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1. Introduction 

This is the first of two papers concerned with the exterior problem for the 
Boltzmann equation. In that problem the gas has prescribed constant velocity 
c at infinity and passes by an obstacle d~. It is shown that if c is small, then steady 
solutions exist and are stable in time. The existence theorem is presented in this 
paper while stability will be discussed in the companion paper [16], hereafter 
referred to as Part II. The assumption imposed on d~, the intermolecular potential 
and the law of reflection for gas molecules at the wall 80 of ~ are physically 
plausible ones, stated after equation (1.12) of this section. 

Until now, the exterior problem has been studied only for the Euler and 
Navier-Stokes equations. There is an extensive literature on existence and stability 
of flows of incompressible fluids, but little for compressible gases. We should 
mention the papers [3], [12] in which the Euler equation for compressible fluids 
is solved for small c for two-dimensional isentropic, irrotational steady flows, 
the stability of which remains an open question. We mention also [11], which 
solves over an infinite interval of time the Navier-Stokes equation for compressible 
fluids at rest at infinity. 

In [1] and [14] we solved the Boltzmann equation for flows such that c = 0; 
steady solutions are then trivially given by Maxwellians (see (1.9) below). The 
aim of this paper is to deal with flows such that c ~ 0, and so nontrivial steady 
solutions appear. 

We discuss gas flow in n-dimensional Euclidean space R n. Thus let 0 be a 
domain in R n and denote its exterior R~ \  ~ by f2. Then we have the following 
initial-boundary value problem: 

ef 
-- ~. g x f  + Q[ff] ,  (t,x,~)ER+xg2XR", (1.1a) at 

( l . lb)  ~ , - f=  My+f, (t, x, 8) E R + x  S-,  

(1.1c) f--~gc(~) ( Ix [ -+~176  (t,~:)ER+ XRn, 

(1.1 d) fl,=o = f o ,  (x, ~:)E QXR".  
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The notat ions  are to be explained. The unknown is the (probabil i ty)  density 

f ~ f ( t ,  x ,  ~) of  gas molecules having the posit ion x E ~ and velocity ~ E R n 

at t ime t E R +  = [0, cx~). Equat ion  (1.1a) is the Bol tzmann equation,  in which 
V x stands for  the gradient  with respect to x and �9 for the inner p roduc t  in R n, 
while Q is a quadrat ic  operator ,  called the collision operator ,  given by 

(1.2) Q [ f , f ]  = f q(v, O) ( f (~l) f (~ ')  - f(~)f(~ ')} d~' dog, 
Rn• 

where f (~ )  ~ f ( t ,  x,  ~), v : [~ - -  ~' ], o9 E S ~ 1, cos 0 ~ (~ - -  ~ ' ) .  og/v, 
~ : ~ - -  (v cos 0) o9 and ~/' : ~' + (v cos 0) o9. q(v, O) in (1.2) is a non-negat ive 
funct ion of  v and 0, called the collision cross-section and determined by the 
in termolecular  potential .  The  two classical examples  are the gas of  hard  balls, 
for  which 

(1.3) q(v, O) : av I cos 0] (a > 0, cons tan0 ,  

and  the gas of  molecules subject to an intermolecular  potential  varying cx r-S, 
s ~> 1, which gives rise to 

(1.4) q(v, O) : v - v  qo(O), ~, = (s - -  4)Is. 

See [4] for  the derivat ion of  (1.1a) and [7] for  discussion of  q(v, 0). 
Equat ion  (1.1b) expresses the boundary  condit ion on 8g-2 : 80. Let  n(x)  

be the unit  ou tward  normal  to ~'2 ( inward to 80) at x E 892, and define 

S • : {(x, ~)E 8 g 2 x R  n In(x) �9 ~ 0} (same signs). 

Then  7 i are trace opera tors  on S • defined by 

7• f = fts  

(for the precise definition, see w 4), and M is an opera tor  which maps  functions 
on S + onto  functions on S- .  7+f i s  the density of  gas molecules incident upon  the 
wall 892, 7 - f  is the density of  molecules reflected by the wall. Hence  M is deter- 
mined by the law of  reflection of  the gas molecules a t  the wall. Fo r  example,  
if  the reflection at x E 8 0  induces the determinist ic change f rom the molecular  
velocity ~' ~ m(x ,  ~) to ~, then we are given a m a p  S -  3 (x, ~) ~ (x, m(x ,  ~)) E S +, 
and 

(1.5) M T + f  = f ( t ,  x,  m(x ,  ~)). 

The specular  reflection 

(1.6) m(x ,  ~) : ~ - -  2(n(x) �9 ~) n(x)  

and the reverse reflection 

(1.7) m(x ,  ~e) : _~e 

are wel l -known;  see [9]. Nondeterminis t ic  laws of  reflection are also possible. 
In  [6], the diffuse reflection 

(1.8) MT+f---- f m(x ,  #, ~ ' ) f ( t ,  x, ~') d#' 
n(x)'~'>0 



Kinetic Theory of Flows Past Obstacles. Part I 251 

is treated, in which m(x, ~, ~') is the probability that the reflection at x E 8[2 
changes the velocity from ~' to ~. 

The boundary condition at infinity is (1.1c), in which 

(1.9) gc(~) = exp {-- [~ -- cl2/2} 

is a Maxwellian (Gaussian) density with appropriately normalized physical 
constants, which represents a gas in equilibrium, moving with the mean velocity 
c E R n. Thus the gas is assumed to be in equilibrium at infinity. 

The initial-boundary value problem (1.1) is the subject of Part II; here we discuss 
the steady problem 

[ - - ~ . V x f + Q [ f , f ] = O ,  (x, ~) E [2 •  

(1.10) I v - f - -  M y + f =  0, (x, ~) E S - ,  

l f__+ g~(~e) (1 x[ ~ oo), ~ E ]Z n, 
where the unknown is f = f ( x ,  ~). 

It is well known [4] that 
Q[gc, g~l = 0 

holds for any c E R ~. Thus gc(~) is a steady solution of (1.1 a), but in general is 
not  a solution of (1.10) unless c = 0, for otherwise the boundary condition is 
violated, as seen from (1.6) and (1.7); the gas flow is disturbed by the obstacle 19. 
In this paper, assuming that the disturbance is small, we shall seek solutions of  

(1.10) in the form f =  g~ + g~u, where go = g~=0. 
Define 

1 1 
(1.11) LcU = 2go~Q[gc, g~ou], 

1 
rotu, vl = go ~OEg~u, g~vl, 

where Q[, ] is the bilinear symmetric operator induced by the quadratic operator 
Q of (1.2). Put 

_ 1  ! 
Mo7 +u = (Y-go 2) My+(g~u), 

fifo = Moy + -- Y-,  

hc = (V-go ~) (7-gc -- My + gc) . 

Then (1.10) reduces to 

- -~.  Vxu + Lcu + Fo[u, u] = 0, 

(1.12) fioU = he, 

u ~ 0  ( Ix l -+  oo), 

(x, ~) E [2 • R n, 

(x, ~) E S- ,  
~ E R  n. 

The precise definition of the solution u ---- u(x, ~) of (1.12) will be stated in w 4, 
after we have established a trace theorem. 

Now we shall state the assumptions under which (1.12) is to be solved. For  the 
domain 19, we assume 
[19] 19 is a bounded convex domain o fR  n with a piecewise smooth boundary 819 = 0[2. 
The restrictive requirement of convexity will be removed in a future paper. 
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The intermolecular potential employed here is the cutoff hard potential of 
GRAD [7]: 

[q] (i) q(v, O) is a nonnegative continuous function o f  v ~ 0 and 0 E [0, zl]. 
(ii) There are constants qa, q2 > 0 and 6 E [0, 1) such that 

q(v, O) < qa I cos o ] (v + v-e), f q(v, O) dco > q2v/(v + 1). 
S n -  1 

It is clear that [q] is satisfied by (1.3) and by (1.4) if s > 4 and if qo(O)/] cos 0 [ 
is bounded and bounded away from zero (the assumption of an angular cutoff 
[71). 

As for the boundary condition on 80,  different assumptions are required 
according to the type of the operator M. When M is of the form (1.5), the function 
m = m(x, ~) is assumed to satisfy 

[M]I (i) m:  S - - +  R"  is a piecewise smooth map such that (x, m(x,~))E S + 
whenever (x, ~) E S- .  

(ii) I m(x,  ~) I = 151 for  all (x, ~) E S - .  
(iii) Let  m~ = (Omj/~k) denote the Jacobian matrix o f  m w#h respect 

to ~ with x fixed. There is a constant mo > 0 such that 

In(x)./Sj t = In(x) �9 m(x, s e) I I det mr(x, se) l, 

I det m~(x, ~) ] ~ mo, 

for  (x, ~) E S- .  
(iv) m(x, t~) = tm(x, ~) for  all (x, ~) E S -  and t > O. 

This statement called the regular reflection law (see [9]) includes the specular 
reflection law (1.6) and the reverse law (1.7). 

Let p, q E [1, (x)] and fl E R. We define the space Yff'q'• of functions u(x, ~) 
on S • (same signs) by 

Yf f 'q ' •  3U~==) f I(1 + I~])~u(x, Ol~(x, Od~ d~x<OO 
Or2 n(x) 0 

when p, q < oo, and with integrals replaced by the supremum when p = oo and/or 
q = 0o. Here da is the measure on ~g2 and 

~(x, O = In(x). ~ I- 

To simplify the notation, we put 

yff,• = yff,P,• yp,• = yg'• 

All of these spaces are Banach spaces with obvious norms. In the sequel, B(Z, Y) 
will denote the Banach space of all bounded linear operators from a Banach space 
X into another Banach space Y. The assumption on Mo for the case (1.8) is as 
follows: 

[M]2 (i) Mo E B(Y z'+, y2,-)  with the operator norm ~ 1. 

(ii) Mog~ = O. 
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(iii) Mo E B(Y~ '+, Y ~ ' - )  for all fl E R. 
(iv) Mo E B(Y~ 'v~ Y ~ ' - )  for all fl E R with some (sufficiently large) 

p0 < oo. 

An example of a kernel re(x, ~, ~') satisfying [M]2 is found in [6]. Obviously 
[M]2 covers a wider class of  M's  than those given by (1.8). For  example, it holds 
for M given by 

M~+u = f re(x, x', ~, ~') u(x', ~') dax, d~'. 
S+ 

Remark 1.1. Suppose M be given by (1.5), and suppose that [M]t (i) (ii) 
(iii) be satisfied. Then it can be verified easily that M ---- Mo and that Mo satisfies 
[M]2 (i) (ii) (iii). However [M]I (iv) does not lead to [M]2 (iv). These two assump- 
tions will not  be used explicitly before w 7 of  Part II (see the remark after Propo- 
sition 7.5 of this paper). 

Remark 1.2. A boundary condition satisfying [M]2 (i) is said to be dissipative. 
If  in addition [M]2 (ii) is satisfied, then the norm of Mo is unity. Thus our boundary 
condition is conservative. Note that (ii) gives MT+g~ = 7-gc for c = 0, but not 
for c4~0 .  

Remark 1.3. For our purpose, [M]2 (iii) (iv) has to be satisfied only for 
fl----0 and f l = f l o ,  with some f l o > n +  1. 

Remark 1.4. All the results below hold if Mo is a convex linear combination 
of Mo'S subject to [M]I or [M]2. 

The plan of this paper is as follows. The notations and function spaces used 
in the sequel are introduced in w 2, and properties of  operators Lc a n d / ' o  defined 
in (1.11) are summarized in w 3. In w 4 a trace theorem is established under which 
7 m make sense. The definition of "solution" of (1.12) is also stated. Sections 5, 
6 and 7 are devoted to the study of the linear operator 

(1.13) Bc = - -~ .  Vx + Lc, 

which arises from the linear part of (1.12) and is called the linearized Boltzmann 
operator. Since x is a mere parameter in Lr the operator Bc can be defined for all 
x E R as well as for x E f2. In the former ease, B~ will be denoted by B~ and 
will be studied in w 5 and 6; the latter case will be discussed in w 7 together with 

the homogeneous boundary condition 3~toU = 0 on S-.  The main aim is to 
study the resolvent of  B~ and, in particular, to prove the existence of the inverse 
B~ -1. Our proof  relies on a method of perturbation in which the unperturbed 
operator is B~. The perturbation by r is seen to be compact in a certain sense. 
In w 8 we solve the linear inhomogeneous boundary-value problem 

-~ .  Vxr + Lc~ = 0, (x, ~) E ~ • 

(1.14) A~o~ = h~, (x, 8)E S- ,  

~-~0 (lxl~o~), ~ R - ,  
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which comes from (1.12) by ignoring the nonlinear term Fo[U, u]. Writing the 
solution to (1.14) as ff = 4~c, we see that (1.12) is equivalent to 

(1.15) U : -  - -Bcl /~o[U,  u] -~ ~c. 

This equation will be solved in w 9 by use of the classical contraction-mapping 
principle. 

The main results of our two papers were announced in [15]. However there 
is a difference in the proofs presented here. The estimates of Bc I and ffc used in 
[15] were uniform in the parameter c, which permitted us to solve (1.15) when 
n ~ 4 by means of the contraction-mapping principle. At the same time, this 
procedure required us to use the Nash-Moser-Nirenberg scheme for the physically 
important case n = 3, supplemented by decay estimates of ~b c for large Ixl. 
In this paper we derive non-uniform estimates which make it possible to avoid 
the Nash-Moser-Nirenberg scheme (see Remark 9.4). Most of the techniques 
employed here were developed in [1] and [14] for the special case c = 0, but we 
reproduce them here with emphasis on the role of c. 

2. Notations and Function Spaces 

Let X be a Banach Space. The norm of X will be denoted by II IIx. Let Y be 
another Banach space. B(X, Y) will denote the space of bounded linear operators 
from Xinto  Y, and C(X, Y) will denote its subset consisting of compact operators. 
They are Banach spaces with operator norm. We write B(X) ---- B(X, X), C(X) = 
C(X, X). In what follows, we shall often encounter operators defined formally, 
and we shall study their realizations in various spaces. To simplify notations, 
therefore, any realization of a formal operator A will be denoted by the same 
symbol A. Thus, in particular, the statement A E B(X, Y) will be understood to 
mean that a formal operator A has a unique realization belonging to B(X, Y). 

Let A be a (not necessarily bounded) linear operator defined in X with the 
range also in X. D(A) will denote the domain of A, while 9(A) and a(A) will denote 
the resolvent set and spectrum of A. The essential spectrum (in the sense of [8], 
p. 243) and discrete spectrum (the set of isolated eigenvalues of finite multiplicity) 
will be expressed as o'e(A ) and tTd(A ) respectively, and the resolvent ( 2 1 -  A) -1, 
1 being the identity, will be written simply as (2 -- A)-L 

Let D be a domain in R". LP(D; X) p E [1, oo], will denote the space of  L p- 
functions defined on D with values in a Banach space X, and L~(R"; X), fl E R, 
the space of  functions u(y), y E R", such that (1 + ]y[)a u(y)E L~(R"; X). They 
are Banach spaces with obvious norms. Let 8~ X) denote the set of  strongly 
continuous functions on D with values in X, and write 9~~ X) = o~~ X)/~ 
L~176 X). As usual, X will be suppressed in the above notations when X = C, 
(3 being the set of complex numbers. 

Let ~ be as in w and put Q =  f2x• We define the spaces 

L;'a(Q) = LP(s L~(RT)), 

/~'q(Q) = L~(R~; LP(~2~)), 
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for p, q E [1, oo] and fl E R, with fl dropped in subscript when fi = O. Put 

L~(Q) = Lff'P(O). 

Also put Q~O= R~• and define L~'q(Q~ ~,;,q(QoO) and L~(Q ~~ similarly. 
These are Banach spaces, and for both Q and QOO, 

( 2 . 1 )  = LI" = Ll",  
L ~ ' q C L y ,  s if p ~ q ,  

with continuous injection [2]. 
Given a function u ~ u(x, ~), let fi ---- J~,u denote its Fourier transform with 

respect to x; 

u(k, ~) = Jxu(k ,  ~) = (2z) - ~ f e -'k'x u(x, ~) dx, k E R", i = r 
Rn 

Put 0 ~ = RT, • and define L~'q(0 ~176 and L~'q(0 ~ as before. It is useful to 
1 1 

note that for all p E [ 1 , 2 ] , ~ + - - =  1, rE[1 ,  oo] and t iER,  the following 
relations hold: P q 

(2.2) (i) J x  E B(L~'2(Q~~ L~'Z(Q~176 

In fact, the definition of  J ,  makes (2.2) obvious when p = 1, and the Parseval 
theorem shows that it is true for p : 2. Hence the ease p E (1, 2) follows by 
interpolation [2]. Similarly, the inverse Fourier transformation j~ - i  satisfies 

(2.3) (i) J~ - '  E B(L~"z(Q%), L~'2(Q~176 

(ii) ~-1~ ]](s163162 ' 

where p, q, r and fl are the same as in (2.2). 
Let a E R and define the open half-planes 

r  (a) ~ {2 E (3 ] Re ~t ~ a} (associated signs) 

of  the complex plane (3, and let Oa:(a) denote its closure. Let B[a] denote the 
closed ball 

B[a] = {yER" ] /y[ ~ a) 

in R~, y being ~, k or c in the sequel, and a > O. 
X([~I < a) will denote any smooth function such that 

Z([~J < a)----- 1 for ~E B[a], = 0  for ~ E R " \ B [ a +  11, 

or the characteristic function for B[a]; again a > 0. In either case, Z induces 
multiplication operators in the function spaces on R ", Q, Q OO and 0 ~ as well, 
all of  which will be denoted again by z(l l < a). The symbols z(l l > a), 
z(Ikl < a) and z(Ikl > a) are to be understood similarly, but the latter two will 
be used, in addition, to express the operators ,r <> a),r 
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3. Collision Operators 

The operator Lc defined in (1.11) has been investigated thoroughly in [7] 
for the case in which c = 0. Using the results given there, we will deduce its 
properties for c # 0. 

Let r~, c E R", denote translation in ~; ~'~u(~) = u(~ A- c). By a simple change 
of variables in (1.2), we see that the quadratic operator Q commutes with r~; 
zcQ[f , f]  = Q[TJ, T~f]. As a consequence, Lc can be written formally as 

(3.1) Lr = O~qLoOc, 

where Lo = Lr and 

O~u(O = ~(e-~12u) (0. 
Suppose [q] of w 1 be satisfied. Then it is known [7], [13] that Lo has the de- 

composition 

Lou($) = --v(O u(O + f K(~, ~') u(~') d~', 

where the functions v(~) and K(~, ~') have the following properties: 

(3.2) (i) v(~) is real and continuous. 

(ii) Vo G v(r G v,(1 q- lr holds 

with some positive constants Vo and vl. 

(3.3) (i) For  ~ # ~', K(~, ~') is real, continuous and symmetric. 

(ii) With some constants ko > 0 and 6 E [0, 1), there holds 

I/r r < 

ko[(V_j_v_Z)exp{l__~_ (] ~ 12 +1 ~, i~)} + (v_l+v_(._2)) exp t_ 8 (v= + [ 1 r 

where v =  I ~ - -~ ' [  and r  (Itl ~ -  ir This has been proven in [7] 
when n = 3  and in [13] when n > 4 .  

In view of (3.1), Lc also has the form 

Lcu(~) = --vr u(~) A- f K~(~, ~') u(~') d~' 
p n 

where v~(~) = v(~ -- c) and Kc(~, ~') = K(~ --  e, ~' --  e) exp {~- (~ -- ~'). c}. 
From (3.2) it follows that 

(3.4) v~(~) enjoys (3.2) for each e E R n with the same constant 

Vo = inf% (~) = i~fv(~). 

Furthermore vc is continuous in both c and ~. 
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As for K~(~, ~'), we note the 
Lemma3.1.  Let  n >= 3, l <= p < n/(n - -  2), 0~ER, t i E R  and c E R ~. There 

is a constant C >= 0 such that f o r  all ~ E R ~, 

(3.5) f [K~(~, ~')[P e~l~'l (1 + I~'l)-a d~:' <_ Ce~lr + I~:[)-a-1. 
B,n 

Here the constant C is locally bounded as a funct ion o f  c, and (3.5) is valid also 
f o r  K~(~', ~). 

Proof. In (3.5), replace ~ by ~ + c and ~:' by ~' + c, and note that 

(l + IcJ)-x (1 -I-[~l) -1 ~ ( 1  + [~-b c]) -1 ~ ( 1  + ]cl) (1 + I~l) -x. 
Then it suffices to show 

(3.6) f IG(~, ~')l p (1 -[-I~'l)-ad~'<= C(1 + I~]) - a - t ,  
B,n 

oc = 0, this statement has been proven in [7]. The proof given there makes use 
only of the estimate (3.3) (ii) and remains valid when n ~ 3 if p E (0, n/(n - -  2)). 

1 and ~ in (3.3) (ii) can be replaced by any Moreover, in that proof the factors ~- 
positive numbers. Note that for any e > 0, 

~< 1 
I~'1 - I~1 =< I~ - ~'1 =< ~ 1~ - ~'1 = + de ----- 2e([~12 + I~'1~) + ~ ' 

1 which shows that (3.3) (ii) is valid for G if the factors ko, {- and -~ are modified. 
Hence (3.6) and consequently (3.5) are true. 

Define the integral operator K~ by 

Kcu = f K~(~, ~') u(~') d~'. 
Rn 

Let L~,~ be the space defined by 

L~,~ 9 u(~) <=> e ~1~1 u(~) E L~(RT). 

1 
Lemma3.2,  Let 1 ~ q <-- r <-- oo and o~, fl E R .  Put  ), o = 1 - - - -  q 

1 1 2 
Kc E B(L~.~, L~+~.~) / f  < - -  and ), <= 9'o. 

q r n 

The operator norm is locally bounded in c E R n. 

1 
+ - - .  Then 

Y 

Proof. The two special cases q = 1 and r----oo follow readily from (3.5) 
with p = r and p ---- q/(q - -  1) respectively, by the aid of the H61der inequality. 
Then the interpolation [2] leads to the general case. 

Lemma 3.3. Under the same conditions assumed in L e m m a  3.2, 

KcE g~ B(L~,~, L~+v,~)) f o r  any 7 "< 70. 
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Proof. Lemma 3.2 indicates that if d > O, then 

(3.7) llz(l~t > a)K~I[, Ilgcz([~l > a)ll < C(l -k a) -~ 

holds in B(L~,~,L~+~,~) with 9 / < 9 / 0 -  ~. Put g ' ( ~ , ~ ' ) = z ( l ~ l < a ) x  
z(lr < a)z(l~ - r  ~)K=(~, r and let K'  be the integral operator induced 
thereby. It can be easily seen from (3.3) (ii) that 

IlK'If-+0 as ~-->0 

in the norm of (3.7), locally uniformly for c. In view of this fact and (3.7), there- 
fore, it suffices to prove the lemma for the integral operator K"  induced by the 
kernel K"(~, ~') = Z([~ ] < a) x z(I r < a) Z(18 -- ~' ] > e) Kc(~, ~'), for each 
a, e > 0. Such is the case since by (3.3) (i) K"(~, ~') is continuous in c as well as 
in ~ and ~' and is of compact support in ~ and ~'. 

The last argument implies that K"  E C(L~,~, L~+7,~) for each fixed a, e > 0. 
Therefore the above proof, together with [10], Theorem III.4.7, proves the 

Lemma 3.4. Under the assumptions of  Lemma 3.3, 

Kc E C(L~,~, L~+e,~) for each c E R ' .  

Since Kc acts only on the variable ~, it can be regarded as an operator also in 
function spaces on Q and Q~O. Then Lemmas 3.2 and 3.3 lead to the 

Proposition 3.5. Let p, q, r E [1, oo], q <= r and fl E R.  Put 9/0 = 1 -- - -  
and suppose 

1 1 2 

q r n 
Then 

(i) K c E B(L~'q(Q), L ~ ( Q ) )  for each c E R n i f  9/<: 9/0. 

(ii) Kc E #~ B(L~'q(Q), L;~v(Q)) i f  7 < 9/0. 

Here the space L can be replaced by L and Q by QOO. 

1 1 

q r 

Let us study the operator Lr First we define the multiplication operator 

Ac = r~(~) X . 

In the sequel we write L~ = L~(g~). The maximal domain of Ac in L~ is given 
by 

D(Ac) = {u E L~ l vc(~) u(~) E L~}. 

By (3.4) it follows that L~+I ( D ( A c )  and that 

(r(--A~) = (re(--Ac) = {--Vc(~ e) t ~ E R n} < (-- (x), --Vo]. 

In particular a(--A~) is invariant in c. 
Since K~ E B(L~ by Lemma 3.2, Lc can be defined in L~ as 

Lc = --Ac + Ko D(Lc) = D(Ac), 
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and by Lemma 3.4 and according to [10], Theorem IV.3.35, 

O) ae(Lc) = a,(--Ac) C ( -  0% -Vo], 
(3.8) 

(ii) tr(Lc) f~ q(--A~) = tra(Lc ), 

for each c. Thus ae(Lc) is invariant in c. We prove also 

Proposition 3.6. aa(Lc) is invariant in c as well as in q, ft. 

Proof. Let 2 E ad(Lc) in L~ and let u E D(Lc) be a corresponding eigen- 
function. Put h ---- h(~) ---- (2 + v~(~))-~ and H : hK~. By (3.8), h E L~176 
Since 2u = Lr then u = Hu. Put 

H~ = Z(]~l > a) H, H z = Z ( I ~ I < a ) H .  

By (3.7) it follows that for each fixed e and if a > 0 is large enough, 

1 
I[ H~ [I ~ -~- in B(L~,~), 

and so the Neumann series converges and ( / -  H I ) - I E  B(L~.~) exists. Since 
Z([~[ < a) E B(L~, L~,3 for any o~ E R, so is //2 by Lemma 3.2 and because 
h E L~(R~). Hence so is 1-13 ~ ( I -  H~)-IH2. Rewriting the equation u = Hu 
as u : H3u, we then see that u E L(L~,~) for all or E R. Let 0~ be that of (3.1). 
Apparently 

0c, 0~ -l E B(L~,~, L~+I), 

provided o~ > ]el. Hence v ~-O~uEL~+IQD(Lo), and in virtue of (3.1), 
2v = Lov holds. This means that 2 E ad(Lo) because obviously v ~= 0. The 
converse can be proven similarly, and the invariance in c follows. Let u be as be- 
fore. Then by iteration we get u = Htu for any I E ~+. By repeated use of  
Lemma 3.2 it follows that for any 7 ~ 0, there is an l E ~+ such that H t E 
B(L~,L~~ Hence uEL~~ and in particular uEL~+n+2CL~+ 1 or uED(Lc) 
in L~. This shows the invariance in q and ft. 

It is well known cf. [4], that in the space L 2 = L 2 : L2(RT), Lo is nonpositive 
and selfadjoint with 0 E aa(Lo), the eigenspace of  which is spanned by the func- 
tions 

1 1 

(3.9) ~b o = g o  ~, ~j = ~jg~ (1 ~ j ~ n ) ,  ~b,+~ = [~2[g~. 

On account of  (3.8) and Proposition 3.6, therefore, a(Lc) C ( -  ~ ,  0], a(Lc) f~ 
(--Vo, 0] C ad(Lc) and 

0 E aa(Lc) with multiplicity n - k  2, 

for any c E R L  Denote by Pc the eigenprojection for 06ad(Lc) ([10], p. 180). 
A significant feature of  Pc is the 

Proposition 3.7. The null space of  Pc is invariant in c, 
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Proof. Let {~pj} (0 ~ j <= n + 1) be an orthonormal set in L z constructed by 
the Schmidt orthogonalization procedure applied to (3.9) and denote by (., .) 
the inner product in L 2. Then 

n + l  

eo  = Y, ~j(-, ~j) 
j = o  

in L 2. From (3.1) we see that Pc = O~aPoOr formally, and hence 
n + l  

(3.10) Pc = ~ 0~-'~pj (-, 0*~pj), 
j = O  

where 0* = exp (--~.  c / 2 ) ~  is an adjoint to 0~. Denote by sp {6j} the linear 
span of the functions (3.9), and similarly for sp {0*6j}. It is not hard to see that 
sp {0*6j} = sp {~j}, and thereby sp {0*~oj} = sp {W~} and is invariant in c. Since 

0* Pcu = 0 if and only if u is orthogonal to sp ( c ~Pj} due to (3.10), this proves the 
proposition. 

Because of the properties of the functions (3.9), 

Ocl~l)j ,  * 0 n. < j O, ~pj E g (Rc, L~), 0 n +  1, 

for any qE [1, ~ ]  and t iER.  Consequently (3.10) provides an exact expression 
of Pc in L~ and proves the 

Lemma 3.8. For any p, q, r E [1, oo] and fl, 7 E R,  

(i) Pc E ~~ B(L~, L~)), 

(ii) Pc E r176 B(L~'q(Q), L~'r(Q))). 

In (ii) the space L can be replaced by L and Q by Q~. 

Finally we state some properties of the bilinear symmetric operator Fo defined 
in (1.11). 

Lemma 3.9. For any e E ~:~n, 

(i) PcFo[U, v] = 0 for any u, v. 
1 1 1 

(ii) For any p, r, s E [1, oo] with -- + ~ and fl > O, 
p r s 

IIAc-~_ro[U, vlflz~,~ ~ C II ulk~,oo 11 vllz~,~ 

where /~V ~ =/~,~,OO(Q) etc. The constant C ~ 0 is independent o f  u, v and locally 
bounded in c. 

Proof. (i) has been shown in [4] and [8] for the case in which c ---- 0; hence 
because of Proposition 3.7 (i) holds also if c ~: 0. In [8], the estimate in (ii) has 
been derived with L,~'~ replaced by L~(R~), etc. when c = 0. Because of (3.4) the 
proof given there remains valid if c ~: 0. Repeat the proof, noting that Fo acts 
only on the variable ~ and that u v E LP(O) whenever uE Lr(12), v E L~(f2) with 
1 1 1 

q - -  (H61der inequality). Then (ii) follows. 
p r s 
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4. Trace Theorem 

Throughout  this section h = h ( ~ ) i s  a function of ~ alone and such that 
L~o~(R~) and ho inf Re h ( ~ ) >  O. The function spaces in which our trace 

theorem is to be established are 

W~'• = {u E LP(Q) I (~" V~ -4- h(~)) u E LP(Q)} (same signs), 

where Q = .Q~• as in w and ~. V~ is understood in the sense of distribu- 
tions. Endowed with the norms 

II ullwg,• = IlullL,~o) + II(,F" v~ • h(#))ull~.~o), 

these spaces are Banach spaces if 1 ~ p ~ co. As usual, C~(Q ~) denotes the 

set of C~-functions on Q~ = R~ xR7 with compact support. We put C~(Q) -~ 
{u ]o ]u E c~ (a~)}  and recall the definition of YP'• of w 1. 

Theorem 4.1. Under the assumption [d~] ofw 1 , / f  1 ~ p < o% there are unique 
trace operators 7J :~ such that 

(i) 7 • E B(Wg'• YP'• 
(ii) y• = U[s• whenever u E C~(Q). 

Proof. For  each ~ E R", define 

~ •  = { x c  ~o  I n(X)- ~ ~ 0), 
(4.1) 

~2• = {x E t2 [ x = S :F t~, XE ~t2• t > 0}. 

Because of [0], g2• Q g2 and the maps ~g2• • (0, co) 3 (X, t) ~ x = X ~ C 
E s177163 are bijective with the Jacob• 9(X, ~ ) =  In(X). s so 

o o  

(4.2)• f w(x) dx = f f w(X T t~) O(X, ~) dt dax 
o• on• o 

holds for wE L 1, where d~r x is the measure on ~f2. Define 

S• = k..J cq-Q• Q• = k_,/ .Q•  

The definition of S • given here and that in w 1 are identical. From (4.2) we 
deduce 

(4.3)• f w(x, e~) dx d~ e = f ~ w(X T t~, ~) o(X, ~) dt dax d~. 
Q• s • o 

Let u E C ~ ( Q )  and put v • = ( ~ - 7 x ~ h ( ~ ) ) u .  Then 

&-h~Otu (X T t~, ~)) : T e-he)'v• X =F t~, ~). 
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Integration yields for each (2, ~)E S • 

(4.4)• u(X, ~e) = qz ? e-h(Otv• qz t~e, ~e) dt. 
0 

The H61der inequality with ho ~ 0 shows that 

l u(X, ~)f  <= (qho) -p/q f f  I v• :~ t~, ~)[P dr, 
0 

1 1 
where - -  + - -  = 1. Multiply both sides by r ~) and integrate over S • Writing 

P q 
y~--u = Uls• and using (4.3), we conclude for uE C~(tg) that 

(4.5)~: [[7=~ullyp,• G (qho) -l/q II(~" Vx :~s h(~)) UlILp(O• ) G (qho) -llq Ilullw~,~co). 

Now we claim that C~(Q) is dense in W~'• for p 6 [1, cx~). This can be proved 
by a classical procedure using mollifiers and the homothetic transformations 
x--+ ~x, o~ > 0. The details are omitted. From (4.5) it then follows that 7 • 
possess unique continuous extensions in B(W~'• YP'~) if p E [1 ,~ ) .  The 
extensions thus obtained and denoted again by 7 • are the desired trace operators. 

Remark 4.2. Roughly speaking, (7• (X, ~), XE 812• are the limits 
o f u ( X ~ t ~ , ~ )  as t~,0. 

Remark 4.3. Let u E W~'+(Q). Our theorem ensures the existence only of 
y+u, not of 7-u. However y-u  exists in the following sense. Since Z(]~I < a) 
commutes with ~:. V x for each a > 0, and since hELI~(RT), Z(]~I < a ) u E  
Wff,-(Q); by Theorem 4.1 it follows that Y-(X(I~] < a )u )E  YP'- exists. Since 
Z([~[ < a) commutes also with 7-, and since a is arbitrary, this means that 
7-u E Y~;j exists for u E W~'+(Q). Similarly, u E W~'-(Q) has the trace 

7+u +. 

The above results remain valid if Q is replaced by Q~. To be precise, define 
the space W~'~(Q ~) similarly. I f  u E WK'~(Q~), then ulo E Wff'• and so 
Theorem 4.1 and Remark 4.3 apply to ulo. To simplify notation, write 7• for 
7• A significant difference between Q and QO~ is shown by the following 
strengthened version of Remark 4.3. 

Proposition 4.4. If u E Wf,'+(Q~), then 7-u E YP'- as well as y+u E YP'+, 
and similarly for u E W~'-(Q~). 

Proof. Put ~)• = D:~-(~)L: r (see (4.1)). As in (4.2), 

(4.6)• f w(x) & = f i w(X T o(x, dt 
~• ~p. q:(~) o 
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Put Q• : Q + L J ( O •  Let u E C ~ ( Q  ~~ and put v • = ( ~ . V x 4 - h )  u. 
Proceed as in (4.4) to deduce for (X, ~) E S +, 

o o  

(4.7)• u(X, ~) = -+- f e-h(~ t~, ~)dt, 
0 

which is never possible if u E C~~ Then instead of (4.5), 

(4.8)• II~'•177 ~ (qho) -1/q I[ v:F IIL'(~:). 

The rest of the proof is similar to that of Theorem 4.1. 
These traces 7~:u are the limits of u ( X +  t~, ~), (X, ~) E S • as t ~ 0 (compare 

Remark 4.2). Another difference is the 

Proposition 4.5. Assume Im h(~) E L~176 Then 

W,2, + (,q ~176 h ,~  , W/2'-(Q ~176 = (u E L2(Q ~) I • Vxu, u E L2(Q~176 

Proof. Since Jx(~" VxU) (k, ~) = ik.  ~fi(k, ~), then the Parseval relation 
shows that 

holds for u E W~'•176176 Since l i k .  # • h(#)I ~ = [Reh(~)[2 q_ ]k. ~ + Imh(~)[2, 
Parseval's relation indicates that Re h(~) u and (~- Vx 4- Im h(~)) u are in L2(Q~), 
whence the proposition follows. 

For later purposes, we state Green's formula: 

Lenuna 4.6. Let u E W~'+(Q) and suppose F-u E y2,- exists. Then 

1 2 
(4.9) ho II ul[ ~ --<-- Re ((~. V x q- h(~))u, u) + T{II~,-ulI_ - II~,+ull%), 

where II II and ( , )  denote the norm and the inner product of  L2(Q) while II II• the 
norms of  y2,• 

Proof. Let u E C~(~9). Then by the divergence theorem or by integration 
by parts, it readily follows that 

2 Re (~. Vxu, u) = II~,§ - II~,-ullZ_. 

Since h(~) uE LZ(Q) if uE C~(Q), this proves (4.9) for such u. Next, let uE W~'+(Q) 
andpu t  Ua = z ( l ~ l  < a) u. For anyfixed a > O ,  u~E W~'• with 7• y2,• 
by Remark 4.3, and since C~(Q) is dense in W~'• there is a sequence (u"} C 

C~(Q) such that 

u ~-+ Ua in W]'• h(~) un---~h(~) Ua in L2(Q), 

7• n-+ 7~u~ in I t2 , •  
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strongly as n ~ o~. Therefore  (4.9) is valid with Ua substi tuted for  u. Finally 
since u~ -+  u s trongly in W2"+(Q) as a - +  cx~, then y+u~--~ y+u in y2,+ due 
to T h e o r e m  4.1(i), and if in addit ion y - u  E y2 . -  exists, then y-Ua -+ y-U in y2 , -  
s t rongly because y-u~ = y - u  for  ~ E B[a] owing to R e m a r k  4.3. The  p roo f  of  
the l emma  is complete.  

All the results o f  this section will be applied in the sequel with h(~) = 2 q- rc(~), 
2E C. We  should assume ;rE C+(--~o) in order  that  ho > 0, due to (3.4). 
Then  Wf'+~(Q)= W~• with equivalent norms.  O f  course 2 = 0 when (1.12) 

is concerned.  Let  u E W~+(Q). Then ( - - ~ -  V~ -[- L~) u E LP(Q) in view of  

Proposi t ion  3.5, and y+uE YP'+ and y-u E Y~;s exist. By an interpolat ion [2] 
between [M]2(i) and (iii) for  fl = 0 (see also R e m a r k  1.1), Mo E B(Y  p'-, YP'+) 
for  p ~ 2. Then  )Fu  E YP'- necessarily exists i f  u satisfies the boundary  con- 

dit ion ~roU = 0 or y - u -  Moy+U. Fur thermore ,  if  p < ~ ,  then u ELP(Q) 
can be said to satisfy the condit ion u -+  0(Ixl -+ oo) in a generalized sense. Thus  
we arrive at  the 

Definition 4.7. Let pE [2, cx~). A function u = u(x, ~) is said to satisfy (1.12) 
in the LP-sense or to be an LP-solution to (1.12) / f  

(i) uE W,f'+(a),  

(ii) Fo[U, u] E LP(Q) and (--~ . V~ + Lc) u = -- Fo[U, u] in LP(Q), 

(iii) y-u E YP'- with ]('lou = 0 in YP'-. 

LP-solutions 4~ to (1.14) can be defined similarly. 

5. The Operator A~ 

In this section we study the opera tor  Bc of  (1.13) for  the simplest case: .(2 = R ~ 
and  Kc = 0. To  avoid confusion, we write this opera to r  as A ~ ;  

A 7  = - - ~ -  Vx - -  ~c(~) •  (x, ~) E Q ~ .  

First  let us consider this opera to r  in the space L2(Q~). Then its maximal  
domain  D(A~) is W,?] V(Q~), but  by virtue of  (3.4) and Propos i t ion4 .5  that  

domain  can be specified: 

(5.1) D(A~) = W,2 '+ (o~  W, 2 - ~ , ~  , =  v~ ( Q )  

= {u E LZ(Q ~176 I ~e. 7xu, ~(~) u E LZ(Q~)}, 

and for  u E D(A~), 

(5.2) JxA~u(k ,  ~) = --(ik . ~ + rC(~)) ft(k, ~). 

F r o m  this re lat ion we readily see that  

(i) A ~  is maximal ly  dissipative in L2(Q~176 

(5.3) (ii) a (A~)  = ae(Ac ~) = ( i k . ~ - - r ~ ( ~ )  [k,~ER"} C C- ( -Vo) ,  
O(A7) ) C+(--~o), 
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where 1, o ~> 0 is the constant  in (3.4). (5.3(i) implies that  d ~  generates a semi- 
group F~~ (t) ----- exp tA~  in L2(Q~176 and by (5.2), 

(5.4) 
(i) J~F~~ (t) u ----- exp ( - - ( i k .  ~ § r~(s fi(k, ~:), 

(ii) i x ( 2  --  d~~ ~ (2 + i k .  ~ + ~(~))- ' f i (k,  ~:). 

Taking the inverse Fourier  t ransform, we obtain 

(5.5) 
(i) F ~  (t) u = exp {--v~(~:) t} u(x -- t~, ~), 

oo 
(ii) (;t -- Ay) -~u  = .f exp {--(2 + r~(~))} u(x -- t~, 2) dt. 

0 

The main aim of  this section is to study (5.5) in various spaces other  than 
L2(Q~). In other  words, we shall regard (5.5) as formal  definitions of  F ~  (t) and 
(2 -- A~) -~ and investigate their realizations. To  simplify the notation,  we write 

All the results in this section are valid for any p, q E [I, c,~], fl E R and c E R" 
unless otherwise stated. 

Lemma 5.1. For any t > O, 

(i) F I F ~ ( t ) l t ~ e x p ( - % t )  in B(L~'9,  
1 1 

(ii) II F~(t)II <= t -"~ exp ( - % 0  in B(L~ 'p, Z~ 'q) i f  q _<. p, with o~ . . . .  
q P 

Proof .  Denote  the r ight-hand member  o f  (5.5)(i) by v = v(t, x, 2). Then  by 
the change o f  variable x ~ y = x --  t~, 

(5.6) [I v( t, ., ~) [[LP(R~) <: e-~c(Ot [i u(., ~) [[LP(R~) 

for  each ~: E R n, which on account  o f  (3.4) proves (i). Another  change of  variable 
~ : ~ y : x - - t ~  leads to 

I1V(t, X, ")IILq(R~) ~ t-nlqe-~~ !1 u(y, (y -- x)/t  ) IILqr 

Write the last norm as w(t, x). Put  r = p / q  and assume r ~ 1. Then 

l[ w(t, ")qllLr(R~) ~ f II [u(y, (y -- x)/ t)  I qll~.,cR~ dy. 
Kn 

Change the variable: x ~ ~ = (y -- x)/t. Then the last integral is found to be 
equal to t "/" !lull~q.p. Combining these conclusions proves (ii). 

L e m m a  5.2, Let  2 C C~(--%).  

(i) II (3. - -  A~) -1 l] "< (Re 2 -t- Vo) -a in B(L~'q), 

(ii) 11(2 --  A~")-~tl " < / ' ( 7 )  ( R e 2  + %)-~' in B(L~a',L~'r 
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1 1  1 (1 1) 
i f  0 <-- < - - ,  where 7 : 1 --  n - �9 and F is the gamma function. 

- - q  p n q p 
Let  B stand for  either o f  the spaces mentioned in (i) and (ii). 
(iii) (2 --  A~~ -1 is analytic in 2 E C+(--Vo) in B for  each f i x ed  c. 
Le t  ~, Co ~ 0 and define the set So  o f  points (2, c) by 

So ---- r + (~)• B[co]. 

(iv) For each a, ~, Co ~ O, 

Z(l~f < a) O. - Ac) -~ ---- (4 -- h~ )  -~ z(Isel <~ a)E ~~ B). 

Proof. From (5.5)(ii), we have 
oo 

(5.7) II(;t -- A~)-Xll --<_ f e -R~a' IlF~(t)[I dt. 
o 

Evaluate the last integral using Lemma 5.1 to get (i), (ii). The restriction on p, q 
in (ii) serves to imply that ), > 0. According to a theorem of Lebesgue, Lemma 5.1 
permits us to differentiate the right-hand side of (5.5)(ii) with respect to 2 under the 
integral sign and so to prove (iii). In view of (3.4), the function So 3 (4, c) 
z(l  I < a) exp (--(4 + ~'c(~)) t} E L~176 • is continuous for each fixed 
a > 0, so the Lesbesgue dominated convergence theorem can be applied to 
(5.5)(ii) in virtue of Lemma 5.1. Hence (iv) follows. 

~p,q 
Define the multiplication operator A~' : ~c(~)~ • By (3.4), A~' E ]3(La_~, L~ 'q) 

for 0~ E R. Therefore the following is a strengthened version of Lemma 5.2(i), 
which is essentially due to GRAD [8]. 

Lemma 5.3. Write B = B(L~ 'q) and let 2 E C+(--%), 0~ ~ 1. 

(i) II (2 - A ~ ) - I A ~  ' lIB <= ~o (Re 2 + ~,o) ~- l where Bo = max (1, ~)(Re 2 + %)-~). 
(ii) Let  So be as in Lemma 5.2. For any a, ~, Co > O, 

z(l l < a) (4 - A~)-~A~ E S~ B). 

Proof. Let II II denote the norm of LP(Rn). By (5.6), (5.7), 

e -Reat ][A~'v(t,., ~)t[ dt <= .~ e-mex+"c(~ dt [[ u(., ~)1[. 
0 0 

The last integral is equal to Vc(~)~/(Re 2 + vc(~)), which is majorized by ~7o if 
cx <~ 1. Hence (i) readily follows, and (ii) can be proven in the same way as 
Lemma 5.2(iv). 

Lemma 5.2(ii), in which the space L cannot be replaced by the space L, is 
essential in the proof of 

Lemma 5.4. Let  p, r, s E [1, oo] with p ~ r, and let [3 E R.  Then for  any positive 
and Co there is an 1 E I~+ such that 

((2 --  A~) - IKc)  ~ E ~ ~  ; B(L", L~'~)), 

where L p = L~(Q~176 
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1 1 1 
Proof. Let q ~ p be such that - -  - -  ~ < ~ and write LPo 'q : L p'q. Then by 

Proposition 3.5, p q n 

Kc E &~ B(L p, L v'q) f~ B(L q'v, Lq)), 

while by Lemma 5.2(ii) and for each a ~ 0, 

(2 -- A~~ -~ g(l~] < a) E ~~ B(L "'q, Lq'0 f~ B(Lq)). 

Put H~ ---- (2 -- Ac)  - ~ z ( l ~ I < a )  Kc. Then H 2 E ~ ~  p,Lq)), and by 
iteration 

Hi" E g~ B(L ~, L')) 

for any r ~ p with some 1' E N+. Similarly, by Proposition 3.5 for the space 
and Lemma 5.2(i) (iv), 

HI '  E ~~ B(/~ ~'', ~*' oo L~+n+l)) 

with some l"  E N+ depending on fl, but not on r ~ 1. Since s  ---- L r and since 

L~+e C L~ '~ is a continuous embedding if y > n/s, then H~, l = + I , satis- 
fies the lemma for each fixed a > 0. Now put H = (2 -- A~~ It is easy 
to see that the above proof  applies also to H if the space ~,0 is replaced by L ~176 
Thus 

H l E L~176 ; B(L p, L ~'~ 3 ]2, 

and hence so is H t -  H1 t. Furthermore the same proof, combined with (3.7), 
shows that H t -- Htl --~ 0 as a --~ oo in the norm of this space uniformly for 
(2, c)E So. Then the lemma follows. 

Let ?• be the trace operators of w Owing to (5.1) and Proposition 4.4, 
),• -- A~~ -~ E B(L2, Y2'• exist if 2 E ~(A~). We need their realizations in 

other spaces. To this end we shall introduce the space Yff'q'• of functions u(X,$) 
on S • satisfying 

f (1 + ]~e])3 ]u(X,~)IPe(X,~) dax) ) d$<cx~, 
R n  at2 - ( O  

where ~/2• was defined in (4.1). Compare with the space Y~'q'• of w 1. Let ~/o 
be the constant of Lemma 5.3(i). 

(i) 

(ii) 

Lemma 5.5. Let 2 E C+(--Vo) and o~ ~ 1. 

co - 1  ~ N • ~ r ] o ( P - 1 ) / p  II~'• ]. - Ac ) Acull~'p#,q, < ][Aclpu[]zp~,q. 
For any a, ~, Co ~ O, 

z(l~l < a ) 7 •  A~)-~A~ E M~ B(/~ ''q, f~'q'• 
Proof. In (4.4)+ and (4.7)_, put h ( $ ) =  ). + vc($) and replace u by w---- 

O O - -  1 O" -- Ac ) Acu = Ac(2 -- A~~ Then by the H61der inequality and by (4.2)+, 
(4.6)+, 

f I w(S, 0 I" e(s, 0 dax ~ •g/P' IIA;/'u( -, Olkpr 
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for each ~ER", and similarly with bs +, ~+ replaced by bg2-, K~-. Here 
(2. V~ + h(~)) w = A~u was used. Then (i) readily follows, and (ii) can be proven 
like Lemma 5.2(iv). 

In the above, in contrast with Lemma 5.3(i) A~lVu cannot be replaced by u. 

Lemma 5.6. 7• -- A~) +1 is analytic in 2 E C+(--%) in B(L~ 'q, Yff'q'~). 

Proof. Put R' = (2 -- A~) -1. As a property of the resolvent, 

~R ' /~  = - -R  "z 

holds for 2 E r in L2(Q~). To conclude the lemma, apply Lemmas 5.2(i) 
and 5.5(i)with 0~ = 0 to 7• = {v• 

6. The Operator B~ 

We continue the study of Bc in Q~, now including Kc =~ 0. We define the 
operator B~ as follows: 

B ~ :  - - $ . V x + L ~ =  - - $ . V x - - A c 6 - K ~ .  ( x , $ ) EQ ~. 

Since KcE B(L2(Q~)) (Proposition 3.5), it can be defined in L2(Q ~) by 

(6.1) B~ = A~ 6- K~, D(B~) = D(A~), 

with D(A~) given by (5.1), and it generates a semigroup, denoted in Part II as 
E~(t), in LZ(Q~~ due to (5.3)(i) and [10] Theorem IX.2.1. Here we discuss the 
resolvent of B~. 

Write L 2 = Lz(R~) and introduce a family of operators .~(k), k E R" in 
L 2 by 

D(Ao(~)) = {u E L ~ I k-  ~u, ~c(~) u E L~}, 

(6.2) At(k) ----- --(ik . ~ + ~c($)) • 

This was suggested by (5.1), (5.2). We conclude statements similar to (5.3): 

(i) At(k) is maximally dissipative in L 2. 

(6.3) (ii) a(,4~(k)) = a e ( A c ( k ) )  = {--( ik .  ~ 6- %($) [ ~ E B,"} q C-(--%), 

) 

Next, noting that K~ E B(L2), we define 

(6.4) Be(k) : .4~(k) 6- Kc, D(B,(k)) : D(.4c(k)) 

(again cf  (6.1)). It generates a semigroup in L 2. As for the spectrum, we observe 
that for all c, k E R", 

a~(d~(k)) = a~(A~(k)) q e--_(--~o) , 

(6.5) a(Bc(k)) A r Q aa(i~c(k)), 
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since Kc E C(L 2) (Lemma 3.3) and by [10], Theorem IV.5.35. Further, following 
the argument in the proof of Lemma 3.6, this time with h(~) : (2 + ik. ~ + vc(~)) -1, 
and noting that O~-l(k. ~) Oc = k .  ~ -- k .  c where 0, is defined in (3.1), we can 
claim that 

(6.6) if 2E (3+(--%), then 2Etrd(/~c(k)) if and only if 2 -- i k .  cEtrd(l~o(k)), 

for all k, c E R". 
Now we state two theorems, keys to later developments, which concern 

a part of aa(i~c(k)) near the imaginary axis. They have been proven for the special 
case c = 0 in [5] (see also [1], [14]) and hence can be concluded readily for c 4= 0 
by the aid of (6.5) and (6.6). 

Theorem 6.1. For any u > 0, there is a positive number r = al(u) such 
that <r, < vo, and 

~(hc(k)) C C-}-(--O*l(~))  

for all k E F~", I k [ > x, and for all c E R' .  
Here O'1(~ ) ~ 0 as u - +  0 ,  as seen from 

Theorem 6.2. There are positive numbers ul, a2 (a2 < Vo), a positive integer m 
(m ~ n + 2) and scalar functions 2j(u), j : 1, 2 . . . . .  m defined on the interval 
[--~q, ul] such that the following hold for any hE BIg1] and cER".  

(i) Put /~i(k, c) ---- 2j( I k ]) + i k .  c. Then 

(yd(Bc(k)) (~ C + ( - - o ' 2 )  = ~tAj(k, c) )7 :1  . 

(ii) 2j(~) is a C~176 of ~ E [--~1, ~1] with 

&(,O = io,j~ - t~j,, ~ + o ( 1 ~  ?) (1~, I ~  o) 

where o~y E R and flj > 0 are constants. 
(iii) Denote by Pj(k, c) the eigenprojection corresponding to the eigenvalue 

izj(k, c)E aa(i~c(k)) (see [10], p. 180). Let Pc be the projection in Lemma 3.8. Then 

Moreover, 

Pj(O, c) = Pc. 
j = 0  

Pj(k, c) = Pj(O, c) + I kIPj(k, c) 

with some Pj(k, c) E B(L2). 
(iv) For 2 E C+(--a2), the Laurent expansion 

(1 - he(k)) -1 = ~ (~ --  F,j(~, c))- 'Pj(k,  c) + S(a, k, c) 
j = 0  
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S(2, k, c )= (2 -- Bc(k)) -1 ( I -  ~ Pj(k, c)) 
j=0 

is analytic in 2, and SPj= P~S=O, 1 <=j <=m. 

E B(L z) 

For our purpose it is further necessary that the operators appearing above be 
continuous in the parameters 2, k and c. Define for each • Co > 0, 

$i  = c+(-~1(~)) • (n" \ 8[~1) • B[Co], 

~V~ 2 = B[~q] • B[co], 

2:3 = C+(-~r2) • 

In the sequel, 271 and Z'a will be considered as sets of points (2, k, c) and 2?2 as 
a set of points (k, c). 

Proposition 6.3. For any ~, Co, a > 0, the following hold. 

(i) (2 -- Bc(k)) -1E L~176 B(L2)); (2 --/~c(k)) -a Z([~[ <~ a)E ~~ B(L2)) �9 
(ii) Pj(k, c), Pj(k, c) (I -- Pc) E ~~ ; B(L z, L~)), 1 <= j <= m, 
for all r E [2, co] and /3 E R, where L~ = L'~(RT). 
(iii) S(2, k, c) E L~176 ; B(LZ)); S(2, k, c) Z([ ~] < a) E ~~ ; B(L2)). 

We relegate the proof to the end of this section, and we return to the study of 
the operator B~ ~ of(6.1). Choose ~o > 0 (Zo <= zl) so small that there are positive 
numbers/3 and 6 such that 

(6.6) Re2j(g) ~ -/3 ]g[2, ]Im2j(g)] ~ d I~r 

for 1 ~ j ~ m and 
Let C o > 0  and put 

l xl =< ~o- That is possible by virtue of Theorem 6.2(ii). 

ao = min (al(no), a2), 
(6.7) 

ao =/3{4(6 -t- Co + 1)} -2 . 

Define a closed set X(ao, ao) in C by 

(6.8) X(ao, %) = {2 E C+(--%) I - -Re  2 ~ ao Jim ;t 12).  

By virtue of Theorems 6.1 and 6.2(i) (ii), it then follows that 

(6.9) 

for any 
suggests 

(6.10) 

Q(/}c(k)) C X(ao, %) for all k E R" \ B[xo], 

/zj(k, c) ~ Z(ao, ao) for all k E B[go] \ {0}, 1 ~ j =< m, 

cE B[co]. Obviously Jx(2  -- Bc~)-~u = (2 --/~c(k))-l~, so (6.9) 

q(BT) C Z(ao, ~o) \ (o}, o E ~(B?), 
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and Theorem 6.2(iv) suggests the decomposit ion of  the resolvent 
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(6.11) (4 -- B ~ ) - '  = ~ Uj(2, c), 
i = 0  

Uo(L e) = ~ ; ' { z ( I k  I > "o) (4 - ~ (k ) ) - '  + X(Ik[ < ~,o) s(2, k, e)} ~x ,  

Uj(2, c ) =  ~ - ; l z ( [k ]  < : g o ) ( 2 - - t t j ( k , c ) ) - ~  P j ( k , c ) ~ = ,  1 <=j<=rn. 

This is an orthogonal decomposition, UjUk = 0 (j  =4= k) in L 2 = LZ(Q=). 
Define the sets of  points (2. c), 

~ ,  = c + ( - ~ o )  x B[eo], 

X~ ---- X(~o, ~o) x B[eo] C S,, X; = {(Z, ~) E S,  [ 121 >_-- to}. 

In what  follows, all results are valid for any fixed Co, ro > 0. The following gives 
a justification of  (6.10) and (6.11). 

Proposition 6.4. Write 

(i) Uo(2, c) E L = ( Z , ;  ]13), 
(ii) Uj(2, c) E 9~o(2:~; B), 

B = B(LZ(Q~176 and let a > O. 

Uo(2, c) x(l~l < a)E ,~~ B). 
l ~ j ~ r n .  

Proof. In view of the Parseval relation, (i) follows f rom Proposition 6.3(i) (iii) 
while (ii) follows f rom Proposition 6.300 because 14 - - t z j ( k , c ) l  ~= e for 
(4, c) E 2~, k E B[no] with some e > 0 depending only on ro > 0 (c f  (6.9)(ii)). 

To study the case ro = 0, we first introduce the integrals I = 1(4, c, 1, o 0 
and J = J(2, 2', c, c ' , / ,  o~) by 

I =  max f k2--~j(k,e)l-'lkl~dk, 
1 < j < m  B[~,o] 

J = max .[ 1(2 -- #i(k, c)) -1 -- (;t' -- #j(k, c')) -1 it tk t~ dk ,  
l~j~rn 

- -  - -  B[y.ol  

Lemma 6.5. u  0, u > 0, WOE [0, 1], 3 C ~  0, u c), (2', c')E2~s, 

(i) i <= c I c[ -~ I Im 21 rain(~ 

(ii) J < = C ( I c l - ~  ] e ' l -~  + l e - -  e'[ ~) ~ f ~ >  ~ > 0, 
where 7 : n -}- o~ -}- 0 - -  2l. 

The proof  of this technical lemma will be given in the Appendix. The follow- 
ing is a substitute of  Proposition 6.4(i[) for ro = 0, which is a key to the sequel. 
With/3  dropped if /3 = 0, write 
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Proposition 6.6. Let  1 G q ~ 2 G p ,  r G o %  / 3 ~ 0 ,  0C[0 ,1 ) ,  l > : 0  and 
1 I Y ' :  

o~ : O, 1. Put y --  , and (n q- O) ~ q- or --  2l. Write B ----- B([_, q'2, s 
q P 

The following hold for  all j ,  1 ~ j <= m. 

(i) There is a constant C ~ 0 and for  any (2, c)C ~'s, 

]l Uj(2, c ) t ( I -  P~)~[IB ~ C Ic[-~ I m 2 l  min<~ 

where P~ is the projection occurring in Proposition 3.7. 
(ii) Let  Z'~' = S(ao,  ao) • (B[co] \ (0}). I f  y ~ (2 --  oO/(n q- 0), then 

0 Pt uj(2, c) ( t  - P~)~ ~ ~ (s~ ; B). 

I f  0 = O, S'5' can be replaced by $5. 

Proof. Let u E ~q,2 and put  v : Uj(2, c) ~ u. By definition (6.11), 

~(k, ~) = (2 --/~j(k, c)) -t Pj(k, c) ;,(k, ~), k ~ B[~o], 

and : 0 for k C R n \ B[uo]. Therefore 

Ilvllz U --<_ c 11 bI1~4,,<6oo ) + --j- = 

C[[biiLy(h % (by (2.1)) 

G c ( f l 2 - - / ~ J ( k ' c ) l - " l l f i ( k " ) l l L ~ < R T ' d k )  , Proposit ion 6.3(ii)) 

( 1  1 1, by H61der inequality ) <= cx(L c, l/~,, O)~ ll~lE,.2<h~) 7 - +  q 

By (2.1) and (2.2) 

Consequently, one gets 

(6.12) l[ vl[?~," G CI(2, c, l/~,, O) v i[ujizo,=. 

This and Lemma 6.5(i) yield a desired estimate in (i) for 0r = 0. Note  f rom 
Theorem 6.2(iii) that  Pj(k, e) ( I  --  Pc) = ]k] Pj(k,  e) ( I  - -  Pc). If  P~u = O, 
therefore, (6.12) holds with/(2,  e, l/y, 1/7 ) instead of  with/(2,  c, l/y, 0) (see Propo-  
sition 6.3(ii)). This proves (i) for 0r = 1. To prove (ii), one has only to put  
v = (U~(2, e) --  Uj(2', e')) u and repeat the p roof  of  (6.12) with the aid of  Lem- 
ma 6.5(ii). 

Combining above two propositions, we can now deduce the main result o f  
this section. Recall A~' : v~(~)~• 

Theorem6.7 .  Let  l : < q ~ 2 G p ,  r : < o o ,  f l ~ 0 ,  ~ 6 [ 0 ,  I], 0 E [ 0 , 1 )  
1 1 

and m = O, 1. Put  Y and suppose 7 ~ (2 --  m)/(n + 0). 
q P 
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(i) There is a constant C >= 0 and for all (4, c) E Z's, 

(6.13) II (4 - nT )  -1 ( I - -  PD m A~u Ilzg: < C(ll u llz U + II A~u IlL= § ] el-  0~ II A~u llLq.2). 

(ii) Let Y,'5' be that of  Proposition 6.6(ii) and put 

X = Z~ "~ A L 2 A s 

Then for any a > 0, 

(2 -- B 7 ) - ' ( I -  Pc) m Ac~z(]# [ < a)E ~~ B(X, L~',')). 

I f  0 = O, Z~' may be replaced by Ss. 

Proof. To simplify the notation, put 

R = (4  - -  Bc~)  - * ,  R'  = (4  - -  a y )  - 1 ,  G = (2  - -  M ' )  -~  K c .  

Then the second resolvent equation of  (6.1) can be written as R = R' + GR. 
Iterate this to obtain 

l--1 

(6.14) R = Y~ GhR ' + GtR, IE 1~+. 
h = 0  

The proof  of Lemma 5.4 shows that 

(6.15) G h E ~~ ; B(//,~")), h E 1~+, 

while by (3.4) and Lemma 3.8(ii), 

(6.16) PallS' E ~~ B(L~'")), 

both of which are valid for all p, rE  [1, o0] and t iER.  Combine (6.15), (6.16) 
with Lemma 5.30) to evaluate the sum for 0 --< h _< l -- 1 of  (6.14) multiplied 
by (I  --  Pc) m A~'. This gives the first term on the right side of (6.13). Decompose 
the last term GtR of (6.14) according to the decomposition (6.11), and take 1 of 
Lemma 5.4 for p = 2. Then GtUo(2, c) can be evaluated by Proposition 6.4, 
and GtUj(2, c), 1 -----j <= m by (6.15) and Proposition 6.6, from which follow 
the second and last terms of the right side of (6.13), respectively. This argument 
completes the proof  of  (i) of the theorem. Assertion (ii) can be concluded from 
this proof  if the statements of continuity in the propositions and lemmas used are 
taken into account. 

Remark6.8. (6.13) provides no estimates when c----0 unless also 0 = 0. 
1 1 

The argument in [15] relies only on (6.13) with 0 = 0, for which y 
q P 

should take a larger value than for 0 =V 0. See also Remark 9.4. 
We shall discuss also the operators y• -- B~) -~ which exist in the sense 

stated for 7• --  A~~ -~ in w 5. 
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Theorem 6.9. Let 1 <=q<=2<=p, r<=co, /3>=0, OE[O, 1), c~E[0,1] and 
m = O, 1. Suppose l/q > (2 -- m)/(n q- 0). 

(i) There is a constant C >= 0 such that for all (4, c) E 275, 

(6.17) 1[~• -- B2)-~(I--  Pc) m AcUtlfzpfl,r,• 
<= C(IIA:/~ulI~,, + II A~ultz, q- 1 e t-~ 11A~u[ltq,2). 

(ii) Let ~'5' and X be as in Theorem 6.7(ii). For any a > O, 

e• B~)-I(I  P~)m Affz([~ [ < a) E o "' 
- - e ( s ;  ; B(x ,  rV , •  

Proof. Write G' = K~R', E = ( I -  Po) m A~., and deduce from (6.14) 

l - -1  

(6.18) y-+R~ = 7 - R '  ~ ( G ' ) ~  + 7• 
h - - 0  

Evaluate the sum for 0 ~ h --< l -- 1 by the aid of Lemma 5.5 and (6.16), noting 
that (6.15) remains valid if G is replaced by G'. Then the first term on the right 
side of (6.17) follows. Since p(X, ~) ~ I~], 

II),~vlli~,,,• < c IlvllLy, 

1 n 
with /3 > 6 q- - -  § - - .  Put v = GtUj(2, c) 3u  and take I large enough for Lem- 

r s 

ma5.4  to hold with p = 2 ,  r : s = o , ~ .  Then the last term of (6.18) can be 
evaluated by means of Propositions 6.4(i) and 6.6 if (6.11), (6.15) and (6.16) are 
taken into account, giving the remaining terms in the right side of (6.17). 
(ii) can be proven like Theorem 6.7(ii). 

It remains to prove Proposition 6.3. First, note from (6.2) that the adjoint 

.4~(k)* to At(k) is given as 

A~(k)* = (ik . ~ -- ~(~)) • D(Ac(k)*) = D(Ar 

Hence .4c(k)* = Ac(--k). This implies that /~(k)* = A~(--k) + K*. Since 
K~' = Ko is selfadjoint in L 2 = L2(R~) (see w 3), we then have 

Proposition 6.10. Bc(k)* enjoys all the conclusions of Theorems 6.1 and 6.2 
with obvious modifications. 

Furthermore, it should be mentioned that the eigenprojection P*(k, e) for 

the eigenvalue i~j(k, e)E aa(JBc(k)*) is the adjoint to Pj(k, c) ([10], p .184). 
In what follows, for simplicity, we put 

= (4 - go(k)) -1, ~ '  ---- (4 --  ~iXk))- ' ,  6 = (4 --  A~X~)) -~ K~ 

and we define for each 6, eo > 0, 

276 = C+(--~o) xR"  x B[co], 

$7 = c + ( - ~ o  + 8) x R "  x B[co] C $6 ,  



Kinetic Theory of Flows Past Obstacles. Part I 275 

which are sets of points (2, k, c). Also we write L~ = L~(R~) and B = B(L2). 
Again from (5.4) we note 

(i) I[/~'lla <= (Re ;t -t- ~o) -1 in ~-6, 
(6.19) 

(ii) R'Z([ 81 < a) E ~~ B) for each a > 0. 

Lemma 6.11. (i) u (~ > 0, u Co > 0, 3 C ~ 0, [I Glls --<_ C (Re 2 -F %)-1 in 

2?6. (ii) G E C(L 2) in 2?6- (iii) G is analytic in B in 2 E C+(--~o). (iv) V p E [2, oo], 
Vfl_>O, 31~0,  V6>O, Vco>O, 

6' E ~~ B(L 2, L~)). 

Here l----[fl]d- 1 / f  p = 2 .  

Proof. In view of (6.19)(i), (i) follows from Lemma 3.2 and (ii) from Lemma 3.4. 
(iii) is evident from (6.3)(ii). Put 

~, - -  z(l~l < a) G, 0 2  : a - -  0 1 .  

Lemma 3.3 and (6.19)(ii) show that G~E ~~ B) for each a > 0 while by 
(3.7) and (6.19)(i), 

(6.20) I[ G2 [in ~ C(1 -F a) -1 (Re ;t + ~o) -1 in 2?6 

for each a > 0. This proves (iv) for p : 2, fl : 0, and similarly for more general 

cases since Lemma 5.4 is also valid for G with obvious modifications. 
We shall need the asymptotic behavior of G for large 2 and large k. 

Lemma6.12. V ~ > O ,  V c o > O ,  "qC~O, 3 ~ > 0 ,  V(2, k,c)E2?7, V ~ > O ,  

(i) IIGll. ~ C~(l § Jim;t]) -v / f  kE B[~], 

(ii) IIGIIB =< C(1 + [kl) -~ 

Proof. By Lemma 3.2 and H61der inequality, 

II G~ulIL~ _--< IIIK~ulIL=~ <= ClllullL= 

whenever 1 <= p <~ n/(n -- 4), where ) ,11 
I ---- I()t., k, c) = 12 + i k .  ~e _/_ ~,(~) ]--2q d~  ~ , P -~- - -  = 1. 

B q 

We can choose p >  1 so that q < o o .  Write ~. ---- (r d- iv and define 

3~ -~ {~ E Bta] ] I ~ -~ k .  ~ I >= ] k I e}, ~ =B[a] \ ~ 

with e > 0 .  It is not hard to see that 

rues ~1 <= C a~, mes ~2 ~< Ca"-1 e,  
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with some constant C ~ 0 independent of k, a, v and e. Hence 

12q = f ~- f + f <= Ca"((lk[e) -2q + a -~ e(a + Vo)-2q). 
B[a] Z~ ~2 

Choose e = ( 1  + ]kl) Zq/(2q+l) to get 

Choose a =  (1 + lk[) -ll(2q+l)('+l) in the above and in (6.20) to prove (ii). 
Suppose kEB[u]  and Iz[>=2au. Then 1~+~.~l~[~l/2 for ~B[al, so 
i<:  Ca "/2q lzl -~. Choose a : [zI2q/(2q+~)u-1 here and in (5.20) to get (i) for 
l~l->- 2a~ or I~l > 2'+~/"- 

If (~ > 0 and Co ~ 0, Lemmas 6.11(i) and 5.12 deliver positive numbers ro 
and u2 such that 

1 
II GII. =< -~- for all (;t, k, c) E Z'. 

where 

z ,  = z7 ~ ((~, k, c)~ Z7 I I21 ~ ro, k ~ Bf~2l}. 

Then the Neumann series converges and [ J ( I -  G)-I[JB ~ 2. Moreover, in 
view of [10, Theorem IV.1.6] and Lemma 6.11(iv), 

(6.21) ( I -  ~)-1 is continuous in B in a neighborhood of a point (2, k, c) if 

1 C ~(60., k, c)). 

Thus we have proven 

Lemma6.13. u  u  3 r o > O ,  3 ~ 2 > 0 ,  

(i) 1 E e(d) in .S 8, 

(ii) (I -- 6)  -1 E ~~ B). 

Proof of Proposition 6.3(i). Write the second resolvent equation R = / ~ '  
+ 0 R  as 

(6.22) k = ( i -  ~)_1 k 

and conclude that if 2 E ~(,4c(k)), then 

(6.23) 2 E e(B~(k)) if and only if 1 E ~(G(2, k, c)). 

Apply (5.19) and Lemma 6.13 to (6.22). Then 

(6.24) kEL~(Z ' s ;B) ,  ~iz(t~l "< a )E~~ 

Combine (6.21) and (6.23) with Theorem 6.1. Then ( I - -  ~)-1E g~ B), so 
that (1 -- (7)-~ E ~~ \ Z8 ; B) since Z'l \ Z'a is compact. Consequently (6.24) 
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is also valid if2~ s is replaced by 271 \ 2~s, which, together with (6.24), completes 
the proof. 

Proof of Proposition 6.3(ii). Let j, I <: j ~ m, be arbitrarily fixed and let 
P = P(k, c) denote either Pj(k, c) or P~(k, c) (I -- Pc). Put H = G(/~j(k, c), k, c). 

By Theorem 6.2, (l_,j(k, c) --/~,(k)) P = 0, or equivalently P = HP, so 
P = HIP by iteration. In view of Lemma 6.11(iv), therefore, Proposition 6.300 
will follow if 

(6.25) 

The proof of (6.6) implies 

P(k, c) e ~~ B). 

P(k, c) = O~ -~ P(k, O) Oc, 

where 0c is that of (3.1). Let L~,~ = L~,~(RT) be as in Lemma 3.2. Obviously, 0 c 
and 0~ -1 are continuous in c E B[co] in the strong topologies of both B(L2,~, L 2) 
and B(L z, L2_~) if o~ > Co. Consequently, (6.25) will follow ([10], Lemma II1.3.9) 
if 

(6.26) P(k, O) E ~~ C 2 2 (Lo,_~, L0,~)), ~ > Co. 

This has been proven for ~ = 0 in [4]. Note that P is of finite rank (Theorem 6.2(iii) 
and so it is compact if bounded. Repeat the proof of Lemma 3.6 with //1 = 
x(l l > a) H and /-/2 = H -- HI, and combine (6.26) for 0r = 0 to see that 

P(k, O) C ~~ C(L a, L0Z,~)) 

holds for any  ~ E R. This  is also true for P*(k, c)(Proposition 6.10), so that 
passing to the adjoint and noting the remark after Proposition 6.10, we see that 

e(l,, o) c ~~ C(L~,_ ~, L')) 

for any o~ E R. Now (6.26) follows by interpolation [2]. 

Proof of Proposition 6.3(iii). By virtue of (6.24) and Proposition 6.3(ii), 

S = R (I--7 ~ Pj) also satisfies (6.24), and so it is sufficient for S to be continuous 

in any compact set Z' 9 of 27~. Recall the integral formula ([10], p. 179) 

1 
S(2, k, c) = ~ f /~(~ ,  k, c) (~ -- 2) -1 dr 

where F is any simple closed rectifiable curve in C+(--a2) enclosing point s 2 
and/~j(k, e), 1 ~ j ~ m, but not other points of a(Bc(k)). In view of Theorem 6.2, 
/" can be chosen independently of 2, k, c as far as (2, k, e) C 2:9. Since /I  Q 

o(Bc(k)), R(2, k, e) enjoys (6.24) with / '• substituted for 2~s. Now we arrive 
at the desired result, evaluating the integral in the above. 
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7. The Operator B~ 

In this section the operator B~ of (1.13) is discussed in Q = .-Qxx R" under 
the boundary condition V-u = Moy+U. The main aim is to study the behavior 
of its resolvent near 2 = 0. As in [1] and [14], the essential point is to derive its 
explicit expression. First of all, we need to introduce the solution operator Rr 
of the boundary value problem 

(7.1) 
(2 + 2" 7x + v,(~)) u = 0 in Q, 

V-u = h on S- .  

Proposition 7.1. For each (2, c) E C+(--%) •  and h E y2,-, (7.1) possesses 
a unique solution u u(x, ~) E 2 + = Wi'  (Q). The operator R~(2) defined by u = R~(2) h 
is in B ( Y  2"-, W,2,~+(Q)) and satisfies 

_1 
(i) Rc(2) E B(Y~"- ,  L2(Q)) with the norm ~ {2 (Re 2 + Vo)) 2, 

(ii) ?,+Rc(2) = O, 7-R~(2) = I. 

Proof. We begin with uniqueness. Let uE W~+(Q) be a solution to (7.1). 
By (4.5)+ with h(~) = 2 + v~(~) and by the first equation of (7.1), it follows that 
2+u = 0. Then (4.9) gives 

1 
(7.2) ho il u IIL2(o~ ~ y II h II Y~'- 

where ho ~- inf h(8) = Re 2 + Vo > 0, proving uniqueness. Note that this also 
proves (i) and (ii) if Re(2) exists. In order to prove existence, define for each 

(x, ~) E a - ,  

t ( x , ~ ) : i n f { t ~ 0 [ x - - f f E ~ O } ,  

and note that 

(7.3) (i) t - (X ,  r : 0 if (X, r E S-, 

(ii) x --  t - (x ,  r r E c~f2-(~ e) for all (x, ~e) E Q-, 

(iii) t - ( x  -k tr ~) = t - (x ,  ~) q- t for all t ~ 0, (x, r E Q-, 

(iv) t - ( x ,  ~) = t - ( x ,  ~)ll~l, ~ - -  ~I1~I. 
Define u -~ u(x, 2) by 

(7.4) u(x ,  ~) ~ e -(~+rc(#))t-(x'#) h ( x  - -  t - ( x ,  ~) ~, ~) 

for (x,~)ELg- and u = 0  for ( x , ~ ) E Q \ Q - .  By(7.3)(i), u = h  
by (7.3)(iii), 

on S-, while 

(8- Vxu) (x + tS, 8) = ~ -  u(x + tS, 2) = -{ ( ) .  + ~,c(8)) u} (x + tS, 8) 
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for all t ~ 0 and (x, ~) E Q, which, when t = 0, is just the same as the first 
equation of (7.1). Hence this u satisfies (7.1), though formally. We shall prove that 
u E W,,2~'+(O). Put w = l u [2 in (4.3)_ and use (7.3)(i)(ii)(iii) to obtain 

o o  

(7.5) Ilullb<o) = f f e -=(Rca+'c(*>)t [h(X, ~)I ~ dt &rxd~,  
S - O  

which leads again to (7.2). Hence if h E  yZ, - ,  then u EL2(Q)  and so is 
(~. Vx -k ~'~(~)) u = --2u by the first equation of (7.1). This completes the proof 
of the proposition. 

The operator R~(it) will be used in various spaces. In what follows we write 

s s L~ = s 

The subscript/3 will be supressed when /3 = 0. Also we recall the definitions of 

the spaces Y~'~: of w 1 and @'q'• of w 4, and put 

So = e+(-v0 + ~)x B[co]. 

The following results will be valid for all ~, Co > 0. 

Lemma7.2. Let 1 <-- r <-- p <= oo, 1 <-- s <-- q ~ oo, /3 E R and y ~ O. Put  

B = B(Y~+e , L~ '~) and go r p q- n - -  . 

(i) I f  y > yo (Y >= Yo when q = s), 

Rc(it) ~ Z~ B), 

z(lr < a)R~(Z) = gxa)X([~l < a)~ e ~  B), 

f o r  any a > O .  

(ii) I f  y > yo - - 1 ,  

K.Rc0) C ~~ B). 
(iii) For 7 o f  (i), Re(it) is analytic in it E 0+(--%) in B fo r  each f i x e d  c. 

Proof. Let u be given by (7.4) and put w = [u l' in (4.2)_. Proceeding as in 
(7.5) yields 

, ' < (r(Re it q- ~o))-* f ]h(X, #) [r e(x. #) d~x I[ u(. ~)IILrcR~) = 
ao-(D 

for each ~ E R n, whence follows readily the first assertion of (i) for the special 
case p = r, q = s, y = 0. The general case is a direct consequence of this and 
of the fact that since o(X, ~) ~ ]~1 and by H61der, 

(7.6) ]~ff~- Q ~'~'*'- is a continuous embedding 

for y specified in (i). Then the second assertion of (i) can be proven like Lemma 
5.2(iv) by appeal to the continuity of the function 

Zo ~ (it, e)-+ z(l~l < a) exp {-( i t  q- ~,c(~)) t - (x ,  ~)} E L~~ 
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In view of  (i) and Proposi t ion 3.5, it is clear that  KcZ(t~[ < a)Re(2) enjoys (ii) 
o f  the l e m m a  for  each fixed a > 0, while by (3.7), K~Z([~[ > a ) R e ( 2 ) ~  0 as 
a ~ 0 in the n o r m  of  B uniformly in So. This proves  (ii). Finally, differentiation 
o f  (7.4) with respect  to 2 gives rise to 

Ou 
- -  = --  t-R~(2) h, 0k 

formally,  where t -  = t-(x, ~). Evaluate  the n o r m  of  this r ight member  just  as 
in the p r o o f  of  (i). Then  it is seen tha t  t-Re(2) also enjoys (i). This verifies (iii). 

Recall (6.8) and define the set o f  points  (2, c), 

S O = Z'(ao, no) x B[co] ( =  $5 of  w 6). 

We  shall s tudy the opera to r  

To(A) = ~Io(2 -- By)-1 eKcRc(2), 

where ~ r  o : Mog/+ - - 9 / -  (see (1.11)) and e stands for  the extension, 

(7.7) eu = u in Q, eu = 0 in Q ~ \  Q, 

u being a funct ion on Q. 

/ 1  1 \  
Lemma 7.3. Let n ~ 3 ,  p C  [2, oo], 1 3 ~ n ~ - ~ - - - p - ) .  

(i) re(2) ~ ~~176  B(Y~'-)) .  

(ii) Tc(2) is analytic in B(Y 2 '-)  in 2 E Z(ao, n o ) \  {0}. 

P r o o f .  In  (6.17), put  u = eKcRc(2) h and set p = r, q = 1, o~ = 0 = m = 0, 
for  which 1/q= 1 > 2 / n  is satisfied if n ~ 3 .  Then 

re(2) ~ L ~(S  ~ ; B(r~'-)) ,  

by L e m m a  7.2(ii) used thrice with p = q = r = s, 9 / =  0, with p = q, r = s = 2, 
13 = 0 and with p = q, r = 1, s = 2, t3 = 0. This proof ,  combined  with (3.7), 

shows tha t  ) f l o (2 - -By ) - l eg ( [~ l>a)KcRr  in B(Y~ ' - )  as a - + 0  
~ 

uniformly  in S ~ while Theo rem 6.9(ii) and L e m m a  7.2(ii) show tha t  Mo(2 - -  B y ) - 1  
ez([~[ < a) KcRc(2) satisfies (i) o f  the lemma.  Hence  (i) follows. F rom (6.18) 
for  l = 1 ,  

~,~(2 - -  B y ) - '  = 9/• - -  A y ) - ' { I  + Kc(2 - -  B y ) - ' } ,  

which is analytic in 2 due to L e m m a  5.6 (p = q = 2) and (6.10). Then  L e m m a  
7.2(iii) (p = q = r = s = 2) and [M]2(i) ensure that  (ii) holds. 

P r o p o s i t i o n  7.4. Under the assumptions of Lemma 7.3, there are constants 
C ~ 0 and 9 / ~  0 (9/being independent of  p, t3) such that for all (2, c) E Z '~ 

(i) IITc(2)ll <= C(1 + 121) -~/" in B(Y~'-) ,  
(ii) llZc(2)3[[ ~ C(1 + 121) -~ in B ( Y ~ ' - ) .  
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This proposition plays art essential role in w 6 of Part II as well as in the follow- 
ing proposition. Its lengthy proof will be effected in w 7 of Part II. 

Proposition 7.5. Replace ao, O'o in (6.8) by ao, ao and define 

= z(?to, ~o) x ~[~o]. 

Under the assumptions o f  Lemma 7.3, there are constants ao, no, Co ~ 0 such that 

(i) 1 E e(Tc(2)) in B(Y~'-)  for  all (2, c) E ~. 

(ii) (I -- To(A)) -1 E ~o(~;  ]3(yff,-)). 

(iii) (I -- To(2)) -1 is analytic in ]3(Y2"-) in 2 E 27(?to, ~o) \ {0}. O f  course, 
?to, ~o, Co are independent o f  p and t3. 

Proof. According to [1] and [14], there are constants ?to, ~o > 0 such that the 
proposition holds when c = 0. On the other hand, Lemma 7.3(i) permits us to 
restate (6.21) for T~(2) and, moreover, Lemma 7.3(ii) permits us to replace "con- 
tinuous in (2, c)" in (6.21) by "analytic in B(Y 2'-) in 2". It then follows that for 

any ro > 0, there is a constant ~o > 0 such that the proposition is true if 

is replaced by {(2, c) E S [ ]2 [ ~ ro}. Note that this {0 can be chosen independently 
of p, because in Lemma 7.3(i), T~(A) is equicontinuous with respect to p E [2, oo] 
as seen by the interpolation between the cases p = 2 and p ---- (x~. Moreover, 
it can be assumed without loss of generality that rio =< ao, ~o ~ (to. By interpola- 
tion between Proposition 7.40) for p ---- 2 and (ii) it is seen that Proposition 7.4(ii) 
remains valid with Yff'-, p E [2, ~ ]  substituted for y~o.-. Then there is an ro > 0 
such that 

1 
IIT~(2)Sll =<-~- in B(Y~'-) 

for all (2, c)E2: ~ 12[ ~ ro. Then the Neumann series converges and 
( I -  T~(2))-x E ]3(Yff'-) exists for (2, c)having norm ~ 2. This and (6.21)modified 
as before prove the proposition for such (4, c). Thus the proposition is proven. 

The proof in [1] and [14] of the above proposition when c ---- 0 is based on 
the fact that To(k) is compact on Y~"- for p E [2, oo) and so is To(2) a for p = 0% 
which is true also when c ~= 0. It is for the proofs of the compactness of To(2) 3 
for p = oo and of Proposition 7.4(ii) that the assumptions [M]~(iv) and [M]z(iv) 
are required. All the results for p E [2, oo) are valid only under [M]2(i)(ii)(iii) 
(see also Remark 1.1). 

Now we define the operator A~ in LZ(Q) by 

(7.8.) D(A~) = {u E W~;+(Q) ]y-u E y2,- ,  IVfoU -- 0}, 

a~u = - ( ~ -  V~ + r~(~)) u .  

C f  Definition 4.7. Since C~~ D(Ac), it is densely defined. 

Proposition 7.6. The following hold for each c E R". 
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(7.9) 

(i) A~ is maximal ly  dissipative in L 2 = L2(Q). 

(ii) 0(A~) C C + ( - % ) .  

(iii) For each 2 E C+(--Vo), 

(2 - -  A~)-* = r(2 - -  A~)  -1 e + Rc(2)/~ro(2 - -  A~~ -1 e, 

where e is as in (7.7) and r is the restriction ru = u]o to funct ions u on Q~. 

Proof .  By (7.8), (4.9) can be applied to u E D(Ac) with h ( ~ ) =  Vc(~). Sub- 

stitute into it the bounda ry  condit ion h'Iou = 0 or 7 - u  ~ MoT+U. By [M]2(i), 
the last t e rm { {...} of  (4.9) ~ 0, and so 

Re (AcU, u) ~ - - %  l[ ul[ 2 in L 2. 

This inequali ty shows that  Ac is dissipative and, moreover ,  that  2 - -  A~ is one- 
to-one in L 2 if 2 E C+(--Vo). Denote  the first and second terms on the r ight-hand 
side of  (7.9) by Rt ,  R2, respectively, and put  R = Rt  + R2. Let  2 E C+(--%).  
By (5.1) and (5.3)(ii), Rt  E B(L 2, W~2~+(Q)), and by the r emark  given above 

L e m m a  5.5 and by Proposi t ion 7.1 and [M]2(i), so does R2 with h~roR 2 = - - ~ r o R  1. 
Hence  R has a range in D(A~) and on account  of  (7.1), (2 - -  Ac) R = 1 on L 2. 
Hence  2 - -  A~ is surjective and (7.9) now holds. Since R E B(L2), we can conclude 
that  2 - -  Ar is a closed opera tor  in L 2. N o w  the p roo f  of  the proposi t ion is 
complete.  

We are ready to study Bo Since KcE B(L 2) (Proposi t ion 3.5), B~ can be 
defined in L 2 as 

(7.10) Bc = Ac + Kc, D(Bc) = D(A~). 

In  view of  Proposi t ion  7.6(i) and [10], T h e o r e m  IX.2.1, Bc generates a semi- 
group  on L 2. This semigroup,  denoted by Ec(t), will be studied in Par t  II.  An ex- 

pression similar to (7.9) may  be obta ined for  B~. Let  Z' be as in Proposi t ion 7.5 
and put  X '  = X(ao, ao) \ (0}. 

Theorem 7.7. For all c E B~o],  the fol lowing hold in L 2 : 

(i) e(B~) C S ' ,  0 E a(B~). 

(ii) Put  S~(2) ~ R~(2) + r(2 --  B~~ -~ eK~R~(2). For any 2 E z~', 

(7.11) (2 - -  B~) -~ z ,'(2 - -  B~)  -~ e + S~(2) ( I  - -  To(2))-* ~ro(2 - -  B~)-* e. 

Proof .  Put  Z " ' =  C+(--Vo + IIg=ll)CZ', the n o r m  being that  o f  B(L2). 
Let  2 E Z"' .  By Proposi t ion  7.6(ii), 2 E p(B,,) and (2 - -  B~)-* E B(L 2) exists 

([10], Theo rem IX.2.1). Put  R ,  = r(2 - -  B~)  -~ e, R2 = Rc(2) ~roR~ and R = 
R ,  + R2. Proceeding as in the p r o o f  of  Proposi t ion  7.6(iii), we find that  R E B(L 2) 
with a range in D(B~) and satisfies 

(7.12) (2 - -  Be) R = 1 --  KcR2 ~ I - -  UV,  
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where U = K~R~(2) E B(Y 2'-, L 2) and V = )QoR~ E B(L 2, y2,-). Note that 

(7.13) (i) o(UV) \ {0} = ~o(VU) \ {0}, 

1 
(ii) ( # -  UV) -~ = -  (I  + U(t* - VU) -~ V), 

It 

V(~ - -  UV)  -~ = (** - -  VU)  -~ V, /~ E o (VU)  \ {0) .  

The proof is easy and is omitted. Since VU = T~(2), (7.13)(i) and Proposition 
7.50) state that ( I - -  UV)-~ E B(L z) exists. Then (7.12) yields 

(it - -  B~)  - x  = R ( I -  UV)  -~ = R z ( I -  UV)  -~ § R e ( 2 )  V ( I -  U V ) - ' .  

Rewrite the last member by the aid of (7.13)(ii) with /z = 1 to deduce (7.11) 
for it E Z".  By Proposition 7.5(ii) and by Lemma 7.3(ii) and its proof, the right 
member of (7.11) exists for all it E Z '  and is analytic in 2, both in B(L2). Now the 
proof  of the theorem is complete. 

Define ~ = S(ho, ~o)• (B~o] \ {0}), and 

X~ = l-~_~l]p ~ t ~ ,  Z q = t 2 ~ s  

The main result of this section is as follows. 

T h e o r e m  7.8. Let n ~ 3, 

a n d r e = O ,  1. Put y = 1-+ 

(7.13) 

n 
1 ~ q < = 2 < = p < = o o ,  f 3 > ~ - ,  0E [0, 1), o~E[0, l] 

I 1 
and suppose 

q P 

1 1 2 - - m  1 2 
> - -  - - < 1  

q p n + O '  p n + O "  

(i) There is a constant C ~ 0 such that 

[[(it - Bc) -1 ( I - -  pc)mA~u[]L~,~/p ~ C [c[ -~ (llullx~ § [IA2u[Izq) 

for  all (2, c) E Z-. 

(ii) For each a > O, 

Z([~ [ < a) (2 -- nc) -1 (I -- Pc) m A~Z(]~ I < a) E ~~ B(X~ A Z ,  q Z~_l/p) ). ~p" 

Here ~,--' can be replaced by Z i f  0 = O. 

Proof. (i) will follow if each term on the right-hand side of (7.11) is evaluated. 
The first term was evaluated in Theorem 6.7(i), which delivers the first condition 
of (7.13). Combine Theorem6.7(i) for r = o o ,  q =  1 and m = ~ = 0  with 
Lemma 7.20) and (ii). Then if the second condition of (7.13) is satisfied, 

II So(it) hl tg~/p ~ C(llh]l~ + I cl ]lhltr2,-), 
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where 7'  = I - -  p-1.  Put  h ---- (1 - -  To(2)) -1 h'. By Proposi t ion 7.5 for  p = oo 
and p = 2 ,  and by (7.6), 

[[hll~-~,/; _--< C Ilhllr;o,- ~ C Ilh ' l lr ;o,- ,  

I lh l l : , -  _--< C IIh'lly2,-. 

Now put  h' = 2Qro(2 - -  Be) -~ e ( I -  pc),, A~u, and use Theorem 6.9(i) twice 
for  p ---- r ~ oo and for p = r ~- 2, fl = 0 to obtain estimates of  h' in Y~ ' -  
and y2 , -  respectively. The restriction for  q in Theorem 6.9 is absorbed in the first 
of  (7.13). Now we can conclude (i), and by taking into account  the statements re- 
garding continuity in theorems and assumptions, then we also conclude (ii). 

As a corollary, we state the 

Proposition 7.9. Let  u = u(c) be a function o f  c such that 

u(e) E L~176 ; X~) A ~~ ; X~_~), A~u(c) E :~~ Zq). 

Under the conditions o f  Theorem 7.8, suppose that r > 0 7 and put  

L1(2, C) = I C 16 (2  - -  Be)  -1  ( I  - -  pr  A c u ( c ) "  

f o r  c =]= O , and put  v ( 2 , 0 ) = O .  Then fo r  any e > O, 

, ~fl--l/p--~t" 

Proof .  Since 6 > 0~,, Theorem 7.8(i) leads to 

v(2, oo 27. -~,oo c) E L ( , L a _ l / j , ) ,  

-"p, oo v(2, c) --> 0 (c -+ 0) strongly in L~-I//,, uniformly for 2 E Z'~o, bo). 

The first of  these shows that 

llz(l~l > a) v(L c)llz~,~:~_~ -<_ (x + a)-" llv(2, e ) l l z~ / - ->  0 ( a - +  oo),  

uniformly for (2, c)E 2~ Similarly, if v'(2, c) denotes the function v(2, c) with 
X([~] > a)u(c)  substituted for  u(c), then Theorem 7.8(i) yields 

livt(2' c)IIL'P'~[~-I/p-e --~ C((1 + a)-* ]lu(c)gix ~ + IIA~'z([~[ > a) u(c)tIzq), 

~lO, OO whence v'(2, c) -+ 0 (a --> oo) in L~- l /p - ,  uniformly in ~'. Now Theorem 7.8(ii) 
completes the p roo f  of  the proposit ion.  

This proposi t ion indicates that  at the point 2 = 0 E a(Bc) (see Theorem 7.7(i)), 
Bc enjoys what  is called a limiting absorpt ion principle, familiar in scattering theo- 
ry. T o  be precise, put  

v(2) = (2 --  B~) -~ u, u E L z �9 

In the sequel c E B[~o] is fixed. In view of  Theorem 7.7(i), v(2) is analytic and 
hence continuous in L 2 in 2 E Z'(ao, bo) \ (0}, but it is not  at 2 = 0. However,  
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Proposition 7.9 with m = 0r = 0 states that if u E X~ A Z q C L2, there is a 
unique limit v(0) ~p, oo E L~_i/p such that 

(7.14) v(;t) ~ v(0) (2 ~ 0, 2 E Z'(~o, ~o)) in /-:~"-~/r-~- 
This fact ensures that Bc has an inverse in the following sense. Define 

D = (v(0) I u E X~ C~ Zq}. 

Proposition 7.10. Let p, q, fl be as in Theorem 7.8 for  m = or = O. 

(i) D < (v E W~;+(Q) [r -v  E YP'-, 37Iov = 0). 

(ii) The operator Bc o f  (1.13) is bijective as a map 

Bc; D - +  X~ /N Z q, 

with B c  1E B(X~ f~ Z q, L ~ / p ) .  

Proof. Let X = X~ A Z q and let vQ.) be as above with u E X. Put w(2) =- 
--2v(;t) + Key(2) + u. If 2 ~ 0, then v(2) E D(B~) and 

(7.15 a) (~- V x q- vc(~)) v(;t) = w(;t) in Q, 

(7.15b) ~,-vQ.) = Mo~,+v(2) on S -  

hold in the L2-sense. This is also the case in the LP-sense. For, since L ~ / p  C L p 
for fl > (n q-1)/p, then u E L  p and also v(X)E L p by Theorem 7.8(i). Conse- 
quently so is w(2), and thereby (7.15a) implies that v(2) E W~+(Q) and is satis- 

fied in L p. By Theorem 4.1, then, 7+v(2)E YP'+ exists and (7.15b) holds in YP'- 
since 

M0 E B(Y p'+, YP'-), p E [2, oo1 

(interpolation between [M]2(i) and (iii), [2]). Thus v(2) is a solution to (7.15) in 
the/_,/'-sense. Next, note from (7.14) that v(;t) -+ v(0) in L p and thereby w(2) --~ 
w(O) = --K~v(O)+ u in L p as 2--~ 0. Take the limit as 2---~ 0 in (7.15). On 
account of the completeness of W~P~+(Q) and of  Theorem 4.1(i), statement (i) 

of  the theorem follows, and, moreover, it is found that Bcv(O) = --u  holds in 
the LP-sense. The latter means that the map B~; D - +  X is surjective. Suppose 
u = 0. Then v(;t) = 0 for 2 + 0, so v(0) = 0 by (7.14), that is, B~ is one-to- 
one. Now the proof  of (ii) is completed by Theorem 7.8. 

8. Solutions of the Boundary-Value Problem (1.14) 

Let ~b = 4~c be a solution to (1.14) and put ~01 = Rc(0) he, ~o2 = 4~c --  v21, 
where h~ is defined in (1.11). In view of  (7.1) and Proposition 7.1(ii), (1.14) re- 
duces to 

( - - ~ . V  x + L ~ ) ~ z - - - K r  in Q, 

(8.1) ~ro~O2 = 0 on S - .  
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Formally, this can be written as B~p2 = --K~o~, and so 

(8.2) ~b~ = Rc(O ) hc -- B~-tKcR~(O) hc 

is expected to solve (1.14). To verify that it does, we need the 

Lemma8.1. Vp, rE[1,cx~], VILER, 
~ 

h=Eg~ Yff'~'-), Ilh=l[ = O(lc])  ( c ~ 0 ) .  

Proof. Since Y~' -  C Yff'~'- with continuous injection if 7 is large enough, 
one has only to prove the lemma for p = r = cx~. In view of [M]2(ii) and Re- 

mark 1.1, h~ can be written as h~-------/17/o~, where ~c-~ g o � 8 9  g~o. 
Observe that 

T~-gcE 6~ y~o,• [17• = O(]e]) (e-+ 0), 
_1 

the last of which is obtained using ~(~) = c.  (~ -- #c) go ~ g#c, 0 < # < 1, 
(the mean-value theorem). This and [M]z(iii) yield the lemma. 

Theorem 8.2. Let Cbc be given by (8.2). Let n ~-- 3, p E[2 ,  oo], fl ~ O and 
0E[O, 1). Put 7 ~  2 - -  lip and suppose 

1 2 
(8.3) - -  < 1 

p n §  

Let "Co ~ 0 be that of  Proposition 7.5. 

(i) 4~cE~~176176 II~cll = O(Icl'-~ 
(ii) For each eE B[co], qb~ is in W,P,~+(Q) with y-oboE YP'- and solves (1.14) 

uniquely in the LP-sense. 

Proof. (i) will follow if (i) is true for Vj, J = 1, 2. For  j = 1, one has only to 
combine lemmas 7.2(ii), 8.1 with] the fact that z(t~I > a) ~Pt -+ 0 ( a - - ~ )  

in L~ '~ locally uniformly in c E R n (cf. the proof  of Proposition 7.9). Note that 
p and fl can be arbitrary here. Put u(c) ---- Kc~01. Clearly, it satisfies the first condi- 
tion for u(c) of Proposition 7.9 for any p,/3, and thereby also the second, because 

/~ ,~  Q/~,2 if fl ~ (n + 1)/2 and because A~' E B(/~:~, /~.r)  by (3.4). One can 
choose q = 1. Then Proposition 7.9 proves (i) for 92, in which (7.13) becomes 
identical with (8.3). Now, one can note from Proposition 7.10 that ~02 is a unique 
LP-solution to (8.1), and proceeding as in the proof  of Proposition 7.10, that ~ol 
is a unique LP-solution to (7.1) with h = hc, whence (ii) follows. 

9. Construction of Steady Solutions 

First we shall show that the suitable space in which (1.15) is to be solved is 
~ 

X~ = L~(Q) A L~'_~/p(Q), 

which was introduced in w 7. 
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Proposit ion 9.1. Let n ~ 3 and let Co be as in Theorem 7.8. Suppose that 
p E [ 2 , 4 ]  and 0 E [ 0 , 1 )  be such that 

n §  
(9.1) n +  0 - - 2  < p < n +  0, 

n 
and let fl >-~-  + 1. Then there is a constant C >= O, independent o f  c, u, v, 

such that for all c E B[~'o], 

(9.2) [I g e l  F o[ u, v] l[x~ ~ C ] c] -0(I +2/p) l[ u IIx~ I1 v Ilx~. 

Proof .  Put  w = A~-lFo[U, v] and note  tha t  for  any  r ~ s/2, 
,(2r--s)[2r sl2r 

Ilull~r,~ __ < [I u ~ ;  U ~ , o o  

Then L e m m a  3.9(ii) for  r = s and  (3.4) yield for  q E [1, 2], 

(9.3) I[ wllx~ <= c II ul[~ II vllx~, 

(9.4) [IAcwllzq<~ C(llwll~.oo + I[ wll~q, oo) <= Cllullx~llvltx~q, 
n 

with 0~ > - ~ - +  I. Recall  L e m m a  3.9(i) and  use T h e o r e m  7.8 for  w with m = 

o~ = 1. In  virtue of  (9.3) and  (9.4), one then gets 

(9.5) IIB;'Acwll~,oo < C lel-~176 (llullx~+~z llvllx,~+~zp+ I[uJIx~llv[Ix~). 
Put q : p / 2 .  Then  (7.13) turns  to (9.1) with p E  [2,4]. Use (9.5) twice with 
p = o %  o r  and with p = p ,  ~x:13, ~ = 1 3 - -  l/p, to deduce (9.2). 

I f  0 ~ 0, (9.2) becomes  meaningless as c--> 0. Nevertheless,  it can be 
used to solve (1.15). Choose  an o~ such that  

(9.6) 0 1 §  < ~ < 1 - - 0  2 - -  , 

which is possible for  all p ~ 2 if  0 E [0, 2/7]. Put  u = I c l  ~ v in (1.15) and  note  
that  / 'o  is bilinear. Then  v should solve 

(9.7) v = ]c]-~' ~bc - Icl~' Bc~ l-'o[V, vl 

when c :t= 0. Write this r ight -hand side as H(v, c) and put  H(v, 0 ) =  0. I f  

v = v(c) is a funct ion of  c, so is H(v(c), c). Define the nonl inear  m a p  H by 

/1Iv] (c) = H(v(e), c). Let  II II denote the n o r m  of  X~, and for  each a, ~, e > 0, 
define the space V = V(a, c, e, p, 13) by 

V = / v ( c ) E  L~~ X~) A ~~ X # _ , ) I s u p  IIv(e)ll < a} ,  
t icl<c ! 

which is a comple te  metr ic  space with the natura l  metric  

d(u, v) = sup Ilu(c) - -  v(e)ll. 
Icl ~_h 
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Lemma9 .2 .  Under the assumptions o f  Proposition 9.1, suppose 

Then there are positive constants a and c such that for  any e > O, 
V---~ V is a contraction. 

0 E [0, 2/7). 
the map i l ;  

Proof.  Put tr 1 0 ( 2  pl._) ( p2)  . . . . .  ,~, ~ = e ~ - - 0  1 q- . By virtue of  

Theorem 8.20) and Proposi t ion 9.1, there are constants  C~, C2 > 0 such that  

(9.8) 
[[H(v, c)l[ -< C~ [c]" -f- C2 [c! ~ IIvl[ ~, 

II n(v ,  c) - H(v', c)i[ <= C,_ ! c i ~ [1 v ~- v' l[ l[ v -- v' II- 

for  all c E B[~:o]. Since a , z  > 0 by (9.6), we can choose a c such that 

O <  c ,< min(co, (4C~C2)~/~ '~  Put / z - = l - - ( l - - 4 C t C 2 c ~ )  �89 and a :  
/z/(2C27~). It now follows from (9.8) that if v, v'E V and if cEB[c ] ,  then 

i[/~[v] (c)ll-<_- c~-~~ + C~-~a ~ = a, 

II/'l[vl (c) - / 1 [ v ' ]  (c)ll < tt [Iv(c) - v'(c)ll. 

Note  that  /z E (0, 1). Moreover ,  it can easily be checked by the aid of  (9.3) and 
(9.4) that  Proposi t ion 7.9 applies to u(c) =- Ac-II'o[V(C), v(c)]. Combining these 
conclusions yields the lemma. 

This lemma indicates t ha t / 4  has a unique fixed point v = v(c) in V. Obviously 
this v(c) solves (9.7), so u(c) = [c !~ v(c) is a solution of  (1.15). Note  that  u(c) = 
I c l  ~ n(~(e), c) and use Proposi t ion 7.10 and Theorem 8.2(ii) to see that  u(c)E 
W~+(Q) with y-u(c )E  YP'- and that  u(c) satisfies (1.12) in the LP-sense. Thus 

we have proven the main result of  this paper stated as 

Theorem 9.3. Suppose [O], [q], [M] of  w 1 be satisfied. Let n > 3, 0 E [0, 2/7) 
n 

and fl > --~ - I, and choose a p E [2, 4] sati,fying (9.1) and an ~ sati.~;ving (9.6). 

Then there is a positive number ~ such that for  each c E B~],  (1.12) admits a unique 
LP-solution u(c) satisfying 

u(c)E ~~ ;lu(c)ll =:: O(:c ! ' ) .  

Remark 9.4. If  n ~ 4, we may take 0 -~  0 in (9.1), and Theorem9 .3  is 
valid for  p E ( 2 , 4 )  if n = 4  and p E [ 2 , 4 ]  if n >  5. When n = 3 ,  however, 

(9. I) becomes vacuous for 0 = 0 and hence H cannot  be shown to be a contrac- 
tion. In [15] we were able to derive only for 0 = 0 the estimates obtained so far, 
including (9.2), and so the physically impor tant  case n .... 3 was handled by 
use of  Nash's  implicit function theorem supplemented by decay estimates for  
q~,, for  large x. The estimates, non-uniform in c, which are derived in this paper 
permit  us to use a much simpler contract ion mapping principle. 
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A p p e n d i x  

In this appendix we prove Lemma 6.5. Define the integral 

a 

Io ---= Io(2, a, b, l, m) = f 14-- ibu § u2 l-t um du. 
U 

Write 2 = ~ §  and for each b o > 0 ,  put 

Z'o = {2E G I - - ~  < [312/{2(b0 § 1)}2} �9 

LemmaA.1.  Let a, bo, m > O, l > 1 ,  0 E [0,1). Put 7 = m + 1 + 0 - - 2 1  
and suppose 7 ~ O. There is a constant C > 0 and for  all b E [--bo, bo] and 
2E-to,  

Io ~ C I b [-013 lm~.(0,~). 

Proof. Put ~ =  IT]y and (=~/1312 .  Then 

a/J~l 

/o <= 2 [31 "+x-' f (131 [r § y2[ § i1 _ by])--tymdy. 
0 

Write the last integral as 11 and split it into two: 

f+ f-i +/3 
J2 Js 

with ,/2-----[O,b~], J3 = [bl. a/[~[], where bl = 1/(bo § 1). I f  y E J2, then 
Ix - byl _-> 1 - Ibl bl  >_-- bl  and hence 

I2 < CbT +'-~ 

Let yE  J3. Then 1~ + y2[ > y2 _ b~/2 > y2/2 for 2 E Zo, and since (131 y2/2 
+ [1 --  by[)' > (]z'[ y2/2)'-~ [1 -- by] ~ 

/3 < C]3[ -l+~ fy, , , -20-o)]1 -- by]-~  
J3 

Denote the last integral as 14 and split it as follows: 

& =  f +  f = _ l , + I ~ .  
J~ J6 

where Js = Ja A [2/(3 ]bl),2/lbl], & = s 3 \  Ys. If all'r] < 2/(3 Ib[), then 
J s = c p  and I s = O .  If  not, then 

/5 < c Ib[ -{m+=~ f [ 1  - by[ -~ dy <= C ]b[ -~ <= C Ib[ - ~  1~1 -~ ' ,  
gs 

where y'  ---- max (0, y). Finally if y E 3"6, then [ 1 -- by[ > ]b]y/2, so 

16 < C [b[ -~ f y"-~ dy < C [bJ -~ 13[ -~/ 
J4 

with the same y'  as above. Combining all these estimates completes the proof  of  
the lemma. 
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Let #(k, c) denote any one of the t~:(k, c) of Theorem 6.2(i), and c~, fl corre- 
sponding ~i, fl: of Theorem 6.2(ii). Note that o~ E R,/3 > 0 and that o; = 0 occurs 
for some j ' s  (see [4]). Put 

/zo(k, c) = --/3 Fkl 2 + i~x Ikl -~ i k .  c. 

Note from Theorem 6.2(ii) that 

(A.I) i z ( k , c ) = t z o ( k , c ) + O ( I k [  3 ) (Ik I --~ 0). 

Let ~o, ao, ao be as in (6.6) and (6.7), and define 

S = S(ao, ao) X a[uo] X a[co]. 

Lemma A.2. V (2, k, c) E 27, 12 -- #(k, c) l ~ �89 12 -- :,o(k, c)I. 

Proof. First we prove that 

(A.2) 12- / ,o (k ,  c)l >= ~o [kl = 

holds in2?wi th  some constant * /o>0-  Put 2 = a + i r .  When a ~ 0 ,  (A.2) 
is obvious because fl :> 0. Thus we suppose a < 0. If laI ~ fl [kl2/2, then 

]a + fl[ k]2l >= fl tkl2/2 and (a.2) follows. If  not, then [~l ~ ([al/ao) � 8 9  ~ Ikl 
for 2E Z'(ao, %) with r h = 6 + Co q- 1 (see (6.7)). Therefore I~ -~1 k I - k .  c[ 
>-- I~1 - (1~1 + Co)lkJ > Ik l%o in L', since we may assume without loss of 
generality that Ior 6 in (6.6). This completes the proof of (A.2). In view of 
(A. 1) we may also assume that :% is so chosen that [#(k, c) --/to(k, c) I < ~7o I k 12/2. 
This and (A.2) then prove the lemma. 

Proof of Lemma 6.5. Let I = I(2, e, l, m) be the integral of Lemma 6.5(i). 
By Lemma A.2, 

I<=2 -I f 1 2 - t z o ( k , c ) l  - ~  
B[~o] 

Denote the last integral by I7, and put ,n = ]/fl Ikl, t = k .  c/([k] ]c[). Then 

i ( - ~,+,ctt ) t~)c._3~/2 IT < Cfl -(re+n)/2 Io 2 , ] / f l ~ t o , - -  l, m + n - - 1  (1- -  art. 
= - - I  ] / - f l  ' 

Use LemmaA.1 and note that for 0E [0, 1), 

1 {1, ~ @ 0 ,  
f ] a + ] c l ] t l ] - ~ 2 1 5  Icl -~ or o. 

Then Lemma 6.5(i) follows. Next, observe the inequality 

(A.3) [a- l  - b - l  I <= ]a - bt~ ( [a l -~  + JbI -O,  7 = l + e, 

for a, b E C  and e ~ O .  Put a = 2 - - / ~ ( k , c ) ,  b = 2 ' - - # ( k , c ' )  and e = 0 f f ,  
and let J be the integral of Lernma 6.500. Then by (A.3), 

J=< (12 -- 2' l q- Xo [c -- #1)~ c, l + ~, m) + I(2', c', l + 8, m)}. 

Combine this and Lemma 6.5(i) to conclude Lemma 6.5(ii). 
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