1)

The displacement and velocity vectors u, v of a point #* of the body may then
be expressed in the forms \

u=u, g =g, v=u=v,9"=v'g,. (9.2)

Since coordinates x; of points-in the deformed body are functions of X,,¢
we may also regard them as functions of #, ¢, and 9 = constant also fo-rm
surfaces in the deformed body. Associated with a surface 4 we may define
contravariant components of surface force and multipolar surface force pE, phr-AnK

B=1,2,...,% which are such that their rate of work per unit area of a surface
4, in the initial body, whose unit normal is ¢n, is '
P, phA9Kvgia a,, 9.3)

respectively, per unit area of Ay. In (9.3) vki4,.. 4, denotes covariant diffgrenti_;.;.-
tion with respect to #® using Christoffel symbols obta.in\ed fron? the metric
tensor gg. Since the space is Euclidean the order of covariant.: d-1fferen.t1at.1_on
is immaterial and p%~4s% will therefore be completely symmetric in the indices
Ay, ..., As. We shall also put )

o”=”AgA=”AQA . 9.4)

When ¢n is a unit normal to a ®#P-surface in the initial body we denote the.

corresponding contravariant. components of the stress multipole by . »

) _ nBA,...A,'K, : \(95)

acting on the #P-surface in the deformed body. If we .have'.an elastic body
then equations (8.18), in the present more general notation, give

?K = nB nBKp

pA,...ApK' =ng nBA,...A,'K_‘

(9.6)
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If F4--4sK are contravariant components of body force per unit mass their
rate of work is

FAsK gy g4, 9.7)

The function U in (8.23) can be expressed as a different function

0XB
U= U(S, YAB> VA4 Ays ++ 1 VAA .. Aysyr W)’ (9.8)

where

__ 1 8X°¢ axp — bcp)
VAB—EWW( cD cp

_ 1 6x,- 6x,__ aXD —a;XA
T2 |e04 o8B 294 998

0XB oXB.  9XBs
VA dp = Fo4 ppd " FYVP Eps,..By» (9.10)

for f=2,...,v+1.
Formulae (8.26)—(8.29) are now replaced by

(9-9)

nA,K_FQOFAlK_i_ﬂBA,KlB:go%L (9.11)

A AK 4 o PAAK | pBAAK]| _QOa_uzZ_lA’_, (9.12)
n(A.,A,Av_x)K + .QO.F;d,....;!vi _.i_'nBA...-A‘vKIB = Qoﬁ , (9.13)
: aAverdic ANK 9"%:)3—4”1—' (9.14)

We restrict our attention here to an examination of surface conditions when
only monopolar and dipolar surface forces are present, so that

n“xK —_ e n[BAI]KIB + foK’

yvA:AnK — n[AlAl]K + n(AzAx)K’ (9‘1 5)
where
(A 4D K _ ou
7 Qo uxiag (9.16)
K, FAK _ o BAYK ou
JM =00 T |B+90 (9.17)

ouK|a,

The dipolar stress a4:+4)¥ js given in terms of U and %X is given in terms of

U and FAX,

" We suppose that the initial body is bounded by a surface 4,. We choose
the 94 coordinate system so that the surface 4, is given by #3=0 and so that
the #-curves are normal to the surface, The #* coordinates, where Greek letters
take the values 1, 2, form a curvilinear net on the surface 4, with corresponding

metric tensors a,4, a*® and curvature tensor baﬂ, all these tensors being sym-
metric. Also for the surface A4,,

ny=mn,=0, ny=1, (9.18)
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so that, from (9.6) and (9:15),
PAK = pP4IK | 7K
pK = — plBOK| 4 pK

Covariant differentiation in (9.19) is with respect to #4 using Christoffel symbols
formed from g,p, and evaluated on #3=0. The second expression in (9.19) can
‘be replaced* by :

(9.19) .

$o=— nlPN3|, _p, 2PN fi3,
?a=_n[ﬂ8]¢lﬂ+b;n[ﬂ8]8+fla’

where the vertical line in (9.20) denotes covariant differentiation** with respect
‘to 9* using Christoffel symbols formed from the surface metric tensor a,5. In
" obtaining (9.20) we have also used the fact that aBA1X js anti-symmetric in
A, B so that af*3X is zero. From (9.20) and (9.19), we have
— Pﬂslﬁ — ﬁﬂabﬁa =38 — n(aﬂ)slﬂ —_— n(’a)ﬁbé
pﬁalp + pﬁsba Iaa — n(aﬁ)al + n(ap)a ba
The right-hand md&s of equations (9.21) are known functions of F42 and U,
and hence of FAZ and derivatives of displacements. Covariant differentiation
in (9.21) is still with respect to surface coordinates 4%

The rate of work of surface forces and dlpola.r surface forces at the surface
A, depends on three components of £ and nine components of p4X. The first
of equations (9.19) involves six unknown functions n*#1¥ and equations (9 20)
involve these and their surface derivatives. If the twelve quantities p¥, p*¥
take prescribed values on the surface 4, then three equations (9.20) and nine
equations (9.19), are, in general, sufficient to determine the six unknowns ##31%
and also to provide six conditions to be satisfied by derivatives of the displace-
ment. In fact, these latter conditions are given by equations (9.21), and (9.22)
(see below) which do not involve ##%X, values of #*1X then being given by
(9.19), for A=1, 2. Surface values of the undetermined dipolar stress z#*¥ thus
play an essential part in the surface conditions and enable us to prescribe values
for all the components of surface force and dipolar surface force p¥, 4% on 4,.

Instead of prescribing values of the surface force and surface dipolar force
we can prescrlbe values of. the surface displacements and the surface dipolar
forces. This gives twelve conditions which, with the help of (9.19),, enables
us to find the six surface values of (41X and six conditions on' the surface .
values of the displacements and their derivatives. Since

POE = 39K (9.22)

do not involve nt*#1X the six conditions on the displacements and their deriv-
atives at the surface are given by the specification of #, and z®*®¥ at the surface.

A discussion of the general case when dipolar surface forces up to order 2’
are present is postponed, but sufficient work has been done to indicate that
when »=2 we have enough unknown functions to enable us to prescribe values
for thirty multipolar surface forces p%, p*X, pAPK.

* See, e.g. GREEN & ZERNA (1954), p. 36.
** Covariant differentiation in the surface is no¢t independent of its order.

(9.20)

(9.21)
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. 10. Constitutive equations v
In this section we discuss the formulation of constitutive equations which
may, in certain cases, be appropriate to theories in which multipolar forces -
are present and which are not included in the restrictive assumptions of the
previous Sections 7, 8. For convenience we collect here all the basic equations
of Section 6. We have first the equations of motion (6.13) and surface con-
ditions (6.6): _ ‘ A
;i +eF=g,, (10.1)
t"=”7‘0"~". (10-2)
Next, adopting the notation =
Ot e Bt 0540 =0,
Oligsy.. ’-—1)5+ @ E; viei T Gjs,.. Sty ] a;.;, e (a =2,...,9), (103)

O'(t,.,.p,... W) o'iv.,.;i,... ')

where ;. ;,_yi is the completely symmetric part of a;,; ., ,; with respect
to the indices 4y, ..., 74—y, %, and o;_; ;i (x=2, ..., ¥+ 1) is completely sym-
metric with respect to 4, ..., %,, equation (6.16) becomes

er—0;i—e U+ 30;,4;, + Z;Ei.;,...i,_,;Aii,...i. +Giypriynividis. iy, =0, (10.4)
—

where, from (6.15), we see, that

0"'“'= 0'“‘. : : (10.5)

‘Also, if )
ti,....',.'—”,-Gfip..s.s=§,...s,e (=1, -vw"’) (10.6)

h—n;Q;=h,

then, from (6.11) and (6.10), we have
%t:',iAu, +a§2t:‘,...i,iA‘ii,...i. —h=0, (10.7)

=t (10.8)
The entropy production inequality remains in the form (6.2)

fgé‘d_V—fg%dV—{—f%dAzo. (10.9)
1 4 | 4 A

The quantities t_,l .ipi are tensors which are completely symmetric with respect
to the indices 4,, ..., %, but, in general, 3;; ;; are tensors only with respect
to the indices 4y, ..., 7., 7, being completely symmetric with respect tof, 7, ..., 4.

An inspection of (10.4) and (10.7) suggests that constitutive equations are
required for the quantltles t .igi and G;; ;. Here we restrict our attention
to materials for which th,_,,‘, (a-—i ., and 4 do not depend explicitly on
velocity gradients of all orders 1, 2,,..., », and hence do not depend explicitly
on A;;, ..., 4;, . i,- Since these latter quantities can be chosen arbitrarily and
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independently of each other, subject to symmetry restrictions, it follows from
equation (10.7) that ¢ _;; (#=1,...,v) ahd A are zero and that

ti,...t'.,s i Gjiy . igi (¢=1,...,v),_

h=n;Q;.
Another way of obtaining equations (10.10) is to assume, as a part of our con-
stitutive equations, that the multipolar forces ¢, ; ; (x=1, ..., ») depend linear-
. ly on the unit vectors #,. Since these are gy ; ; when #, is normal to the
%;-plane, equations (10.10); follow, and then (10.7) yields the result (10.10),.
From equations (10.10), we see that g;; , ; transforms as a tensor with respect
to all the indices, including §, under changes of rectangular Cartesian axes,
where the multipolar ‘stresses in each coordinate system are associated with
the three coordinate planes in that system. It follows from (10.3) that &, _;_,
(@=1, ...,7) and G;; transform as tensors with respect to all the indices (we
already know that o;; is a tensor).

We now suppose that the multipolar stresses g;; ; ; (#=0,1,...,%) asso-
ciated with the x.-planes at time ¢ correspond to a deformation of the con-
tinuum given by (2.1), and that corresponding to the deformation (3.1) we have
multipolar stresses off, _;,;. If the superposed rigid body motions for all time
do not change the values of multipolar stresses, except for orientation at time
¢, then*

(10.10)

Gm i = Q3 0, -+ Oinin Ors Osiy i » (10.11)
and hence, from (10.3),

m i =030, -+ Qi Qrs sy i (10.12)
if we assume that the multlpolar body forces EF,, ..., E, ;,; are unaltered,

except for orientation**.

Suppose now that all the multlpolar body forces F,_;; (x=1,...,v) are
specified and that constitutive equations have been obtained for g, ., ; (xa=
1,2,...,v+1), where g, ;;is completely symmetric with respect to the indices
%y, ..+, %,. The multipolar stresses o;; ;. _,i (@=1,...,741), with stress o,;
corresponding to a=1, are symmetric with respect to the indices ¢,,...,4,_,,
and in order to see what information we have about these stresses we consider
the special case of equations (10.3). with y=2. Thus, the completely symmetric
part of o;,4,); which, as indicated by the brackets, is symmetric in 7y, 45, is

: Oiyininys = Oiyinini =Tiyiiyi ‘ (10.13)
and is known. We put :

o‘a (Biha)d a('a‘:'a) + + {2 0',' (i) 0',‘ (fa7,) 4 o"l (8a%1) '} (1 0. 14)

* We have already used the assumption that oj;, .4, is unaltered by superposed
uniform rigid body translations and rotations, the body occupying the same position -
at time ¢. This is now included in our prese,nt assumption as a special case.

** More generally, multipolar forces minus appropnate inertia terms are un-
altered, except for orientation. An alternative approach is to assume that U, (0 FN
Ficipoiaey (@=1, .o, y+1), B igi (@=1,. ..,v) and h are unaltered by superposed
rigid body motlons -apart from orxentatxon at time ¢, so that the left-hand sides of
(10.4) and (10.7) are then unaltered.
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so that, from (10.3), we have

Tisis = Tiiys — 0 Fiii — Gjiii i — §{20 606 — Oigjigyi — Oigiin i}, 5+ (10.15)
Also

a"l‘:’ 0(':'1)' + a[':‘l]” (10'16)

where oy; ;,;; is skew symmetric in 7,, 7,. It follows from (10.3) and (10.16) that
the stress o; ; is determined apart from an additive stress

— i + 3 {205 6,8: — Gigys — Origiyi}, jas . (1047)

which does not contribute to the equations of motion.- The rate of work of the
undetermined parts of the surface force and multipolar surface force over any
closed material surface inside the body, or over the complete boundary of the
body, is zero. As in Section 9, the value of these forces on the surface plays an
important role in determining correct boundary conditions. Apart from extra
algebraic complexity the general case in which we have multipolar surface
forces up to some order 2’ yields similar results. When multipolar body forces
and the values of 6; ;; (®@=1,2,...,»+1) are known, the stress and multi-
polar stresses can be found, apart from undetermined multipolar stresses which
make no contribution to the rate of work over any closed surface in the body,
or over the complete boundary of the body. The surface values of these un-
determined multipolar stresses contribute to the surface conditions.

We next consider a class of constitutive equations* for 5; ; ; (x=1,...,v+1)
where G, _; ; is symmetric with respect to 4, ..., 7,. We restrict our attention
here to the assumption that &; ; , depeénds on the deformation gradients, the
velocity gradients, ..., N velocity gradients (say) of all orders (up to the u'?),
all measured at tlrne t so that

_ 1 N
Gi,...izi=¢i,...£.i(xp,A,...4,rv;,)q,...q,:'- vﬁ,,,}l ) (10.18)

for a=1,2,...,v+1; f=1,...,u

. With the help of (3.11) equation (10.18) can be expressed in the different

form
6",...!1:1' = wﬁ...i,i (xﬁ,A ’ xP,A,...A, ’ vj(hl;)q; .. v(pl,vgl A(plq)l ggr o A(plzlq‘) (10-19)

for =1, ...,v+1; f=2, ..., u, where ¢; ,;is a single-valued or polynomial
function of its arguments according as ¢;_; ; in (10.18) is a single-valued or
polynomial function of its arguments.

We now consider another motion of the continuum given. by- (3.1), with
1*¥=1, which is such that at time ¢ the continuum occupies the same position
as for that defined by (2.1). Then, using equation (10.12) and the results of

Section 3 with Q,;=34,;, we have
{1) * (N 4(1)
Diy..igi (xP.A 4 xf’w‘: Aﬁ’ P q -+ Up, '(I ’ AP?: 7 R Ag\q?qn) (10 20)
(1) (1) : )
= Qiini (Bp, a0 Xp 4yt Upgs - ”%: Apgrggr e A(Pﬁ---qﬂ) ,

since, from (3.9), A3 , =A%), (8=2) when Q,;=3;;

* In Section 7 the constitutive assumption (7.2) should, at this point, be applied to
@i,...iy instead of o, ; ;.
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The limitations on the function ¢, _; ; implied by (10.20) can be made ex-
plicit by the procedure adopted by RivLIN & ERICKSEN (1955) or. GREEN &
RIVLIN (1960). We can conclude that ¢, _; ¢ can depend on v{l,, ..., of¥) only
through the components of N symmetric Rivlin-Ericksen tensors Ag}, A
defined in (3.8). Thus (10.19) may be replaced by the form

&h, i = %5 c.s(xl,,A, A,,A;q)l q,:""A(}g...q,) “ (10.21)

where a=1,...,v+1, $=1,2,...,4 and where the functions ¢;_ ,; are, in
general, d1fferent from those in (10.19), but are single-valued or polynormal
according as those in (10.19) are single-valued or polynomial.

We again consider the motion (3.1) but now Q,;=4,;. Using (10.12) and
the results of Section 3, we see that

’ 1 N
@i,...ini (xp_,A....A, s A};},.,.q, yoees A(pqz...qp)
= Qin'; Qf..-, S Qi.t'. jS‘Pi,..‘i,f (me Xm, Ay...Ag > (10.22)
1, v
QP' QP,S; wes Qﬂps‘ Ags)l_,,s‘ I RAAR] Qpr QP;S; cee QP‘S, Agsv;)....!‘)

for all proper orthogona.l Q;;- Following a method similar to that used in dlscussmg
the internal energy U in Section 7, we choose the value R;, for Q,; in (10.22)
and assume that ¢; ,; is a single-valued function of x, 4,..4, and either a
single-valued or polynomial function of A, . e L AR .qp- Then using the
result

R;y=x%; gM B4
we see that (10.21) reduces to

Tiyoins = %iy Ry - %ig Ra %i,R Pry..Rar (Eax,.. A,,D% .08) s (10.23)

where a=1,...,v+1; B=1,...,u; M=1,2,...,N; EAA,...A, are defined in '
- (3.6) and ‘ : .
DRY...00 = %p,p %p, 0, -+~ ¥pp, 05 A...00- (10.24)

Also ¢R. R.r is a single valued function of E, 4y...4p and a single valued or
polynomial function of D$Y .0s» and Pg _ g,r is completely symmetric w1th
respect to the indices R,, ..., R,.

If, in equation (10.18), the displacement gradients are absent the consti-
tutive equation refers to a fluid. We can obtain this case by taking the reference
state to be the state at time ¢ so that X;=x;. The corresponding final form
for @, is found, from (10.23) and (10.24), to be

0;igi=Ps.. m(Am 20 Q) (10.25)

where a=1,...,v+1; f=1,...,u; M=1,2,...,N. Moreover, &, ;is now
a hemihedral isotropic function of its arguments, and g is the density of the
fluid at time £.. '
11. Appendix 1

Let f,, ..., fv be a system of forces acting on particles at Q,, ..., Oy with
vector positions @, ..., ay relative to a point Q. Let = be the position vector
of Q relative to another fixed point O. Let us suppose that the particles at
0y, --., Oy are moving with velocities ®,, ..., »y. Then the rate R at which
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work is done by the system of forces is given by

N
R=3 fo-vp. (11.1)
Pl

We now suppose that the velocities v are functions of position in space
and time. Let © be the velocity at . Then, using Cartesian tensor notation,
we have R

1
| =3 —ra...al v i+ KP, (11.2)
a=0
provided the velocity » at @ has continuous spatial derivatives up to order
»+1 in some neighborhood of Q, where K{ is a remainder term. Introducing
(11.2) into (11.1), we have

v N
R=3F .iv%.i+2lPKP, - (113)
a=0 P=1 :
where
E _ii= Z aP .. aP P, (11.4)

If we define F,_; ; as given by (11.4) to be a simple force 2*-pole of the first
kind, then the rate of work R of the system of forces f,, ..., fy is equivalent
to the rate of work of simple force 2*poles (x=0, 1, ...,%), provided the re-
mainder term in (11.3) can be neglected. In (11 3) the rate of work of a simple
force 2*-pole of the first kind is

E iV . (11.5)

We may now generalize the definition of a simple force. 2*-pole of the first
kind by assuming that if, for all arbitrary velocity gradients v;; ., the ex-
pression (11.5) is a scalar which is a rate of work, then E, , ; is a tensor called
a simple force 2*-pole of the first kind. Without loss of generality it can be
talln to be completely symmetric in the indices %, ..., 7,.

12, Appendix 2
We consider an elastic material for which the internal energy U is expres-
sible in the form
U=U(S,Eqa,s -+ Epa,..a,)- (12.1)
Then from (8.26)—(8.29), we obtain* . ‘

oUu
A, ...A)i = Q0 %4 4 PEad,. 4, (u>1),

- oU
Ta,..a)it CoFu,..a,it B4, .4, B=00%; 4 s A (12.2)
dF=2,...,.0—1; u>2),
U
Tyt Qo As+ﬂBAsB—290 ;A,aE +Qozxg,.4, 4 3E gy (g=2),
U )
=20y % WA QE L (e=1).

* Before using formulae (12.2) U must be suitably symmetrized.
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If the elastic material is symmetric in its reference state, U must be a scalar
invariant of the tensors E g4, ..., E44,..4, under the group of transformations
describing the symmetry. In the particular case when the material is isotropic,
the group is the full or proper orthogonal group accordingly as the material
does or does not possess a centre of symmetry.

We shall consider that U is a polynomial in the tensors E A4, 4, (B=1, ..., 1)
defined by

. EAA, = EAA, - 6,4,4,,
EAAx---Ap =EAA,...A, ([3’—‘2, ,/,L)

Then, it must be expressible in the form

(12.3)

U=2Ky4,.4, BB,..Bu..CC.Cu, Ean, .4, Ens, .3, - Ecc,.c,,» (12.4)

where the K’s are constant tensors. If the approi)riate symmetry group is the
full orthogonal group, the K’s in (12.4) may be expressed as the sum of outer
products of Kronecker deltas with scalar coefficients. Then, only terms for
which p; +pe+ -+ +u,+v=y, say, is even can occur in (12.4) and a typlcal
term in the expression for U is

Const. X 8p,5,0p,p, -+ Op,_,p, Eus,..4, Ess, .5, Ecc,..co,» (12.5)

where p; ps ... p, is a permutatlon of A4,...4, ...C,,.
terms we may bear in mind that E Ady.. 4,18 unaltered by permutation of 4, ... 4,
({f=2) and EAA is symmetrlc in 4, 4,.

If we assume EA A,..4, (@=1,..., u) to be small enough, we may approxi-
mate (12.4) by

In writing down such

B ' ~ [od ~ ~
U=C +pZIHAA,...Ap Eq4,..4, '*; VZ:IKAA,...A,BB,...B,. Eq4,..45EBs,..B,» (12.6)
where C, the H’s and K’s are constants. We may, without loss of generality,
omit the constant term C, since the forces, monopolar or multipolar, involve
U only through its derivatives. If, further, we assume that when the deforma-
tion ‘gradients and body forces of all orders are zero the stresses of all orders
and their spatial gradients are zero, the H’s in (12.6) are zero. We then obtain

U ﬁZf{AA, .ApBB,.. B.,EAA, A,EBB, .By» - (12.7)
=

where we may, without loss of generality, take the K’s to-be unaltered by inter-
change of the 4’s and B’s and completely symmetric with respect to 4,, ..., 4,
and By, ..., B, for §,y=2. Also K, pp, is symmetric with respect to 4, 4,
and B, B,.

Introducing (12.7) into (12.2),, we obtain

u N
T4, .. 4,) i = 200 %i, 4 ZIKAA,...A,.Bb,...B, Epp,.., (u>1). (12.8)
y=

We now write v
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in the expression for E A44,..4, and neglect terms of higher degree than the
first in &. We then obtain

Efa,.a,%4,4,.45=2€44,..4, 8>1),

(12.10)
Egq,motg,4,+ %a,4=2¢44,-
Introducing (12.9) and (12.10) into (12.8) and neglecting terms of higher degree

than the first in &, we obtain
»
T4, 4,0i =400 ZlKiA,...A“BB,... B, €BB,..B,- (12.41)
from
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