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1. Introduction 

For one dimensional problems of the calculus of variations, there is a well 
developed theory relating the positivity of the second variation at a critical 
point (i.e. 'linearized stability') to strong relative minima. These results, largely 
due to WEmRSTRASS, are usually proved by the method of 'fields of extremals' 
as is described in BOLZA [1904] and MORREY [1966] or by an argument involving 
a careful use of Taylor series, as in HESTENES [1966, Chapter 3, w 14]. We recall 
that if the integral is denoted 

b 

I(y) = f f ( x ,  y(x), y'(x)) dx, 
a 

d 
where y is a scalar, y'(x) =--d-~xY(X ), and the admissible functions satisfy the 

boundary conditions y(a)----or y (b )= t3, say, then the Weierstrass theory 
guarantees that a solution u C C2([a, b]) of the Euler-Lagrange equations is 
a strong relative minimum of I(.) (i.e. a local minimum in C~ b])), provided 
f is smooth, fy,y, > 0 and the second variation 62I(u) is positive. (The theory 
gives more than this; see, for example, Theorem 3.1 below.) Without a convexity 

I 

condition in y' ,  easy examples, such as f (y,2 _ y,4) dx, y(0) = y(1) = 0, show 
0 

that positivity of the second variation does not give a strong relative minimum, 
although it does give a weak relative minimum (i.e. a local minimum in Cl([a, b])). 

A principal result of this paper (Theorem 3.5) shows that for nonlinear elasticity 
in n > 1 space dimensions, positivity of the second variation does not imply 
a strong local minimum even under 'favorable' convexity hypotheses on the 
stored-energy function that reduce in one dimension to convexity in y'. This is 
done by developing in w 2 a new necessary condition for a minimum in mixed 
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problems of the calculus of variations that we call quasiconvexity at the boundary; 
this condition applies at an appropriate boundary point of the spatial domain, 
and is a version of MORREY'S quasiconvexity condition which is known to be 
necessary at an interior point. 

The rough idea for the construction is the following. Realistic stored-energy 
functions may be strongly elliptic and polyconvex (BALL [1977a, b]) but cannot 
be convex. Certain such functions, of a type quite similar to those used to model 
natural rubbers, possess local minimizers (natural states) that are not global 
minimizers. The second variation at a homogeneous deformation corresponding 
to such a local minimizer is positive, but we can arrange a special deformation 
near a traction-free portion of the boundary in which the principal stretches 
are altered sufficiently to lower the overall energy, while keeping the displace- 
ment C o small. 

The above negative results indicate the serious difficulties that arise in al- 
tempting to extend the Weierstrass theory to higher dimensions. See RtJND 
[1963], [1974] and the discussion in MORREY [1966, p. 15]. In one dimension 
the usual field of extremals argument involves the addition to I of the integral 
of a suitable divergence that permits pointwise comparison of integrands. It might 
be thought that this technique could be used in higher dimensions, where the 
appropriate divergences are null Lagrangians (cf. BALL, CURRIE & OLVER [1981 ]); 
our failure, despite some efforts, to implement this idea under realistic hypotheses 
on the stored-energy function led to the examples in w 3. 

On the positive side, we show in w 4 that for nonlinear elasticity any proper 
local minimum of the energy in W l'~ (or certain other energy spaces) lies in a 
potential well, and thus, according to a well known theorem (el  Proposition 4.3), 
is Lyapunov stable for any dynamical theory along whose trajectories the total 
energy (kinetic § potential) is nonincreasing. The applicability of this result, 
a preliminary version of which was announced in MARSDEN & HUGHES [1983], 
is limited by the present lack of an appropriate global existence theory for non- 
linear elastodynamics or viscoelasticity. 

We conclude the introduction with some comments on the literature. The 
question of whether or not positivity of the second variation is sufficient for 
stability was posed by KOn'ER [1945] and studied by several authors, such as 
SHIELD & GREEN [1963], KNOPS & WILKES [1973], KOITER [1976], BALL, KyOPS 
& MARSDEN [1978] and KNOPS & PAYNE [1978]. Under growth conditions on 
the stored-energy function allowing discontinuous equilibrium solutions and 
cavitation, BALL [1982, p. 609] showed that for incompressible materials the 
second variation criterion for stability is invalid, and presented plausible evidence 
that it fails also for compressible materials. The example of w 3 showing that 
positivity of the second variation is not sufficient for a strong relative minimum 
suggests, but does not prove, that the criterion fails too for displacements that 
are continuous and small in C o norm, under growth conditions incompatible 
with cavitation. 

If viscoelastic dissipation is added, then for pure displacement boundary 
conditions POTIER-FERRY [1982] has shown that positivity of the second variation 
at an equilibrium implies dynamic stability (in fact, exponential asymptotic 
stability) in W 2"p, p ~ n. (See also BROWNE [1978].) Because of the different 
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spaces used, this result is not strictly comparable with our Theorem 4.9. In this 
context we remark that a missing ingredient in elastic stability theory seems to 
be an understanding of in which metrics the perturbations due to the external 
world can reasonably be expected to be small; a case could be made for preferring 
metrics, such as those considered in w 4, that are closely related to the elastic 
energy. 

In this paper we have ignored thermal effects, though a proper justification of 
energy methods is often made via thermodynamics. In the context of thermo- 
elasticity, the relation between thermodynamics and energy methods has been 
clarified by ERICKSEN [1966a, b] and GURTIN [1975]. To extend our results to 
thermoelasticity is probably not difficult, as essentially it involves only addition 
of the temperature or entropy as an extra dependent variable in the energy. 

The role of strong and weak relative minima in nonlinear elasticity has been 
studied by ERICKSEN [1975, 1980] and JAMES [1979, 1980, 1981] in their work on 
solid phase transitions and on twinning. In particular, these authors discuss 
metastable states, which correspond to weak but not strong relative minima of 
the elastic energy. The stored-energy functions considered by ERICKSEN and JAMES 
are not strongly elliptic, but the example of w 3 indicates that metastability is also 
to be expected in the strongly elliptic case. Perhaps metastable states can be under- 
stood mathematically as being dynamically unstable but having the compensating 
dynamical property that most orbits starting in a neighborhood of them with 
respect to an appropriate metric stay close for a long time. 

Finally, we note that it is relatively easy to justify the second variation criterion 
for stability in finite dimensions or for semilinear equations, such as those occuring 
in beam and plate theories: cf. MARSDEN & HUGHES [1983], and SATTINGER 
[1969]. It would be interesting to understand the relation between three dimensional 
nonlinear elasticity, where the second variation criterion appears to fail, and its 
finite dimensional Galerkin, and infinite dimensional semilinear, models where the 
criterion is valid. For ideal fluids and plasmas, a convexity technique of AR- 
NOLD [1969] has proved successful for particular models and equilibrium solu- 
tions; see HOLM et al. [1983] and WAN et aL [1983]. 
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and ROBIN KNOt'S for helpful conversations about elastic stability and for their sustaining 
encouragement. 
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2. Quasiconvexity at the Boundary 

We now derive a new necessary condition for a minimum in mixed problems 
of the calculus of variations. This condition is an extension of MORREY'S quasi- 
convexity condition (MoRREY [1952, 1966, w 4.4]) to include boundary points. 
In Section 3 we use the condition to show that certain equilibrium solutions in 
nonlinear elasticity are not minima. 
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Let /2 C Rm be a bounded strongly Lipschitz * domain with boundary &Q. 

We suppose that &Q = 8.(2t W 8f22 with &Q1, 8Q2 disjoint and measurable 
(with respect to the standard m -  1 dimensional surface measure denoted dA. 

Let R = R k) {§  cx~} W {-- cx~} with the usual topology and let 

f :  ~XR"XMnXm'-mR, g: 8.QzXR,"-->R, 
be continuous functions, where M .xm denotes the space of real n x m  metrices 
with the norm induced by R ~m. Let W~'P(I2;R ~) denote the usual Sobolev space 
o f R  ~ valued functions u on s For uE WL~(D;R ~) let 

I(u) ---- .f f ( x ,  u(x), Vu(x)) dx § f g(x, u(x)) dA, (2.1) 
gg O t~ • 

provided this is well defined (i.e. provided both integrals exist as elements of R 
and they are not both infinite with opposite signs). In (2.1) u restricted to 0.(22 is 
understood in the sense of trace. 

Definitions 2.1. (a) By a standard boundary region with normal ~ E R m we shah 
mean a bounded strongly Lipschitz domain D C I~ m satisfying 

(i) O is contained in the half-space K~ = {x E R m I x . ~, < a} for some a E R m, 
and (ii) the m -  1 dimensional interior 8D2 of  8D A K~ is nonempty. We 
let 8D~ = 8D \ 690  2. 

(b) Let uE WIa(-Q;R ") be such that I(u) exists and is finite, and let XoE ~.  
We say that u is a local minimum of I at Xo in W "v A C O i f  there are numbers 

> O, ~ > 0 such that I(v) exists and I(v) >= I(u) whenever u -- vE C~(~;R~),  

v(x) = u(x) for I x -- Xo[ > ~ ,  xE ~ ,  and IIv -ullw,,~(~;R,)+ IIv - Ul!co < ~. 

Remark. If r >  m/p then by the Sobolev inequality, the term I[v--Ujlco = 
max I v ( x ) -  u(x)l is bounded above by const. • [ I v -  UI[w,,p(mP~,) and thus 
xED 
can be omitted. 

Theorem2.2. Let 1 <= p ~ e~ and let r be a positive integer satisfying r < 1 + m/p. 

Suppose u E Wl'l(f2; R n) is a local minimum of I at Xo E D in Ve "r'p/~ C O and 

that u is C 1 in a neighborhood of  Xo in ~.  
(i) I f  Xo E .(2, then 

f f (xo ,  U(Xo), 7U(Xo) + 7~(y)) dy > f f (xo ,  U(Xo), 7U(Xo)) ely 
D D 

= (meas D)f(xo,  U(Xo), VU(Xo)) (2.2) 

for any bounded open set D C~2~ m and all ~bE Col(D;R n) (C 1 functions with 
compact support in D) such that f (xo,  U(Xo), VU(Xo) § V~b(.)) is uniformly bounded 
inD.  

(ii) Let Xo E 8s 8.(22 be C ~ in a neighborhood of  Xo, g(xo, U(Xo)) be 
finite and suppose gu(', ") exists and is continuous in a neighborhood o f  (Xo, U(Xo)). 
Let ~ = ~(Xo) be the outward normal to 8f2 at Xo, and let D be a standard boundary 

? Cf. MORREY [1966, w 3.4]. 
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region with normal v. Then 

f f(xo, U(Xo), 7U(Xo) + 7r dy + f gu(Xo, u(xo))" cb(y) dA 
D OD2 

>= f f(xo, U(Xo), 7U(Xo)) dy (2.3) 
o 

for all SE C I (D ;R  ") vanishing in a neighborhood of ODI in D and such that 
f(xo, U(Xo), VU(Xo) + V$(.)) is uniformly bounded in D. 

Condition (2.2) is MORREY'S quasiconvexity condition, and part (i) is closely 
related to his result (MoRREY [1952 Theorem 2.1, 1966 Theorem4.4.2]) giving 
(2.2) as a necessary condition for lower semicontinuity. That (2.2) is a necessary 
condition for a local minimum was proved in MEYERS [1965 pp. 128-131] (see 
also BUSEMANN & SHEPHARD [1965]), and our version of this result using W r'p 
spaces uses a similar method of proof. The main point of Theorem 2.2 is condi- 
tion (2.3), which is a quasiconvexity condition at the boundary. The most im- 
portant feature of both parts (i) and (ii) of the theorem is that the hypothesis 
of a local minimum implies that a corresponding auxiliary problem has a trivial 
global minimum. In the case of part (ii), for example, the auxiliary problem is to 
minimize 

J(v) = f f(xo, U(Xo), Vv(y)) dy + f g~(xo, U(Xo)) " v(y) dA (2.4) 
D ~D 2 

subject to the boundary conditions 

v(x) = Vu(xo) x if xE ~h l ,  (2.5) 

and (2.3) says that in an appropriate sense the minimum is given by v(x)=-- 
VU(Xo) x .  

We recall the notions of weak and strong relative minima, which are classical 
in the calculus of variations. Let u E WI'1(Q; R") be such that I(u) exists and is 
finite; we say that u is a weak (respectively strong) relative minimum of I if there 
exists 6 > 0 such that I(v) exists and I(v) >= I(u) whenever vE wl'l(~;~z{Jn), 

rico, ---- ulea, (in the sense of trace), and IIv -- Uf[wl,~a;g,)< 6 (respectively, 
II v - UIILoo~o;R,)< 6). Note that a strong relative minimum is also a local mini- 

mum a t x o i n  W r'pt%C o for any X o E O \ O O l .  If  r > l + m / p  t h e n a w e a k  

relative minimum o f / i s  a local minimum at Xo in W "~ A C o for any XoE ~ \ ~21, 
since ]Iv -- Ullwr,p~o;R,)_--> const. [Iv -- u]lo~ff;R, ) by the Sobolev inequality. If  
f ,  g are C 2, and if uE C t ( ~ ; R  ") is a solution of the Euler-Lagrange equations 
for L then a sufficient condition for u to be a (proper) weak relative minimum 
of I is that the second variation 

d 2 
6"t(u) (w, w) :=  f-dy~f(x, u(x) + ~w(x), Vu(x) + ~ Vw(x))I~=0 dx 

t~ 

d 2 

+ f-~e2g(x, u(x) + ew(x))]~=o dA (2.6) 
Of,~2 
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be W~'2-positive definite; i.e. there is a constant Co > 0 such that 

t~2I(u) (w, w) ~ Co f [lw(x) ] 2 -I- [Vw(x)] 2] dx (2.7) 
D 

for all wE WI'2(12;R ") with w[0al = 0. This is easily proved by expanding 
f and g in Taylor series (cf. VAN HOVE [1949]). Since (2.7) depends only on the 
derivatives o f f  and g at the extremal u, and since the quasiconvexity conditions 
(2.2), (2.3) depend on the complete function f(xo, U(Xo), "), it follows that (2.2), 
(2.3) are not necessary conditions for a weak relative minimum. In particular, 
the conclusion of Theorem 2.2 cannot hold if r > 1 q- m/p. 

The quasiconvexity conditions (2.2), (2.3) can be viewed as generalizations of 
the classical necessary condition for a strong relative minimum due to GRAVES 
[1939], which in turn is a generalization of  the Legendre-Hadamard condition 
(HADAMARD [1902]) and of  the Weierstrass condition of the one-dimensional 
calculus of variations. To see this, suppose for simplicity that f and g are finite 
and continuous. Then if Xo E ~,  an approximation argument (see Remark 1 
after the proof) and the method of MORREY [1952, p. 45] shows that if (2.2) holds 
then fxo,,,(A) :----f(xo, U(Xo), A) satisfies the inequality 

fxo.,,(VU(Xo)) <: 2fxo,,, (VU(Xo) q -1--ff c | d) § (1 -- 2) fxo,,, (VU(Xo) --"(-~---- 2 c d) 

(2.8) 

for all cER",  d E R  m, 0 < 2 <  1, which is the condition of  GRAVES. Next 
suppose that xo E ~-Q2 and that f~o,u(A) is continuously differentiable with respect 
to A in a neighborhood of  Vu(xo). Then by differentiating (2.3), we get 

f Df~o,,,(VU(Xo) ) �9 V~(y) dy q- f g,,(Xo, U(Xo))" ~y)  dy ---- 0 
D ,3D2 

for all 4,E C I ( D ; R  ") vanishing in a neighborhood of 8D1, and therefore 

D f ~o.,(V U( Xo) ) . ~,(Xo) ---- g~( xo, U( Xo) ) . (2.9) 

(It is perhaps worth remarking that the natural boundary condition (2.9) is thus 
valid without any differentiability assumptions on f with respect to x, u.) Approx- 
imating Xo by interior points x0jE g2 and using the continuity o f f  we see that 
(2.8) still holds, and thus (replacing e by 2(1 -- 2) e, dividing by 2 and letting 
2---~0) that for any cER",  dER m 

fxo,u(VU(Xo) + c | d) ~ fxo,,,(VU(Xo)) q- Df~o,u(VU(Xo)). c | d. 

Setting d : ~(Xo) we deduce from (2.9) that if 

O(c) : =  fxo,u(VU(Xo) q- c | ~(Xo)) -- gu(xo, U(Xo)) c, 
then 

0(r ~ 0(0) for all c E R  ". (2.10) 

One of  the consequences of the results of  w 3 is that (2.3) is strictly stronger than 
(2.9) and (2.10) together. 
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It would, of course, be extremely interesting (e.g. for verifying our assumptions 
in w 4) if  the necessary conditions (2.2), (2.3) could be shown to be part of a useful 
set of sufficient conditions for a strong minimum, but we know no result of this 
type. 

P r o o f  o f  Theorem 2.2. (i) Let 
suppose initially that 6 E C~(D; R"). Choose 
and define 

u(x) 

Then u~ --  u E C~176 R n) and 
[[u~ --  U[[co <= e [[4'[[co and 

D Q R "  be a bounded open set, let Xo E ~ and 
e > O  such that X o §  

if x E x0 + e D 

otherwise. 

u~(x) = u(x) for [x --  Xo I > const, e. Clearly 

j u u w 

\ i/p 

_--< const, e 1 +~m/v)-, H 4' II w,.p~o;R,~. 

Choosing e > 0 sufficiently small, from the hypothesis that u is a local mini- 
mum we conclude that 

0 ~ 1(u3 -- I(u) = f Oe(x, u~(x), qua(x)) -- f ( x ,  u(x), 7u(x))] dx 
xo+eD 

~- ~m [Df f ( x  0 _~_ ey, U(Xo -f- ey) + cob(y), Vu(xo + ey) + Vq,(y))dy 

-- f f ( xo  + ey, U(Xo + ey), 7U(Xo + ey))dy] . 
D .I 

Since u is C 1 near Xo, f is continuous, and f (xo,  U(Xo), Vu(xo) + V4~(-)) is uni- 
formly bounded, both integrands are bounded as e -+ 0. Dividing by e m and letting 
e ~ 0 we obtain (2.2) by the bounded convergence theorem. 

Finally, if 4~ E C~(D; R") there exists a sequence 4'k E C~~ R n) such that 
~bk --~ 6 in C 1 as k ~ oo. Then f (xo ,  U(Xo), 7u(xo) + V6k(.)) is uniformly bound- 
ed for k sufficiently large and so (2.2) holds for 4~k. Passing to the limit k ~ oo 
we obtain (2.2) for 4'. 

(ii) We can assume that x o = O ,  V ( X o ) = e m = ( O , O  . . . . .  0 ,1)  and that 
the standard boundary region D has the corresponding half-space K = {x = 
(x ~ . . . . .  x m) E R m l xm < 0}. Let N be a neighborhood of  zero in R m such that 

c9~ 2 A U = {x ~ N [ x m -~ h(x')} 
and 

• N = {x N t x" < h(x')}, 

where x'  ---- (x a . . . . .  x " - l ) ,  hE C ~ ( R z - I ; R )  and h(0) = O, Vh(O) = O. 
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First, let ~ 6 C~*(/), R " )  vanish in a neighborhood of OD, and be such that 
f(xo, u(xo), Vu(xo) qz q~ . ) )  is uniformly bounded in D. In the ealculati0ns that 
follow we suppose that e > 0 is chosen sufficiently small. For x E 12, define 

Us(X) = {U(X)-}-e~b (X--h(x')e em) if xE N, 

u(x) otherwise. 

x -- h(x') em E e 

Extend ~b to ~ E C~(K; R')  by setting (p to zero in K \ D. Let y, : R m ~ R m 

1 
be given by y ~ ( x ) = - ~ - ( x -  h(x')era). Clearly y~ is C ~176 with the C ~ inverse 

1 
xe(y) = ey -}- h(ey') em, and Vy,(x) ---- -~-(1 -- e m | Vh(x')), Vx~(y) = e(1 -I- 

e,, | Vh(ey')). Since u, -- u = e4~ o y~ in ~) f~ N we have u, -- u E C~(~ ;  R"). 
Also, given ~ > 0  and ( ~ > 0  we have u,(x)=u(x)  for I x l > 9 ,  xEL)  and 

Ilu. - ultco ~ s IIr < �89 8.  
i 

Note that x,(/)) C ~ A  N is the portion of I2 f~ N on which 4~ modifies u(x) 
in the formula for u~(x). Thus, 

I1 . . . l t~ , ,~ ,o;~= (:c f e [ ~ ( ~ o y . ) ( x ) l . ~ x ) "  
\I#l ~r xs(D) 

const. Z f (Y,(X))lP'tx) 

= const. (1~1~ ' f e'('-'r ~ ( y ) I "  det(1 +em | '/~ 

l + m - - r  
const, e P < �89 

Therefore 

o =< ~-~( , ( . . ) .  ,(.)) = .-m f if(x, uX~), V.X~)) -- Z(x, .(x), V.(x))] ~ 
x,(D) 

+ ~--m f [g(x, Ur(X)) -- g(x, U(X))] dA 
xs(OD2) 

= f[f(xXy), u(xXy)) + ~(y), V.(xXy)) + v~(y) (, - e m  | Vh(ey'))) 
D 

--f(x~(y), u(x~(y)), Vu(x~(y)))] det (1 + em | Vh(ey')) dy 

f g(x~(y), u(x~(y)) + edp(y)) -- g(x~(y), u(x~(y))) (1 + IVh(ey')[2)~/2 dA. + 
J s 

ODa 
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By our hypotheses of finiteness, both integrands are  bounded independently 
of e. Letting e --~ 0 and applying the bounded convergence theorem, we therefore 
obtain 

0 ~ f f(O, u(O), Vu(O) + V~b(y)) dy -- ff(O, u(O), Vu(O)) dy 
D �9 D 

+ f gu(O, u(0))  �9 $ (y )  dA, 
t~D2 

which is inequality (2.3). 
I f4  is only C ~, then we approximate ~ in C~(/~; R") by functions ~kE C~176 ") 

and pass to the limit as k - +  oo using the bounded convergence theorem. [ ]  

Remarks 1. We first examine conditions under which (2.2) (resp. (2.3)) is valid 
when the functions ~ are required only to be Lipschitz with 4~l~D = 0 (respec- 
tively ckl~zh -- 0). This can be proved (a) i f f i s  continuous and finite (by passing 
to the limit in (2.2), (2.3)using a suitable approximation of 4~ by C 1 functions) 

and (b) if r---- 1, if in Definition 2.1(b) we change v -- uE C~176 n) to read 

v -  uE WI'~176 and if we add the hypothesis that f(xo, U(Xo),VU(Xo)) 
be finite. (The proof of (b) is the same as that of the theorem, and requires only 
that 8-(22 be C a near Xo.) The theorem is formulated to a l l o w f t o  take on infinite 
values because such integrands occur in elasticity and in other subjects giving 
rise to constrained variational problems. Care then has to be taken when approx- 
imating a Lipschitz function ~ by smooth ones 4~k lest values o f y  occur at which 
f(xo, U(Xo), VU(Xo) + 7dPk(y)) is infinite; an instructive example is given in BALL 
[1981, Remark 4, p. 324]. (The remark after Definition 3.1 in BALL [1977a] is in- 
correct without further hypotheses through lack of appreciation of this point.) 
Other variants of the theorem may be proved involving modifications to definition 

2. l(b); for example, if v -- u E C~176 R n) is changed to read v -- u E Wr'P(~; R ~) 

A C~ R~), then part (ii) of the theorem is valid if 8X22 is C r near Xo. The theo- 
rem may also be proved for fractional r using interpolation inequalities. 

2. Suppose that xl E ~,-Q2 and that 8X22 is not smooth at xl but has a conical 
singularity (e.g., x~ could be the vertex of a cube). Then we obtain a modified 
version of part (ii) of the theorem in which the standard boundary region D is 
replaced by a domain D' having the cone as ~D2. Suppose, for example, that 
g ~  O, f = f ( V u )  with f (AQ)=f(A)  for all QE SO(m); this is the case in 
homogeneous isotropic elasticity. Then the condition (2.3) does not depend on 
~,, and we can regard (2.3) as restricting the possible values of 7u  that can arise 
at a boundary point in a sufficiently regular minimizer u. If  OD2 is smooth at 
some points then we can apply the original theorem to the auxiliary problem (2.4), 
(2.5) and deduce that (2.3) for D' implies (2.3) for D. Thus, the Condition of quasi- 
convexity at the boundary restricts the values of Vu that can arise at a singular 
point x~ more than those at a regular boundary point. 

3. A version of the theorem holds for the case when f (x , . ,  .) and Vu(x) may 
jump near Xo C -(2 across a smooth surface S passing through Xo and having 
normal r ---- ~(Xo) there. Denote the limits o f f  and Vu as x - +  Xo from above 
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and below S by f•  ", "), Vu• The corresponding quasiconvexity condition 
then has the form 

f f+(xo, U(Xo), Vu+(xo) + V6(y)) dy 
D+ 

+ ff-(xo, U(Xo), Vu-(Xo) + V~(y)) dy 
D_ 

>= f f+(xo, U(Xo), Vu+(xo)) dy + f f-(Xo, U(Xo), Vu-(xo)) dy (2.11) 
D+ D_ 

for all qb E Cio(D(R"),  where D ( R m is a bounded open set with D+ = {y E D [ 
y -  v > a}, D_ -- {yE D ] Y" ~ < a}. For the case when f is continuous (so that 

f +  = f - )  but Vu jumps, see GURTIN [1983]. 

3. Second Variations and Minimizers in Nonlinear Elasticity 

In this section we study the following question: in which spaces is it true that 
for nonlinear elasticity, positivity of the second variation at an equilibrium solution 
u implies that u is a local minimum of the energy ? We consider an elastic body 
occupying in a reference configuration the bounded strongly Lipschitz domain 

,(2 Q R" with boundary 8/2. We suppose that 8/2 = 8/2~ W t3/22 with ~/21, 8/22 
disjoint and measurable with respect to n -- 1 dimensional surface measure, and 
that 8/2t has positive n -  1 dimensional measure. The configurations of the 

body are described by mappings u: ~--~-R". We suppose that the body has a 
stored-energy function 

W: ~ x M " X ' - - > R .  

For definiteness we suppose that W is bounded below, continuous, satisfies 

W(x ,  A)  -= + oo whenever x E L) and det A ~ 0, and that WE C2(-(~X MS • 
where M~ • = {A E M "x" I det A :> 0}. We consider the mixed displacement 
dead-load traction boundary conditions 

u(x)  = Uo(X) a.e. x E 8/21, (3.1 a) 

814" 
(x, Vu(x)) �9 r(x) = tR(X) a.e. x C 8/22, (3.1 b) 

where Uo and tR are given smooth functions and v(x) denotes the outward normal 
to 8/2 at x. The corresponding total energy is given by 

I(u) = f [W(x ,  Vu(x)) q- kg(x, u(x))] dx  - -  f u(x)  " tR(x) d A ,  (3.2) 
.Q Or2 2 

where kr-tE C 2 ( ~ •  ") is the body-force potential. Formally, any weak relative 
minimum u of I subject to (3.1 a) satisfies the equilibrium equations 

8 ~w 8!g(x, u(x)) 
Ox~, 8A i (X ,  Vu(x)) -- Ou i , x E  /2, i = l . . . . .  n (3.3) 



Quasiconvexity and Elastic Stability 261 

and the natural boundary condition (3.1 b). (In (3.3) and below repeated suffices 
are summed from 1 to n.) Note that (3.2) has the form (2.1) with m = n and 
appropriate f ,  g. We can now phrase our question more precisely: 

Question. Let uE C 2 ( ~ ; R  ") satisfy (3.1) and (3.3) with det 7u(x) > 0 for all 

x E [2, and suppose that the second variation 

[ e~W tu ~e2~u - - - 5  (x, u(x)) w~wqa dx ~2I(u) (w, w ) : =  f [ ~ ( x , ~ . ~ ,  ~-~, Vu(x)) wi~w:a + 

T~rz l2  0 ~ "  " s vv ' -p ~ttlve definite: i.e., there exists a constant Co > 0 such that 

~i(u) (w, w) > Co f tlw(x)? + IVw(x)?] dx (3.4) 
~2 

for all w E W1'2([2; R n) with wlo~h = O. Then in what spaces is u a local minimum 
of i? 

As we have remarked in w 2, such an equilibrium solution u is a proper weak 
relative minimum of I, i.e. for some e > 0 we have I ( v ) >  I(u) whenever 
0 <  ]Iv -- Ul[w~oo(s~.t:)~e, , _ and v]oal = u]~l. In one dimension, however, 
useful additional hypotheses are known guaranteeing that u is a strong relative 
minimum. In the following theorem we consider the ease when /2 = (0, 1), 

#Y22 = {1}. Then W: [0, 1]•  W(x,p)  = o 0  for all xE ~,  e[2, -- (o}, 
p ~ 0 ,  

1 

I( . )  = f [W(x, u'(x)) + ~'(x, u(x))] dx -- tRu(1), (3.5) 
0 

where tR is a constant, and (3.4) takes the form 

1 1 

f [W.&, u'(x)) w'(x) 2 + %.(x, u(x)) w(x) 21 dx > Co f [w(xy + w'(xy] dx 
0 0 

(3.6) 
for all wE W~'2(O, 1) with w(O)= O. 

Theorem3.1. Let uE C2([0, 1]) satisfy u'(x) > 0 for all xE [0, 1], be a solu- 
tion of  the equilibrium equation 

d 
-~x ve.(x, u'(x)) = %(x, u(x)), x~ [0, 11, (3.7) 

and satisfy the boundary conditions 

u(O) = Uo, Wp(l, u'(1)) ----- tR, (3.8) 

where Uo, tR are constants. Suppose that (3.6) holds, that 

Wpp(x, u'(x)) > 0 for all xE [0, 1], (3.9) 

(the strengthened Legendre eondition), 
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and that there exists ~ ~ 0 such that 

W(x, p) - -  W(x, q) - -  (p - -  q) Wp(x, q) ~ 0 (3.1o) 

for  all p > O, xE [0, 1] and q with [q --  u'(x)l <: 6 (the strengthened Weierstrass 
condition). Then u is a proper strong relative minimum o f  I, i.e., for  some e ~ O, 
I(v) ~ I(u) whenever vE WI'I(O, 1), v(O) : u o and O <  [Iv -- ul]co(to,ll ) =< e. 

Remark. The theorem is also valid for the pure displacement problem, i.e., if we 
replace the boundary condition at x = 1 by u(1) = ul for some u~ > Uo and 
make the obvious modifications to (3.5), (3.6) etc. Indeed the theorem then reduces 
to one proved in numerous books e.g. BOLZA [1904, pp. 94-102] and HESTENES 
[1966, Chapter 3, w 6]. The case of mixed boundary conditions is harder to find 
explicitly in the literature, but the method of proof, which we give for the reader's 
convenience, is standard. 

Proof of Theorem 3.1. We show that u can be embedded in an appropriate field 
of extremals satisfying the second of the boundary conditions (3.8). Thus for 
I o~l sufficiently small, consider the initial-value problem set by the equation 

and initial conditions 

d 
Wp(x, z'(x)) = Tu(x, z(x)) (3.11) 

z(1) : u(1) + 0~, z'(1) : u'(1). (3.12) 

On account of (3.9) and standard results on ordinary differential equations, (see 
HARTMAN [1964]) this problem has, for loll sufficiently small, a unique solution 
z = z(.,o06 C2([0, 1]) with z ' (x ,o  0 > 0 for all x~ [0, 1] and the derivatives 
~z ~z' ~z" 
~--~-, ~--~ and ~ exist and are continuous in (x, o~). Of course z(x, O) ~- u(x) for 

all xC [0, 1]. To show that the extremals z(., o~) simply cover a neighborhood 
of the graph of u it suffices to prove that the function 

O(x) ~z(x,~oO ~=0 

is strictly positive in [0, 1]. Suppose otherwise; since 0 (1)=  1 by (3.12), it 
follows that O(xo) = 0 for some XoC [0, 1). Differentiating (3.11) we see that 0 
satisfies the Jacobi equation 

d 
--~x (a(x) O'(x)) = b(x) O(x), xE  [0, 1] (3.13) 

where a ( x ) =  Wpp(X, Ut(X)) and b(x) -~  Wuu(x, u(x)). Now let 

10 0 ~< x --< Xo 
w(x) 

I O(x) Xo ~ X ~: 1. 
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Using (3.13) we obtain 

I d 
6ZI(u) (w, w) -- f T x  (a(x) O'(x) O(x)) ax = o, 

XO 

contradicting (3.6). We have thus shown that there exists e > 0 such that if 
x• [0, 1] and lY -- u(x)] ~ e then thereis aunique 0~ = o~(x,y) with y = z(x,o O. 
Let p(x,  y) = z'(x,  o 0 be the associated slope function. Clearly we may assume 
that e is small enough so that also Ip(x,y)  --  u'(x)l =< 6 whenever xE [0, 1] 
and lY-- u(x)[ =< e. Let 

L(x,  y, p) = 7J(x, y) -k W(x,  p(x,  y))  + (p -- p(x, y)) Wp(x, p(x, y)), 

and 
1 

I*(y)  = f L(x,  y(x), y ' (x))  dx.  
0 

As is well known and easily checked, the Euler-Lagrange equation for I*, namely 
d 

--d-~xLp = Ly ,  is satisfied identically for all yE W1'1(0, 1) with [[y -- U[[co(to, ll ) =< e. 

Let vC WJ'1(0,1), v(0)=Uo,  0<[[v--ul[co(t0,11 ) ~ e  and let 0 = < t ~  1. 
Then 

1 

__a 1*(u + t(~ - u)) = . ]  [Ly(v - u) + L,(~'  - u')] dx 
dt 

0 

1 =fd [L~,(v - -  u)] d x  
0 

= [ Wp(X, ?(x,  u + t(v --  u))) (v --  u)]~ 

= t . ( ~ ( l )  - u ( l ) ) ,  

where we have used (3.8), (3.12). Therefore 

I*(v) = I*(u) + tR(V(1) - -  U(1)) = I(U) -t- t ,v(1) ,  

and hence 

1 

~(v)  - I( .)  = f [w(x,  v'(x)) - w(x ,p(x ,  v(x))) 
0 

- ( v ' ( x )  - p ( x ,  v ( x ) ) )  W p ( x ,  p ( x ,  v(x)) ) ]  d x .  

The result follows by observing that (3.9), (3.10) imply that (3.10) holds with 
strict inequality when p 4= q (e l  HESTENES [1966, Chapter 3, Lemma 6.1]). [ ]  

An important case when the hypotheses (3.9) and (3.10) of Theorem 3.1 are 
satisfied is when Wpp(X,p) > 0 for all xE [0, 1] and p > 0, so that in parti- 
cular W(x, .) is strictly convex. If n > 1, the stored-energy function W(x, .) 
should not be assumed convex (see e.g. BALL [1977a, b]); rather, the natural 
analogues of the condition Wpp(x, p)  > 0 are the conditions of strong ellipticity, 
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polyconvexity and quasiconvexity. We now show that under these latter conditions, 
(3.4) does not imply that u is a strong relative minimum o f / ,  or even a local mini- 

n 
mum in W r ' p •C  O for r < - - + l .  

P 
Let n > l ,  ~ = 0 ,  t r y 0 ,  and let W ( x , A ) =  W(A)  be given by 

W(A)  = qS(vl . . . . .  v,,) = v~ + . . .  + v], + h(vl ""  v,,) (3.14) 

(an isotropic "Hadamard material"), where 1 < 0~ < n ,  where vl . . . . .  v~ 

are the principal stretches (eigenvalues of (ArA)�89 and where h:R---~R is 
convex, continuous, bounded below, h ( 6 ) =  o0 for 6 ~ 0, and h is C ~ for 

> 0. This stored-energy function is strongly elliptic, strictly polyconvex and 
quasiconvex (BALL [1977a, b, 1983]), but can possess arbitrarily many natural 
states (BALL [1982, p. 592]). 

Lemma 3.2. I f  h'(1) = --~x, then u(x) = x is a natural state and in particular 
is a solution o f  the Euler-Lagrange equations (3.3) and the natural boundary con- 
dition (3.1 b). 

Proof. The first Piola-Kirchhoff stress tensor at A = diag (vl . . . . .  vn), 
is given by 

OW 
~A = diag (41 . . . . .  ~n), 

V i > 0, 

where q~i : =  ~v--T q~(Vl . . . . .  Vn)- But h'(1) = --o~ 

this vanishes at vl = 1 . . . . .  vn = 1. [ ]  

is exactly the condition that 

Lemma 3.3. Let  h'(1) = --o~. The second variation at u(x) = x o f  

/(u) = f W(Vu(x)) dx 

is 

where 

and 

62I(id) (w, w) = f D2W(1) (Vw, Vw) dx ,  
12 

~2~ 
D 2 W(1) (G, G) = #o(1 . . . . .  1) GiiGjj, tl)q - -  ~Vi ~Vj" 

i , j= 1 

[ o~(o~-- 1 ) + h " ( 1 )  if  i = j  
q~o(1 . . . . .  1) = 

[ --o~ + h"(1) if  i 4= j 

(3.15) 

Proof. The formula for D21,V(1) follows by a straightforward argument using 
the chain rule and the fact that ~i(1 . . . . .  1) = 0; cf. BALL [1984]. [ ]  
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Lemma 3.4. I f  h'(1) = --o~, h " ( 1 ) >  0~ then there are positive constants Co and 
do such that 

621(id) (w, w) >= do .f IVwl = dx ~ Co f [Iw(x)l ~ + IVw(x) 71 dx, 
D ~2 

for all wE WI'2(.Q;R ") with w[oo~ = 0 .  

Proof. This follows directly from Lemma 3.3 and a version of the Poincar6 in- 
equality (MORREY [1966, Theorem 3.6.4]). [ ]  

From now on we assume that h ' ( 1 )=  --o~, h " ( 1 ) >  or and that h'(d) 
- - t 3 < 0  for 2 _ < 6 _ < k ,  where k > 2  and 0 < / 3 < o ~ .  It is easy to see that 
given any such k,/3 there exist convex functions k satisfying these and our previous 
hypotheses. By Lemma 3.4 the second variation at u(x) = x is positive. 

Theorem 3.5. Let flk I-~/" be sufficiently large. Then if  Xo E ~f22 and ~ 2  is 
Coo near Xo, u(x) = x is not a local minimum of  I at Xo in W ~,p A C O for 

n 
r < l + ~ .  

P 

Proof. We construct a standard boundary region D and a mapping ff such that 
the necessary condition (2.3) of quasiconvexity at the boundary is violated. Let 
Xo E 0.(22 and suppose ~f22 is C ~ near Xo. Since W is isotropic we may orient 
the coordinate system so that ~ = ~(xo) ---- (0, 0, .  . . . .  1) = e~. Let D be the interior 
of the right circular cone with base on the plane x" = 1 and lying in the half- 
space { x ~  1}. The base OD2 is the disc in { x ' =  1} satisfying 

[ x ' I  < 7,  x '  = ( x  ~ . . . . .  x ~  

where z / >  0 is fixed arbitrarily, and the vertex is the origin. The sides of the cone 

comprise ~3D1. For x E D  let R =  Ix] and 9 = Ix'l~ x',  x=~O. Note that 
D = {xE Rn [ o < xn < 1 and o/R < ~}. 

To use (2.3) we need to construct a 4~ that vanishes in a neighborhood of 0D1 ; 
our ff will be C ~176 To this end, construct ~o E Coo(R;R) such that ~0' >= 0, 0 
~o(t) ~ 1 and 

0 for t < - }  

~o(t)= 1 for t ~  

[ O'~ 
Let r R ) = 1  + ( 2 -  1) V, [1 -- -~--)y(R), where 2 >  1 is specified below, 

let ~(x) = ~'(9, R) x, and set 

, ( x )  - -  ~ (x)  - x ,  

so that ~(x) = u(x) -k 4~(x). We will show that (2.3) is violated for appropriately 
chosen values of fl, k and 2. 
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Clearly ~bE C~176 n) and ff is zero in a neighborhood of OD1. We compute 

V~= ~1 + x  |  

where 

x 
V ~ = ~  , . and V R - -  R"  

Since V~ is ~l plus a rank one perturbation, we get 

det V~ --= ~n + ~n-lx �9 (~  V@ + ~R VR) 

= ~" + R~"-I~R. (3.16) 

It follows from (R ~ 0 that det Vfi ~ 1 in D, and in particular that W(I + 

V4~(-)) is uniformly bounded in D. Let 

A = { x s  D - ~  , , R  ~ ~}, 

so that on A, $(e, R) = ;t (corresponding to a homogeneous radial deformation 
of magnitude 2). Now 

A J:  = f W(V~(y)) dy --  f W(Vu(xo))  dy = (meas A) [n2 ~ + h(2") --  n --  h(1)] 
D D 

+ f [W(Vk) --  n -- h(1)l dy 
D~A 

(meas A) [n;t ~ + h(;t") -- h(1)] 

+ (meas D \ A) [c 4- d(;t -- 1) ~ 4- h(det Vfi) -- h(l)], 

where e and d are constants. From (3.16), 

1 ~ d e t T ~ < : a + b ( 2 - -  1)", 

where a, b are constants. Choosing ~. = ek TM, where e > 0 is sufficiently small 
and independent of k and/3, we get 2 <: 2" <: k and 1 ~ det Vfi ~ k, provided 
k is sufficiently large. Therefore h( ; t " ) -  h ( 1 ) ~  --fl(~2-- 1) and h(det V f i ) -  
h(1) <: 0, and so 

AJ ~ c~(1 + 2 ~) -- c2flO." -- 1) 

: k~/n[el(k-~/n 4- e~) -- c2/3(enkl-~/n __ k-~/n)], 

where cl :> 0, e2 > 0 are constants. This is negative if/3k ~-~/" is sufficiently 
large, which violates (2.3). [ ]  

Remarks 1. The actual deformation that lowers the energy can be viewed as a 
small protruding dimple on the surface of .Q which is C ~ small but contains 
large gradients. 
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2. By adding to the stored-energy function a suitable nonnegative oJ(A) that 

vanishes on the compact subset 1 + Vqb(D) of ~• M+ , where ff is as in the 
proof, we can arrange that W satisfy a variety of  growth conditions as det A -->0 
and [A [ ~ oo; e.g. we can arrange that W(A)  > const, q- ]A I p + (det A)-S, 
A ~  nxn M+ , for any p > 1, s > 0. 

3. By considering a composite of  two materials with stored energy functions 
W and eW,  e > 0 sufficiently small, joined together along a smooth surface 
in /2 ( c f  BALL [1977b, p. 198]), one can arrange a similar violation of (2.11). 
This provides an example for the pure displacement problem. 

4. The example works just as well for the pure traction problem where, of  
course, positive definiteness of the second variation has to be taken modulo in- 
finitesimal rotations and rigid displacements. 

5. The phenomenon in our construction is consistent with a lack of differen- 
tiability of  the nonlinear Euler-Lagrange operator and the failure of  1 to  be C 2 on 
W r'p, r < 1 + n/p, even on deformations with det A bounded away from zero. In 
strong function spaces (r > 1 + n/p), Taylor 's  theorem shows that positivity of  the 
second variation a n d / b e i n g  C 2 implies a solution of the Euler-Lagrange equations 
is a (weak) local minimum. (See BALL, KNOPS ~,z MARSDEN [1978], MARTINI [1979] 
and VALENT [1981].) In thelatter  case it is furthermore known that a Morse lemma 
holds, which provides a local representation in which I is quadratic (see 
GOLUBITSKY & MARSDEN [1983] and BUCHNER, MARSDEN & SCHECTER [1983] 
and references therein). 

6. The above remarks suggest it might be hopeless to obtain any stability 
results in W r'p, 1" < 1 + nip. Indeed, using the methods of differential calculus, 
this may be so. Nevertheless, we will show in w 4 that if we assume we are at 
a minimum, then one can prove, under reasonable assumptions, that there is a 
potential barrier (compare KOIIER [1981, p. 20]). 

4. Potential wells and elastic stability 

In this section we consider the mixed boundary value problem of nonlinear 
elasticity treated in w 3. As is well known, in order to prove that a given equili- 
br ium state u is dynamically stable with respect to an appropriate topology by 
means of Lyapunov type arguments, it is not sufficient merely to know that u 
is a local minimum of the energy; rather, it is necessary that u lie in a potential 
well. A result of  BALL, KNOPS & MARSDEN [1978] shows that in topologies stronger 
than W L~176 this cannot happen. However we give below conditions guaranteeing 
that a local minimum in a naturally defined energy space does lie in a potential 
well, and is thus dynamically stable. Theorem 3.5 shows that if  n > 1, positivity 
of  the second variation is not sufficient for u to be a local minimum in this energy 
space even under favorable constitutive hypotheses, and so our hypothesis of  a local 
minimum must be verified by some other means, e.g. by an as yet undiscovered 
set of  sufficient conditions, or by an existence theorem of the calculus of  varia- 
tions. 

We begin by recalling the notion of a potential well and its relevance to 
stability. Our development here is fairly standard; see, for example, KNOPS & 
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PAYNE [1978] and MARSDEN & HUGHES [1983, w 6.6]. Let (X, d) be a metric space 
and let Z be a set. Let I : X - + R  and K : Z - +  [0, oo) be given functions. A 
trajectory cb is a map t ~-> (y(t), v(t)) from an interval [0, tmax) to X•  Z, where 
tmax = tm~x(q~) E (0, oo], such that d(y(t), a) is a continuous function of t on 
[0, tm~x) for any aE X, and such that I ( y ( t ) ) +  K(v(t)) is a nonincreasing 
function of t on [0, tm~x). Let 6e be a set of trajectories. 

Remark. In our intended interpretation X is the space of configurations, Z the 
velocity space, I the (potential) energy, K the kinetic energy, 6e the set of maxi- 
mally defined solutions to the dynamical equations. 

Definition 4.1. (a) u E X is a proper local minimum of I i f  there exists e > 0 such 
that I(u) > I(u) whenever 0 < d(u, u) <: e. 

(b) u E X lies in a potential well i f  for all e > 0 sufficiently small there exists 
7(0 > 0 such that 

I({t) -- I(u) >: 7(e) whenever d(ff, u) = e. 

(A less precise way of saying this is 

inf I(fi) > I(u), 
d(ff, u)--e 

the point being that the set (~t E X I d(~t, u) = e) may be empty.) 
(c) u E X lies in a uniform potential well i f  for all e > 0 sufficiently small there 

exists y(e) > O, with 7(e) a nondecreasing function of e, such that 

I(~) -- I(u) >= y(e) whenever d(?t, u) = e. 

Proposition 4.3. (Lyapunov stability). Let u E X lie in a potential well. Given 
e > O, there exists ~ > 0 such that i f  ~b = (y, v) E 5 a with 

d(y(O), u) < ~ and I(y(O)) q- K(v(O)) < I(u) + ~, 

then d(y(t), u) < e for all t C [0, tmax). 

Proof. Given e > 0, let ~ > 0 be sufficiently small with, in particular, ~ < e 
and set ~ = min (~1, 7(~t)). Let d(y(O), u) < ~ and I(y(O)) + K(v(0))< I(u) + ~. 
If  the conclusion of the proposition were false, by the continuity of d(y(t), u) 
there would exist t~ C (0, tmax) with d(y(G), u) = ~1. But then 

7(61) + l(u) <= I(y(tl)) (by the definition of a potential well) 

<= I(y(tl)) + K(V(tl)) (since K(.) ~ 0) 

<= I(y(O)) + K(v(O)) (since I + K is nonincreasing) 

< I(u) + 7 (~) ,  

which is a contradiction. [ ]  
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Now let 9 be another metric on X satisfying the following two properties: 

(i) 9 is stronger than d, i.e. if 9(aj, a) ~ 0 then d(aj, a) ~ O, 

(ii) if d(aj, a) ~ 0 and l(aj) ~ I(a) then 9(aj, a) ~ 0; equivalently, Q is 

weaker than d, where d-(a, b) :=  d(a, b) + t I(a) --  I(b) l. 

Proposition 4.4. Suppose I is lower semicontinuous with respect to d, i.e. d(aj, a) -+ 0 
implies I(a) ~ li m infI(aj). Then 

(i) uC X is a proper local minimum with respect to d i f  and only i f  u is a proper 
local minimum with respect to ~, and 

(ii) u E X lies in a uniform potential well with respect to d i f  and only i f  u lies 
in a uniform potential well with respect to ~. 

Proof. (i) If u is a proper local minimum with respect to d, then clearly it is a 
proper local minimum with respect to 0- Conversely, suppose u is a proper local 
minimum with respect to 0, but not with respect to d. Then there exists a sequence 
uj ~ u with d(uj, u) ~ 0 but I(uj) <= I(u). Hence 

I(u) <= lim infI(uj) ~ I(u), 
j - +  oo 

and so I(uj)-+ I(u). Therefore O(uj, u) -+ 0, which contradicts the fact that 
u is a proper local minimum with respect to ~. 

(ii) Let u lie in a uniform potential well with respect to d. Then there exists 
eo > 0 such that if 0 < e =< d(ff, u) =< Co, then I(~) ~ I(u) § ~,(e). Since ~ is 
stronger than dthere exists e~ > 0 such that d(fi, u) ~ eo whenever O(fi, u) ~ ca. 
If  u does not lie in a uniform potential well with respect to ~ then by part (i), 
there exist ~ > 0 and a sequence u i with 6 ~ O(uj, u) <z e~ but I(ui) --~ I(u). 

Since ~o is weaker than d, there exists e > 0 such that e ~ d(uj, u) <= co, and thus 
I(u~) ~ I(u) + y(e), a contradiction. 

The converse is proved similarly. [ ]  

We will describe our results concerning potential wells in elasticity for the 
case n ---- 3, though the method works for all dimensions n ~ 1 and indeed 
for more general problems of the calculus of variations of  the type considered in 
w 

Let .Q Q p~a, ?.Q~ and ~f22 be as described at the beginning ofw 3. We consider 
the same mixed boundary value problem as before (see (3.1)-(3.3)) but make 
different hypotheses on the functions W, ~,  Uo and t R. These hypotheses are as 
follows: 

(H1) W: ~xM3• is a Carath6odory function, i.e. W(x, .) is continuous 

for almost all x 6 ~ ,  and W(.,A) is measurable for all A C M  3 • 

(H2) W ( x , A ) = - r o o  if xC~2 and d e t A ~ 0 .  
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(H3) 

(H4) 

(H5) 

(H6) 

(H7) 

W is strictly polyconvex, i.e. there exists a function g:  ~ •  E---- 

M 3 • 3 • M 3 • 3 • (0, oo), such that for almost all x E .Q we have 

(i) g(x, .) is strictly convex, and 

(ii) W(x, A) = g(x, A, adj A, det A) for all A E M 3• 3. 

W(x, A) >= a(x) + C0(I A t p -k ]adj A 1" § F(det A)) 
for almost all xE -Q and all AE M3~ 3, where aEL~(Q), C o > O  is 

P 
constant, p > 2 ,  q > - -  and where / ' : ( 0 , ~ ) - + R  + is a convex 

= = p - - l '  
I1(6) 

function satisfying T - +  cx~ as 6 -+ ~ .  

W: .Q• 3---~1% is a Carath6odory function satisfying a(x) -- k lT]~<~ 
~(x ,y)  <= b(x) + O(y) for all yE1% 3 and a.e. xC L), where a, bE D(.Q), 
k > 0, 0 < o~ < p, and 0 : 1%3 _+ 1% is continuous. If 2 ~ p ~ 3 we assume 

3p 
- -  if 2 = < p < 3  further that O(y)<= const, lyt', where 1 ~ r <  3 - - p  

and r ~  1 is arbitrary if p = 3 .  

Uo : ?-QI ~ p3  is measurable. 
2p 

tR C L~(~,Qz ; 1%3), with s ~ 1 if p > 3, and s > - -  if 2=< p ~ 3. 
3 ( p -  1) 

Remarks. 1. Examples of stored-energy functions satisfying (H1)-(H4) are given 
in BALL [1977a, b] and CIARLET & GEYMONAT [1982]. 

2. An example of a body-force potential satisfying (H5) is 

W(x, y) = 0R(x) goY a, y _ (yl, y2, y3), 

where OR(') is the density in the reference configuration, and go is the acceleration 
due to gravity near the earth's surface. Note that this ~ is not bounded below. 

3. If  W is independent of x, and probably in general, the term F(det A) in 
(H4) can be omitted without affecting the results below, following the method 
of  BALL & MURAT [1984]. 

We define the set X of admissible functions by 

X =  {yE W~a(D;Ra)[I[(y) exists and is finite, Yloo~ = Uo a.e.) 

where Yte~ is understood in the sense of trace, and where I(.) is defined in (3.2). 

We suppose that X is not empty. Note that, by (H2), det Vy(x) > 0 a.e. xE 
for every yE X. We give X the metric d induced by wla(y2;Ra),  namely 

d(yl, Y2) = Ily,  - y~ l] w,,,(~;R~). (4.1) 

Lemma 4.5. There exist constants do ~ 0, d~ such that 

I(y) ~ do f [ [Vyf  + ladj Vy] q @ F(det Vy) + ly] p] dx + dl 
O 

for all y E X. 
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Proof. By a version of  the Poincar6 inequality (MORREY [1966, Theorem 3.6.4]) 
there exists a constant c~ > 0 such that 

.f [VYlP dx § lY[ dA >= c~ f lYl" dx (4.2) 
t3 O 

for all y ~ X. By (H4), (H5), 

f [W(x, VyCx)) § ~(x,  yCx))] dx >= �89 Co f [Igyf  § ladj Vylq § / ' (det Vy)] dx 
I2 Y2 

§ �89 Co f IVy 1" dx - k f lY I ~ dx + const .  
12 12 

for all yC X. Since YJea, = Uo, and since 0 < ~ < p we deduce easily from 
(4.2) that 

f [W(x, 7y(x)) § W(x, y(x))] dx >= �89 Co f [[Vyf § [adj Vylq § F(det Vy)] dx 
t2 ~2 

+ k Coc, f [y[Pdx + const. (4.3) 

for all yE X. In particular X(WI'P(+Q;Ra).  By trace theory, there exists a 
constant c+ > 0 such that IlYI[Ls'(+o+;~+) ~ c2 [lyl[w~,p(+;~3) for all yC X, 

1 1 
where - - §  1. Thus for all y E X  we have for any e > 0  

S S t 

- f tR(x)" y(x)dA ~ [ltI+llL+Coxa,;R3)IlYJIL+'(o++=;R+) 
0 0 3  

=> - c ~  It tR l[Ls(oa+,;a.,) [lY [] wt,o(.~;p+3) 

= P > - e  +lYllw,,~(o;~+) + c+, 

where c+ is a constant. Combining this inequality with (4.3) we get the result. [ ]  

L e m m a 4 . 6 .  I f  yj•X with yj.--~y in W~'I(O;R 3) 

l(y) <= lira inf I(yj). 
j--> o~ 

then y E X and 

Proof. Let y jEX with y j ~ y  in Wla(-Q;Ra). We assume without loss 
of generality that l(yj) is bounded. Hence, by Lemma4.5,  ]Jyjlrwl,p(o;R3 ) 
const, and therefore y ~ y  in wLP(.Q;R3). By standard compact embedding 
theorems, this implies that yj -+ y in L~176 R 3) if p > 3 and in Lma'~(~'r)(~2 ; R 3) 
if 2 ~ p ~ 3, and that yj--~ y in LS'(~O2 ; Ra). It follows from (H5) and a 
suitable form of the dominated convergence theorem (such as Lemma 4.8 below) 
that 

f T(x, yiCx)) dx-+ f ~(x, yCx)) dx, 
0 D 

and that 

f tR(x) .))(x) dA -+ f tR(x)" y(x) dA, 
O.Q2 O..Q2 
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both limits being finite. By Lemma 4.5, the de la Vall6e Poussin criterion and the 
sequential weak continuity of Jacobians (cf BALL [1977a, b]), 

(Vyj, adj Vyj, det Vyj) ~ (Vy, adj Vy, det Vy) 

in if(g2; M3•215215215 We claim that detVy(x) > 0 a.e. If  not, there 
would exist a subset 12t Q .(2 with meas g21 > 0 and d e t V y ( x ) =  0 for all 
xC .Q~. But since det Vyj ~ 0 and det Vyj ~ det Vy in Ll(g20, it follows 
that for a subsequence y ,  we have det Vy, ~ 0 a.e. in .Q~. From (H1), (H2) and 
(H4) it follows easily that W(x, Vy~,(x))- tr(x)-+ cx~ a.e. in .Q~, and hence 
f W(x, Vyu(x) ) dx ~ oo. This contradicts the boundedness of I(yj) and proves 

our claim. (This argument is taken from BALL, CURRIE & OLVER [1981, Theo- 
rem 6.2].) 

Since g(x, .) is convex, 

f W(x, Vy(x)) dx = f g(x, Vy(x), adj Vy(x), det Vy(x)) dx 
t2 t2 

< li m inf ( g(x, Vyj(x), adj Vyj(x), det Vyj(x)) dx 
j - -+ oo 

= lim inf f W(x, Vyj(x)) dx, 
J - ~  / j  

and the result follows. []  

Lemma 4.7. Let K Q R M be open and convex, and let f :  K-~  R be strictly 
convex. Let 0 < 0 < 1, and suppose that aj, a C K with 

Of(aj) + (1 -- O)f(a) --f(Oaj-k (1 -- O)a)-+O as j - +  oo. 

Then aj-+ a. 

Proof. We first note that h(b) := Of(b) § (1 -- O)f(a) --f(Ob § (1 -- O) a) is 
strictly increasing along any ray starting from a. In fact, if the ray is given by 
t ~-~ a -k te, e ~ R ~, then this is equivalent to saying that 

Of(a + te) - - f (a  + Ote) > Of(a + se) - - f (a  -k Ose) if t > s > O, 

which follows from the strict convexity of f by writing a-k  se, a § Ote as 
convex combinations of a + te and a + Ose. 

Since K is open and f convex, f is continuous. Therefore, given e > 0 suffi- 
ciently small for the ball { l b -  a I < e} to be a subset of K, 

inf h(b) > O. 
]b- -a  T - - e  

Since h is increasing along rays, this implies that 

lbinfj  h(b) > O, 
b E K  

which gives the result. [ ]  
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L e m m a 4 . 8 .  Let fj, f ,  hi, h, I-Ij, HC L'(g2) with h j>=f j~  1-1j for ally. Suppose 
that f~-+ f ,  hj-+ h and Hj---~ H a.e., and that f hj(x) dx---~ f h(x) dx, 

o D 

f Hi(x ) dx -+ f H(x) dx as j ~ oo. Then 
O t2 

f f](x) dx ~ f f(x) dx. 
D 

Proof. This is an immediate consequence of  the Vitali convergence theorem. 
Alternatively, the result follows by applying Fatou's lemma to the sequences 
hj - - f j  and fj  - -  Hi. [ ]  

We can now prove our main stability result. 

Theorem 4.9. Let (H1)-(H7) hold, and let uE X be a proper local minimum of  
I with respect to the metric d (see (4.1)). Then u lies in a uniform potential well with 
respect to d. 

Proof. Suppose for contradiction that there exist Co, e with 0 < e < eo such that 

but 

I(~) > l(u) for all fi E X with 0 < d(ff, u) ~ Co, 

inf I(fi) = I(u). 
h'~x 

e ~d(u,u) ~ o  

Then there exists a sequence {uj} Q X such that e ~ d(uj, u) ~ eo and I(uj) 
-+ I(u). By Lemma 4.5, uj is bounded in Wl'P(f2; R a) and thus there exists a sub- 
sequence, again denoted uj, such that uj ~ v in WI,P(.Q; Ra). By Lemma 4.6, 
v E X and I ( v ) ~  I(u). But by the sequential weak lower semicontinuity of 
[I.IIwl,ka;R3 ) it follows that d(v, u) <= Co, and hence v = u. Further, by the 

argument in Lemma 4.6, 

f ~(x, uj(x)) dx ~ .f ~(x, u(x)) dx, 

and therefore, since I(uj) ~ I(u), 

f W(x, Vuj(x)) dx-+ f W(x, Vu(x)) dx. 

Fix some 0 ~ (0, I), let at(x ) = (7uj(x), 
a(x) ---- (7u(x), adj Vu(x), det 7u(x)), and define 

adj Vu~(x), det 7uj(x)), 

hi(x) = Og(x, ai(x)) + (1 -- 0) g(x, a(x)) -- g(x, Oaj(x) + (1 -- 0) a(x)). 

As in Lemma4.6,  a j ~  a in Ll(g2; M3•215215215 Since g is convex, 

li.m inf g x, (1 0) .f g(x, a(x)) dx ~ :-+o~ hf ( O a j ( x )  -k -- a(x)) dx. 
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Hence 

0 ~ limj_~sup~ f hi(x) dx 

---- lim supi_,oo [0 f W(x, Vuj(x))dx + (1 -- O) $2f W(x, Vu(x))dx 

--  a f g(x, Oai(x ) + (1 - -  0) a(x)) dx] 

=- f W(x, Vu(x)) dx -- l iminf fa g(x, Oaj(x) + (1 -- 0) a(x)) dx 

_<0. 

Thus, for a further subsequence, again denoted uj, we have hj--~ 0 
By Lemma 4.7, V u j ( x ) ~  Vu(x) a.e. in s By (H4), 

a.e. in .(2. 

I vuj(x) - Vu(x) I _ CW(x, v~j(x)) + e(x), 

where ~E Ll(sc2). Applying Lemma 4.8, we deduce that 

f lVuj(x) - Vu(x) ldx~ O. 
$2 

Therefore uj--~ u strongly in wl'l(~2;Ra), contradicting d(uj, u) ~= e. [] 
An important special case to which Theorem 4.9 applies is when u is a global 

minimizer o f / i n  X. That /a t ta ins  a global minimum on X follows from Lemmas 4.5, 
4.6 (cfi BALL, CURmE & OLVER [1981, Theorem 6.2]). Note that the proof of Theo- 
rem 4.9 shows that minimizing sequences for I converge strongly. Other versions 
of  Theorem 4.9 can be obtained by combining Theorem 4.9 and Proposition 4.4. 
For example, suppose F(~) >= 6", s ~ 1, and define 

~o(Yl, Y2) = [[Yl -- Y2I[wl,p(o;rt3 ) -~- Iladj Vy~ - adj V Y2[lLq($2;M3• 

+ [[ det Vyl -- det Vy211L,(a). 

Then Theorem 4.9 holds with d replaced by Q. This follows from the following 
proposition. 

Propos i t i on  4.10. The metric 9 on X is strong than d and weaker than d, where 
d(Yt, Y2) = d(yl, Y2) + [I(Yl) -- I(y2) 1- 

Proof. Clearly O is stronger than d. Conversely, suppose that yj ~ y in Wt'I(O; R ~) 
and I(yj)~I(y) ,  where yj, yC_X, but that O(yj, y ) = > e > 0  for all j. By 
Lemma4.5 and the argument in Lemma4.6,  yj---~y in Wl'r(s hence 
yj ~ y in LP(O; Ra), and 

f W(x, Vyj(x)) dx-, f W(x, Vy(x)) dx. 
12 12 
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Let 

~(x) = ] 7yj(x) -- 7 y ( x ) f  -}- [adj 7yj(x) -- adj 7y(x)I q + I det 7yj(x) --  det Vy(x)]*. 

Extracting a subsequence, again denoted byyj, we can suppose than 7yj(x) ~ Vy(x)  
a.e. in O, and hence f j ( x ) ~  0 a.e. in ~2. But by (H4), 

0 < fj(x) "< const. (W(x,  Vyj(x)) + W(x, Vy(x)) -- 2tr(x)). 

Applying Lemma 4.8, we deduce that f fj(x) dx ~ O. Thus O(Yj, Y) ~ O, which 

is a contradiction. [ ]  
In order to apply Theorem 4.9 and Proposition 4.3 to deduce stability of  a 

proper local minimizer u it is necessary that solutions exist to the appropriate 
dynamical equations. For the equations of  elastodynamies in n > 1 space dimen- 
sions there is no global existence theory presently available; however, for pure 
displacement boundary conditions there is short-time existence in W2'~(~2;R"), 
s > �89 ,-}- 1, due to HUGSES, KATO & MARSDEN [1977]. For n = 1, a global 
existence theorem has been established by DIPERNA [1983]. For nonlinear Visco- 
elasticity of rate type in n > 1 Space dimensions, with pure displacement bound- 
ary conditions, some information concerning existence is contained in the stability 
result of POTIER-FERRY [1982]. 
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