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1. In~oducfion 

In this paper, we prove the uniqueness of the solution to certain simple dis- 
placement boundary value problems in the nonlinear theory of homogeneous 
hyperelasticity for a body occupying a star-shaped reference configuration 12 C Rn 
whose boundary O.Q is subjected to an affine deformation i.e., there exists a con- 
stant n • n matrix F and a constant n vector b such that x ~ Fx  + b for all 
x E ~Y2. We consider all smooth equilibrium configurations satisfying this boundary 

condition. Clearly, the homogeneous deformation x w-~ Fx  + b, for all x E ~ ,  
is one such solution. Our aim is to prove under suitable hypotheses that it is 
the only such solution. 

In Section 4, we prove that when W is rank-one-convex, the homogeneous 
deformation has maximal energy amongst all possible smooth equilibrium solu- 
tions of the boundary value problem. When, in addition, W is strictly quasi- 
convex at F, it follows immediately that the homogeneous deformation is the 
only smooth equilibrium solution. 

In Section 5, attention is restricted to radial deformations of a ball composed 
of  isotropic material. We prove that all smooth radial solutions are of the form 
x--+ 2x for all x E -(2, where 3. > 0, provided that either (i) W is rank-one- 
convex and W is strictly quasi-convex, or (ii) W is strictly rank-one-convex and 
W is quasi-convex. These results complement those of BALL [5] in his treatment 
of weak radial deformations of the sphere. He discusses a variety of conditions 
all roughly allied to strong-ellipticity but excluding the ones considered here. 

Finally, in Section 6 the results of Section 4 are adapted to the corresponding 
boundary value problems for incompressible materials. 

Sections 2 and 3 contain necessary definitions and other essential preliminaries 
Uniqueness in nonlinear elastostatics has been previously studied by several 

authors including ERICKSEN & TOUPIN [8], HILL [12, 13], TRUESDELL & TOUPIN 
[20], F. JOHN [14] and more recently by GURTIN & SPECTOR [10], SPECTOR [17, 
18], CHILLINGWORTH, MARSDEN & WAN [6, 7], MARSDEN & WAN [15] and 
WAN & MARSDEN [21]. These authors either deal with local uniqueness (in the 
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sense of requiring the solution to be in a neighbourhood of a given deformation) 
or impose constitutive hypotheses closely linked with a notion of stability. In 
contrast, although our results do not cover such an extensive range of boundary 
problems, they are global in character and rely upon the comparatively modest 
requirements of rank-one-convexity and quasiconvexity of the stored-energy 
density. Of course, it is well-known that a convex stored-energy density, while 
ensuring uniqueness, implies other conditions unacceptable in elasticity, (cp. 
HILL [12], TgOESDELL & NOLL [19] and BALL [1]). 

We are not concerned in this paper with existence of the solution. For  a general 
discussion of  this question, and in particular for the relation to the constitutive 
hypotheses adopted here, the interested reader should consult the papers by BALL 
[1, 2, 41. 

Throughout, we adhere mainly to direct tensor notation. 

2. Notation. The Displacement Boundary Value Problem 

The inner product of two tensors A, B is given by AB ---- tr Aft,  where B t 

is the transpose of B and tr denotes the tensorial trace operator. By det A and ad.j A 
we shall mean the determinant and adjugate matrix of the matrix (tensor) A, 
respectively, so that we have the relation 

A adj A = I det A, 

where I is the identity. Thus, we see that adj A is the transposed matrix of co- 
factors of A. The gradient and divergence operators in R" are written respectively 
as V and div; hence, for the vector field v, Vv is the tensor field with cartesian 
components (Vv)u = 8vi/Sxj, while for the tensor field T, div T is the vector 
field with cartesian components ~Ti/Sxj = O. 

Let M be the set of all n • n real matrices. We put 

M+ = {FE M:  det F > 0}. 

Thus, M can be identified with R "2 with the usual euclidean norm while M+ is 
an open subset of M. 

For a function W: M+---~ R which is continuously differentiable, we define 
~W/~F, F E M+, to be the tensor whose components are given by 

Let ~ C R,n be an open bounded region of n-dimensional euclidean space 
whose boundary ~ is piecewise continuously differentiable. Let N:  ~2--> R" 
denote the unit outward normal on 8s so that N is defined almost everywhere 
on ~D. 

We suppose a homogeneous elastic body in its reference configuration occupies 
the region O and is deformed by displacement of the boundary 9D to a specified 
final position. Body-force is assumed to be zero. 

We define the deformation to be the map u: ~ - +  R n such that u C- C~(~, R n) 

and the associated deformation gradient satisfies Vu(x)E M+ for all x E ~ .  
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We assume that the elastic body possesses a function W: M+-+ R defined on the 
deformation gradients in M+ and which is taken to be the stored-energy function 
per unit volume of ~. The requirement of "frame-indifference" means that W 
must satisfy the invariance condition 

W(QF) ---- W(F) V r E  M+, u QE SO(n). (2.I) 

The total energy for the deformation u is given by 

I(u) = f W(Vu(x)) dx. (2.3) 
~2 

Let T denote the Piola-Kirchhoff stress tensor which for WE CI(M+, R)  has the 
constitutive relation 

OW 
T(Vu) = ~ (Vu). (2.3) 

Then we say that the deformation u is a smooth equilibrium solution for a material 

with WE CI(M+,R) provided uE C2(~,R ") #~ C1(~2,R"), Vu(x)E M+ for 
all x E L) and the equilibrium equations are satisfied: 

div T(Vu(x)) = 0 V x ~ ~2. (2.4) 

In the proof of uniqueness, we shall need the following results. The first is a 
conservation law due originally to GREEN. 

Proposition 2.1 (GREEN [9]). Let g2 be as defined above. Let u be a smooth equi- 
librium solution for  a material with stored-energy density WE C2(M+, R). Then 

{  U(x) 
Ou 

where r -~r (x) = (x " V) u(x), and a | b denotes the tensor product between 

the vectors a E R n, b E R ~. 

Proof. The result follows directly by straightforward verification of the identity 

[ ( r  u]l nW(Vu) = div xW(Vu)  + Tt(Vu) u - -  -~r]J '  (2.6) 

based upon the constitutive assumption (2.3) and the equilibrium equation (2.4). 
An application of the divergence theorem to (2.6) now leads to (2.5). [ ]  

Let us also note for later use that the divergence theorem applied to (2.4) 
immediately gives 

f TN  dx = O. (2.7) 
OD 

m 

Lemma 2.1 (cp. HADAMARD [ 1 1 ]). Let u, v E C 1 (~, R") with u(x) : v(x) V x E ~g2. 
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Then 

(i) 

(ii) 

V(u - v) = ~ - ~ ( u  - v) (x)  | N ,  x E  e~, 

S S 
r ~ r  (u -- v) (x) : (N" x) ~-~ (u -- v) (x), x E S.Q. 

Proof. Fix iE (1 . . . . .  n) and set f (x)  = u i ( x  ) - -  v i (x), where wi denotes the i th 

Cartesian component of the vector w. Then f E  C1(~, R) and f (x)  ~ 0 on SO. 

sf 
Hence, Vf(x) = N(x) ~-~ (x), V x E &C2, and so 

which proves (i). 
Again, 

and so (ii) holds. 

S S 
uAj~ (Ui(X) - -  Vi(X)) N j  ~-~ (u  i - -  Vi) (X) ,  

ST of 
r ~ (x) -- (x. v)/(x) = (U(x). x)-i~ (x), 

[] 

We observe that Part (i) of the previous proposition shows that V(u -- v) 
is a rank-one matrix on S~. 

In the next section, we set out hypotheses which will be imposed on the stored- 
energy function, together with some related concepts. 

3. The Stored-Energy Density 

We recall here some selected definitions concerned with the general notion 
of convexity which will be used in our uniqueness theorem to restrict the stored- 
energy density. A complete discussion of these and related concepts may be found, 
for example;in the papers by BALL [1, 3, 4] and in the books by TRUESOELL & 
NOLL [19] and WANG & TRUESDELL [22]. 

Definition 3.1 (MORREY [16]). Let WE C(M+, R). Then W is quasi-convex at 
FE M+ if and only if 

f W(F -k 7~e(x)) dx ~ f W(F) dx = W(F) [D l, 
D D 

for all non-empty open bounded subsets D _ R" and all Lipschitz continuous 
functions ~e which vanish on OD such that F + V~(x)E M+, V x E D. Here ]D 1 
denotes the volume of D. 

Definition 3.2. We say that W is strictly quasi-convex at FE M+ if and only if 
W is quasi-co nvex at F and equality holds only when ~ = 0. 
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Definition 3.3. We say that W is (strictly) quasi-convex if and only if W is (strictly) 
quasi-convex at F for all (constant) FE M+. 

Definition 3.4. Let WE C(M+, g).  Then W is rank-one-convex at F if and only 
if 

W(F -1- tta | b) <: #W(F + a | b) + (1 -- #) W(F), (3.1) 

for all # 6  [0, 1], FE M+, aER" ,  b E R  n, such that F +  ta | bE M+, for all 
tE [0, 11. 

Definition3.5. The function WE C(M+,R) is strictly rank-one-convex at F 
if and only if W is rank-one-convex and equality holds in (3.1) only if a | b : 0 
or /z(1 --/~) = 0. 

It immediately follows from (3.1) on taking the limit as /z ~ 0 and using the 
definition of a derivative that if WE CI(M+, R,) is rank-one-convex at F then 

8W 
W(F + a | b) ~ W(F) -k - -~  (F) a | b (3.2) 

= W(F) + tr {T(F) (b | a)}, (3.3) 

for all FE M+, aE R", b E R  n such that F +  a | bE M+. In (3.3), the Piola- 
Kirchhoff stress has been introduced from (2.3). 

Definition 3.6. We say that W is (strictly) rank-one-convex if and only if W 
is (strictly) rank-one-convex at F for all FE M+. 

Definition 3.7. Let WE C2(M+, R). Then W is strongly-elliptic if and only if 

~ W(F),  
(a | b,a | b) >O 

for all FC M+, a E R  n, b E R  n such that a and b are not identically zero. 

The above definitions are not independent but are related by the following 
implications: 

(i) I, VE C(M+,R) quasi-convex~ W rank-one-convex (cp. MORREY [16], 
BALL [1]). 

(ii) WE C2(M+, 1%) strongly-elliptic ~ W strictly rank-one-convex. 

(iii) For WE C2(M+, R), then W rank-one-convex is equivalent to the Le- 
gendre-Hadamard condition : 

~2W 
~F 2 (F) (a | b, a | b) ~ 0 (3.4) 
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for all 

F E M + ,  a C R  n, b E R ' .  

It is still a major open question whether the converse implication in (i) is 
valid, although the converse in (ii) is obviously false. 

A sufficient condition for quasi-convexity is provided by the following point- 
wise condition. The function WE C(M+, R) is said to be polyeonvex (cp. MORRWY 
[16], BALL [1]) if and only if there exists a function G : M+• M+• (0, ~ )  -+ R 
such that 

W(F) = G(F, adj F, det F) V FE M+ 

and G is convex on M+• M+• (0, ~ ) .  Furthermore, when G is strictly convex 
on M + x M + •  oo) at (F, adjF,  de tF)  then 14," is strictly quasi-convex at 
FE M+. However, in what follows, we make no direct use of this condition, which 
has been used by BALL [1] in his discussion of existence of solutions in nonlinear 
elastostatics. 

We are now ready to state and prove our results concerning uniqueness. 

4. Uniqueness in the Displacement Boundary Value Problem 

Throughout this section, we suppose that /2 C p n is an open bounded domain 
of euclidean n-space which is star-shaped with respect to the point Xo E/2. That 
is, for all y E R " \  {0}, the ray {Xo + 2y :2  ~ 0} intersects the boundary ~/2 
in exactly one point. Furthermore, we also suppose that ~/2 is piecewise con- 
tinuously differentiable and we let the vector N:  8/2-+ R n denote the outward 
unit normal field which is defined almost everywhere on ~3/2. 

Since /2 is star-shaped with respect to Xo, it clearly follows that 

N(x) . (X --  Xo) > O V xE et2. (4.1) 

We now show that when the stored-energy density is rank-one-convex a simple 
inequality holds between equilibrium solutions having the same boundary values. 
This forms the content of Proposition 4.1. The uniqueness result is then derived 
as a Corollary under the additional assumption of quasi-convexity and affine 
displacement boundary data. 

m 

Proposition 4.1. L e t / 2  be as above. Let u :/2 -+ R n, v :/2 -+ R" be smooth equi- 
librium solutions for a material with stored-energy density WE C2(M+, R) such 
that u(x) = v(x) .for x • ~Q. When W is rank-one-convex we have 

[ (  v)j n { I ( u )  - I(v)} =< f tr [T(Vu) -- T(Vv)] N | v - -  r - ~ r  dS, 

where I(u) is the total energy defined by (2.2). 

(4.2) 

Proof. By a translation, without loss we may suppose tha t /2  is star-shaped with 
respect to Xo = 0. Hence, N ( x ) . x  > 0  for all x E 0/2. 
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Now, by Proposition 2.1, we have 

n{I(u) -- I(v)} = f ( N .  x) {W(Vu) - -  W(Vv)} as 
0Q 

-f-S(trT(Vu)[N| 
~ -~r l J 

~ ] J !  dS. 

(4.3) 

However, we may use the fact that u = v on 0g2 and also Lemma 1.1(ii) to 
write, 

tr T(Vu) [N | ( u - -  r ~ r ) ]  -- tr T(Vv) [N | ( v - -  r ~ r ) ]  

= t r T ( T u )  N |  Or + t r [ T ( V u ) - - T ( V v ) ]  N |  v - - r ~ r  (4.4) 

[ [ (  = ( N .  x) tr r (Vu)  N | 0-----N---- + tr [ r (Vu)  - -  r (Vv)]  N | v - -  Or J J" 

Furthermore, by Lemma l.l(i), we know that on 0.Q 

0(v - u) 
Vv = Vu + V(v -- u) = Vu + 0----~ | N. (4.5) 

On putting the expressions (4.4) and (4.5) into (4.3) we are led to 

n{I(u) - I(v)} = f (N .  x) W(Tu) -- W 7u  q- - -  | 
aa ON 

-p- tr T(Tu) N | ] dS + of  tr N dS, 

and then the desired inequality follows by appealing to rank-one-convexity, (3.3) 
and the positivity of N . x  on 0Y2. [ ]  

Remark 4.1. If  W is strictly rank-one-convex then equality holds only if 
Vu(x) ~ 7v(x) for all x E 0t2. 

Remark 4.2. It is clear from the proof that in Proposition4.1, rank-one- 
convexity of W may be replaced by rank-one-convexity of W on the set of surface 
values of 7u  on 8/2. 

Corollary 4.2. Let I"2 be as above and let FE M+ be a constant matrix. Let 
u: ~--~ R n be a smooth equilibrium solution for a material with WE C2(M+, R) 
which is rank-one-convex. Let b be a constant vector and let u satisfy the displace- 
ment boundary condition 

u(x) = Fx -k b u x E 0~.  (4.6) 
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Then 
I(u) <: I(v) 

where v(x) = Fx %- b for all x E ~ .  

Proof. Clearly, Vv(x) = F for all x E g2 and so v is a smooth equilibrium solution 
with u ( x ) :  v(x) for all x E ~12. Also, 

~v 
v - - r - - ~ r = b ,  

and hence by Proposition 4.1, we obtain 

n(I(u) --  I(v)) <= tr f {T(Vu(x)) --  T(Vv(x))} N(x) dS | b 
oa 

so that the result now follows on recalling (2.7). [ ]  

Remark 4.3. The conclusion of Corollary 4.2 continues to hold without any 
restriction imposed on W (other than the smoothness already assumed), provided 
that instead u is postulated to satisfy the boundary condition (4.6) and also to 
be a smooth strong local minimizer i.e., for all infinitely differentiable wE p n 
with w -- u of compact support on (2 and II w - u l l  sufficiently small in the L~- 
norm, there holds 

If  u) ~ I(w). 

For then, it follows from e.g., BALL [1, Thm. 3.4] that W is rank-one-convex at 

Vu(x) for all xE -Q, and hence, in particular, at the boundary values of Vu. 
Remark 4.2 together with Corollary 4.2 then yields the inequality 

I(u) <= I(v), v(x) : Fx %- b V x E ~ ,  

as required. 

Corollary 4.3. Let g2, F, u, v be as in the previous corollary. Let WE C2(M+, R) 
besides being rank-one-convex, be in addition strictly quasi-convex at F. Then 

u(x) = Fx %- b for all x C ~.  

Proof. Let us suppose that u ( x ) ~  v(x)----Fx %- b. Then the strict quasi-con- 
vexity of W at F gives 

I(u) > I(v), 

which contradicts Corollary 4.2. Hence u(x) ~ v(x) for all x E g2. [ ]  

Remark 4.4. When W is strictly rank-one-convex and quasi-convex at F then 
the above argument implies that 

7u(x) = 7v(x) -- F V xE et2. 

Remark 4.5. We do not know whether the requirement that Q be star-shaped 
is necessary. However, the well-known example due to F. JOUN [14] of non- 
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uniqueness in the displacement boundary value problem for a spherical annulus 
shows that some restriction is essential on the geometrical or topological form 
of Q. 

This completes the discussion of general uniqueness. In the remaining two 
sections we turn our attention respectively to radial symmetric solutions and to 
incompressible material. 

5. Radial Displacements 

In this section, we restrict .Q to be the ball given by 

.Q = {xE R":  Ilxll < a} (5.1) 

and we consider only radial deformations u: -Q ~ R" assumed of the form 

u(x) = U(r) x / r  (5.2) 

for all xE ~ \ ,  {0}, where r = IIxll and U: (0, a] --~ (0, oo). We will show under 
hypotheses on the stored-energy density similar, but not identical, to those adopted 
in the previous section, that all such deformations are necessarily of the form 

u(x) = ax/r (5.3) 

for some positive constant 2. We now record for convenience some of the appro- 
priate fundamental theory. (For further details, see, e.g., BALL [5]). 

For radial deformations, it follows that UE C1((0, a)) and that 

7u(x) = r -~ U(r) I + r -2 (U'(r)  - -  U(r)/r) x | x (5.4) 

for all x E ~ \ {0}, where I is the identity matrix and a prime indicates differen- 
tiation with respect to the argument. Thus, we see that Vu(x)  is a symmetric 
matrix with n -  1 eigenvalues all equal to r -~ U(r) with the remaining one 
equal to U'(r). In particular, 

det 7u(x )  = U'(r)  (U(r----2~ "-1 , (5.5) 
\ r l  

anti since by hypothesis 7u(x) E M+, we conclude that U'(r) > 0 for all r E 
(0, a). 

Throughout the rest of this section, we suppose that the stored-energy density 
W: M+---~B is an isotropic function, which means that 

W(FQ)-=  W(F)  (5.6) 

for all FE M+ and all QE SO(n). For a function W: M+--~R that is both 
frame-indifferent and isotropic there exists a symmetric function ~ : R "  ~ R, ++ 
such that 

W(F)  = r  v2, . . . ,  v , ) ,  
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where 

R~_+ = ( ~ E R ~ : ~ i >  0, i =  1,2 . . . . .  n}, 

and vi . . . . .  v,  are the eigenvalues of  the matrix (FtF)�89 BALL [5] has shown that 
W E  Ck(M+, R )  if  and only if �9 E Ck(R~++, I t)  for k = 0, 1, 2, or co. 

Thus, for a radial deformation u(x) we may set F = Vu(x) and then in the 
above notation 

vt =- U'(r), v2 = va = .. .  = v n =  U(r)/r 
so that 

W(Vu(x ) )  = O(U'(r) ,  U( r ) / r , . . . ,  U(r)/r)  

and the corresponding Piola-Kirchhoff stress tensor becomes 

T(Vu(x) )  = O2I + r -2 (01 -- 02) x | x,  
where 

and 

80  
01 = ~-:-(U'(r) ,  U(r ) / r , . . . ,  U(r)/r)  

v v  I 

80  
O2 = ~ (U'(r), U(r ) / r , . . . ,  U(r)/r), k = 2 . . . . .  n. 

Thus we see that T(Vu(x) )  is a symmetric matrix with eigenvalues O1 (once) 
and O2 (repeated n -  1 times). 

Now let us suppose that u : ~2 --> R" is a smooth radial equilibrium solution 
for an isotropic material with stored-energy density WE C2(M+,R). Then 
UE C2((0, a)) and U satisfies the differential equation 

801 
r--'~-r + ( n - -  0 ( O 1  - -02) - - - -0 ,  O < r < a  

which equivalently may be written as 

011U"  + (n -- 1) 012(U/r) '  + (n - -  1) (01 -- Oz)/r = O, 0 < r < a, (5.7) 

where 

and 

82~)  

- -ffC' 011 = U (r), U(r)/r . . . . .  U(r)/r) 

o 1 2  = 8v~, 8v"------[ ( U ' ( r ) ,  U( r ) / r  . . . . .  U ( r ) l r )  k = 2 . . . . .  n .  

We shall appeal to equation (5.7) in our discussion of uniqueness. 
Finally, let us note that strong-ellipticity of W implies �9 11 > 0 on R n ++" 

PropositionS.1. Let  .(2 ~- ( x E R n :  ][x[[ < a} and let 2 > O. Let  u: Q - - > R "  
be a smooth radial equilibrium solution for  an isotropic elastic material with stored- 
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energy density WE C2(M+, R). Suppose that W is strictly rank-one convex and 
that q~l~, ~12 are Lipschitz continuous on {tER"++:tk----t2, 2<--k<_ n}. Let 
u(x) satisfy the displacement boundary condition u(x) = 2x for all x E Of 2. Then 
the quasi-convexity of  W at 21 implies that u(x) = 2x for all x E ~.  

Proof. Let v(x) ~- 2x for all x 6 0 .  Then v is a smooth radial equilibrium solu- 
tion with V(r)----;tr, in an obvious notation. 

By Remark 4.4, we have that Vu(x)----Vv(x)= 21 for all x E 0-Q. Thus 
U(a) = V(a) and U'(a)= V'(a). We may then use the known uniqueness of 
the Cauchy problem for equation (5.7) (with data specified at r = a) to conclude 

that U(r)= V(r) for r E(0, a]. Thus u(x)----2x for all x E ~ .  []  

Remark 5.1. For WE C2(M+, R), we observe that strict rank-one-convexity 
of W is implied by strong-ellipticity of W. 

Remark 5.2. BALL [5] has discussed several other conditions on W ensuring 
that the smooth radial equilibrium deformation must assume the form u(x) = ;tx. 

Remark 5.3. Corollary 4.3 together with Proposition 5.1 shows that uniqueness 
of smooth radial equilibrium solutions requires that we may take the strict form 
of either rank-one-convexity or quasi-convexity in the conditions for W. 

Remark 5.4. Corollary 4.3 provides a partial answer to the question posed 
by BALL [5] concerning conditions to be imposed on W guaranteeing that the 
only sufficiently smooth (not necessarily radial) equilibrium solution with the 

boundary value u(x)-~ ;tx, x E ~-Q, is given by u(x )=  2x, x E ~.  

Remark 5.5. Proposition 5.1 remains valid without any explicit mention of 
the boundary conditions, since on the boundary radial solutions assume the value 
u(x)---- U(a)x/a and we may therefore set ).---- U(a)/a. In particular, for the 
traction boundary value problem, the hypotheses of the Proposition imply that 

smooth radial equilibrium solutions are given by u(x) ---- ;tx, x 6 -Q. Now, how- 
ever, the constant 2 is not uniquely determined by the load (cp. BALL [5]). 

6. Incompressible Materials 

In this final section, we modify the previous theory to incompressible elastic 
bodies in which, as is well-known, only isochoric deformations are possible. 
Thus, the stored-energy density is now defined on the set 

M1 = (FE M: det F = 1). (6.1) 

However, given 
by the formula 

W: M1-+R,  it is possible to extend W to the whole of M+ 

I~V(F) -~ W(F/det F) V F E M+, 
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and then WE Ck(M1,R) if and only if I~'E Ck(M+,R). Furthermore, all the 
definitions in Section 3 may be easily adapted to incompressible materials by 
replacing M+ by M1. 

The tensor (~W/~F) is now called the Piola-Kirchhoffextra stress and we set 

~W 
T(F) = - ~  (F) -- p(adj F) t V FE M1, (6.2) 

where p is an arbitrary scalar function. Then T(F) is called the Piola-Kirchhoff 
stress. 

As before, we suppose that the incompressible material in its reference con- 
figuration occupies the open bounded region .Q C Rn whose boundary 812 is 
piecewise continuously differentiable. The unit outward normal field on t3.Q is 

again denoted by N. We say that a function u :12-+  Rn is an incompressible 
deformation if and only if uE CI(-Q,R n) and Vu(x)E M1 for all xE 12. A pair 
(u, p) is a smooth equilibrium solution for our incompressible elastic material with 
stored-energy density WE C2(M1, R) if and only if u is an incompressible defor- 

mation such that uE C2(12,R ") and pE C~(12, R)f~ C(12,R) satisfy the 
equilibrium equations with zero body-force, 

div T(Vu(x)) = 0 (6.3) 
for all x E 12, where 

8W Vu x T(Vu(x)) = ~ ( ( ) )  -- p(x) (adj Vu(x))'. (6.4) 

The scalar function p : ~ - +  1% is now called a hydrostatic pressure corres- 
ponding to u. 

Remark 6.1. Let (u, p) and (u, q) be two smooth equilibrium solutions for an 
incompressible material. Then on recalling the identity 

div [adj (Vu(x))'] = 0, (6.5) 

we see from (6.3) and (6.4) that the difference p -- q satisfies the equation 

V(p(x) -- q(x)) adj (Vu(x)) t = 0. (6.6) 

But det (adj Vu(x)) t = 1, and it then follows from (6.6) and the connectedness 
of 12 that p -- q is constant on 12. 

Thus, for a smooth equilibrium solution (u, p), the deformation determines 
the pressure p up to an arbitrary constant on 12. Moreover, the equilibrium 
equations are equivalent to 

8W 
div ~ (Vu) -- Vp (adj Vu(x)) t = 0, (6.7) 

giving a formula for Vp in terms of Vu. 
The proof of uniqueness for the incompressible displacement boundary value 

problem is closely patterned on that of Section 4 for the compressible case. Once 
again, basic to the argument is the following result analogous to Proposition 2.1. 
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Proposition 6.1. Let Q be as above. Let (u, p) be a smooth equilibrium solution for 
an incompressible material with stored-energy density WE C2(M1, R). Then 

 u(x) ltds ?0 (u,x,_  6.8, 

Furthermore, it follows that 

f t r a d j ( V u ( x ) ) t [ N |  (6.9) 
0[2 

Proof. We begin by deducing (6.9) from (6.8). Let 2 E R. Then (u, p + 2) is also 
a smooth equilibrium solution and so by (6.8) 

hi(u) = f (N. x) W(Vu(x)) as 
Or1 

+ of  tr [ - ~ - ( 7 u ( x ) ) -  (p + 2)adj (Vu(x)) t] [N| (u(x)--r Ou~(--~))]dS 

for all 2 6 R. Hence the result follows. (An alternative proof  of (6.9) may be 
based on the divergence theorem applied to (6.9) together with use of  the identity 
F adj F = I.) 

To prove (6.8), we will verify that the equation 

nW(Vu) = div [xW(Vu) + Tt(Vu) (u - r~U] ] OrlJ (6.10) 

holds, as then the result follows immediately from the divergence theorem. To 
this end, let us first recall that when det F @ 0, we have 

0 
7-ff det F = (adj F t) (6.11) 

so that 
0 ?Vu  

r ~r (det Vu ) ---- tr adj (7u) r \ Or ]" (6.12) 

But d e t V u ~ l ,  and so 
?Vu  

tr adj (Vu)r  ~'-'~-r ] = 0. (6.13) 

Then, from elementary properties of the divergence operator, we get 

div{xW_kTt(Vu)(u_r~U~l (OVU~ t -~r] / ---- n W +  (x-V) W +  div T(Vu) -- tr T(Vu) r \--~-r ] 

= n W + tr ~ ( u )  r \---~-r ] -- tr T(Vu) r ~--~-r ] 

---- n W + p tr adj (7u) r \"~-r ] 

= nW, 
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in which (6.4), the equilibrium equations (6.3) and (6.13) have been used. Thus, 
(6.8) is proved. 

The remaining steps in the uniqueness proof are given by the following se- 
quence of results Corresponding respectively to (3.3), Proposition 4.1 and Corol- 
lary 4.3 in the compressible problem: 

Lemma 6.2. Let the stored-energy density WE CI(M~, R) be rank-one-convex. 
Then 

W(F + a | b) ~ W(F) --k tr (T(F) b | a} (6.14) 

for all FE M1 and aE•", bER" such that F +  a |  where T(F) is 
given by (6.2). 

Proof. We know that rank-one-convexity yields the inequality (cp. (312)) 

F) } W(F+a|  W ( F ) + t r I v  ( b |  

�9 = W(F) + tr ~T(F)b |  + p tr {(adj F t) 6 | a), 

on using (6.2). On the other hand, from the definition of determinant, we have 

det (F + a | b) = det F + tr {(adj F t) b | a}, 

but FE M1, F +.,a | b E M1, so it follows that 

.... tr {(adj F t) b | a) = 0, (6.15) 

which proves the result. [ ]  

n [ l ( u )  - I(v)] -<_ 

where 

Proposition 6.3. Let f2 be as in Section 4. Let (u, p) and (v, q) be two smooth equi- 
librium solutions for an incompressible elastic material with stored-energy density 
WE CZ(M1,R) such that u(x) ---- v(x) for all xE ~s I f  W is rank-one-convex, 
then 

r V(x) l 
of tr [T(VU(x))- T(Vv(x))] IN | (v(x) -- -'-b'7-r JJ dS, (6.16) 

e w  V T(Vu) = --~--ff- ( u ) ,  p adj (Tu) t, (6.4) 

~W 
T(Vv) = ~ (VV) -- q adj (Vv)'. (6.17) 

Furthermore, it follows that 

[ ( 0aftr [adj (Vu) t] N | v -- -~r]J dS = 0. (6.18) 

Proof. By means of the equality (6.8) in Proposition 6.1, together with Lemma 6.2, 
the inequality (6.16) may be established in the same way as that in Proposition 4.1. 
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To obtain (6.18), we replace (u, p) by (u, p + 2), where 2E R is an arbitrary 
constant, in inequality (6.16). The result is then immediate. As an alternative 
proof, consider the identity 

[ ( [ ( - = u -  -Z-orljdS f tr [adj (Vu)t] m | V r - f f  dS f tr [adj (Vu)t] N | r ~gu~] 
0s O.Q 

] -t- f (N" x) tr [adj (Tu)q | -g~ (u -- v) dS,  
0~ 

where Lemma 1.1(ii). has been used. But we also have (4.5) for all xE ~D and 
since Vu(x) E M~, Vv(x)E M~ for x E 0D, it follows from (6.15) that the second 
integral on the right of the last equation vanishes identically. The first integral 
vanishes by (6.9). [ ]  

Corol lary  6.4. Let ~2 be as in Section 4 and let FE M1 be a constant matrix. 
Let (u, p) be a smooth equilibrium solution for an incompressible elastic material 
with stored-energy density WE C2(M1,R) which is rank-one-convex. Let u(x) 
satisfy the displacement boundary condition 

u(x) --- Fx + b, (6.19) 

for all x E ~1-2, where b E R" is a constant vector. Then 

I(u) <= l ( v ) ,  

where v(x) = Fx -k b for all x E ~.  
I f  W is also strictly quasi-convex at F, then 

and p is an arbitrary constant on ~.  

(6 .20)  

u ( x ) =  Fx + b for all xE 

Proof. It is obvious that (v, 0) is 

u(x) = v(x) for all x E 0~2. Also, v 

a smooth equilibrium solution and that 
~v 

- -  r ~ r  ~ b, and so by Proposition 6.3, 

f _  
n [ I ( u ) ,  I(v)] ~ tr{ ) [ T ( V u ) -  T(Vv)] N dS} 

~f2O ! 

= 0 ,  

by the equilibrium equations (6.3). Hence (6.20) follows. 

|  

The strict quasi-convexity of W at F = Vv next implies that Vu(x) = 7v(x) 

for all x E ~,  so that u(x) = Fx + b for all x E ~. Finally, any pressure cor- 
responding to v(x) is constant on ~. Thus, since u(x) ---- v(x) for all x ~ ~2_ the 
pressure p is likewise constant on ~. [ ]  

Remark 6.2. For an incompressible elastic material, the results analogous 
to those of Section 5 for radial deformations become trivial. In fact, on suppos- 
ing that u(x) is a radial incompressible deformation, we have as before that 
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(ux)  = U(r)  x / r  and U(O) = O. However, det Vu ----- 1 so that U(r)  satisfies the 
differential equation 

U'(r)  [U(r)/r] "-1 : 1. 

An integration then gives 

U(r)  ~ r 

since the constant of integration vanishes due to the condition U(0) : 0. Hence 
radial solutions always assume the form: u(x)  : x .  
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