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Introduction

We shall consider the initial value problem for the Navier-Stokes equations in
the infinite cylinder S=R" x [0, T'). More precisely, given g(x)=(g; (), ..., g,(x))

0
satisfying div(g)(x)= Z ( )gl (x)=0, xeR", we seek a solution vector

u(x, )=(u (x, 1), ..., u (x, 1)) and a pressure function P(x, ) such that

Du;(x,)+—5— oP

)} aat J1)— Z——T(x t)+Za 7%,

te(0,T),and i=1, .

(x, 1)=0 for xeR",

2 Ziu,-(x, =0, xeR", te(0,T).
7 0x;

() u(x,0)=g(x).

If Vu denotes the n x n matrix (0u;/0x;), Au the Laplacian of u, and VP the gradient
of P, we abbreviate the first equation by

D,u—Au+ (Fu)(u)+VP=0.

In studying the above problem we shall consider it in its weak form (see Sec-
tion IT). We shall show in Section II that solving the equation in weak form is
equivalent to solving a certain non-linear integral equation. In Section III, with
the use of a familiar imbedding theorem, we shall prove uniqueness for all values
of T and existence for small values of T of solutions of the integral equation and,
hence, of the differential equation, in the class of 4 for which

n T 1/q
) [5 (] lustx, t)l")““’] =lull,, <o
j=1 L0 R®

. . 2 .
where p, ¢ satisfy the relations %+71—§1 and n<p<oo. We denote this class

by L?-9(S7). The data g=(g,, -.., &,) is taken from the space L (R") with n<p < 0.
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More precisely, if g(x)=(g,(x), ..., g,(x)) then

gel’(R") < | gl = 'ZI(RI lg(x)|Pdx)"P < co.

We emphasize that no condition of integrability is assumed for any distribution
derivative of g. (Of course, in the sense of distributions g will satisfy the condition

div(g)=0.)

In Section IV we also consider the problem of existence for all time. We show that
when g(x)eL? nL? (R"), p’ <n<p, has the property that the norm | g || (e ~ o) (rm)
= | gllLzgm+ || & Il o (r) is small enough, then the solution u exists and is unique for
all values of time.

Finally in Section V we consider the relation of the class LP4(S;) with the
Hopf-Leray class of solutions u defined by the condition |ul[, ,+||Vul,, ,<oo.
We prove that when geL*(R") N L?(R"), 2<n<p, then (in the small) the solution
uel??(Sy) also belongs to the Hopf-Leray class. Hence, using the results in [8]
and [10], it follows that when geL?(R")nL"(R"), 2<n<p, any two Hopf-Leray
solutions must agree in a small time interval (0, T).

I. Construction of a Divergence Free Fundamental Solution
of the Heat Equation

In this section we shall construct an »n xn (symmetric) matrix of functions
E(x, fy=(E; ;(x, t)) defined for xeR", t>0, such that

@) div(E)(x,t)= Y D, E;;(x,1)=0, >0,
i=1
E;=(Ei, Eiz, -.-» Eyy),
(iii) if g(x)eLP(R™), 1 <p< o0, with div(g)=0 in the sense of distributions, then
fE(x—y,0(g(»)dy—g(x) in I’(R") as t->0+.
Rn

We shall now construct a formal solution of the above problem with the aid
of the Fourier transform.

For feL'(R"), f=(f,, ..., f,), we put
F () )=F(f) (x)=R,['fj()’)eXP(i<x, wdy, F(NH=F()=(F{)).

If E(x, t) satisfies (1), % (E) should satisfy the differential equation

|x|* Z(E)(x, )=D, F(E)(x, 1), 1>0.
Hence
F(B) (x, 0)=(c;;(x) e 1),
and our object now is to determine the matrix (c; ;(x)).
Condition (iii) implies that for each x,

F(E)(x, 0)F (2)(x)=F (g)(x)
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when

(F@ ()%= Y55 (&) ()=0.

Since for x fixed we may consider & (g)(x) to be any vector v satisfying {v, x> =0,
condition (jii) means that for each x $0, Z,(E)(x, 0) is the identity matrix on the
null space of the linear functional v—<{v, x). Hence Z,(E)(x, 0)=I+{-, xDv(x)
where v(x) is a fixed vector in R* and I=identity matrix.

If we regard condition (i) to be valid also for =0, then Z.(E)(x, 0)(x)=0.

This means that 0=x+| x|?v(x),and hence for x +0,v(x)= — _{—2 Since the trans-
X

- ., | x|
formation v— (v, x) l—xT; is given by the matrix (—Txﬁf—) , we conclude (formally)
that

F(E) (x, 0)= (6,-,-——%’,‘%—) (e, (),

and therefore

(LD E(x, £)=(3,;T(x, 1)= R, R, T (x, 1))
where
e—|x|2/4t
r y ) m=——
=

and R; is the j-th Riesz transform; that is, R; is a singular integral operator on
LP(R™), 1<p< 0, defined by

R(NHW=lime, | LW f()dy,
e>0  |x—y|>e IX—)’I
the limit being taken in L7(R"). See [1].
Working backwards, we now see from the definition of E(x,t) that
E;;(x,)eC*(R"x(0, 0)) and that indeed (i) and (i) are satisfied. On the other
hand, if Q(x)=(4n)""2exp(—|x|*/4),

E, ;(x, )=Q(x)5; ;- R R;(Q)(%).

Therefore the continuity of R; in LP(R") for 1 <p< oo (see [1]) and the fact that
Qe () LP(RY) imply that E;;(-,1)e () L?(R"). However E,;;(-, 1)¢L'(R")
1spLw 1<p<ow
(its Fourier transform is discontinuous at the origin). Observe also that for >0
Eij(x, t) = t_nlz Eij(x/tl/za 1);
hence for fixed >0

E;(0() (x)=R];Ei,-(x—y, nf»dy

is a bounded mapping from L?(R") into L' (R") for l Sp< 0, p<r<oo.
When geLP(R™), 1 £ p < o0, is weakly divergence free (in the sense of (iii) above),
we have

(1.2) E;;(H(g) (x)=RIn1"(x—y, Ng(ydy a.e.,
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and hence well-known properties of the Weierstrass kernel yield (ii). The
following lemma proves identity (1.2).

Lemma (1.1). Let g=(gy, ..., £,)eLP(R"), 1 £p< o0, be weakly divergence free.
Then

Y JR(@(x—y)g(»dy=0 ae.

j=1 R»
Proof. Since R;(2)e () L(R"), the operator
1<g<w

THE= 3 [R@GE-D50)y

is bounded from L?P(R") into L'(R") for 1<p< 0, p<r<oo,

Let geL?(R") be weakly divergence free. Chose ke C§° (R™) (infinitely differen-
tiable with compact support), such that | k(x)dx=1 and set
Rn

ga(X)=/'L"RI" k(Ay)g(x—y)dy.

Then (@) g,eC* (R nLP(R") n L* (R"), (b) div(g;)=0, and (¢) g,—g in LP(R") as
A—o00.
Then using (a) and (), we obtain

F () W= e ™ (£ %7 (6,) 0.

Hence T'(g;)=0. The continuity of T and (c) imply that T(g)=0.
We can also see that for >0

e 2
(1.3) E;;(x, )=5;;T(x, )+ oj D%, Q(xs'?)s? ' ds,

the Fourier transform in x of both sides being equal, and

1/t 3

(14) Dy E; ;(x, 0)=0;;D I (x, )+ J 0%, 0%;0%;

n_ 1
(xs'?s? Zds.

Formula (1.3) in the case n=3 was obtained by OSEEN in [7].

Using the matrix E(x, t), we now define an integral operator which, as we shall
see in Section II, arises naturally in the study of the initial value problem. Given
u=(uy, ..., u,), we let {u(y, 5), VE(x—y, t—s))> denote the n x n matrix

(<u(y’ S), kaEi(x—y’ t—S)))
where E;(x, t) is the i-th row of E(x, 1). We set
1.5) B(u,v)(x, t)=§Rj; u(y,s), VE(x—y,t—s)) (v(y,s))dyds.

From formula (1.3) it is easy to see that D, E; (x, )eL'(Sy). Hence if u
and veL??(Sy) with p22 and ¢22, B(u, v)eL?/*>*92(S;). The integral equation

16 Arch. Rational Mech. Anal., Vol. 45
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of particular interest in this work is

(1.6) u+B(u,u)=uy, Where ug(x, t)=Rj;F(x—y, N(g(»)dy.

I1. Equivalence of Weak Solutions of the Navier-Stokes Equation
and Solutions of the Integral Equation u+ B (4, u)=u,

To study a class of solutions of the Navier-Stokes equation for which the
pointwise equations (1), (2), (3) are meaningless, we shall make use of the notion
of a weak or generalized solution.

Let & (R") denote the space of rapidly decreasing functions on R” and &' (R")
the space of tempered distributions.

We will denote by @ those vector functions @ (x, £)=(@; (X, #), ..., @,(x, 1))

such that ,(x, )e L (R**1), ¢,(x, £)=0 for 12T, and div(p)(x, £)= Y, D, ¢,(x, 1)
=0 for all ¢. =1

Definition. A function u(x, £)=(u,(x, ), ..., u,(x, 1)) is a weak solution of
the Navier-Stokes equation with initial value g if the following conditions hold:

(a) u(x, t)eL?4(Sy) for some p, g with p, g=2.
(b) For pe2,

T
) f<u,D:<P+A§0+(V<P)(u)>dxdt=—an <g(x), p(x,0)>dx.

0 R»

(c) For almost every te[0, T, div(u(-, t))=0 in the sense of distributions.
We assume of course that g(x) is weakly divergence free.

Theorem (2.1). Let geL'(R%), 15r<oo, be weakly divergence free. Then
u(x, t)eL?4(Sy), p, g=2, p< ©, is a weak solution of the Navier-Stokes equation
with initial value g if and only if u is a solution of the integral equation

u+B(u,u)=Rj:‘T(x—y, Hgy)dy.

Proof. Let us first consider the case where ue L?*?(Sy) is a solution of the integral
equation. Put v=B(u, u) and let u, denote the right side of the integral equation.
Note that we may assume g finite. Since g is weakly divergence free, u,(x, t) is
weakly divergence free for each #>0. Let w,eC¢(S7) be a sequence such that
w,—u in LP*4(Sy). Set v,,= B(W,,, W,,); then v,,—v in L?/*:%2(Sy). In other words,
I 0 (s )—0(+, 1) lLo(rm) tends to zero in L1(0, T'); hence a subsequence tends to
zero for almost every ¢ of [0, T]. Observe also that v,, is divergence free for every .
At this stage we are using property (if) of our fundamental solution (E; ) in the
formula v,,=B(w,,, w,,). Since limits of divergence free distributions are diver-
gence free, v(-, ¢) is weakly divergence free for almost every ¢ in [0, T]. Therefore
u=u,—0v is weakly divergence free almost everywhere in [0, T].

To pass from the integral equation to the weak form of the differential equation,

gw eL*(Sy) and div(w(-,))=0
Xj

we will first consider weL?%(Sy) such that
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for every te[0, T']. For such w
Bw,w)(x,)=[ | E(x~y,t=s)(Fw(w))(y,s)dyds
0 R»

=E‘; [Tx—y,t—s)(Fw(w)(y,5))dyds

Rn

- b‘ R_[‘F(x—y, t—s)(R,R)(Fw(w))(y,s)dyds.
Hence

(4—D)(B(w, W) (x, )= —Fw(w) (x, )+ (R, R) (Fw(W)) (x, 1).
We can then conclude that for such w

]T f (Bw,w),D,@+40¢) (x,t)dxdt

O R®

T T
=—[ [<Fww),opdxdt+{ [ {(RR)Vw(w), ¢>dxdt.
O R»

O R®

Observe on the other hand that when g€ Py, (R;R))(9)=(R; ). Ri(¢))=0, since

| c .
0 _lei%(¢i)=-|;|~ Z.(dive)=0.

Z, (Z R; (‘Pi)) =
Therefore,

T
(B(w,w),D,p+4@ydxdt=| [<{w,Vo(w))dxdt.
0 Rn

Oty iy

Rn

Now let u be a solution of our integral equation and let k(x, ¢) be an infinitely
differentiable function with compact support in R" x (0, o) such that

fk(x,t)dxdt=1.

Set
t
wy(x, =" [ [k(A(x—p), A(t—s)) u(y, s) dy ds.
0 R"
Then
Wi, g:‘l e?YSp) N L*(Sy) and div(w,(-,)=0
J

for every te[0, T]; hence w, satisfies the above equality. But as A — o0, w;—>u in
L?9(Sy), and therefore B(w,, w;,) tends to B(u, u) in L?/?'9/2(S;); hence for the limit
value u,

T T

[ [<B(u,u),D,p+4@)dxdt={ | (u,Vou))dxdt.

0 R" 0 R®

Finally
u+B(u, u)=uo(x, t)=RI”1"(x—y, Ng(dy.
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Then

T

[ §<u,D0+40+Vow))dxdt
0

Rn

T
| f<u,Dio+40)>dxdt+ | | <u,Vo(u)ydxdt
0 0 Rn
T
={ [ <uo—Bu,u),D,0p+4¢) dxdt+_|T f<u,Vou)>dxdt
0 0 Rn
T
§
0

(g, Do+ A@ydxdt= —RI" (g(x), p(x,0)>dx.

Hence solutions of the integral equation are weak solutions of the Navier-Stokes
equations.

Assume now that u is a weak solution of the Navier-Stokes equations with
initial data g(x). If we could choose @;(x, 1)=(E;;(x, 1))}=1, i=1, ..., n, as test
functions in condition (b) of the definition of weak solutions, the theorem would
follow immediately. Unfortunately ¢,¢ 2, and this fact complicates the argument.
We get around the difficulty by regularizing E; ;.

Let aeC®(R") such that a(x)=1 when |x|=2 and a(x)=0 when |x|<]1.
Let Yye C*®(R) such that (t)=1 when ¢ =2 and ¥ (¢)=0 when 1.

Set a,(x)=a(Ax) and ¥,(t)=y (¢/¢). For t>0 set EP=F ~Y(a, #(E,))), the
Fourier transform % being taken in the x variable.

Now observe that E{P(-, t)e #(R") for ¢ positive, and that

" OE{Y
x, )=
1;1 Xj

Moreover, since b=1—aeC§ (R"), then k=% ~1(b)e #(R") and
EQx,=F "((1-b) F(E)) (x, 1)

@D =Ey (5, 027" | k(3 (x= ) B0, D dy.

Observe that the second term on the right-hand side of the above identity tends
to zero in L7(Sy), l<p<oo, as A— oo, while any of its first spatial derivatives
tend to zero also in L}(Sy).

We fix (x, t) and set
EP=(ENi=1»  00:0,9)=Y s+ (t—5)EP (x—y,t—s).
For t£T, ¢,,,€9r; therefore
T T
(_!. Rf <u, Ds+Ay((pz,y)>dyds+ (j; Rj. <ll, Vy((pz, ).) (u)> dyds

=—RI" 80,30 >dy.

Since

. Dxmvmum———vwnow()



Navier-Stokes Equations 229

the above identity shows that

L w09, By, 1=y ¥ (=) dy ds

€425 Rn
— 1 [ U0, (B (=, t=9) [0 DY 1=9) dy s
=40 [ <8 EP (x—y, ) dy.
Now we let A tend to infinity. Using the properties of identity (2.1) we obtain
5 [ <9 By, =) () dy s
—{ [ u,9), (" Ei(x—y, t—9)) (u(y, ))) ¥ (—’—;—s—) dyds
O R®
= —l//(tls)RJ’" g(y), E(x—y,1)>dy.

Now u(-, s)eL?(R") and is weakly divergence free for a.e. se(0, T'). Using (1.2),
we see that

I <u(ya S), Ei(x—ys t"s)> dy:Rj F(x—y’ t—s)ui(y’ S)dy.

Rn n

Therefore,

_1 }zlp’ (t—s [ r(x=y,t—s)u,(y,s)dyds

€ R

2

wE L t—s

= v (S utn s

,(t—s
&

) [ PG, 1=9) [, 9=, )] dyds

——u D= [ ¥ (452 e 9-utx 0 ds

t—2g

_1 r {IM(x=y,t—s)y’ (t—s ) [u;(y, s)—u;(x,s)]dyds.

€4-2¢ Rn €

Now letting ¢ — 0 we see that the term

t—s
&

_L :‘:B j(“(y’s),Ei(x—Yat—S»'//'(

€26 Rn

) dyds
converges in L?/2:92(S.), as ¢ =0, to the i-th coordinate function of the vector
u(x,t).
Since geL" (R"), 1 Sr< o, and is weakly divergence free,
. t
tmy () { <EO)Ex—r, 0 dy= [ 5T (=3, 0dy.
-0 n n

Hence u satisfies the integral equation u+ B(u, u)= | I(x—y, t)(g(»)dy.
R'l



230 E.B. Fasgs, B.F. Jones & N. M. RivIERE:

III. Existence, Uniqueness, and Regularity of Solutions
of the Integral Equation

We shall show in Theorem (3.1) below that the bilinear operator B(u, v) is

2
continuous from L?*?x LP%(S;)— LP*9(S;) when %4—; £1. The basic analytic
tool is the following imbedding theorem, the proof of which can be found in [11].

Theorem (3.0) (Imbedding). Suppose geL?*(R?) and set

Tg(x)= j'——g—(y-)——dy where O<a<d (xeR%).

If 0<v;——%—=-‘15, then T is continuous from LP*(R?) into L?(R%).
1

Theorem (3.1). For u, veL? 4(S) we have the following conclusions:
@) If%+721—=1 with n<p <o, then
| B(u, U)”Lr-q(sT)é C(n,p,q) “u"LP»q(ST) loll Lo a(S) -
.. n 2 .
@ If~—+?<1 with n<p <o, then

1B M esm S 2 D TTCF 7 Jull a5 [0l sy
Proof. Using the representation (1.4) of D, E; ;(x, t), it is not difficult to see that

C
Ika Eij(x, 1)} §W

for each i, j, k. Hence

wwwmm<qj 1

Dx—yl+(—

)1/2]n+1 [u(y, )| [v(y,9)ldyds.

We proceed to prove (i). For any 8, 0<0<1,

1 - Co
(!xl+31/2)n+1 == ‘x‘(n+1)8!((n+1)/2)(1—0) *

As a function of y, |u(y, s)| |v(y, s)| belongs to L?*(R™) for almost every s.
Hence by the imbedding theorem, if we choose 8 such that

i=_2__n—(n+1)6 (0<0< n )
P P n n+1
then
t
1
| B(u, v)(-,t)||um..)§C9,p,,,£ TGy 1, )1 o(es )i]|rr2mm ds.

With the above choice of 8, if n/p+2/g=1 and p>n, then
1 2 [1 (n+1) (1 6)]

a 4
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We again apply the imbedding theorem, observing that

|||u(‘, s)| v(s, s)l"Lplzé flu(-, s)"LP(R") fo(-, s)"LP(R")EH/Z(O, 7).
We obtain
| B(u, 0)|| Lo, i = C(p, n) lul e, a(ST) ol Lo a(St)

We proceed now to prove (if). We shall have two cases, p=o0 and n<p<oo. In
the first case
1

| B(u, v) (-, t)"L“’(R") Cj—l/z fu(-, S)”Lw(Rn) fo(., S)”Lw(Rr-)ds
If also g= o0, then
| B(u, U)"Lw(s,-)§CT”2 ||u”L°°(ST) ”U|IL°°(S1-) .
If p=o0 and g< oo, then by Theorem (3.0)
, 1 2
”B(u, v)(-,t)”Lw(R..)EL(O, T) When ’r—='q—“'_.

Since g>2, we have r>gq and hence

11 1
[ B(u, U)”sta(sr)é(qu 1B, )] L, r(sT)<CT2 B Null Lor agspy 00 Lo 0 (51

Finally, when n<p < oo, we choose g* and r such that g* <g<r and

L_i+_"___1__i<i+l_1)
rgq* 2p 2 2\g* p ’

One way of making the choice is to set g=¢* when i+l——1;0 and r=00
4 q D
when 71—+%—1§0. We proceed as before, setting

i=3_[n—(n+1)e]_

n

n+1

Then i=—2—— [1—(
r o q

%

) (1—- 0)] and

(-9
| B(u, V)|l Lo a5y SCT 4 # I1B(u, )l Lo.r (s
CT ”“”L»-q*(sT) ol e, a*(s o
+(1-
<CT2 ra full Lo, »4(ST) loll o, a(St) -

Theorem (3.2) (Existence). Assume p and q satisfy the conditions of Theorem
(3.1). Then there exists a constant Co=Cy (B, p, q, n) such that when

“Ll-n_2
1 lsesmy<CoT 07770

the integral equation u+ B(u, w)=f has a solution ueL?*(Sy).
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Proof. To prove the theorem we use Theorem (3.1) and a very simple iterative
technique. Set vo=f, V= —B{®p-1,Vm-1)+Sf for m=1. From Theorem (3.1)
it follows that

1-
lomlin oS CTTC T

-3

T ) 01 125, aspy T 1 fllLe.agsp)

where C=C(B, p, q, n). It follows that if Co=(4C)™! and

1 n 2
—— 1____
[ linasry<CoT TU 770,
then

”f“LP 'I(ST) =A4

%(1-" ) forallm.
1-2CT | fll e a(St)

0wl e, s =

(1t suffices to show that if a non-negative sequence {a,,} % satisfies g, < AaZ_; +a,

for m=1,then a"‘éT:%Qi— provided 41a,<1. This can be proved by induc-
tion.) Thus o

Unt1— 0= _B(Um’ Um)+B(vm—1’ vm—l)
= _[B(vm_vm—la vm—1)+B(Uma vm_vm—l)]'

-3

Hence

7 (1-
"vm+1'—vm”LP G(ST)<2CT2 A”v — Uy 1”LP a(ST)*

Now observe that if 0<x<1, then xx < 1. Since

1—
1a-n
2CT* ( ) N flerasm <3

-7)

we see that

2ACT2( 77«1,

Thus lim v, =u exists in L?>9(S;) and u+ B(u, u)=f.

m— oo

Theorem (3.3) (Uniqueness). Suppose p, q satisfy the conditions of Theorem
(3.1). In the class LP%(Sy) there can exist at most one solution u of the equation

u+ B(u, u)=f for feL?(Sy).

Proof. Since L?>® < LP'" for 1 £r=< o0, we may assume g<oo. If u+B(u, u)=f
and v+ B(v, v)=f for u and veL?(Sy), then u—v= —[B(u, u—v)+ B(u—v, v)l.
Hence for 6T,

lu—oll Lo asn S C(llufLe. assy T il e, u(s.,)) flu— U"Lma(s.,) .
We now choose é so small that
C(”“”Lw:(knx @+ Hv”LP»'l(R"x (a,b))) <1 forany (a, b)=(0,T)

with 5—a=4. We see that u=v in S;=R" x (0, §). By a repetition of the argument
u=v also in S, ;. Continuing in the same way, we see that u=v in Sy.
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Theorem (3.4) (Regularity). Let u be a solution of the equation u+ B(u, u)=f,
uel?1(Sy), —2‘-1—+%§1. Let k be a positive integer such that k+1<p,q<o. If

DD ferp/ie1*2i* 0.0/l * 204 V(g 1y whenever |a|+2j<k,
then also

DDl yepP/el 21+ D ailel+2i¥ gy for |a|+2j<Zk.

Proof. Consider the case k=1. Then feL”%(Sy) and D,, feLP/*%2(S}). Now
the i-th coordinate function B(w, u);(x, t) equals

Q ey

u(y,s) [ka I (x-y, t—s)] [5it“k(ys s)—R; Ryu,(y, 5)] dyds.

1,kO R»

From the LP-theory of singular integrals of elliptic and parabolic type (see

[11, [5], or [9]) we see that D, B(u, u)eL”*>¥*(S,) provided 1 <~I2J~, %< 0. Since
u=B(u, u)+f we conclude that D, ueL?*9?(S,).

To obtain the general case we proceed by induction on k. Assume the theorem
is true for the integer k=1 and consider the case when

D! D% fe[P/@itlalt 1. a/@itlelt (g Y for 2j+|a|Sk+1, p,g>k+2.

We want to show that D D% B(u, u)eLP/2/+lel+ 1.a/2itlal* (g ) for 2j+|a|<
k+ 1. The induction hypothesis implies that

DIDPue P/t IBIF L a2 B (g for 214 |B|<k.

Hence the only case of interest is 2j+|a|=k+1.
If j=0 then D%B(u, u) is a sum of terms of the form D, B(D4u, D}u), where
|Bl+]y|=k. Now

”ka B(D,‘Zu, Dlu)"Lp/k+2,q/k+2 é C ||D£u D;u”l‘p/ki»z, a/k+2(Sp)+

P q P _a
Since DEucLTFIFT"TAIFT (5., DlueLPT¥T" TI¥T (S and (|8]+]7]+2)/(k+2)
=1, we see that

"D;B(u, u)HLP/""'Z»HIk*Z(sT)

sC ) |ID%ul

q
18 +1y| =k LTFT+12 18T+ T (gr)

D%l

Lvﬁ—l’ Wﬁ—r(s,r) )
If j>0 then
D{D;B(u,u)= Y  C, ,D{B(Diu,Dlu).
[8]+]7]=]a]
From the form of B(u, v), it is not difficult to see that D/ B(u, v); is a sum of terms
of the form D;~*Dju(x, t)R; R,(D; D1v)(x, t), s<r, and D,, B(D% u, DY v), where
|v|+1n]|+2r=2j—1 and |B'|+|y’|=2j—1. Replacing u by Dfu and v by Dlu
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where |B|+|y|=|a|, we have

1D/ DLBu, )
LF+2

)é C Y I(D; ™" DEu) (D DY)l osms2,acr 25y »
T

a9
k+2 (S
the summation being over s<r, | 8| +|7|+2r=k. By induction

D:—ngueLp/|ﬂ|+2r~23+1,q/|[3| +2r—25+1(ST)

and
Dng"ueLp/Ivl+2$+ Lg/|y[+2s+1 (Sp).

P _4a
Using Holder’s inequality, we see that the L¥*2" ¥*2(S,) norm of the product
(D;~* D8u) (D5 D% u) is finite.

IV, Existence and Uniqueness Theorems for the Navier-Stokes Equation
In Section IT we proved that any solution of the integral equation

u+B(u,u)=RInF(x—y, 1 (g(»)dy

in the class L”?(S}), p,q=2, p<oo, was indeed a weak solution of the initial-
value problem for the Navier-Stokes equation, and, conversely, a weak solution
with initial value g was a solution of the integral equation. We shall now rephrase
the results of Section III for the differential problem. Set

fx, t)=anF(x~y, N(g)dy.

Suppose geL” (R"), 1 Sr<oo. Since

n

n
-2
ICCe, Ollpsem=Ct 2 25,

1 1 1
if 5 is chosen so that 0<7=?+7—1, then

n n

1G> Dl irrm<Ct 2 7 gl e -

1fq(1-%><2[n,

50D
IflLe asny=CT 4 gl g -
Hence
L po n 2 n
s SCTT T gl Ta 2l

As a consequence of Theorems (2.1), (3.2), and (3.3) we have the following
existence and uniqueness theorems for the initial value problem for the Navier-
Stokes equation.

2
Theorem (4.1) (Existence). Assume %+E§ 1 withn<p<oo. If g(x)is weakly

divergence free and belongs to L' (R"} with %+%>%>O, then the Navier-Stokes
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equation with initial data g(x) has a weak solution u(x, t)eL?%(Sy) at least for
O<T§T0’ T0=T0(pa q,7r, g)'

. 2
Theorem (4.2) (Uniqueness). Again assume %+;§ 1 with n<p<oo. There

exists at most one weak solution u(x, t)eL?(Sy) of the initial value problem for
the Navier-Stokes equation.

The main earlier results on uniqueness, for n=3, are due to LERAY [4] when
ueC*1~L?% and Propi1 [8] when ueL?* ®nL}'2ALP% SERRIN [10] extended
the result of ProDI to n-dimensions. (See also LIONS [6].) For a more extensive
bibliography on uniqueness theorems, see [3], [6], [10].

2
Theorem (4.3). Assume %+?=1 with n<p<oo. Suppose g(x) is weakly
divergence free and belongs to L' n L*(R") with

Set
&l A zracrmy = 118l Lrarry + 1 & ll ey -

If | gllirin Lrarey U8 sufficiently small, then there exists a unigue function u(x, t)
defined for almost all t >0 such that for each T >0, u(x, t)eL”*(Sy) and is a
weak solution in St of the Navier-Stokes equation with initial value g.
. . 2
Proof. Again set f(x, t)= | I'(x—y, t) g(y)dy. Since %+?>7n_’
R» 2
”f”LP"I(S,)é C(p,q,r3) ”g”L"l(R”) .
. n 2 n
Since —+—<—,
P 49 n
”f”Lmq(Rnxu, oo))§C(P, q,ry) ”g”L"l(R") .
Hence

"f”LPv‘l(R"x(O, o= C(p,q,7r1,73) ”g”L'lnL'l(R") .

To complete the proof we use Theorems (2.1) and (3.1) to conclude that if
|| gllrin Lrsrmy is small, then for each T there is a unique weak solution u;(x, t)e
LP-9(Sy) of the initial value problem for the Navier-Stokes equation with initial
data g. The uniqueness result of course implies that for Ty <T,, uy, =ur, in St,.

We conclude Section IV with a discussion of existence and uniqueness of so-
lutions of the following problem (4.4):

Given a weakly divergence free function g(x)eL"(R"), 1 £r< 00, and f(x, t)=
(f1s - [ (x, D)eLPr(Sy), 1=p,, q;, find u(x, t)eL?(S;), p, q=2, such that

(1) For allpeP;

T
| §<u,Do+A40+V(p)(u)ddxdt

0 R®

=[] [¢horaxdrs [ e ot 0p ],
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(2) u(x, t) is weakly divergence free for almost every te(0, T).

The following theorems concerning the above problem are stated without
proof; their proofs follow by straightforward modifications of those in the case

f=0.

Theorem (4.4). Let geL"(R"), 1 <r< o, be weakly divergence free and assume
S(x, eLlPrn(S) with 1<p <o and 1=q,. Then uel?%(Sy), p,q22, is a
solution of the problem (4.4) if and only if u(x, t) is a solution of the integral equation

u(x, )+ B(u, u)(x, 1) =Rj;1"(x—y, t)(g(y))dy+6f R.!‘ E(x—y, t—5)(f(y,s))dyds.

We observe that since 1<p, <oo, then (R;R;)(f)(x, t)eL’ *(Sy), and so the
function

(j)'anE(x—y,t—s)(f(y, S))dyds=£RJ;F(x—y, t=5) (f+(R:RY(N) (y,9)dyds

also belongs to L 1(Sy).

2
Theorem (4.5). Assume -;—+7<1 with n<p<oo. Suppose gel’(R") with

2oL 2 >— >0 and that g lS weakly divergence free. Assume also that feLP» 91(Sy),

P q 1

I<p,=p, 1<q1<q, and———+ +,__+1

21’1 2p
Then problem (4.4) has a solut;on u(x, t)eL?1(Sy) at least for 0< T< Ty =T, (p,q,
r,P1 ’ ql)

We should remark that the conditions imposed on p,, q,, p, q are sufficient to
guarantee that

{)[t }L‘E(x—y, t—5)(f(y,5))dyds e I"*(Sy)

and that its L?%-norm over Sy is bounded by Cr| fllLr. e,y Where Cr=0(1)
as T—0. We shall prove this remark, and the theorem will then follow from
Theorem (3.2). Observe that (R; R)(f)(x, t)eL?* %(Sy); hence it suffices to show
that the potential

w(x, t)=<’f R[ I(x—y,t—s)(f(y,9)dyds e I”*%Sy)

when feLP»%(S;) and satisfies the desired norm inequality.
If p, =p, then

iw(-, t)ummgcguf(‘-,s)uwn)ds.

Hence in this case wel? ®(S;)cL?%(Sy) for all ¢, =1. If 1<p,<p, we set

1—-0-= ~1— - —1— and observe that

141

iW(x,?)\<C5 5 e yln,ej;t(y’s))(!'/z)(l—w dyds.
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Then
t
fw(, t)”u(x")§c£ (s S)"LN(R")(t—S)—("/z)(l—o) ds.

Now —;— (1-6=z1 +%——ql—< 1; therefore by the imbedding theorem we have
1

Wiz a¢ssy S C Nl f || Lov arsry Provided that
1 1 [ n ]
121 i-2a-gl,
4 4 2 (1-6)

that is, -+ <+ 41,
4y 2py—q 2p

2
Theorem (4.6). Again assume —%+—q—§1 with n<p<oo. There exists at most

one solution u(x, t) of the problem (4.4) in the class L”%(Sy).

Y. Relation to the Hopf-Leray Class

J. LErAY [4], in dimension three, and E. HopF [2], in the general case, have
proved the following existence theorem.

Theorem (5.1) (HoPF-LERAY). Suppose g(x)eL*(R") and is weakly divergence
free. Then in Sy (no restriction on T) there exists a weak solution of the initial
value problem with the following properties:

@) u(x, )eL® = (Sy).
(ii) D, u(x, )eL**(Sy) for i=1, ..., n.

n t n
(ii)) .lelui(',t)lliz(nn)+2£ ‘ "Z_:IIIkau:(uS)Ilfz(m-)d5§k[Ig(x)l2dx-

We shall call any weak solution u(x, ) of the initial value problem in S,
satisfying (i) and (ii) a Hopf-Leray solution. In this section the initial data will
be taken from the space L(R").

With regard to the question of uniqueness in the class of Hopf-Leray solutions
we state the following theorem.

Theorem (5.2). Suppose u and v are Hopf-Leray solutions of the initial value
problem for the Navier-Stokes equation with weakly divergence free data g(x)e
L?(R"). Assume v satisfies the energy estimate (iii) in (5.1). If ueL?%(Sy) for a

n 2
pair of exponents p and q satisfying 72_+_q_=1 with n<p<oo, then u=v in Sy.

Theorem (5.2) is due to ProbI [8], when n=3, and to SERRIN [10, remarks to
Theorem 6] in the general case.

In this section we restrict our attention to n=2, and we show that when
the data g(x) belongs to L? n L2(R"), n< p < o0, any solution of the integral equation
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. 2 .
u+B(u, u)= | I(x~y, t) g(»)dy in the class LP4(S,), %+?= 1, is also a Hopf-
R'l
Leray solution. More explicitly

Theorem (5.3). Suppose g(x)eL?> nL?(R"),n<p<oo. If ueL?*1(Sy), —+£— 1,

is a solution of the integral equation q
u+B,u)=u, (uo(x, )= j F(x—y,0)g(y)dy),
RVI

then u is a Hopf-Leray solution.

As an immediate consequence of Theorems (5.2) and (5.3) we obtain

Theorem (5.4). Suppose g(x)eL? nLP(R"), n<p< o, and is weakly divergence
Jree. Then there exists a number T,=T,(g, p) such that if u and v are two Hopf-
Leray solutions of the initial value problem for the Navier-Stokes equation with
data g and if u and v satisfy the energy estimate, 5.1 (iii), then u=v in Sy,.

To prove Theorem (5.3) we shall make use of the following lemmas.
Lemma (5.1). If geL?(R"), then uy(x,t)= | I[(x—y, t) g(y)dy belongs to
R'I
L"s(Sy) for r=p and s= o and for r>p and %<£+—§—.
r

The lemma is an immediate consequence of Young’s Inequality.

Lemma (5.2). Let ucL? 9(Sy). Then the following results hold:

. 1
@) If pzn, B(u, u)eL»T(S;) where —ql;=;+l——i

2p 2°
Gi) If g=2, B(u, w)eLP*4(Sy).
Proof. Observe that
, n+l-—
D Eo (s Dlry=Ct 71T,

2 1 1 1
Hence using Young’s Inequality (117 —+——1,

p p p
S+ 1-7)

= 1), we have

1B, u) (+, Dl Lo rmy S CI(t— ) % 1 (s )1 Zocrmy ds -
Using Young’s Inequality again, we obtain (i). A similar argument (setting r=1)
proves (ii).

Proof of Theorem (5.3). As a consequence of Lemma (5.1), if geL?(R")n
LP(R", n<p<oo, then uy= | I'(x, y, t) g(»)dy belongs to L?**(Sp)nL?»*(Sy)
Rn

and hence to any L™*(S;) when 2=5r=<p, s=1. Therefore uelL"*(S;), 2<r=<p,
1<s, if and only if B(u, u)eL™*(S7). But then (i) of Lemma (5.2) implies that
ueL? *(Sy), and (i) implies now that u also belongs to L' ®(Sy).
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To complete the proof we must verify that D ueL? *(Sy).

Observe that F(D, uo(-, 1))(x)=ix.e”1*** F(g)(x). (F denotes once again
the Fourier transform in the space variables.) Therefore, using Parseval’s identity
we find

T T
| [ 1D uo(x, )2 dxdt=[ | xZe 2" |# (g)(x)|*dxdt
0 R" 0 Rn

= [ 1F (@ x| {,(Txf e ? |"'“dt} dx
Rn 0
S12 {190 (1 dx=3 - lglacun-

Hence D,, u,eL* %(Sy); therefore it suffices to show that D, (B(u, u))e L*2(Sy).
Extend E; ;(x, t) to be zero for £<0. Then if & , denotes the Fourier Transform
in x and ¢, we have
— X X X;X;
ot PuyEu) (5, D=3 (5= X5
Hence #, (D, ., E; )EL” (R"*1). Extending u to be zero outside S and using
Parseval’s identity in L2(R"*!), one obtains

”ka B(u, u)| L2 25y = C ”u”i"- 4(S1) "

It suffices then to show that ueL* *(Sy) for some strip S;. If p=4, the result
follows (ueL™*(S7) for 2<r=<p,s=1). If p<4, by Lemma (5.1), uoeL"* 2 "*2(S,)
(n_%2, p<n+2,n/p<l =7%+7i—2—)
{v,} of Theorem (3.2) converges in L"*%"*2(S;) to our solution u (since the
sequence depends only on u,). Therefore uel"*?'"*2(S;), n+2=4; hence
ueL**(Sy) (since ueL??(Sy)) and the theorem follows.

. Hence for T small enough the sequence

We wish to thank Professors L. HoRMANDER and G. KNIGHTLY for their valuable comments.
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