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1. Introduction 

In [1] a general dynamic model of  a continuum with microstructure was 
proposed which is inspired by (and contains as special cases) known models 
for continua with voids, liquid crystals, multipolar media, etc. The elementary 
background which supports the proposal was described at length in a course of 
lectures [2] at the Banach Institute, Warsaw, and reported later in a paper [3]. 
Further arguments in favour of the model can be found in [4], where, in particular, 
the case of  a fluid with microstructure is studied in some detail. 

Here I suggest that a related concept of latent microstructure can be useful 
in offering an interpretation of constitutive prescriptions involving displacement 
gradients of  higher order, an interpretation which allows one to circumvent a 
known incompatibility of some of those prescriptions with the Clausius-Duhem 
inequality. The suggestion is in line with an early remark of TOUPIN (see [5]) on 
the possible identification of certain materials of second order with Cosserat 
continua whose microrotations are constrained. 

I give complete developments only for a few special cases, where the essential 
ideas are easily illustrated, avoiding too complex formal developments. Also, in 
those cases, developments are strictly linked with recent work by DUNN & SERRIN; 
and, actually, direct inspiration for this paper came from their report [6]. The 
introduction they propose of an additional term (the interstitial working) in the 
equation which expresses the balance of energy finds below another justification. 
Their end result (a subcase of Korteweg fluids is compatible with the Clausius- 
Duhem inequality) finds also support; but, besides, here a path is open to discuss 
more complex cases excluded by their premisses. 

In Section 2 and 3 I recall briefly the approach proposed in [3] and [4] in a 
form most suitable for the present developments. In Section 41 illustrate the con- 
cept of latent microstructure and deduce some immediate consequences. In Sec- 
tion 5 I introduce the simplest ease of  internal constraints and derive reduced 
balance equations, to mirror closely the developments of DUNN & SERRINo 
Finally, in Section 6 and 7 I consider two special cases of  elastic fluids. 
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At a recent meeting (Oberwolfach, Jan. 1984) Professor MAUGIN asserted that 
the subject matter of Sections 2 and 3 is exhaustively treated in some of his papers, 
in particular in [7]. 

2. Continua with Lagrangian microstructure 

A body ~ (a set whose members ~ are material elements) is said to be a con- 
tinuum with microstructure if the following properties apply. 
(P1) There is a differentiable manifold .~ of finite dimension q whose members 
are the microstates (or sets of order parameters). Over .~ a group operation of 
rigid rotation is defined; i.e., given any proper orthogonal tensor Q and any 
v E .~ a unique ~{o) is determined with the properties. 

~(o(l)o(2)) : (~(O(2)))(Q(1)), ~(1) : ~, 

where Qo), Q(2) E Orth + and 1 is the identity tensor. 
(P2) A class c~ of mappings (called here complete placements) ~ -+ 8 • (o ~, 
three-dimensional Euclidean space) exists 

x = x(~), ~ = r(X), x E 8, �9 E -~, 

such that: 

(i) the apparent placement x : x(s is a one-to-one mapping of ~ into $', 
as in the case of placements of ordinary continua; the range & ---- x (~)  
is an open subset of 8 ;  

(ii) any couple of apparent placements x'(s x"(~)  is such that the induced bi- 
jection of 9~' : x ' (~)  onto 9~" : x " (~ )  is smooth, again as in the case of 
ordinary continua; 

(iii) each complete placement (x, ~)E ~ is such that the mapping ~ o x --a of 
---- x(~)  into .~ is smooth; 

(iv) if (x, ~) E ~, then also all the placements (x ~~ v {~ ~ ) belong to c~, if 

x(~ : x(~)  q- c q- Q(x(~)  - x ( U ) ) ,  (2.1) 

with c any vector, 3~' a fixed element of  ~,  Q E Orth +, and ~(~) is specified 
in accordance with the rule under P1. 

Remark 1. Any manifold .~' which can be put into a sufficiently smooth one- 
to-one correspondence with .~ can be used to describe the microstates. Corres- 
pondingly the way different observers relate their measures of the order parame- 
ters (i.e., the specification of the operation of rigid rotation) must be appropriately 
adapted. The topological properties of .~ are of the essence when, for instance, 
defects in the microstructure are classified; these matters are not pursued here. 

Remark 2. Examples exist of different continua, for all of  which the micro- 
structure may be described by the same manifold 2, but to each of which a 
different group of rigid rotations over 2~ is associated. 
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Examples: 

(i) Cont inua  with voids. F o r  .~ the interval [0, 1) o f  real numbers  may  be taken;  
v is the scalar which specifies the void fraction. Rigid rota t ions  leave the micro-  
state unaltered:  v(o) = v. 

(ii) S tandard  model  for  nemat ic  liquid crystals. Fo r  -~ the set o f  diads c | c 
(c, a unit  vector) is taken;  -~ is i somorphic  to the projective plane, or to a 
spherical  surface where the ant ipodal  points  are identified. As a consequence 
of  a rota t ion specified by a tensor  Q the diad c | c goes into Q(c | c) Qr. 

For  the developments  below, the in t roduct ion of  further  nota t ion  is appro-  
priate.  Let  r be the vector  associated with the or thogonal  tensor  Q, so that  Q = 
exp e r (e, the Ricci commuta to r ) ;  then I write ~(r~ as an al ternative to ~(0), 
and call }~(~) the Fr6chet  derivative of  i f )  at v: 

dv ") 
}~(v) r : =  -~ - r  k=0 [r], (2.2) 

so that  
i f )  = v + ~(v) r -}- o([r]). (2.3) 

S(v) is a linear map  of  q/- (the t ransla t ion space of  8)  into the tangent  space 
3--~, at  v. 

Mos t  developments  involve only values of  v in a ' smal l '  subset o f  .~, which 
can be imagined covered by one chart  only. Thus  I use freely a set o f  local coordina-  
tes v~ (~ = 1, 2 . . . .  q) and also, at each ~, a corresponding set {r~} of  vectors such 
tha t  

(bl(v) r)~ = r~" r. (2.4) 

A mot ion  of  ~ is a mapp ing  of  a real interval [Vo, v~) into cg: 

x = x ( X , ~ ) ,  v = ~ ( ~ , ~ ) .  

Velocity v and generalized velocity v in that  mot ion  are 

v:  k(.~,~), v : = ~ ( . ~ , ~ ) ;  

notice that  v m a y  happen  to be any element of  ~//', whereas v(~,  v) must  belong 
to 3".~,_(~, r). 

O f  course, velocity and generalized velocity, at  a given instant r ,  can be also 
considered as fields on @, : =  x ( ~ ,  r), as tacitly implied by most  formulae  below. 
The  connected not ion of  virtual velocities, as fields on @~, will also be o f  use 
later. 

A velocity distr ibution is rigid (with translat ional  speed ~ and angular  speed w) 
if it has the fo rm 

v(~'(~, r) = ~(r) + w(r) x (x(a~, ~) - x(~', ~)), 
(2.5) 

~(~(~, r) = ~(~(~, ~)) w(~). - t 

When a local chart  is in t roduced and the nota t ion  (2.4) is used, the compo-  
nents o f  v (R~ can be writ ten as follows 

v ~  ) =  r .  "w.  (2.6) 
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As any ordinary continuum, ~ is assumed to have a mass, which can be ex- 
pressed as a total of a mass density e and which is preserved; during any motion 
the usual equation of balance of mass 

+ e div v = 0 (2.7) 
is presumed valid. 

On the contrary one can expect that micromotions contribute to the the kinetic 
energy of the body; it is a matter of convenience to define the order parameters 
in such a way that the kinetic energy of ~ reduces to the classical expression when 
v vanishes. Here I assume explicitly that the kinetic energy is measured, in general, 
by 

f e(�89 ~ + x(~, v)), (2.8) 

where ~r is a mapping of  the tangent bundle 3".~ of  .~ into R +, such that 

z(~, v) ~ 0, ~(~, o) = 0. 

Usually :r is assumed to be a positiw (semi) definite quadratic form on each 
3"-.~ ; in terms of  local coordinates 

q 

= t z (~)  v~,v~. (2.9) 
l 

Mechanical actions on ~ comprise the usual external body force of  density 
Qb (per unit volume of ~)  and the usual surface traction t. Besides, one must 
account for actions on the microstructure; they can be appropriately described 
around any element �9 by members of the cotangent space J -* .~ (E) :  an external 
body force eft, a resultant of internal actions --~ (both per unit volume of ~ )  

and a surface traction v (with components, respectively, efl~, --$~, v~). 
Mechanical balance is expressed by the usual equation for momentum 

(valid for any subset d of ~' with smooth boundary ~d) and by an equation mod- 
elled on the Lagrange equation 

(:r s = f r + f (Qfl - ~). (2.1 l) 

R e m a r k  3. Eqn. (2.11) is correct only if ~ is a quadratic form in v; otherwise 
the function ~ appearing in it must not be identified with the kinetic energy densi- 
ty; rather the latter is the Legendre transform v.' of  the former, or in terms of  
components 

~r l ~ - v v  v~--~r 

Below, as in (2.11), we presume that :r and g coincide. 
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Sufficient regularity of  t and z implies the existence of the tensor of  stress T 
and of a linear operator from ~ into ~--*.~, the microstress :a, such that 

t = Tn,  T = :an, (2.12) 

where n is the unit vector of  the exterior normal to ~d. Local balance equations 
ensue: Cauchy's balance equation 

9 x  ~ 9b + div T, (2.13) 

and a new balance equation for micromomentum 

9 - -  = g f l - -  ~ + d i v : a ;  

on a local chart the latter can be written 

(2.14) 

9 - -  ---- Qfl~ - -  + div t ~, 

where t ~ is defined so that (see (2.12)) 

Z "x ~ l ~ " n .  

(2.15) 

(2.16) 

Under appropriate circumstances (2.13), (2.14) can be deduced also from a 
variational principle; I refer to [4] for details. 

3. Balance of moment of momentum, energy and entropy 

A kinetic energy theorem follows from (2.13), (2.14); if d is any portion of 
where the motion is smooth, then 

( i  ~ ~ + ,,~) ~ ,s ~<,,., + ~._ _~, + ,,s ~,., +_~-_~ + 
- f (T. grad v + "~. grad v + ( .  v). 

g 

(3.1) 

The first two terms in the right-hand side express the power of  external actions; 
thus one is led to interpret the quantity 

- - ( T -  grad v + :a �9 grad v + ~- v) (3.2) 

as the density per unit volume of the power of  internal actions. 
In simple continua the symmetry of T is a necessary and sufficient condition 

for the vanishing of that density for all virtual rigid velocity distributions. In the 
present context that condition can be expressed using formulae (2.5) and reads 
(with an obvious interpretation of the transposition symbol) 

e T = ~r~ + (grad ~7-) :a. (3.3) 
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Alternatively, and with the use of  a local chart, eqn. (3.3) can be written as 
follows 

+ D 
This equation is interpreted as the expression of  the balance of moment  of  

momentum for ~ ;  I refer to [7] and to earlier papers cited there for the 
derivation of conditions of  the type (3.3) in many specific theories of  non-simple 
continua. 

With the use of  (3.3), the power density (3.2) can be put into a form whose 
invariance under superposed rigid body motions is immediately apparent 

- - ( T - D  + ~ - ( v  - -  :Is) + "1-(grad v - -  (grad ~)' s)),  (3.5) 

o r  

( ) - -  T" D + Y',~ (~(v~ --  r~- s) + t ~" (grad v~ - -  (grad r~) r s) ; 
1 

here D is the strain rate tensor and s is the spin in the macromotion:  

D : =  sym grad v, s : =  --  �89 e (skw grad v), (3.6) 

and the exponent t affixed to grad N indicates transposition of the last two of  
the three indices. 

The balance of energy is expressed by an appropriate modification of 
the classical relation, which involves the extra kinetic energy and the power of  
actions on the microstructure 

( f e(e + �89 +u)i = f (t'v +~'v + q'n) + f o(b'v+fl 'v+z); (3 .7 ,  
\ t  I 

here e is internal energy per unit mass, q is heat flux into d, :Z is radiant heating per 
unit mass. 

When the functions involved are sufficiently smooth one can deduce from 
(3.7) the local relation 

~ k = T . g r a d v +  ~ . v + ~ ' g r a d v + d i v q + ~ z .  (3.8) 

Use will also be made later of  some consequences of  the Clausius-Duhem 
inequality, which will be accepted here in the standard form 

(i~lT) "~ f~-~-+ e (3 .9)  

where traditional notation is used for entropy ~/ and temperature 0. The local 
consequence of  (3.9) will be called upon below 

q Z (3.10) ~ / / ~  div -0- § ~ "0-" 

I f  one eliminates g in (3.10)using (3.8)and expresses e in terms of the Helm- 
holtz free energy ~p 

~, : =  e - -  0~, 
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then one obtains  the reduced inequality 

q grad 0 < 0. (3.11) (~0 + ~/b) - -  T .  grad v --  ; "  v - -  ::1- g r a d v  ~ 

Referential  versions of  (2.14), (3.3) and (3.11) can be easily given by the 
in t roduct ion of  Piola-type stresses involving the use of  the deformat ion  gradient  
F and its de terminant  t : =  det F, i.e. 

P :=  tT(F-1) ,  T 0 :=  t~, "1 : =  t '~(F-1)  r,  (3.12) 

and the opera tors  Div and Grad  on the reference placement,  so that,  in part icular,  

t div "~ = Div "1. 

The  equat ions are (~o* = ~t): 

Q ,  - = - o +  D i v e ,  ( 3 . 1 3 )  

e ( P F  r) = ~ r~  + (Grad  ~) '  ~:, (3.14) 

(F  ~q ) .Grad  0_< 0. (3.15) ~,(~o + rj~)) - -  P .  t 6 -  0 " v  - -  "1 �9 G r a d  v - -  0 - -  

Remark .  In  [4] the existence also of  a thermal  microstructure  is conjectured. 
Here  I keep to less shifting ground.  

4. Latent microstructure 

I say that  the microst ructure  is latent when, though its effects are felt in the 
balance equations,  all relevant quantit ies can be expressed in terms of  geometr ic  
and kinemat ic  quantities pertaining to apparen t  placements.  

More  precisely I suppose that  hypotheses (i)-(iv) below are satisfied which are 
introduced in order  of  increasing severity so that  consequences of  corresponding 
specificity can be deduced. The first two hypotheses are: 

(i) there is no inertia connected with the microstructure,  i.e., ~ vanishes iden- 
tically: 

(ii) there are no external body  actions on the microstructure,  i.e., fl vanishes 
identically; 

These hypotheses alone have several consequences which I explore first; under  (i) 
and (ii) the balance equat ion (2.14) reduces to 

or, on a local chart ,  

and,  in referential form, 

= div :a, (4.1) 

~ = div t ~, 

,0 = Div '~ .  (4.2) 
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When constitutive prescriptions are assigned for ( and :a, eqn. (4.1) may take 

the analytical form of an evolution equation for the order parameters v. 
As a consequence of (4.1) the balance equation of moment of momentum 

(3.3) becomes more compact 
e T = div (8r:a) (4.3) 

o r  

and, in referential form, 

e T = d i v ( ~ r ~  |  

e (PF r) = Div (tgr't). (4.4) 

Formula (4.3) generalizes the Cosserats' moment equation obtained, within 
their context, under assumptions akin to (i) and (ii). 

There is another interesting consequence of (4.1): the power density of internal 
actions due to the microstructure can be written as the divergence of a vector u: 

~. v + t:. grad ~ = div u, 
- ( 4 . 5 )  

U : =  ~tT~ : ~_a~t~v~ , 

1 

so that (3.8) can be given the apparently standard form 

0~ : T .  grad v + div q' + 0Z, (4.6) 

where a modified flux vector q' appears 

q' = q -]- u. (4.7) 

DUNN & SERRIN suggest, for their modified Neuman equation, the form 
(4.6), and call u the interstitial work flux. The introduction of different flux vec- 
tors, q' and q respectively, in the Neumann equation and in the Clausius-Duhem 
inequality has been suggested repeatedly by I. MOLLER; it is, perhaps, worth 
remarking that, when only hypotheses (i) and (ii) are accepted, u and hence q' 
need not be objective. 

If, instead, one assumes that: 

(iii) the interstitial work flux is objective, then u must not change when v is altered 
by the addition of a term of the form ~w, with w any vector; as a consequence 
(see (4.5)2) 

:ar~ = 0; (4.8) 

then condition (4.3) requires further that 

TE Sym. (4.9) 

The last hypothesis is less precise; it is rather suggestive of many specific sub- 
cases, the simpler of which I study in the following Sections: 

(iv) a set of frictionless holonomic or anholonomic constraints expresses either the 
order parameters ~ in terms of displacement gradient F and, perhaps, its 
gradients or the generalized velocities v in terms of grad v and, perhaps, 
higher gradients of v. 
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5. The elastic materials of Dunn & Serrin 

I observe in this Section that the elastic materials studied by DUNN & SERRIN 
in [6] can be considered as special continua with latent microstructure when, 
on the one hand, hypothesis (iv) is rendered more specific as follows: 
(iv)' the internal parameters are constrained by a condition: 

E = ~(F), (5.1) 

and, on the other hand, it is also presumed that 
(v) free energy, entropy, heat flux, the stress and microstress are functions of F, 
Grad F, 0 and grad 0. 

The implications of  (iv)' and (v) are less cumbersome to obtain if Cartesian 
components (specified below, with latin letters for indices) are used (repeated in- 
dices are to be summed). From (5.1) it follows that 

vo~ : ~ Va,bFbA (5.2) 

and, in a rigid motion with angular velocity w, 

= eo~ ~ Fc~w~, (5.3) 

so that 
~L 

t~a ---- eabc ~ FbA. (5.4) 

Condition (4.8) now requires that the third-order tensor 

%k : :  ~ : l i  FkA (5.6) 

be symmetric in the last two indices 

$ijk = $ikj" (5.7) 

The condition that the constraint (5.1) is frictionless is interpreted in the usual 
sense, rendered precise in a general setting by GURTIN & PODIO-GUIDUGLI (see 
[7]): 

(a) stress and microstresses are each the sum of two terms, active and reactive 
respectively, 

T :  q-T,  r -k~, " ~ :  -t-:2; (5.8) 

(b) the power of the reactive parts of stress and microstress vanishes for all 
velocity fields allowed by the constraints; this condition is more conveniently 
expressed in terms of  Piola-type stresses: 

�9 ~'q- ~ .  v -k ' l  �9 Grad v ---- 0, (5.9) 

for all/6 and all v given by (5.2). 
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It is easy to check that (5.9) implies 

Pv~ + v~ ' " = ~ + ' ~  ~,aF~],~/ 0, (5.10) 

~ "IA ~-~/n + ~  ~1 ~ ' "  ~-'~i~ = 0 .  (5.11) 

On the other hand property (a) above and (5.11) imply 

q a q a 

- ~ = 0 .  (5 .12 )  

The interpretation ti la COLEMAN-NOLL of the dissipation inequality and an 
ensuing well-known train of reasoning, together with hypothesis (v) and (5.12), 
exclude a dependence of ~p and ~/ on grad 0, impose the usual relation between 
these two functions and, besides, lead to the relations 

a " (~ l ~ Pin -}- 1~ -V a~ ~ = (5.13) 

(a ~o,~ ~FiA,B'~" (5.14) 

observe that the tensor on the right-hand side of (5.14) is symmetric in the indices 
A, B. 

Summing up term by term (5.10) and (5.13) and using (5.14) one arrives at the 
relation 

e,~ = 0, ~ e-ES).~" (5.15) 

To render explicit in terms of the derivatives of ~o the last term in (5.15) it 
suffices to exploit (5.7) in the manner shown by DUNN & SERmN in Appendix A 
of their paper and so obtain 

~ @, ~ - .  �9 F ~  l ) )  . (5.1 6) PiA = ~* ~ -- 
~ F ~ . c  " A~ ~Fj~ A / / ,c"  

which is DUNN & SERRXN'S formula (3.4). 
As observed by DUNN & SERRIN, the symmetry of PFr i s  ensured automatically 

because ~ is an objective scalar. 

6. A subcase  o f  the Korteweg  fluid 

The reduction of (5.16) to the special case when ~p depends (on the temperature 
0,) on t ----- det F and its first gradient only has already been performed by DUNN 
& SERRIN and so needs not be reconsidered here. However, that case can be viewed 
also from a different angle, and therefore a few remarks are in order. 
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Suppose that  the microst ructure  be such that  v (as happens  when ~ is deter- 
mined through t alone) be not  affected by superposed rigid rota t ions  (~ ~ 0); 
then the interstitial work  flux is au tomat ica l ly  objective and assertion (iii) becomes 
a theorem.  

If, in addition, there is only one internal pa ramete r  (then the nota t ion  can 
reduce to the usual letters wi thout  superscript  and wavy underlining: v, ~-, t) and 
that  pa ramete r  is constrained to coincide with ~, v -~ t, then one does not  even 
need referential arguments .  One can take into account  Euler 's  formula  for  i 

and its consequence 

i = t div v 

grad i = (grad t)" + (grad v) r grad t, 

to put  expression (3.2) for the power  density into the form 

A �9 dev ( T +  (grad t) | t) + ~ (tr T +  3t~ + (grad t ) -  t) 

+ t -  (grad 0",  
(6. l)  

A : ~  dev grad v, ~ = �89 div v, (6.2) 

to obta in  directly, on the one hand,  

r r r r 

t = 0, dev T = 0, tr T + 3t~ = 0 

and hence 
a a 

tr T - -  3t~" = 0, 

and,  on the other  hand, 

t ~ ~ ~(grad  t ) '  

O 

div (7" + (grad t) | t) ~ 0, 

a a a 

tr T + 3t~ + (grad t) �9 t = 3to ~-~, 

together  with (see (4.1)) 
a ~ . 

+ = div t. 

The final expression for  T, 

(6.3) 

(6.4) 

(6.5) 

T = t-~t  - -  t div r ~ (grad t) 1 - -  (grad t) | ~o ~ (grad t ) '  (6.6) 

coincides with the expression (1.25) given by DUNN t~ SERRIN. Notice again that  
the symmetry  of  T is assured, because the dependence of  ~p on grad t may  occur 
only through the modulus  [grad t l, as ~p is an objective scalar. 
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7. A more general elastic fluid of  the Korteweg class 

Suppose that  .~ coincides with ./r •  (q = 4), that  ~q, 'k'2, '1~ 3 are Cartesian 
components  o f  a vector d and ~4 is a scalar ~; then we can put  

with ~ E R,  z, t E ~/" and V E Lin and write the balance equat ion o f  moment  o f  
m o m e n t u m  in the form 

z = div V, ( = div t. (7.1) 

Suppose further that  
(iv)" appropriate  constraints bind d and ~ to t and grad t; more  precisely 

d = grad 0, ~ ---- 0. (7.2) 

R e m a r k .  Of  course, 9 is in one-to-one correspondence with L and one could, 
perhaps more  appropriately,  accept an alternative direct definition o f  d and �9 in 
terms of  t and grad t. The choice (7.2) brings the following developments more 
strictly in line with those o f  DUNN & SERRIN. 

When  the notat ion (6.2) is used and account  is taken of  obvious consequences 
o f  the constraints (7.2) 

d = - -3  grad (0o0 - -  (A q- od) grad 0, i, = --30or 

the power density o f  internal actions 

T .  grad v ~- z .  d + V.  grad d + t -  grad i, q- ~iJ, 

can be given the expression 

o~(tr T - -  (4z q- 3t) �9 grad 0 --  4V-  grad z 0 - -  30~) 

- -  3 (grad o 0 �9 (0(z -t- t) ~- 3 (sym V) grad 0) 

- -  30 (grad 2 o0" V - k  (grad 2 v).  ((grad 0) | V) 

~- A �9 dev (T - -  (grad 2 0) V r - -  (grad 0) | z). 

I t  follows that  the reactive components  o f  stress and microstress satisfy the 
conditions 

? r r 

~ r =  0~ 1 § (grad0)  | z --  (grad 2 0) V, 

r r r 

z ~- t = 0, VE Skw. (7.3) 
Assume now that  

(v)' free energy, entropy, heat flux, stress and microstress are functions o f  0, 
grad 0, g rad2 O, 0 and grad/9. 

Because 

(g rad2 0)" = --50r grad 2 ~ - -  6 sym ((grad 0) | (grad o0) 

- -  30 grad 2 0~ - -  2 sym ((grad 2 0) A) - -  B, 
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with 
Bij = ~,hVh,ij, B E Sym, 

the total time derivative of ~p is given by 

~0----~-~t)+~--~,.(Oi,)'-- 30~-+4~--~, /0 , i+58~,o6) , i  j o~ 

Then, again, the argument first introduced by COLEMAN & NOLL leads to the 
usual conclusion that ~p does not depend on 0 and grad 0, and to the following 
relations for the active components of stress and microstress: 

~" = • 0 (grad 2 e) '  z -[- t = e e (grad t>)' 

a a 

~" - -  (grad 6) | z -- 9~ 1 = (7.4) 

z O , ? ,  0~o Q (grad2 e) ( ~p ).) 
--0 ~ l ~ (grad ~) | 0 (grad 0------3 0 (grad 2~ , 

Formulae (7.3), (7.4) together lead to 

+ V, VE Skw, V == 9 ~ (grad2 0) 

z + t : ~ ~ (grad e) '  (7.5) 

T = ~  ~ - - 0  1 - - ( g r a d 0 )  |  20) V. 

The balance equations (7.1) allow us to eliminate ~ and t from (7.5)3 

09 

09 
+ (grad 0) | div V -- (grad 2 0) V -- e (grad 0) | 0 (grad 0)" (7.6) 

Finally to express the reactive part of V in terms of the derivatives of % we 
exploit the assumption of objectivity of the interstitial working. In a rigid motion 
with rotational speed w 

= O, (grad 0)" = (grad O) • w, 

so that the assumption mentioned is equivalent to the condition 

((grad O) | V) v E Sym V v E ~ .  (7.7) 
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Following now the argument,  already cited, o f  DUNN & SERRIN, we obtain 
f rom (7.5) and (7.7) 

- - O j ~  , e,k Vii = e e,~ e-~,jk 

with the conclusion that  

: --Q O~0 _ ~ 30) .  

- -  0 "/-- '- - -  ~, ik 0 ~ (7.8) 
+ ~,i  ~ ,k ~ t~Q,j ~ , k j  

+ ~ ~, j~ '~ - - -  Q,k 
,k 

a formula which generalizes (6.6) and may be the starting point  for ampler anal- 
yses regarding the class o f  elastic fluids o f  the Korteweg type. The formula  does 
not  fall within the subclass considered by DUNN & SERRIN; one of  their hypotheses 
on the interstitial working excludes a dependence o f  ~ on grad E ,o. 
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