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Introduction 

We shall consider the initial value problem for the Navier-Stokes equations in 
the infinite cylinder S r = R" x [0, T). More precisely, given g(x) = (gl (x) . . . . .  g,(x)) 

satisfying div(g)(x)= s I -Ts -}g j (x )=O,x~Rn,  we seek a solution 
I l l  

vector 
j = l  \ u.,j l 

u(x, t )=(u l  (x, t), ..., u,(x, t)) and a pressure function P(x, t) such that 

. A 02Ui " 0Ui OP (1) ~Ou' (x, t)-- j= l  ~' - ~ .  t)+ j=~ ~xy ( x , _  t)uj(x, t)+--~-~i(x , t)=O for x~R n, 
t~(0, T), and i=  1, . . . ,  n. 

(2) 2 u (x, 0=0, x R", r). 

(3) u(x, 0)=g(x). 

If IZu denotes the n x n matrix (O ui/O x j), A u the Laplacian of u, and IzP the gradient 
of P, we abbreviate the first equation by 

D t u -  a u+ ([Tu)(u) + ITp = O. 

In studying the above problem we shall consider it in its weak form (see Sec- 
tion II). We shall show in Section II that solving the equation in weak form is 
equivalent to solving a certain non-linear integral equation. In Section III, with 
the use of a familiar imbedding theorem, we shall prove uniqueness for all values 
of T and existence for small values of T of solutions of the integral equation and, 
hence, of the differential equation, in the class of u for which 

j = l  

n 2 
where p, q satisfy the relations - - + - - < 1  and n < p < o o .  We denote this class 

P q 
by L p' a (St). The data g = (gx, ---, g,) is taken from the space L p(R") with n < p  < oo. 
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More precisely, if g(x) = (gl (x), ..., g, (x)) then 

g~LP(R ") r Ilgllp= ~ ( ~ I g~(x)lPdx)l/P< ~ .  
i = 1  R n 

We emphasize that no condition of integrability is assumed for any distribution 
derivative of g. (Of course, in the sense of distributions g will satisfy the condition 
div (g) =0.) 

In Section IV we also consider the problem of existence for all time. We show that 
when g(x) zL p • L p' (R"), p' < n <p, has the property that the norm II g II~L~,, L~')r 
= II g IIz~r + II g IIL~'r is small enough, then the solution u exists and is unique for 
all values of time. 

Finally in Section V we consider the relation of the class LP'~(Sr) with the 
Hopf-Leray class of solutions u defined by the condition II u Ih, ~ + II Vu 115,2 < oo, 
We prove that when g~L 2 (R ~) c~ LP(R"), 2 < n <p, then (in the small) the solution 
uzLP'~(Sr) also belongs to the Hopf-Leray class. Hence, using the results in [8] 
and [10], it follows that when g~L 2 (R ~) c~LP(R"), 2<n <p, any two Hopf-Leray 
solutions must agree in a small time interval (0, To). 

I. Construction of a Divergence Free Fundamental Solution 
of the Heat Equation 

In this section we shall construct an n x n (symmetric) matrix of functions 
E(x, t)=(Eij(x, t)) defined for x~R", t>O, such that 

(i) AEij(x, t)-D~Eij(x, t)=O for t>O, 

(ii) div(Ei)(x, t)= s Dx~Eij(x, t)=O, t>O, 
j = l  

E i = ( E i l  , E i 2  , . . . ,  Ei.), 
(iii) if g(x)r 1 < p <  ~ ,  with div(g)=O in the sense of distributions, then 

SE(x-y , t ) (g(y) )dy-*g(x)  in LP(R ") as t-*O+. 
R n 

We shall now construct a formal solution of the above problem with the aid 
of the Fourier transform. 

For f e L  a (R"),f=(fa,... ,f,), we put 

~x(f j)(x)=.~(f j)(x)= S fj(y)exp(i<x, y>)dy, ~x( f )=~( f )=(~  
R n 

If E(x, t) satisfies (i), ~ ( E )  should satisfy the differential equation 

Ixl~(E)(x,t)=D,~(e)(x,t), t > O .  
Hence 

~ ( E )  (x, t) = (c, j(x) e-I~12'), 

and our object now is to determine the matrix (cts(x)). 
Condition (iii) implies that for each x, 

~ ( e ) ( x ,  0 ) ~ ( g ) ( x )  = ~ ( g ) ( x )  
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when 
n 

(~r(g) (x), x)  = ~ xi~(gi) (x)=0 .  
i = l  

Since for x fixed we may consider ~'(g)(x) to be any vector v satisfying <v, x> =0,  
condition (iii) means that for each x 4:0, ~ (E) (x ,  0) is the identity matrix on the 
null space of the linear functional v~(v ,  x>. Hence ~(E)(x ,  0 ) = I +  ( . ,  x> v(x) 
where v(x) is a fixed vector in R ~ and /= iden t i t y  matrix. 

If we regard condition (ii) to be valid also for t=0 ,  then ~(E)(x ,  0)(x)=0. 

�9 2 X �9 This means that 0 = x + I x I v (x), and hence for x # 0, v (x) = - q-4~" Since the trans- 
x / xix \ ~x[ 

formation v ~  <v, x> ~ is given by the matrix | -  ~ | ,  we conclude (formally) 
that IXl \ IXl I 

[_ x~ xj (x, o)= =(c, Ax)), 
and therefore 

(1.1) 

where 

E(x, t) = (6,j F(x, t) - R, Rj r(x, t)) 

e-lXl2/4t 
F(x, t )=  (4~t). n 

and Rj is the j-th Riesz transform; that is, Rj is a singular integral operator on 
LP(Rn), 1 < p <  ~ ,  defined by 

Rj(f)(x)=limcj  S x j - y j  f ( y ) d y ,  
~-~o Ix-rl>~ I x - y l  ~+1 

the limit being taken in LP(Rn). See [1]. 

Working backwards, we now see from the definition of E(x, t ) that  
Eii(x, t)~C~~ oo)) and that indeed (i) and (ii) are satisfied. On the other 
hand, if D(x) = (4n) -"/2 e x p ( -  Ix 12/4), 

E,j(x, 1) = C2(x)6~j- R3~j(O)(x). 

Therefore the continuity of R~ in LP(R ~) for 1 < p <  oo (see [1]) and the fact that 
f2e N LP(R~) imply that E , j ( . ,  1)e 0 LP(R*). However E~j(., 1)~LI(/P) 

1 . p ~ o o  l < p < o o  

(its Fourier transform is discontinuous at the origin). Observe also that for t > 0  

E~j(x, t) = t -~/2 E~j(x/t 1/2, 1); 
hence for fixed t > 0 

Eii (t) (f) (x) = ~ E, j ( x -  y, t) f (y)  d y 
Rn 

is a bounded mapping from L p (R ") into L" (R n) for 1 < p  < oo, p < r < oo. 

When g~LP(Rn), 1 <p  < oo, is weakly divergence free (in the sense of (iii) above), 
we have 

(1.2) E,j(t)(g)(x)= ~ F ( x - y ,  Og(y)dy a.e., 
Rn 
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and hence well-known properties of the Weierstrass kernel yield (iii). The 
following lemma proves identity (1.2). 

Lemma (1.1). Let g=(gl .... , g,)~LP(R"), 1 <p< oo, be weakly divergence free. 
Then 

S Rs(I2)(x-y)gs(y)dy=O a.e. 
j = l  R n 

Proof. Since Rj(f2)~ N Lq(R"), the operator 
l < q < ~  

T(f ) (x)= ~ S Rs(O)(x-y) fJ (y)dy  
j = l  R n 

is bounded from LP(R ~) into L" (R ~) for 1 < p  < oo, p < r < co. 

Let g~L p (R") be weakly divergence free. Chose k ~ C~ ~ (R n) (infinitely differen- 
tiable with compact support), such that S k(x)dx= 1 and set 

R n 

ga(x)=2" S k ( 2 y ) g ( x - y ) d y .  
R n 

Then (a) g~ ~ C oo (R") c~ L p (R ~) c~ L ~176 (R"), (b) div (gx) = 0, and (c) g~---,g in L p (R") as 
2~0o .  

Then using (a) and (b), we obtain 
n 

~(T(g~))(x)=l-~e- lx l2( t~lx ,~(g, ,x))=O. 

Hence T(g~)= 0. The continuity of T and (c) imply that T(g)= O. 
We can also see that for t > 0 

l i t  n 

(1.3) Eis(x,t)=fi~sF(x,t)+ ~ 2 Dx, xs I2(xsl/2) s - f -  z ds, 
0 

the Fourier transform in x of both sides being equal, and 

n 1 
1/t Oaf2 .(xsZ/2)s ~ 2 ds. (1.4) D~kE~,s(x, t)=6tjD~F(x, t)+ So 

OXkOXiOX s 

Formula (1.3) in the case n =  3 was obtained by OSEEN in [7]. 

Using the matrix E(x, t), we now define an integral operator which, as we shall 
see in Section II, arises naturally in the study of the initial value problem. Given 
u=(u t  . . . . .  u,), we let (u(y, s), gE(x -y ,  t - s ) )  denote the n xn  matrix 

((u(y, s), DxkEi(x-y, t - s ) ) )  

where Ei(x, t) is the i-th row of E(x, t). We set 

t 

(1.5) n(u,v)(x,t)=$ ~ (u(y,s), VE(x-y,t-s))(v(y,s))dyds. 
0 R n 

From formula (1.3) it is easy to see that D~kE~j(x , t)eLl(Sr). Hence if u 
and vELP'q(Sr) with p > 2  and q>2 ,  B(u, v)~LP/2'q/2(Sr). The integral equation 

16 Arch. Rational  Mech. Anal., Vol. 45 
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of particular interest in this work is 

(1.6) u+B(u, u)=uo,  where Uo(X, t )= ~ r ( x - y ,  t)(g(y))dy. 
R n 

II. Equivalence of Weak Solutions of the Navier-Stokes Equation 
and Solutions of the Integral Equation u + B  (u, u ) =  u o 

To study a class of solutions of the Navier-Stokes equation for which the 
pointwise equations (1), (2), (3) are meaningless, we shall make use of the notion 
of a weak or generalized solution. 

Let 5P(R ") denote the space of rapidly decreasing functions on R" and Y '  (R") 
the space of tempered distributions. 

We will denote by 9~. those vector functions tp (x, t)=(g01 (x, t), . . . ,  tp,(x, t)) 

such that tp i (x, t) e 5" (R" + 1), ~0 i (X, t) = 0 for t ~ T, and div (~o) (x, t) = s Dx, tp~ (x, t) 
= 0 for all t. i= 1 

Definition. A function u(x, t)=(ul(x, t) . . . .  , u~(x, t)) is a weak solution of 
the Navier-Stokes equation with initial value g if the following conditions hold: 

(a) u(x, t)eLP'q(sr) for some p, q with p, q>__2. 

(b) For ~ r  

T 

~ (u, Ottp+Ago+(Vtp)(u))dxdt= - ~ (g(x), q,(x,O))dx. 
0 R n R n 

(c) For almost every t~ [0, T], div(u(.,  t ) )=0  in the sense of distributions. 

We assume of course that g(x) is weakly divergence free. 

Theorem (2.1). Let g~L'(R~),l<r<ov, be weakly divergence free. Then 
u (x, t) ~L p" q (ST), P, q > 2, p < 0o, is a weak solution of the Navier-Stokes equation 
with initial value g if  and only if  u is a solution of the integral equation 

u +B(u,  u) = j" F ( x -  y, t) g(y) dy.  
R n  

Proof. Let us first consider the case where u~L p' q (ST) is a solution of the integral 
equation. Put v=B(u, u) and let Uo denote the right side of the integral equation. 
Note that we may assume q finite. Since g is weakly divergence free, Uo (x, t) is 
weakly divergence free for each t>0.  Let wmEC~~ a sequence such that 
Wm~U in LP'q(Sr). Set vm=B(wm, Win); then vm-*v in LP/2'q/2(ST). In other words, 
[]Vm(', t)--V(', t)][L~(a")tends to zero in Lq(0, T); hence a subsequence tends to 
zero for almost every t of [0, T]. Observe also that Vm is divergence free for every t. 
At this stage we are using property (ii) of our fundamental solution (E~j) in the 
formula vm=B(Wm, Wm). Since limits of divergence free distributions are diver- 
gence free, v(.,  t) is weakly divergence free for almost every t in [0, T]. Therefore 
u = Uo- v is weakly divergence free almost everywhere in [0, T]. 

To pass from the integral equation to the weak form of the differential equation, 
0w oo 

we will first consider weLP'q(ST) such that ~--x-~L (ST) and div(w(-, t ) )=0  v x j  
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for every te [0, T]. For such w 

B (w, w) (x, t) = i ~ E (x - y, t - s) (V w (w)) (y, s) d y d s 
0 R n 

t 

0 R n 

r ( x -  y, t - s )  (17w(w) (y, s))d y ds 

Hence 

t 

-S 
0 

F (x - y ,  t - s) (R i R j) (V w (w)) (y ,  s) d y d s .  
R n 

(d - Dr) ( B (w, w)) (x, t) = - V w (w) (x, t) + ( R i R j) (Vw (w)) (x, t ) .  

We can then conclude that for such w 

T 

S S (B(w,w),Dtrp+Atp>(x, t ) dxd t  
0 R n 

T T 

= - [. I (Ew(w), tp> dx  d t+ f I ((Ri Rj) Vw(w), q~> dx d t. 
0 R n 0 R n 

Observe on the other hand that when tp ~ ~ r ,  (R~ R j) (tp) = (Rj ~ R i (q~i)) = 0, since 
i 

1 n r 

~,(2i  Ri(cPi)) = f ~ - i ~ l  xi ~ x ( C P ' ) = - ~  "grx (div cP) = 0 .  

Therefore, 
T T 

[. S (B(w, w), Dtg+A tp> d x d t =  S [. (w, Vtp(w)> d x d t .  
0 R n 0 R n 

Now let u be a solution of our integral equation and let k(x, t)be an infinitely 
differentiable function with compact support in R" x (0, oo) such that 

Set 

Then 

[. k(x,  t) dx d t= 1. 

t 

wx(x, t ) = 2  n+l J" ~ k ( 2 ( x - y ) ,  2 ( t - s ) )  u(y, s) dy ds. 
0 R n 

wx,~xXjeLP'q(Sr)c~L~176 and d iv(wa( . , t ) )=0  

for every t~[0, T]; hence w~ satisfies the above equality. But as ) . ~  oo, w x ~ u  in 
L p' q (St), and therefore B(w~, wa) tends to B(u, u) in L p/2, q/2 (St); hence for the limit 
value u, 

T T 

~ <B(u,u),O,~,+A~>axdt= f. f. <u, V~(u)>dxdt. 
0 R n 0 R n 

Finally 
u+B(u, u)=uo(X, t)= J F(x-y, t)g(y)dy. 

R n  
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Then 
T 

I I <u,O:,+aq,+Vq,(u)>axdt 
0 R n 

T T 

=~ ~ <u, Dtq~+Aq~>dxdt+ ~ ~ <u, Vq~(u)>dxdt 
0 R n 0 R n 

T T 

=~ S <uo-B(u,u),Ot~~ S S <u, Vq~(u)>dxdt 
0 R n 0 R n 

T 

=~ ~ <uo, Dtq~+Aq~>dxdt=- ~ <g(x),go(x,O)>dx. 
0 R n R n 

Hence solutions of the integral equation are weak solutions of the Navier-Stokes 
equations. 

Assume now that u is a weak solution of the Navier-Stokes equations with 
initial data g(x). If we could choose ~0~(x, t)--(Etj(x, t))7=l, i=  1 . . . .  , n, as test 
functions in condition (b) of the definition of weak solutions, the theorem would 
follow immediately. Unfortunately ~0ir ~ r ,  and this fact complicates the argument. 
We get around the difficulty by regularizing E~j. 

Let aeC~176 n) such that a ( x ) = l  when I x l > 2  and a ( x ) = 0  when I x [ < l .  
Let ~keC| such that ~ ( t ) =  1 when t > 2  and i f ( t ) = 0  when t <  1. 

Set a~(x)=a(2x) and ~(t)=~(t/~). For t > 0  set Eff)=~-1(aa~(Eij)), the 
Fourier transform ~'being taken in the x variable. 

Now observe that E~f)(., t ) e  Sa(R n) for t positive, and that 

0,, t ) = 0  

Moreover, since b = 1 - a e C~ ~ (R~), then k = # - -  1 (b) e ~ ( R  ~) and 

E}~)(x, t) = ~r - ~((I - bx) ar (Ei j)) (x, t) 
(2.0 = E, Ax, t ) -2 -"  k(2- t) ay.  

Rn 

Observe that the second term on the right-hand side of the above identity tends 
to zero in Lr(Sr) ,  1 < p <  oo, as 2 ~ 09, while any of its first spatial derivatives 
tend to zero also in LI(Sr).  

We fix (x, t) and set 

E(~) _ r~(~)~n --~'~ij:j=l, q~.x(Y,S)=~(s+2)~(t-s)E~a)(x-y,t-s).  

For t <  T, q~,,ae~r; therefore 

T T 

I ~ <u,D,+Ar(q~,.v)>dyds+ I I (u, Vy(q~t.~)(u)>dyas 
0 R n 0 R n 

= -  I <g(y),q~.a(y,O)>dy. 
R n 

Since 
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the above identity shows that 

1 t--8 
- v ,  j .  <u(y, s), ( x -  y. , -  s) > O' ( ( , -  s)/.) a y ds 

t - - g  

- S J" (u (y, s), (Vx El x) (x - y, t -  s)) [u (y, s)] > ~ ( t -  s) d y d s 
0 R n 

= - ~%(t) I (g(x), E~X)(x-y, t)) dy. 
R n 

Now we let 2 tend to infinity. Using the properties of identity (2.1) we obtain 

I t  ( ~ )  
- T !  j (u(y,s),Ei(x-y,t-s))~b' dyds 

- I  I (u(y,s),(VxE,(x-y,t-s))(u(y,s)))O dyds 
0 R "  

= -all(t/e) [. (g(y), E,(x-y, t)) dy. 
R n 

Now u(., s)eLP(R n) and is weakly divergence free for a.e. se(0, T). Using (1.2), 
we see that 

[. (u(y, s), E,(x-y, t-s)) d e = ~ F(x-y, t-s)u,(y, s)dy. 
R n R n 

Therefore, 

1 t--g 

-~tj2eO' ( - ~ - )  ~ F(x-y,t-s)ui(y,s)dyds 

1 t - - s  

1 t--g 

--it O' ( t - s ]  I 
_ \ e / R ~  

- - -  I I r ( x - y , t - s ) ~  '' [u , ( y , s ) -u , ( x , s ) ]dyds .  
t - 2 e  R n 

Now letting e-~ 0 we see that the term 

- - -  f. I (u (y , s ) ,E~(x -y , t - s )> ,p '  dyds  
t - 2 e  R n 

converges in Lp/2 'q /2 (ST)  , a s  8 --4"0, to the i-th coordinate function of the vector 
u(x , t ) .  

Since gEL" (Rn), 1 __<r< oo, and is weakly divergence free, 

lim~ ( t )  ~ (g(y),Ei(x-y,t))dy= J gi(y)F(x-y,t)dy. 
~ - - , 0  R n R n 

Hence u satisfies the integral equation u+B(u, u)= S r ( x - y ,  t)(g(y))dy. 
R n 
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HI. Existence, Uniqueness, and Regularity of Solutions 
of the Integral Equation 

We shall show in Theorem (3.1) below that the bilinear operator B(u, v) is 
n 2 

continuous from L ~'q • when - - + - - <  1. The basic analytic 
P q 

tool is the following imbedding theorem, the proof of which can be found in [11]. 

Theorem (3.0) (Imbedding). Suppose g~LP'(R ~) and set 

g(Y) dy where 0 < ~ < d  (xeRd). Tg(x)  f 
----n% I x - - y  I d-~ 

1 a 1 
I f  0 < . . . . .  , then T is continuous from L p' (R d) in to L p (Rd). 

Pl d p 

Theorem (3.1). For u, veLP'a(Sr) we have the following conclusions: 

(i) I f n + 2 = l  with n<p<oo,  then 
P q 

liB(u, V)IILP. q(ST) < C(n, p, q)IlUllLp.q(ST)[Iv[lLp, ~(ST) " 

(ii) I f n + 2 < l  with n<p<oo,  then 
P q 

1_(1 n 2)  
l iB(u,  V)IIL,.qfST) < C(n, p, q) T 2 ,  -T--T" IlulIL., ~(ST) IIvlIL.,~(ST) �9 

Proof. Using the representation (1.4) of Dx~ E~ j (x, t), it is not difficult to see that 

C 
IOx~Eij(x, t)l < 

(I x l + ? / 2 ) . + ,  
for each i, j,  k. Hence 

t 1 
IB(u ,v ) ( x , t ) l<C!  ~, [Ix_ylq_(t_s)ll2]n+ 1 lu(y,s)] I v (y , s ) ldyds .  

We proceed to prove (i). For any 0, 0 < 0 < 1, 

1 Co 
([x[+tl/z).+x < ixl(.+t)ott(n+l)/z)(t_o) �9 

As a function of y, [u(y, s)] Iv(y, s)l belongs to LP/2(Rn) for almost every s. 
Hence by the imbedding theorem, if we choose 0 such that 

1 2 n - - ( n + l ) O  ( 0 < 0 <  n_~_l ) 
p p n 

then 
t 1 

IIB(u,v)(',t)llL~(R.) <=Co, p,.! (t_s)..+x,/~)(x-o) Illu(.,s)l 

With the above choice of 0, if nip + 2/q = 1 and p > n, then 

1 2  [1 ( n + l ) ( 1 - 0 ) ] .  
q q 2 



Navier-Stokes Equations 231 

We again apply  the imbedding theorem,  observing tha t  

Ill u(o, s)l Iv(., s)ll[~,~ ~ Ilu(., s)IIL~<R~)llv(o, S)II~<R.)~/2(O, T). 
We obta in  

II B (u, v)II '.~,,<ST) < C (p, n) II u II ,. , ,~ (ST) II V II L~,~<ST)" 

We proceed now to prove  (ii). We shall have two cases, p = ~ and n < p  < oo. In  
the first case 

t 1 
liB(u, v) ( . ,  t)IIL~tR-)< C !  _ (t_s)l/2 I lu( ' ,  S)IIL~(R-)Ilv(', s)llLo~(R~)ds. 

If also q = oo, then 

liB(u, V)IIL~<ST) <= CT ~/2 Ilu IIL~<ST) II vlI'~(ST)" 

If p = oo and q < ~ ,  then by Theo rem (3.0) 

1 2 1 
liB(u, v) ( . ,  t)llL~(Rn)m/-Y(0, T) when - 

r q 2 "  

Since q > 2 ,  we have r>q and hence 

1 1 1 1 

IIB(u,v)llL~,~(sT)<CZ q " IIB(u,v)llL~.r(ST)<CT 2 q [lulIL~,,(ST) IIoIIL| 

Finally, when n < p  < oo, we choose q* and r such tha t  q* < q < r and 

1 2 
r q* 

4 
One way of making  the choice is to set q=q* when - - - ~ - - - -  

4 n q 
when - - + - - - 1  < 0. We proceed as before, setting 

q P 
1 _ 2  [ . n - ( n +  l)O] 
p p n 

n 1 1 / 4  n 1 \ 

2p t 7 + 3  - -  ) 
n 

P 
1 > 0  and r = o o  

Then 1 2 [ ] r q* 1--  (1- -0)  , and  

liB(u, V)IIL~.,<ST) ~=t~I liB(u, V)IIL~.'(ST) 

< CZ (-~-~-) IIulILP. q'(ST)IIvlILP, q'(ST) 
1 /  n 2 " ,  

<= CT-r~I-T--T) [lulIL~,~r [IvlIL~,~<ST). 

Theorem (3.2) (Existence). Assume p and q satisfy the conditions of  Theorem 
(3.1). Then there exists a constant Co=Co(B, p, q, n)such that when 

- •  n 2 
IIfltL~,,<ST)<Co T 2 -T- -T)  

the integral equation u + B(u, u ) = f  has a solution ueLP'~(Sr). 
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Proof. To prove the theorem we use Theorem (3.1)and a very simple iterative 
technique. Set vo=f,  Vm=-B(Vm_l, Vm_l)+f for m > l .  From Theorem (3.1) 
it follows that 

1 n 2 

II vmllL~, ~(s~,) < C T T O  --i--T) II/)m- 1IlL 2p' q(ST) "~- [[f[I ~,~, q(ST) 

where C=C(B ,p ,  q, n). It follows that if Co=(4C) -1 and 

then 

1 (l_n__2_._) 
IIflIL,.~(ST) < Co T ~" ~ ~ ' ,  

[]fllL~.~(s~) - A  for all m. 
[[V/[IL~'q(ST) =< I__2CT~_( 1 ~ z 

--~-~-) IIflIL,.,(ST) 

_< (It suffices to show that if a non-negative sequence (am}m~= 0 satisfies a~ _ 2 am- 1 + ao 

ao  for  m ~  1,then am< 1 - 2 2 a o  provided 42ao<  1. This can be proved by induc- 
tion.) Thus 

/)m+l--1)ra = --  B ( v m ,  Vm)"}- B ( V m - 1 ,  Vm-1)  

= - -  [B(1)m- -Vm_l ,  l ) m _ l ) - [ - B ( v  m, Pm--l)m--1)].  
Hence 

I. 1 n 2 

IIvm+ I -- VmIIL~. ~(ST) < 2CT z (--~-T)AIIVm_V,~_XIIL~.~(ST). 

X 
Now observe that if O__<x<�89 then 1---Z-~x < 1. Since 

we see that 

1 (1 n 2~ 
2 C T  T "  - T - T "  IIflIL,.~(ST) < �89 

2ACT 2,  p 4"<1.  

Thus lim vm=u exists in LP'~(Sr) and u+B(u, u)=f. 
m.--~ oo 

Theorem (3.3) (Uniqueness). Suppose p, q satisfy the conditions of Theorem 
(3.1). In the class L p' g (St) there can exist at most one solution u of the equation 
u + B(u, u) = f  for f ~ L  p'~ (ST). 

Proof. Since L p' ~o =Lp, ,  for 1 < r <  oo, we may assume q <  oo. If u+B(u,  u ) = f  
and v+B(v,  v ) = f  for u and vELP'q(ST), then u - v = - [ B ( u ,  u - v ) + B ( u - v ,  v)]. 
Hence for fi ~ T, 

llu--vllL~.q(s~)<C(llullLp.q(s~)+ IlvllL-. ~<s~))[In-- vllL~.~Cs~). 

We now choose fi so small that 

C(llullL~,q<Rnx(a,b,+l[vllL~,q(Rnx(a,b,)<l for any (a, b ) = ( 0 , T )  

with b -  a = c5. We see that u = v in S a  = R n X (0, (~). By a repetition of the argument 
u =  v also in S2a. Cont inuing in the same way, we see that u = v in ST. 
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T h e o r e m  (3.4) (Regularity). Let u be a solution of the equation u+ B(u, u)=f ,  
2 n 

u~L~'~(Sr) , --:-+-:-< 1. Let k be a positive integer such that k+ 1 <p, q< 00. I f  
q p 

then also 

D~xD[f~LP/(l~l+2j+l)'q/(lal+2J+~)(Sy) whenever ]~l+2j<k,  

DaxDJtueLP/(lal+2J+l)'q/(lal+2j+l)(ST) for [~[+2j=<k. 

Proof. Consider the case k =  1. Then feLP'g(Sr) and Dx, feLr/Z'q/2(Sr). Now 
the i-th coordinate function B(u, u)~(x, t) equals 

t 

I I u,(y, s) IDler(x-y, t-s)] [g,,uk(y, s)-R, RtUk(y, s)] dyds. 
1, k 0 R n 

From the LP-theory of singular integrals of elliptic and parabolic type (see 

P q [1], [5], or [9]) we see that DxjB(u, u)ELp/2'q/2(ST) provided 1 < ~ - ,  -~-< 0o. Since 
u = B(u, u) + f  we conclude that Dxj uEL M2, q/2 ( S T )  , 

To obtain the general case we proceed by induction on k. Assume the theorem 
is true for the integer k >  1 and consider the case when 

D[D~fELp/(2j+I~I+I)'q/(2J+I~I+I)(sr) for 2 j + l ~ l < k + l ,  p ,q>k+2 .  

We want to show that DtJDxB(U, ~ u)~ZP/(2Y+lal+l)'q/(2J+lal§ for 2 j+ lz l  < 
k + 1. The induction hypothesis implies that 

D~O~xuELp/2t+l#l+l'q/2t+l#l+l(sr) for 21+[fll<k. 

Hence the only case of interest is 2j+la[=k + 1. 

If j = 0  then D~,B(u, u) is a sum of terms of the form DxkB(D~u, D~u), where 
If l l+l~, l=k.  Now 

y llD~ n(O~u,O,,u)llnp/~+2.~/~+~ <-C IlO~u _ D xuIIL,/~+2.~/k+~(sT). 

P q P q 

Since D~ ueL IP-Y[-~-'-I~ + 1 (St), D~ u~L -[W~' 7~-r-(Sr), and (1 fl I + I ? [ + 2)/(k + 2) 
= 1, we see that 

IIDZ n(u, u)llL,k + ~, ~/k +2<s~) 

< C  ~ IIO~uII ,,f+, ,d+, ItDZull 
- i p l + l ~ l = k  L ' <ST) L I~'+~' J~+l r 

If j >  0 then 
D,JDx'n(u,u)= E C#.,Oll~(~u,O~u). 

l#l+l~l=l~l 

From the form of B(u, v)~ it is not difficult to see that D[B(u, v)~ is a sum of terms 
of the form D~-SD~u(x, t)RjR~(D~D~v)(x, t), s<r, and DxkB(Da~'u, D~'v)t where 
I v l + l t / l + 2 r = 2 j - 1  and ] f l ' l + l Y ' l = 2 j - l .  Replacing u by D~u and v by Dr~u 
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w h e r e  I/ 1 + I = I 1, w e  have 
j 

k+2 (St) 

the summation being over s < r, I fl [ + I ~ I + 2 r = k. By induction 

D~-S D#xu~LP/l#l + 2r- Zs+ l,q/lal + 2r- 2s+ l (ST) 

and 
D~ Dv~ u ~L p/l~l + 2~+ t, q/Irl +z~+ 1 ( S T )  , 

p q 

Using H61der's inequality, we see that the L k+2, k+2 (ST) norm of the product 
(D~-~B~u)(O~OV~u) is finite. 

IV. Existence and Uniqueness Theorems for the Navier-Stokes Equation 

In Section II we proved that any solution of the integral equation 

u + B(u, u) = J F ( x -  y, t) (g(y)) d y  
R n 

in the class LP'q(Sr), p, q>2 ,  p <  oo, was indeed a weak solution of the initial- 
value problem for the Navier-Stokes equation, and, conversely, a weak solution u 
with initial value g was a solution of the integral equation. We shall now rephrase 
the results of Section III for the differential problem. Set 

f ( x ,  t )= S r ( x - y ,  t ) ( g ( y ) ) d y .  
R n 

Suppose gEL" (R"), 1 < r <  oo. Since 
n n 

if s is chosen so that 0 < 1 = 1 - - + 1 - 1 ,  then 
p s r 

n n 

Ilf( ' ,  t)IIL,r < C t  ~ * f~ IIgIiL,~R-). 

if q(t_ ) 21n 

IIflIL,.q(ST) <= C T  q -~ IIg[IL,(R->. 
Hence 

•  ~_~_ n n 2 n 
ilfllL~.q(s~)<CTq 2p ff'ligllL-(R-), - - + - - > - - .  

p q r 

As a consequence of Theorems (2.1), (3.2), and (3.3) we have the following 
existence and uniqueness theorems for the initial value problem for the Navier- 
Stokes equation. 

Theorem (4.1) (Existence). Assume n + 2 < 1 with n < p < oo. I f  g (x) is weak ly 
P q 

divergence f r ee  and belongs to L ' (R")  with n + 2 > n > 0 ,  then the Navier-Stokes 
p q r 
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equation with initial data g(x)  has a weak solution u(x, t)eLP'q(Sr) at least for  
O<T< To, To= To(p, q, r, g). 

L+2<_ 
Theorem (4.2) (Uniqueness). Again assume _ 1 with n < p < c~. There 

P q 
exists at most one weak solution u(x, t)eLP'q(Sr) o f  the initial value problem for 
the Navier-Stokes equation. 

The main earlier results on uniqueness, for n = 3, are due to LERAY [4] when 
u e C  2 ' l n L  p'q and PRODI [8] when ueLZ'~176 p'q. SERRIN [10] extended 
the result of PRODI to n-dimensions. (See also LIONS [6].) For  a more extensive 
bibliography on uniqueness theorems, see [3], [6], [10]. 

Theorem (4.3). Assume n + 2 = 1  with n<p<oo .  Suppose g(x) is weakly 
P q 

divergence free and belongs to L "~ c~L~z(R ~) with 

n 2 n 2 n - - q  <O<---n 4 . . . .  
P q r l  P q r2 �9 

Set 

I[ gllL-,,~ L',~R") = [I gIIL'I(R") + I1 gllL,,~g-) �9 

n 2 n 
Since - - + - - < - - ,  

p q ra 

IlfllL~,,(s,) <= C(p, q, r2)II gllL.,(~.). 

lifllLp. ,<R" • tl, oo)) ~ C(p, q, rl) [I g II I..1(R-) �9 
Hence 

IlfllLp, q~R" • C0. ~)) < C(p, q, rx, r2) 1[ gl[L.l,~ L.,~R.). 

TO complete the proof we use Theorems (2.1) and (3.1) to conclude that if 
IIg[IL.l~.~-) is small, then for each T there is a unique weak solution ur(x, t )e  
LP'q(Sr) of the initial value problem for the Navier-Stokes equation with initial 
data g. The uniqueness result of course implies that for 7"1 < T2, ur, = UT~ in Sr~. 

We conclude Section IV with a discussion of existence and uniqueness of so- 
lutions of the following problem (4.4): 

Given a weakly divergence free function g(x)eL" (R"), 1 < r < ~ ,  and f ( x ,  t )=  
( f l ,  . . . , f , ) (x ,  t)eLP"~'(Sr),  1 <-Pl, ql, find u(x, t)eLP'~(Sr), p, q> 2, such that 

(1) For  al l~oe~r 

T 

~ (u ,D,  qg+Aq~+V(q~)(u)>dxdt 
0 R n 

= l Rn Rn 

I f  [[gI[~..~L.,~R.) is sufficiently small, then there exists a unique function u(x, t) 
defined for  almost all t > 0  such that for each T > 0 ,  u(x, t)eLP'q(ST) and is a 
weak solution in ST of  the Navier-Stokes equation with initial value g. 

n 2 n 
ProoL Again set f ( x ,  t) = S F ( x - y ,  t) g (y)dy .  Since - - + - - > - - ,  

R- P q r2 
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(2) u(x, t) is weakly divergence free for almost every te(0, T). 
The following theorems concerning the above problem are stated without 

proof; their proofs follow by straightforward modifications of those in the case 
f=0. 

Theorem (4.4). Let geL'(R"),  1 <=r < o~, be weakly divergence free and assume 
f (x , t )eL~1'al (Sr)  with 1 < p 1 < o o  and l < q l .  Then ueLP'~(Sr), p , q > 2 ,  is a 
solution of  the problem (4.4)/f  and only i f  u (x, t ) is a so lution of  the in tegral equation 

t 

u (x, t) + B (u, u) (x, t) = S F ( x -  y, t) (g (y)) d y + S S E (x - y, t -  s) ( f (y ,  s)) dy d s. 
R n 0 R n 

We observe that since 1 <Pl  < oo, then (RiRj ) ( f ) (x ,  t )~L p~' q~(Sr), and so the 
function 

t t 

~ E ( x -  y, t -  s) ( f  (y, s)) d y d s = ~ S F(x - y, t -  s) ( f +  (R, R~) (f))  (y, s) d y d s 
0 R n 0 R n 

also belongs to L ~1' ql (St). 
n 2 

Theorem (4.5). A s s u m e - - + - - < 1  with n<p<oo .  Suppose g e L ' ( R  ~) with 
P q 

n__ + 2 > n > 0 and that g is weakly divergence free. Assume also that f ~ L  p~' ~ (St), 
p q r 1 n 1 n 
l < p t < p ,  l < q l < q ,  a n d - - +  < + +1.  q, %-p 

Then problem (4.4) has a solution u (x, t) e L  p' ~ (St) at least for 0 < T< To = To (p, q, 
r,pl,ql).  

We should remark that the conditions imposed on Pl, q~, P, q are sufficient to 
guarantee that 

t 

~ E ( x - y ,  t - s ) ( f ( y ,  s))dyds e L~'q(ST) 
0 R n 

and that its L~'q-norm over Sr is bounded by Crl]f[]LP~,~,~ST) where C r = O ( 1 )  
as T ~  0. We shall prove this remark, and the theorem will then follow from 
Theorem (3.2). Observe that (R~Rj)( f)(x ,  t ) e L  p~' q~(Sr); hence it suffices to show 
that the potential 

t 

w(x, t)= S ~ r (x -y ,  t-s) (f(y, s))dyds ~ L~"(Sr) 
0 R n 

when f e L  p~' g~ (St) and satisfies the desired norm inequality. 
If p~ =p,  then 

t 

tlw(', t)[IL,(R-~ < C ~ Ilf( ~, s)llL,(~-) ds.  
0 

Hence in this case w eL  p'~~ r) for all qt > 1. If 1 <Pl  <P, we set 

1 - 0 = ~ -  1 and observe that 
P~ P 

t I f (y , s ) l  d y d s .  
lw(x, t ) l < C !  R~ " ix_yrO(t_s)~,/2)tl_O) 
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Then 

Now 

t 

II w(. ,  t)ll,ptR-) ~ C ff I[f(', S)IILp~tR-)(t-- S) -t"/2) O -0) ds. 
0 

(1-0)__<1-1- 1 1 <1; therefore by the imbedding theorem we have 
q q~ 

II w II,~,,,<s~) =< C Ilfll L,,, ,,<s~) provided that 

q ql 

1 n 1 n 
that is, -~-t+ 2p 1 < q + - ~ - ~ - + l .  

n 2 
Theorem (4.6). Again assume - - + - - <  1 with n<p< oo. There exists at most 

P q 
one solution u(x, t) of the problem (4.4) in the class LP'~(ST). 

V. Relation to the Hopf-Leray Class 

J. LERAY [4], in dimension three, and E. HOPF [2], in the general case, have 
proved the following existence theorem. 

Theorem (5.1) (HoPF-LERAY). Suppose g(x)~L2(R n) and is weakly divergence 
free. Then in Sr (no restriction on T) there exists a weak solution of the initial 
value problem with the following properties: 

(i) u(x, t)~L2'~(Sz).  

(ii) D~,u(x, t)~L2"2(Sr) for i= l  . . . .  , n. 

(.,) I j (x)12ax 
i = l  0 L k = l  R n 

We shall call any weak solution u(x, t) of the initial value problem in S z 
satisfying (i) and (ii) a Hopf-Leray solution. In this section the initial data will 
be taken from the space L 2 (Rn). 

With regard to the question of uniqueness in the class of Hopf-Leray solutions 
we state the following theorem. 

Theorem (5.2). Suppose u and v are Hopf-Leray solutions of  the initial value 
problem for the Navier-Stokes equation with weakly divergence free data g(x)e 
L2(R~). Assume v satisfies the energy estimate (iii) in (5.1). I f  u~LPm(Sr) for a 

pair of  exponents p and q satisfying n + 2 = 1  with n<p<oo ,  then u=v in S t .  
P q 

Theorem (5.2) is due to PRODI [8], when n=3,  and to SERmN [10, remarks to 
Theorem 6] in the general case. 

In this section we restrict our attention to n_>_2, and we show that when 
the datag(x) belongs toL p n L 2 (R~), n <p  < oo, any solution of the integral equation 
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u+B(u,  u)= S F ( x - y ,  t) g (y )dy  in the class LP'q(ST), n + 2 =  1, is also a Hopf- 
R" P q 

Leray solution. More explicitly 

Theorem (5.3).Suppose g(x)eLE nLP(R") ,n<p< oo. I f  u~LP' ~ n 2 
is a solution of the integral equation (Sr), , -=- 

1, 

u + n ( u , u ) = u o  (Uo(X, t)= S r ( x - y ,  t ) g ( y )dy ) ,  
R n 

then u is a Hopf-Leray solution. 

As an immediate consequence of Theorems (5.2) and (5.3) we obtain 

Theorem (5.4). Suppose g(x)EL 2 nLP(R"), n < p < 0% and is weakly divergence 
free. Then there exists a number T O = T O (g, p) such that i f  u and v are two Hopf- 
Leray solutions of the initial value problem for the Navier-Stokes equation with 
data g and i f  u and v satisfy the energy estimate, 5.1 (iii), then u =-v in St0. 

To prove Theorem (5.3) we shall make use of the following lemmas. 

Lemma (5.1). I f  gELP(R"), then Uo(X, t )=  ~ F ( x - y ,  t ) g ( y ) d y  belongs to 
R n  

n n z 
L"~(Sr) for r=p ands= oo and for r>p and - - < - - + - - .  

p r s 

The lemma is an immediate consequence of Young's Inequality. 

Lemma (5.2). Let u~LP'q(Sr). Then the following results hoM: 

1 1 n 1 
(i) I f  p>n,  B(u, u)~LP'~*(Sr) where =- -~  

q* q 2p 2 " 
(ii) I f  q>2, B(u, u)eLp/2'q(ST). 

Proof. Observe that 
n+l  n )  

IlD~E~j(', t)llL.r t -~-( - 7  

/I 2 i ~" @ ]l+l=lk ' 
Hence using Young's Inequality ~ - ~ - = p + - ~ - - 1 ,  P P / we have 

t 1 

liB(u, u)(., t)IILp~R.) < C ~ ( t-- s)-T("+ x -~-' ) Hu (',  s)ll~PtR,) d s . 
0 

Using Young's Inequality again, we obtain (i). A similar argument (setting r =  1) 
proves (ii). 

Proof of Theorem (5.3). As a consequence of Lemma (5.1), if geL2(R")c~ 
LP(R"), n <p  < o% then Uo = I F(x, y, t) g (y )dy  belongs to L 2' oo (ST) c~L p, oo (St) 

R "  

and hence to any L',~(Sr) when 2<_r<p, s > l .  Therefore usL',~(Sr), 2<r<p,  
1 <s,  if and only ff B(u, u)sL"~(Sr). But then (i) of Lemma (5.2) implies that 
u~L p. o~ (St), and (ii) implies now that u also belongs to L ~' oo (St). 
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To  complete the p roof  we must  verify that  DxuEL 2' 2(ST). 
Observe that  ~(Dx~uo( . ,  t ) ) ( x ) = i x k e - l x l 2 t ~ ( g ) ( x ) .  ( ~  denotes once again 

the Fourier  t ransform in the space variables.) Therefore, using Parseval 's identity 
we find 

T T 

~ IDxkuo(x, t ) 1 2 d x d t  = ~ ~ x2e  -2 I x l 2 t l ~ ( g ) ( x ) 1 2 d x d t  
0 R n 0 R n 

= 1 1 5 ( g ) ( x ) l  2 xge -2 Ixfftdt d x  
R n 

<1/2 S I~(g)(x)12dx=�89 2 �9 IIg[IL2r 
R n 

Hence D~k Uo e L  2' 2 (ST); therefore it suffices to show that  Dxk (B(u, u)) E L 2' 2 (ST). 

Extend E~j(x, t) to be zero for  t < 0 .  Then if ~ . t  denotes the Fourier  Transform 
in x and t, we have 

. -- x k x l / x i xj  '~ 

Hence ~,t(D,,~x,  Eij)  EL ~~ (R "+ 1). Extending u to be zero outside S r  and using 
Parseval 's  identity in L 2 (R "+ x), one obtains 

2 [I O ~  B (u, u)Ilz2,,(sT) < C l[ u rl L'.'(S~). 

It  Suffices then to show that  uEL 4" g(Sr)  for  some strip S r .  If p > 4 ,  the result 
follows ( u ~ L ' : ( S r )  for  2 < r < p ,  s >  1). If p < 4 ,  by Lemma (5.1), uo~L ~+2' "+2(Sr)  
/ n 2 \ 
[n>2,  p < n +  2, nip < 1 =  ~ - Z 3 - +  ~ 5 - 1 .  Hence for  T small enough the sequence 
\ 

{v~} of Theorem (3.2) converges in L ~+2' "+2(ST) to our  solution u (since the 
sequence depends only on uo). Therefore ueL~+2'"+2(ST),  n + 2 > 4 ;  hence 
u~L  4' 4 (ST) (since u~L  p" p(Sr))  and the theorem follows. 

We wish to thank Professors L. HORMANDER and G. KNIGHTLY for their valuable comments. 
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