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I. Introduction 

The potential energy of an elastic body ~ in a configuration x has the form 

U(x) = Ue(x)+ S w(F) dm, (P) 

where Ue(x) is the potential energy of the external loads, assumed conservative, 
w is the specific stored energy (strain energy), F = 17x, and dm is the mass measure 
on :~. The energy criterion for stability asserts that the stable configurations of 

are exactly those that render U a minimum. 1 This criterion neglects thermo- 
dynamic influences and, in addition, is statical in nature. Thus, since many non- 
elastic materials exhibit elastic behavior in statical situations, the following 
questions seem appropriate: 

(a) Can the energy criterion be given a precise dynamical significance? 
(b) Does the energy criterion apply when thermal effects are present ? 
(c) Does the energy criterion apply when the material is not elastic ? 
(d) If the answer to (b) or (c) is yes, what interpretation should be given the 

stored energy? 

t The minimum energy criterion is discussed at length in the treatise of KNOPS & WILKES (1973). 
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Recent  studies, 1 all based, essentially, on two impor tan t  papers  of ERICKSEN 
(1966a, b), have shown that  the answer to (a) and  (b) is a qualified "yes" ;  and that  
the answer  to (c) is also a qualified "yes "  for materials  with fading memory ,  for 
mater ia ls  described by internal state variables,  and, more  generally, for any type 
of mater ia l  that  has, associated with it, an equi l ibr ium free-energy. As a mat te r  
of  fact, the work  of  COLEMAN & DILL (1973) and GURTrN (1973 C) shows, in answer  
to (d), that  the s tored energy should, in all cases, be interpreted as the equil ibrium 
free-energy evaluated at the envi ronmenta l  tempera ture .  

With  the exception of (1973 c), each of the foregoing investigations is concerned 
with a single class of materials ,  and it is not  immediate ly  apparen t  which of the 
cor responding  results are generic in nature,  applicable to large classes of materials,  
and  which are l imited to the specific mater ia l  under  consideration.  It seems 
reasonable  to ask if there is, in fact, a general  theory of stability which leads to 
app rop r i a t e  general izat ions of  the above  results, and which lays bare the simple 
concepts  which must  form the essence of the subject. The main purpose  of this 
paper  is to develop such a theory. 

Chap te r  I I I  begins with a fairly general t rea tment  of the the rmodynamics  of  
con t inuous  bodies. There  we define state functions such as the total  2 energy E and 
en t ropy  S, and we in t roduce the concept  of  an envi ronmenta l  t empera tu re  3 0e" We 
show, as a consequence of the first two laws, that  for certain types of envi ronments  

V = U e + E - O e S  
is a na tura l  L y a p u n o v  function;  4 that  is, V decreases with t ime on processes that  
are consistent  with the environment .  We then give the form V takes when the 
mater ia l  is elastic, and, for this type of material ,  list its mos t  impor tan t  properties.  

In Chap te r  IV we develop a general theory of dynamica l  systems. While our 
theory is mot iva ted  by the results of  Chap te r  I I I ,  it is sufficiently general to describe 
the behav ior  of  mos t  mater ia ls  now considered impor tan t  in con t inuum mechanics.  
We define a dynamica l  system 5 to be a triplet (2~, ~, Equil), where 2; is a set called 
the state space, ~ is a class of processes (functions of t ime with values in S), and 
Equil  is an idempoten t  m a p  from S into itself. The m a p  Equil is a crucial ingredient 
in our  theory,  and its absence f rom other general theories of dynamical  systems 
renders  these theories virtually inapplicable to non-l inear  con t inuum mechanics.  
Our  under lying physical  a ssumpt ion  is that  each possible state a of the system has 
a unique equi l ibr ium value Equil tr. For  an elastic mater ia l  a state is a triplet 
(x, v, 0), where x is a configurat ion,  v a velocity field, and  0 a t empera ture  field, and 

Equil(x,  v, 0 )=  (x, 0, 0e), 

where  0e is the (constant)  env i ronmenta l  temperature .  For  a mater ia l  with m e m o r y  
a state involves the histories of x and  0 as well as the present value of v; the cor- 

1 KOITER (1969, 1971), GURTI~ (1973a, b, c), COLEMAN & DILL (1973), KNOPS & WILKES (1973). 
2 Internal plus kinetic. 
3 It is not difficult to modify our theory to include a dependence of 0 e on time, provided 0e>0. 

In this connection see GURTIN (1973 C). 
4 In essence, this assertion is due to DUHEM (1911), Vol. 2, pp. 220-231. 
5 Our definition differs from the usual definition of a dynamical system (c5r e.g., ZUBOV (1964), 

HALE & INFANTE (1967), HALE (1969)) in two respects: (i) our processes are not generated by an operator 
semi-group; (ii) the introduction of the equilibrium map Equil. Also, in view of (ii), our definition differs 
from that of GILBERT & KNOPS (1967). 
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responding equilibrium state has v = 0, the configuration history a constant equal 
to its present value, and the temperature history equal to the constant history 
with value 0e. 

We define a Lyapunov function V for the dynamical system to be a real-valued 
function of state that decreases with time on processes. In addition, we assume that 
the state function 

T(a)  = V ( o ) -  V(Equil or) 

is non-negative on each process and vanishes on a process zc only when rc is a rest 
process. (This assumption is satisfied by all of the material bodies discussed 
previously.) We then define the potential energy U to be the restriction of V to 
equilibrium states; that is, to states of the form Equil a. 

The classical harmonic oscillator best illustrates the motivation behind these 
definitions. In this example a state is a pair (x, v), where x is the position coordinate 
and v the velocity of the oscillator, and 

V(x, v )=1  k x 2 ..~_1 m V 2 

with k the spring constant and m the mass. Equilibrium states i are then states 
of the form (x, 0), so that Equil (x, v) = (x, 0), 

T(x, v)= m v2, 

U (x, O)=�89 k x 2. 

Returning to the general theory, we show that the few simple axioms described 
above suffice to yield general forms of the results mentioned previously, as well 
as several new results. In particular, our main results can be stated roughly as 
follows: 2 

(i) When U has a local minimum at an equilibrium state a 0, then there is at 
most one process starting at o o. 

(ii) If an equilibrium state ao is asymptotically stable with respect to orbits in 
the equilibrium space, then U must necessarily have a strict local minimum at 
O" O . 

(iii) If U has a global minimum at a0, then a 0 is Lyapunov stable with respect 
to the Ly,apunov topology; that is, with respect to the topology induced by the 
pseudo-metric IV(a)-  V(~)I, a, ~ Z. 

(iv) If U has a strong local minimum at a 0, then U is Lyapunov stable with 
respect to the combination of the Lyapunov topology and a certain topology 
induced on Z by the equilibrium map. 

The type of stability established in (iii) and (iv) is quite weak. But this is to be 
expected, since the underlying theory is aimed at large classes of materials. For 
individual materials one would expect stronger results. However, even in the 
simplest case of (non-linear) hyperelasticity non-trivial results concerning dynami- 
cal stability are lacking. 

1 Note that  our notion of "equil ibrium state" is much  broader than  the definition usually em- 
ployed, under which only the state (0, 0) would qualify. 

2 For  (i), (ii), and (iv) we need to assume that the space of equilibrium states is topological (indeed, 
for (i) and (ii), that it is a Hausdorff  space); we need also certain mild continuity assumptions.  
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The chapter on dynamical systems is completely self contained; although 
motivated b y -  it does not make use of -spec i f ic  continuum mechanical theories. 
For  this reason it might be applicable, perhaps with minor modification, to 
areas outside of continuum mechanics. 

In Chapter  V we apply our results to specific materials. There we show that 
strengthened forms arise of the results established previously by KOITFa~ (1969, 
1971), GURTIN (1973a, b, c), COLEMAN • DILL (1973), and KNOPS & WILKES (1973). 
In particular, we show that for all of the specific materials considered here U has 
the form (P) with w the equilibrium flee-energy at the environmental temperature. 

II. Preliminary Definitions. Notation 

I. Notation 

Throughout  this paper ~ denotes a three-dimensional Euclidean space with 
the associated vector space. Lin is the space of linear transformations of W into 
itself; 

Lin § = {F~Lin: det F > 0 } .  

We will consistently use the notation 

~.=(-oc ,  oc), lR+=[O, oo), ~++=(0, oo). 

Let 2~c6  ~ and let ~/U denote either ~, ~,, IR, or IR +§ . We write PC(2~, ~r {respec- 
tively, P C 1 (2~, # ' )}  for the set of all piecewise continuous { respectively, continuous 
and piecewise smooth 1} functions from ~ into ~/r. We will have frequent occas- 
sion to deal with functions f (X ,  t) of position Xeg# and time t e ~ .  For  such func- 
tions we write 

f ( x ,  t)= ff~- f (X ,  t) 

for the right-hand derivative with respect to time. 
Given a function f (a  1, a 2 . . . . .  a,) of several variables, we write 

~ , f =  f ~ f ,  a z / ' -  o f  
oa 1 c3a 2 ' . . . .  

This notation is used also when certain of the al are vector or tensor variables, 
or even functions; the meaning will always be clear from the context. 

2. Topological Considerations. Minima 

Let Z be a topological space with topology 5~, and let aeZ.  The (open) neigh- 
borhood system of a is the subfamily 5a~ of 6 e consisting of all open neighborhoods 
of a. A local base B at a is a subfamily B of 5e, such that every neighborhood 
of a contains a member  of B. 

Let 9-- denote a second topology for 2;. Then the eombination of 5e and J -  
is the smallest topology for Z containing both 5 ~ and Y. More precisely: the 

t We use the term "smooth" as a synonym for "continuously differentiable'. 
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combinat ion of 5" and 3- is the family of all sets each of which is the union of a 
subfamily of the family 

{g2 ~ A: O~be, AE~-}.  (2.1) 

Proposition 2.1. The family 

{Oc~A: ~ e ~ ,  Ae~} (2.2) 

is a local base at a with respect to the combination of the topologies 5 e and ~.  

Proof. Let ff denote the combined topology. Trivially, (2.2) is a subfamily 
of ~g,. Let F be an open neighborhood of a. Then F is the union of a subfamily of 

(2.1), and, since aEF, a must belong to at least one member  4~ of this subfamily. 
Thus ~ belongs to (2.2) and �9 = E []  

Let F: 27---~ IR, and let a e S .  Then F has a minimum at o over O=S, if 

F(a)<F(2) V 2 e O ;  

the minimum is strict if equality holds only for 2 = a. F has a global minimum at a 
if F has a minimum at a over 27. 

Let 2; be endowed with a topology. Then F has a local minimum {respectively, 
strict local minimum} at a if F has a minimum {respectively, strict minimum} 
at a over some neighborhood of S. A subset ~2 of S is a potential well for F relative 
to a if: 

(a) [2 (with ~ = 2 ; )  is an open neighborhood of a;  
(b) F has a minimum at a over Q; 

(c) inf{F(2): 2e  0[2} > F(a). 

F has a strong local minimum at a if for some local base B at a each t2sB is a 
potential well for F relative to a. 

IlL Motivation behind the General Theory 

3. The Laws of Thermodynamics. The Lyapunov Function 

Consider a body ~ .  In all of our applications ~ will be a continuous body; 
for the time being, however, it is not necessary to endow ~ with a mathematical  
structure. A state for ~ is a point a in a set S, ,/r we call the state space. The 
particular choice of 27 depends on the type of body under consideration; for 
example, the state of an elastic body is a triplet (x, v, 0), where x is a configuration. 
v is a velocity field, and 0 is a temperature field. 

A process a with values in S is a function 

~z: [0, d~)--~ Z (d ,>0) .  

The number  d~, which may be o% is called the duration of n. For convenience, 
we write nt for the value of n at time tE [0, d,). Constant  processes will be referred 
to as rest processes. 

t Cf. NOLL (1972), p. 9. 



68 M.E. GURTIN 

A mapping 
E : X ~ R  

will be called a state function. Given a process n, we write E (n) in place of E o it; 
that is, E(n): [0, d,)---~ R is the function t~--~E(nt). Let ~ be a class of processes. 
Then E has a trajectory derivative over ~ if, for each r ~ ,  E(r0 is differentiable 

d 
on [0, d~); in this case we write/~(r0 for the function t ~--~-E(rc,). 

The thermodynamic behavior of ~ is governed by six state functions E, S, 
P, Q, J, and G, where for each state a 

E (a) is the (internal and kinetic) energy of ~ in a, 

S(a) is the entropy o f ~  in a, 

P(a) is the power expended on ~ in a, 

Q (a) is the heat flow into ~ in a, 

J(a) is the entropy flow into ~ in a, 

G(a) is the entropy produced by ~ in a. 

We assume that for each a e Z 

G(,r)>__0, (3.1) 

so that the entropy produced in each state is non-negative. 

We consider now a given class ~ of processes over which E and S have tra- 
jectory derivatives. We assume that each ~ '  is consistent with 

balance of energy 
/~ (~) = Q (n) + P(~), (3.2) 

balance of entropy 
;~ (~) = J(n) + G (re). (3.3) 

We restrict our attention to situations in which the environment for ~ is 
described by a number 0 e > 0 and three state functions Ue, Pc, and Ge, where 

0e is the environmental temperature, 

U~(a) is the potential energy in cr of the conservative external loads, 

P~(a) is the power expended on ~ in a by the non-conservative external loads, 

Ge(a) is the entropy produced in a at the interface between the body and the 
environment. 

We assume that for each a E X 

P~(cr) < 0, G~(cr)>0. (3.4) 

The first of (3.4) asserts that the non-conservative loads are dissipative, since 
they result in an expenditure of power by ~ ;  (3.4)2 is simply the requirement 
that the interfacial entropy production be non-negative. When P~ = 0 {respectively, 
G e = O} we say that the environment is conservative {thermally perfect}. 
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We assume that  each r c ~  is consistent with the following interface conditions 
relating the envi ronment  and the body :  1 

P ( ~ )  = - t~e(-)  + e~(~) ,  

J(n) = ~ f  Q (n) + a e (Tr). 
(3 65~ 

Equat ion  (3.5)1 is self-explanatory. To help motivate  (3.5)2 think of the interface 
between the envi ronment  and g as a thin film ~ across which the heat  flux is 
cont inuous.  Then - Q ( n )  is the heat flow into ~ from & and hence into the 

envi ronment  f rom ~-, so that  _ 1 Q 0e (n) is the ent ropy flow into the environmentl 

f rom ~ ' .  Therefore, since J(n) is the ent ropy flow into ~ from ~ ,  J ( n ) - - ~ - Q ( n )  

represents the net ent ropy flow out  of  ~ .  Thus  (3.5)2 is the requirement  that the 
en t ropy produced  in ~-  be equal to the net ent ropy flow out  of  

Q 
J Oe 

Let V and D be the state functions defined by 

V (a) = U e (a) + E ( a ) -  Oe S(a), (3.6) 

O (•) : 0 e [G (~) q" a e (o')] - tD e (o'), 

so that, by (3.1) and (3.4), 

D(a)>O. (3.7) 

if we differentiate V(n) with respect to time and use (3.2), (3.3), (3.5), and (3.6), 
we are led to the following impor tan t  result: 

Theorem 3.1. 2 In each process ~ E ~  the function t~-~V(nt) is monotone de- 

creasing. In fact,  l/(n) = - D(n). (3.8) 

This theorem shows that  for the rmodynamic  systems of  the type under  con- 
sideration, which encompasses  mos t  of the material  bodies studied in con t inuum 
mechanics under  a variety of loading condit ions,  there is a natural  Lyapunov 
function: namely, the state function F. 

1 All of the early studies concerning stability were based on conservative external force fields. 
The first author to employ (3.4)1, (3.5)1 was GtJRrlt~ (1973 c), although, as COLEMAN (1973) has remarked, 
ERiCKSEN independently suggested an extension of this type during the Symposium on Nonlinear 
Elasticity held in Madison in April 1973. 

2 Cf. GURTr~ (1973a), Corollary to Theorem 4.1. Related theorems were given by DUHEM (1911), 
Vol. 2, pp. 220-231, ERICKSEN (1966a, b), COLEMAN &DILL (1968), KOITER (1969, 1971), COLEMAN (1970), 
COLEMAN & DILL (1973), GtJRTIN (1973C), KNO~ & WILKES (1973). 
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4. Continuous Bodies. Specific Environments 

For the applications considered here ~ will be a continuous body; for con- 
venience, we identify ~ with the regular 1 region of Euclidean space it occupies 
in a fixed reference configuration. Points X e ~  will be referred to as material 
points. A configuration of ~ is a one-to-one mapping  xePC~(&,8) with x(~)  
a regular region and with det(Vx)>0. A velocity field {respectively, temperature 
field} for ~ is a map vepCl(~,  ~ )  {respectively, OePC(~, R++)}. We use the 
following notation: 

Config = {x: x is a configuration of ~}, 

Vel = {v: v is a velocity field for ~}, 

Temp = {0: 0 is a temperature field for ~} .  

Let ~ be a topological space. A local state function (with values in ~r is a 
map ~0: Z x ~ ~ ~ such that for each state a e Z  the map ~%: ~ ~ ~ defined by 

q,o (x)  = q, (,~, x )  
is piecewise continuous. 

In most continuum theories the behavior of @ is governed by local state 
functions x, v, O, e, ~/, S, q, and y, where for each state a e Z :  

x~eConfig is the configuration of @ in a, 

v ~ V e l  is the velocity field in o, 

O ~ T e m p  is the temperature field in a, 

s~: ~ ~ IR is the specific internal energy in a, 
~/~: ~ ~ ~ is the specific entropy in a, 

S~: ~ ~ Lin is the Piola-Kirchhoff stress in a, 

q~: ~ is the heat flux in o, 

y~: ~ ~ R + is the specific entropy production in a. 

The local state functions determine the global state functions through the relations 2 

+~%)dm, S(a)=  ~rl~dm, 

G(a)=  ~ 7~dm, P(a )=  ~ 1;~ . S~nda, 
08 

1 

(4.1) 

where dm is the element of mass on ~ ,  while n is the outward unit normal to 8~.  
Thus the Lyapunov function V defined in (3.6)1 is given by 

V((7)  = U e (o-) -~- S (/3o- - Oe ~']o" "-['- 1 i;2) d i n .  (4.2) 

Cf, e.g., GURTIN (1972), p. 13. Roughly speaking, a regular region is a closed and bounded region 
whose boundary is piecewise smooth.  

2 It is clear from (4.1)5.6 that heat supply due to long range influences, such as radiation, is assumed 
absent. Also, for convenience, we have restricted our attention to situations in which the body force b 
vanishes. Our results apply, without change, when b is the sum of conservative and dissipative force 
fields. Of course, in this case U~ includes the total potential energy of b. 
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The configurations x o, aE ~, are called admissible configurations, and we write 

AdmissConfig = {x~Config: x is admissible}. 

We assume that AdmissConfig contains the undeformed configuration 

x ( X ) = X  V X e ~ .  

The point xo(X ) is the position occupied by the material point X in the state a, 
while ~ = x o ( ~  ) is the region of space occupied by & in a. Let zce~. Then x~t(X ) 
is the position occupied by X at time t in the process 7r, while v~t(X ) is the velocity 
of X at time t in n. We assume that x and v are compatible in the following sense: 
in each 7 te~  and for all X E ~  the map t~--+x~t(X ) is differentiable and 

~t x~t(X)= v~,(X). (4.3) 

The field Son on d~  gives the surface force on the boundary per unit area of 
the reference configuration. The Cauchy stress TO: ~--+ Lin is defined by 

To=(detF) -1 SoF r, F= Vxo; 

To no gives the surface force per unit area of the actual configuration xo. Here, 
of course, no(X ) is, for each Xed&, the outward unit normal to ~ o  at the point 
xo(X). Similarly, the heat flow across the boundary per unit area in xo is ho 'no, 
where h o: ~--+ ~e- is defined by 

h o = (det F) -1 Fq, .  

We now give some examples in which the interface conditions (3.5) are satisfied. 
Examples (1)-(4) are concerned with the power relation (3.5)1, while (5)-(7) are 
concerned with the entropy flux relation (3.5)2. 

i. Conservative Environments (P~ = 0). 

(1) Fixed boundary: Each t r e e  has 

xo(X)=X, vo(X)=0, V X E ~ ,  

so that P = 0 .  Thus (3.5)1 is satisfied with Ue=P~=0. 

(2) Boundary held at constant pressure p0:1 Each tr~E has 

To no = - P0 no on ~ .  

In this instance (3.5)1 is satisfied provided we take P~=0 and 

U e (o') = Po v o l  (/~o), 

where vol(~o) is the volume of :~o. 

(3) Dead loading: Here there exists a function s: d~--+ ~e" such that 

So n = s on &~. 

1 Cf, COLEMAN (1970). 
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For this case we take P~ = 0 and 

U e ( o ' ) =  - -  ~ $ "  ( x , , - z )da ,  

where z is an arbitrary fixed point of g. 

ii. A Non-conservative Environment. 

(4) Linear viscous damping on the boundary: Each a s X  satisfies 

Son=-C~v~ on ~ ,  

where, for each X s ~ ,  C~sLin is positive semi-definite. Here we take U~=O and 

Pe(a)= - ~v~,.C~,v~da. 

iii. Thermally perfect environments (Ge = 0). 

(5) Boundary held at constant temperature 0e: Each a s X  satisfies 

0 6 : 0 e on ON, 

and (3.5)2 holds with Ge=0. 

(6) Insulated boundary: Each as-Y" has 

q ~ .  n = 0 o n  ~r  

and again (3.5)2 holds with Ge=0. 

(4.4) 

iv. An environment that is not thermally perfect. 

(7) ~ surrounded by a thin convective film with heat transfer coefficient k: 
Here k > 0 is a constant and each state a s Z satisfies 

so that (3.5)2 holds with 

hr nr162 on 0~ ,  

Ge(a)=k ~ 0~ ( 1 - ~ )  2 da. 
0 . ~  e 

(More precisely, O~ should be replaced by O, o x~-1.) 
Many other boundary conditions consistent with our underlying assumptions 

are easily arrived at, including those involving combinations of the above and 
those involving mixed boundary conditions. 

In each of the examples (1)-(4) the potential energy U~ of the environment 
depends only on the configuration; that is, 

U~(aO=Ue(a2) whenever xo=xo2.  (4.5) 

Henceforth we adopt this condition as a general hypothesis for all of the environ- 
ments that we shall consider. 
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5. Elastic Materials. The Equilibrium Map 

We now write ~, 8, and 0 for the local state functions x, v, and 0; the letter x 
will now stand for an arbitrary configuration of 9~, v for an arbitrary velocity field, 
and 0 for an arbitrary temperature field. 

For  an elastic body: 

(El) The state space 2; is a subset of the set of all triplets of the form 

= (x ,  v, 0 ) ,  

where xeConfig,  reVel,  and 0eTemp.  

(E2) The local response functions j ,  13, and 0 are given by 

~ , = x ,  b , = v ,  0 , = 0  (5.1) 

for every a = (x, v, 0) e 22. 

(E3) The local response functions g and q are given by constitutive equations 
of the form x 

~, (X) = ~ (V (X), 0 (X), X), 
(5.2) 

~ Ix) = # (e (x), 0 Ix), x),  

for every X ~  and a = ( x ,  v, O)eS, where 

F = Vx,  (5.3) 

and where ~,0: Lin § x R + +  • 9 ~ - + R  are smooth. 

The free-energy ~: Lin + • R +  + • 9~ ~ R is defined by 

(F, 0)=  ~(F, 0 ) -  00 (F, 0), (5.4) 

where, for convenience, we have suppressed the argument X. As is customary, we 
assume that ~ determines 0 through entropy relation 

O = - 0 2 ~ .  (5.5) 

We also assume that the specific heat 0 2 ~ is strictly positive; or equivalently, by 
(5.4) and (5.5), that 

02 02 t} < 0. (5.6) 

An important  consequence of these assumptions is 

Ericksen's Lemma? There exists a function ~c: Lin + x R+  + x ~ IR such that 

~(F,O)-OeO(F,O)=~(F,  Oe)+tc(F,O)(O-O~) z , to(F, 0)> 0 (5.7) 

for all F e L i n  + and OeIR + +. 

A proof of this lemma is given in the Appendix. 

A similar constitutive equation holds for the stress, while the heat flux and specific entropy 
production depend, in addition, on the temperature gradient. These constitutive equations, however, 
are irrelevant to our treatment. 

2 EmC~SEN (1966a), eq. (30). 
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By (4.2), (5.1), and (5.2), 

V(a) = U, (a) + ~ [~ (F, O) - 0 e ;1 (F, O) + �89 v 2] din, (5.8) 
9O 

and thus (5.7) implies 1 

V(a)= Ue(a) + ~ [t~ (F, 0~)+ •(F, 0) (0-  0~) 2 +�89 v z] din. (5.9) 
9O 

Consider now the mapping 

Equil: 2~ ---) Z 

which associates with every state (x, v, O)EZ its equilibrium value (x, 0, 0~) (which 
we assume also belongs to Z): 

Equil(x, v, 0)= (x, 0, 0~). (5.10) 

We call 
270 = Equil Z 

the equilibrium state space, while elements a o =(x, 0, 0e) are equilibrium states. 
Since Equil is a projection, 

Equil is idempotent. (5.tl) 2 

Let U: X o --*R denote the restriction of Vto Zo, 

U(ao)= V(ao) V ao~Z o, (5.12) 

so that, by (5.9) and (5.10), 

U (.o)= Ue(6O) ~- ~ ~_I(F, Oe) dm (5.13) 
9o 

for every equilibrium state a o. Thus U(ao) is the total potential energy in ao; 
that is, U(ao) equals the potential energy of the load system plus the free-energy 
of the body. 

The integral 

T(a) = ~ [~c(F, 0 ) ( 0 - -  0e) 2 + � 8 9  V 2]  am, (5.14) 
9O 

measures the "distance" of a state a from its equilibrium value. By (4.5) and (5.10), 

U~(a) = U~(Equil a); 

therefore (5.9), (5.13), and (5.14) imply that 

V(a) = U (Equil a) + T(a), (5.15) 

so that V(a) equals the potential energy of Equil a plus the distance of a from 
Equil a. 

i ERICI(S~N (1966a), eq. (32)1. 
2 A m a p  ~o : 2; ~ Z is idempotent  if ~o o (9 = (9. 
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Theorem 5.1. (Properties of the Lyapunov function) 
(i) T=  V -  Vo Equil. 

(ii) T >__ 0. 

(iii) T(tr) =0  if and only if tr is an equilibrium state. 

(iv) Given a process n e ~ ,  if T(nt)=0 for all te  [0, d,), then 7z is a rest process. 

Proof. Assertion (i) follows from (5.12) and (5.15), while (ii) and (iii) are conse- 
quences of (5.14) and (5.7)2. (Here we use the tacit assumption that d m = p o  dr, 
where Po, the density in the reference configuration, is a strictly positive function 
on ~.) 

Before proving (iv), note that each process r~e~ can be identified with a triplet 
(x, v, 0), where x, v, and 0 are functions on ~ x  [0,d~) with x(', t)E Config, v(',t)eVel, 
and 0(' ,  t)eTemp at each te [0, d~). Moreover, by (4.3), 

v = i .  (5.16) 

To prove (iv) assume that T0r ) = 0. Then, by (iii), rt t is an equilibrium state at 
each t ~ [0, d.), so that 0 (X, t) = 0 e and v (X, t) = 0. Thus we conclude from (5.16) that 
x (X, t) is independent of t; hence 7t is a rest process. [] 

Theorem5.1 will serve to motivate the general definition of a Lyapunov 
function given in the next section. 

We close this section with a discussion of possible topologies for the underlying 
spaces. In applications the specific choice is dictated by the form of the free-energy 
function and by the actual environment under consideration. 

Given any function f on ~ with values in a vector space, let 

1 
I~fll~ = [ S I f  v dv]y, [ I f l L ~  = sup {If(X)l : X e ~ } .  

Let x 1, x2eConfig, and let 

e,=vx~, C,=FTe~ (~=1 ,2) ,  

so that C~ is the right Cauchy-Green strain tensor for x~. Further, for p a positive 
integer or p = ~ ,  let 

dp(xx, x2) - - I lx l  - x 2  IIL~ + liE1 -- F2 IIL~, 
(5.17) 

%(x~, x2) = II C~ - C2 I[L~- 

Then dp is a metric for Config and therefore generates a Hausdorff topology J-(dp). 
On the other hand, % is a pseudo-metric and generates a non-Hausdorff topology 
J'(Cp). 

Most of our results require a topology only for the equilibrium space Z o- 
By (5.10), for an elastic material Zo can be identified in a natural manner with the 
set AdmissConfig of all admissible configurations. If we consider situations in 
which the boundary of & is clamped, so that each xsAdmissConfig satisfies 

x(X) = X  V X~ t3~, 

then cp is a metric for AdmissConfig, and therefore ~--(%), as a topology for 
AdmissConfig, is a Hausdorff topology. The same assertion applies to situations 
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in which a portion 5 P of 89~ is clamped, as long as this clamping precludes rigid 
deformations of ~ .  

The usual topology on Vel is that induced by the kinetic energy, while possible 
topologies on Temp  are those induced by the Lv norms. 

IV. General Theory of Dynamical Systems 
In this chapter we shall develop a general theory of dynamical systems. While 

this theory is motivated by our previous results, it is sufficiently general to describe 
the behavior of most materials now considered important  in continuum mechanics. 

6. Preliminary Results. Uniqueness 

Let n: [0, d~)~X be a process x with values in a set X. The orbit o fn  is the set 2 

Orbit(n)= {nt: tel0, d~)}. 

Each restriction of n of the form n Ito,a), ae(0, d~], is called an initial segment of n, 
and, when a < d~, n is a continuation of n I[o,a). Let ~ be a family of processes with 
values in X. Then ~ is a process class for Z if each n ~  is maximal;  that is, if each 
n E ~  has no continuation in ~ .  

A dynamical system is a triplet (X, ~, Equil), where 

(D1) Z i s a s e t ;  

(D2) ~ is a process class for X; 

(D3) Equil: X - - } X  is idempotent. 

We use the following terminology: X is the state space; elements a c X  are states; 

Z o = Equil Z 

is the equilibrium state space; elements a o e X o are equilibrium states. Given n ~ ,  
the set 

EquilOrbit (n) = {Equil n t: t ~ [0, d.)} 

is the equilibrium orbit of n. 
A Lyapunov function for the dynamical system (Z, ~, Equil) is a mapping 

V: X - ~ n (  

with properties (L1)-(L3) listed below. In (L2) and (L3) 

(LO 

(L2) 

(L3) 
all te [0 ,  d~), then n is a rest process. 

Since Equil is idempotent,  

Equil a o -- ao 

T =  V -  Vo Equil. (6.1) 

For  each n E ~  the function tF--~ V(nt) is monotone decreasing. 

T(z t )>0  for each n ~  and re[0,  d,). 

If ;t is an initial segment of a process in ~, if n o , S o ,  and if T(Tct)=0 for 

V a o e S  o, (6.2) 

The notions, process, duration, and rest process, are defined in the second paragraph of Section 3. 
2 This set, which is simply the range of n, is often called the positive orbit of n. 
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and therefore (6.1) yields 

T(ao)=O V a o e Z  o. (6.3) 
The function 

U: %o --~ IR 
defined by 

U = V IXo (6.4) 

is called the potential energy. By (6.4), V(Equil a )=  U(Equil a); hence (6.1) implies 
that 

V(a) = U (Equil a )+  T(a) (6.5) 

for every state a. We therefore conclude from (L1) that 

V(n,) < V(no), (6.6) 

U (Equil nt) + T(nt) < U (Equil no) + T(no). 

Let n be a process with values in Z. Then n starts from equilibrium if no~%o; 
n starts from a if n o = a; n conserves potential energy if U (Equil nt)= U (Equil no) 
for all te[0,  d,). The first definition, (6.6)2, (6.2), (6.3), and (L2) yield 

Theorem 6.1. For any process n ~ starting from equilibrium 

U (Equil nt) < U (no) 

for  all t E [0, d~). 

Proposition 6.1.1Let n be an initial segment o f  a process in ~ that starts f rom 
equilibrium. Then the following are equivalent: 

(i) n is a rest process; 

(ii) Orbit (n) c % o; 
(iii) Equil n t=n  o for  a l l te[O,  d~); 
(iv) n conserves potential energy. 

Proof. Obviously, (i) implies (ii), (iii), and (iv), while (iii) implies (iv). Thus to 
complete the proof it suffices to show that (ii) and (iv) each imply (i), or, by (La), 
that (ii) and (iv) each imply 

T(nt) =0 V te[0,  d.). (6.7) 

That (6.7) follows from (ii) is a consequence of (6.3). On the other hand, if (iv) 
holds, then, since T(no)= 0, (6.6) 2 implies T(nt)< 0 for all t e [0, d,), and this result 
with (L2) yields (6.7). []  

The next two results 2 are uniqueness theorems appropriate to the initial-value 
problem for processes starting from equilibrium. 

Theorem 6.2. Let  U have a global minimum at an equilibrium state a o. Then 
there is at most one process n ~  with initial-value a o. Moreover, re, i f  it exists, is a 
rest process. 

1 cf. GURTIN (1973C), eq. (3.7). 
2 Cf. GURTn~ (1973a), Thin. 9.2. 
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Proof.  Let z r e ~  have initial-value a o . By T h e o r e m  6.1, 

U (Equil zr,) < U (go); 
but  

U (Equil rfi) => U (ao), 

since U has a global  m i n i m u m  at a 0. Thus  rc conserves potential  energy, and we 
conclude f rom Propos i t ion  6.1 that  it is a rest process with value a o. Tha t  there is 
only one such rest process follows f rom the assumpt ion  that  each l r E ~  is maximal .  

[ ]  

Theorem 6.3. Assume that 270 is a Hausdor f f  space. Let  U have a local minimum 

at an equilibrium state ao. Then there is at most one process z rE~ with initial-value 
tro and with tv-~ Equil  lr t continuous. Moreover,  zt, i f  it exists,  is a rest process. 

Proof.  By hypothesis,  U has a m in imum at a o over  an open ne ighborhood  
f2 o o f a  o in S o. Let  z t e ~  start  f rom ao, let 

s = s u p { z :  n t = a  o V t e l 0 ,  z]},  (6.8) 

and assume that  s < d~. Then,  since t ~ Equil  n, is continuous,  Equil 7 L = ao, and 
there exists an he(s ,  d~) such that  Equil ~ztef2 o for all t e [ s ,  h). Since this condit ion 
also holds on [0, s], U(Equi l  ~zt)> U(ao) for all t e [0 ,  h), and we conclude from 
T h e o r e m  6.1 that  the initial segment rt[to,h) of it conserves potent ial  energy. It 
therefore follows f rom Propos i t ion  6.1 that  n [to,h) is a rest process, which clearly 
contradic ts  (6.8), since s < h ;  hence s=d,~ and r~ is a rest process. We have shown 
that  if ~ze~ starts  f rom ao,  then n is a rest process with value a o. Since r t e ~  is 
maximal ,  there is at  mos t  one such rest process in ~ .  [ ]  

7. Necessary  Conditions f o r  Stabili ty 

In this section we give condit ions which are necessary for the stability of a 
dynamica l  system (27, ~ ,  Equil) with L y a p u n o v  function V. 

To  avoid repeated  hypotheses  we assume, for the purpose  of the next theorem 
and its two ensuing corollaries,  that  

(~) the equi l ibr ium state space 270 is a Hausdor f f  space;  

(fl) a o is an equi l ibr ium state at which U is continuous.  

An equi l ibr ium state 2 0 is a t t racted to a o if there exists a process n e ~  start ing 
at 2 0 with 

Equil  n t - * a  o as t - * d ~ .  (7.1) 

In view of this definition, Theo rem 6.1 implies 

Theorem 7.1.1 Let  2 o be an equilibrium state and assume that 2 o is attracted to 
a o . Then 

U (~o) < U (20). 

Corol lary 7.1. Assume that each state in a neighborhood o f  a o in "Y'o is attracted 
to a o. Then U has a local minimum at a o . 

1 GURTIN(1973C),(4.1). Cf.GURTIN(1973a),Thm. 9.5and(1973c) for anelasticmaterial;CoLEMAN& 
DILL (1973), Thm. 6.4 for a material with fading memory. 
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We say that a o is locally asymptotically stable with respect to equilibrium 
orbits if there exist neighborhoods Qo, Ao of a o in Z o with [2 o c A  o such that 

(a) for each process 7~ ~ ,  7~ o S Qo implies EquilOrbit  (~)~ Ao; 

(b) each 4oeA o is attracted to ~o- 

Corollary 7.2.1 Let a o be locally asymptotically stable with respect to equi- 
librium orbits. Then U has a strict local minimum at a o. 

Proof. Choose 4o~Q o, 2o4:a o. Then 4 o is attracted to a o, and there exists a 
process n E ~  such that (7.1) holds. If ~ were a rest process, then n would have 
value 4o, so that Equil ~t = Equil 4 o = 4 o and hence Equil nt-+ 2o. Thus since Z o 
is a Hausdofff  space, and since 4 o 4: no, n cannot be a rest process. Consequently, 
as n o = 4 o e L o ,  we conclude from (L2) and (L3) that T(no)=0 and T(~+)>0 at 
some ze(0, d~); thus (6.6)2 implies that 

U (Equil ~,) < U (40). 

Next, by (a), Equil n+~Ao, and therefore (b) and Theorem 7.1 imply 

U (no) < U (Equil lr,). 

The last two inequalities yield U (no) < U (40), and the proof  is complete. []  

Remarks.  (1) Theorem 7.1 and its two corollaries remain valid when (7.1) is 
replaced by the weaker requirement that there exist an increasing sequence 
{tn} in [0, d~), with tn-+d~ as n-~oo, such that 

Equil ~tn-~ ao as n -+  ~ ; 

i.e., that a o belong to the o~-limit set of the process t ~ Equil n~ in Z o . 

(2) Theorem 7.1 and Corollary 7.1 remain valid when 27 o is not a Hausdorff  
space, provided (7.1) is replaced by the requirement that ao be a limit of Equil nt 
as t--~ d~. 

A mapping 
D: Z --, lR + 

is a dissipation function consistent with V if given any ~ e ~ the mapping t ~-~ D (nt) 
is integrable over every interval In, b ] c  [0, d~) and 

b 

V(na) -  V(nb) > ~ D (nt) dt.  (7.2) 
a 

If in the above definition (7.2) holds with > replaced by = ,  then D is a maximal  
dissipation function. Clearly, when D is maximal and each ~ z ~  has t~-~,D(~t) 
continuous, D is uniquely determined by V on the set of all states which are values 
of processes in ~ .  

Remark. It is not difficult to show that 

D (a) = 0 

1 This theorem generalizes Thin. 6.7 of COLEMAN & DILL (1973), whose result is applicable to 
materials with fading memory. 
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in each of the following two cases: 

(i) ~r is the value of a rest process in ~ ;  

(ii) Z is a Hausdo r f f  space, V and D are cont inuous  at a, and it t ~ tr as t---, oo 
for some r c ~  with d~= ~ .  

We assume for the remainder  of  this section that  

Z is a Hausdorff space. 

A state a is an o)-Iimit point of  a process rc E ~  if there exists an increasing sequence 
{t,} in [0, d~), with t .~d~,  such that  

n t , ~ a  as n ~ .  (7.3) 

The  set a~(n) of  all ~o-limit points  of  n is the o>limit set for n. 

Theorem 7.2. Let n ~  be a process with re (n)#0 .  Assume that V is continuous 
on o (tO, and that there exists a maximal dissipation function consistent with V. Then 

VI,~(~) is constant. (7.4) 

Proof.  Let  {t,} be an appropr ia te  sequence in the sense of (7.3). Then (7.2) 
(with < replaced by = )  implies that  

tn 

V(lro)- V(n,.)= S O(n,) dt. (7.5) 
0 

Since V is cont inuous  at a, the left-side of  (7.5) tends to V ( n o ) - V  (a) as n ~ ~ .  
Thus,  since D > 0, t F-~ D (nt) must  be integrable on (0, d,) and 

d~ 

V(a) = VOzo)- ~ D(x,) dt, 
0 

which yields (7.4). [ ]  

8. Sufficient Conditions for Stability 

The results of  the last section show that  for an equil ibrium state ~r 0 to be stable 
U mus t  necessarily have a m i n i m u m  at a 0 . We now show that  U a global  m i n i m u m  
or  U a s t rong local m i n i m u m  is sufficient to yield certain types of L y a p u n o v  
stability. 

Let (Z, ~ ,  Equil) be a dynamica l  system with L y a p u n o v  function V, and let D 
be a dissipat ion function consistent with V. 1 We call 

1(2, a ) =  IV(A)- V(~)l (8.1) 

the Lyaounov distance between the states 2 and #. No te  that, by (6.1) and (L2), in 
any  process n ~  the n u m b e r  T(n,) represents the Lyapunov  distance between ~t 
and its equi l ibr ium value Equil n r The  topo logy  on 2; generated by the pseudo-  
metr ic  I is called the Lyapnnov topology. Given ire2; and e > 0, we call 

F~(a) = {2~Z:  I(2, tr)<e} (8.2) 

1 The assumption that there exist a dissipation function D consistent with V involves no loss in 
generality; indeed, D(a)=-O is a dissipation function for any V 
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the/-ball of radius e. Also, when n e ~  is a process and a is a state, we write 

l(n, a )=sup  {/(re t, a): tEl-O, d~)}. 

Lemma 8.1. Let  a o be an equilibrium state, and suppose that U has a minimum 
at a o over f2oCX o. Let  n ~  have 

EquilOrbit (n) c g2 o . (8.3) 

Then t~--~ D(nt) is integrable on (0, d~) and 

a. 
l(rr, ao) , S D(x,) a t <  l(Tzo, ao). (8.4) 

0 

Proof. Since U has a minimum at a o over Oo, we conclude from (8.3) that 
U(ao)< U(Equil rQ. Thus (L2) , (6.2), (6.3), and (6.5) imply that 

V(~,) - V(ao) > 0; 
hence 

l(~,, ao)= v ( ~ , ) -  V(ao), (8.5) 

and upon subtracting V(ao) from both sides of (6.6)1 we are lead at once to the 
conclusion that l(n, ao)< l(no, ao). Next, since l(nt, ao )>0  , the relations (7.2) and 
(8.5) imply that 

t 

l(rco, ao)> l(rco, a o ) -  l(rrt, ao)> S D(x,) dz, 
0 

and, as D > 0, this clearly yields the desired conclusions. [] 

A set f2 ~ S is invariant if, given any process 7rE~, 

lro~f2 implies Orb i t0 r )~O.  

A state a is Lyapunov stable with respect to a topology J -  for S if given any ~ -  
neighborhood A of a there exists a ~---neighborhood Q of a such that 

noef2 implies Orb i t0 r )~A.  (8.6) 

A consequence of these definitions and Lemma 8.1 is 

Theorem 8.1. Let  U have a global minimum at an equilibrium state ~r o. Then 
any l-ball at a o is an invariant set, so that a o is Lyapunov stable with respect to the 
Lyapunov topology. 

Corollary 8.1. Let  U have a global minimum at an equilibrium state ao. Then 
given any e > 0  a process 7 r ~  will have 

d~ 

l(x, ao), ~D(rct) d t < e  (8.7) 
0 

as long as l(no, ao)<e. 

The inequality (8.7)2 is most important  when d~ = ~ ,  for then it takes the form 
oo 

D(nt) d t < e .  
0 
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The type of stability established in the above two results is quite weak. How- 
ever, except for the Lyapunov topology, no underlying topology is required, 
and no assumptions of continuity are made concerning V, D, Equil, or the processes 
in ~ .  Thus, in particular, these results should be applicable to processes containing 
shock waves. 

Our next step is to establish a stronger type of Lyapunov stability. With this 
in mind, we assume, for the remainder of this section, that 

(~) the equilibrium state S o is a topological space; 

(3) each g e ~  has t ~+Equil rct continuous. 

Given a subset f2 o of So, we call Equi1-1 f2 o the equilibrium tube generated 
by f2o; the topology for 2~ consisting of all equilibrium tubes generated by open 
sets in 2~ o is called the equilibrium topology on 2~. 

Theorem 8.2. Let  f2 o ~ ~,o be a potential well for  U relative to an equilibrium 
state tro. Then there exists an t o > 0 such that the intersection o f  the equilibrium 
tube Equi1-1 f2 o with any l-ball o f  radius <e o is an invariant set. 

Proof. Let f2 o be a potential well for U relative to tr o, and let 

e o = inf{ U(2o): 2 0 ~ t3f2o } - U(tro), (8.8) 

so that t o > 0. Let ~z be a process with 

Equilrco e f2o, l(Tro, ao)<to ,  (8.9) 
and let 

s = sup {z: Equilrrt~f2 o \/t~[0, z]}. (8.10) 
Assume that 

s<d~.  (8.11) 

Since t~+Equilrfi is continuous and g2 o is open (in 2~o) , (8.9)1 and (8.10) imply 
that s > 0  and Equil ~ s ~ 2  o. Thus, by (8.8), 

U(Equil lrs)- U(~o) >__ %. 

On the other hand, (L2), (6.3), (6.5), (6.6)1, (8.1), and (8.9)2 imply that 

U(Equil rfi)- U(ao)__< V(rct)- V(~ro)__< V0ro)-  V(cro)__< 10to, ~o) < eo 

and we have a contradiction. Thus (8.11) cannot b e  valid, so that s=d~ and 
EquilOrbit 0r) c g2o, or equivalently 

Orbit 0r) c Equil-  t g2o" (8.12) 

Further, since U has a minimum at ~r o over f2o, we conclude from Lemma 8.1 
that (8.4) must hold. Thus (8.9) implies (8.4) and (8.12), which clearly leads to the 
desired conclusion. []  

Corollary 8.2. Let  f2 o ~ S o be a potential well for  U relative to an equilibrium 
state tro. Then there exists an t o > 0  such that given any ~ ( 0 ,  ~o) a process r t ~  
will have 

d~ 

EquilOrbit(rc)c f2 o, l(n, ~o), ~ D(ztt)dt <~ 
0 
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provided 
Equilno st20, /(no, ao)<e.  

This corollary is essentially a rewording of Theorem 8.2 together with an 
application of Lemma 8.1. A slightly less trivial consequence of Theorem 8.2 is 

Corollary 8.3. Let U have a strong local minimum at an equilibrium state a o. 
Then a o is Lyapunov stable with respect to the combined Lyapunov and equilibrium 
topologies. 

Proof. Choose a neighborhood A of tro with respect to the combined Lyapunov 
and equilibrium topologies. By Proposition 2.1, A must contain a set of the form 
(see (2.2)) (Equil- 1Ao ) ca F~o(aO) , where A o is an open neighborhood of a o in 270. 
Since U has a strong local minimum at a o, a 0 must have an open neighborhood 
4o in 270 such that 4 o c A o and 4 o is a potential well for U relative to a o. By 
Theorem 8.2 there exists an ee(0, eo) such that I2=(Equil-l~o)caF~(tro) is an 
invariant set. Thus since f2cA,  (8.6) must hold for any n ~ .  [] 

V. Applications of the General Theory 

9. Elastic Materials 

Consider now the elastic body discussed in Section 5. Recall that states are 
triplets of the form (x, v, 0), while equilibrium states have the form (x, 0, 0e). When 
convenient we shall identify the equilibrium state space 27 o with the set 
AdmissConfig of all admissible configurations. In particular, for the potential 
energy in an equilibrium state (x, 0, 0e) we shall write U(x) rather than U(x, O, Oe). 
Also, (4.5)justifies our writing Ue(x ) in place of U~(x, v, 0), so that the domain 
of both U and U~ is here taken to be AdmissConfig. 

We make no general assumptions concerning the class :~ of processes other 
than those made in Sections 3-6. (Thus, in particular, ~ is a process class.) Given 
a process 7t = (x, v, 0)~ ~, we write 

F = V x ,  

and we denote by x(t), F(t), v(t), and 0(t), respectively, the fields x( . ,  t), F(. ,  t), 
v(-, t), and 0(-, t). By (5.10), rt starts from equilibrium provided 

v(0)=/~(0)=0, 0(0)=0~ on ~ .  

By (5.11) and Theorem 5.1, (Z, ~, Equil) is a dynamical system with V,, defined 
by (5.8), an associated Lyapunov function. Thus all of the results of Chapter IV 
are applicable here. In particular, (5.13) and Theorem 6.1 yield 

Theorem 9.1.1 Let ~=(x,  v, 0 ) ~  be a process starting from equilibrium. Then 

f ~ (r(t), Oe)dm + V e (X (t)) ~- ~ ~ (F(0), Oe)dm + U~ (x (0)). 

Theorem 9.1 asserts that the potential energy in the current configuration 
and at the environmental temperature 0e is not greater than the potential energy 
in the initial configuration. This result is interesting, especially since 0(X, t), for 
t > 0, is not required to coincide with 0~. 

I GURTIN (1973b), p. 25. 
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We say that t~ has a global isothermal minimum at (I, O) if 

(1, 0) =< ~ (F, 0) (9.1) 

for every F~Lin  +. We say that ~ has a local isothermal minimum at (1, 0) if for 
some ~ > 0 (9.1) holds for every F with 1 ]C-1]  < e (C = FrF), where e > 0 is inde- 
pendent of the material point X under consideration. (Recall our agreement to 
write ~(F, 0) in place of ~(F, 0, X).) These definitions imply 

Lemma 9.1. Let ~P: AdmissConfig ~ IR be defined by 

~'(x) = S ~,(e, Oe)dm. 

(i) I f  ~ has a global isothermal minimum at (1, 0e), then ~P has a global minimum 
at the undeformed configuration. 

(ii) I f  ~ has a local isothermal minimum at (1, 0e), then ~P has a local minimum 
at the undeformed configuration with respect to the topology J-(c~). 

Here ~J-(co~) is the topology on AdmissConfig generated by the pseudo- 
metric coo defined in (5.17) 2. It is clear that for a process ~=(x ,v ,  0) to have 
t ~-~Equil~ t continuous (with respect to Y(coo)) it suffices to have C continuous 
on ~ • [-0, d~), where C =  FxrVx is the right Cauchy-Green strain tensor in ~. 
Thus, since U = 7 j when U~=0 (see (5.13)), we have the following consequence of 
Lemma 9.1, Theorem 6.2, and Theorem 6.3: 

Theorem 9.2. 2 Assume that Ue=0. Let ~ have a local isothermal minimum at 
(1, 0e). Then there is at most one process n =(x, v, 0 ) ~  with C= Fx r Vx continuous 
and x(X, 0)=X, v(X, 0)=0,  0(X, 0)=0e V X e ~ .  

Moreover, this process, if it exists (in ~), is the rest process 

x(X, t) = x ,  v(X, t )=  0, 0(x ,  t) = 0e 

for all X e ~ and t~[0, d~). I f  ~ has a global isothermal minimum at (1, 0e), then the 
requirement that C be continuous may be omitted. 

Ue=0 corresponds to situations in which the conservative external loads 
vanish. Theorem 9.2 shows that, in such situations, when ~ has a local isothermal 
minimum at (1, 0e), the only possible process starting from the undeformed 
equilibrium state is the rest process. 

Assume now that a Hausdorff topology has been chosen for the set 
AdmissConfig, and let S o be endowed with the corresponding induced topology. 
Let x o, x I eAdmissConfig. We say that x 1 is attracted to x o if there exists a process 
n---(x, v, 0 ) e ~  starting from the equilibrium state (x 1, 0, 0e) such that 

x ( t ) ~ x  o as t----~cxD 

(the limit being in the topology chosen for AdmissConfig). Further, we say that x o 
is locally asymptotically stable if there exist neighborhoods t2 o, A o of x o- in 
AdmissConfig with t2 o c A o such that 

Recall that the principle of material frame-indifference requires that, for fixed 0, the value of 
is the same on any two F with equal right Cauchy-Green strain tensors C = FrF. 

2 Cf GURTIN (1973a), Thin. 9.5, (1973b), p. 26. 
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(a) for each process n = (x, v, 0) ~ starting from equilibrium, x(0)Ef2 o implies 
x ( t )EA  o for all tE[0,d~); 

(b) each xl eAo is attracted to x o. 

Note that in the above definitions nothing is said about the behavior of v (t) or 
O(t) as t---~ d~. 

Lemma 9.2. Let  x o be an admissible configuration. 

(i) An admissible configuration xl is attracted to x o if  and only if (xl ,  O, Oe) is 
attracted to (Xo, O, Oe) in the sense of  the definition containing (7.1). 

(ii) x o is locally asymptotically stable if  and only if (x o, O, Oe) is locally asymp- 
totically stable with respect to equilibrium orbits. 

This lemma, Theorem 7.1, Corollary 7.1, and Corollary 7.2 yield 

Theorem 9.3. Assume that the potential energy 

O ( x )  : ~ I~/(F, Oe) d m  --[- O e (x)  (9.2) 

is continuous at an admissible configuration x o . 

0) 1 I f  an admissible configuration x~ is attracted to x o, then 

U (xo) < U (x O. (9.3) 

(ii) I f  every configuration in a neighborhood of  x o in AdmissConfig is attracted 
to Xo, then U has a local minimum at x o. 

(iii) 2 I f  xo is locally asymptotically stable, then U has a strict local minimum at Xo. 

Note that in the case of dead loading (9.3) takes the form 

Sw(Fo)dm< ~ w ( F O d m -  ~ s .  uda ,  (9.4) 

where 
w ( F ) = ~ ( F ,  Oe), U = X l - - X  o. 

The classical criterion for the mechanical stability of a given configuration x o 
of an elastic body with stored energy function w is that (9.4) hold for every dis- 
placement u of ~ within a certain class. Theorem 9.3 shows that this classical 
criterion is, in a certain precise sense, necessary for dynamic stability, even under 
thermal influences, provided the stored energy is identified with the free-energy 
at the environmental temperature. 

By (3.7) and (3.8), the state function D defined by (3.6) 2 is a maximal dissipation 
function for V, while (3.1) and (3.4) imply that 0 e G, 0e G~, and -P~ are dissipation 
functions. Further, 0 e G is maximal when the environment is both conservative 
and thermally perfect. 

Let us agree to write y (~)=7. ,  for the value of the specific entropy production 
at time t in a process re; of course, Y(nt) is a field over ~ and, by (4.1)3, 

G(rQ= ~ ~(n,)dm. 

1 Cf GURT~N (1973a), Thm. 9.5, (1973b), p. 26. 
2 Cf. COLEMAN &DILL (1973), Thm. 6.7. 
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Since OeG is a dissipation function for V, Corollary 8.1, (8.1), (5.9), 5.12), and (5.13) 
yield the following result, in which it is not neccessary that AdmissConfig be 
endowed with a topology. 

Theorem 9.4. Assume that the potential energy (9.2) has a global minimum at an 
admissible configuration x o. Then given any e > 0  there exists a ~ >0 such that any 
process ~ =(x, v, O)E~ with 

~v2(O)dm<6, SK(O)[O(O)--Oe]2dm<6, 
~ (9.5) 

U(x(O))- U(xo) < a, 
satisfies 

Sv2(t)dm<e, ~x(t)[O(t)-Oe]2dm<e, 

U(x ( t ))-  U(xo) < e, ~ ~ 7 (rt~)dm dz < e 
O ~  

for all te[0,  d~), where x(t)= x(F(t), O(t)). 

Remark. For an elastic material 

1 
7(0") = ~ T O ( F , O , g ) ' g ,  

Assume, for the moment, that Fourier's Law 

~(F, 0, g)= - k ( F ,  O)g 

(9.6) 

g= VO. (9.7) 

holds, with k positive and bounded away from zero. Then there exists a constant 
C > 0 such that 

7(a)dm = ~ k(F, O) lVlnOI 2 dv > C II Vln0ll2=, 

and (9.6)4 implies that (for d~ = ~ )  

ct3 

C~ 11VlnO(t)l122dt<e. (9.8) 
0 

This type of inequality is the basis for proofs of asymptotic stability. Indeed, 

d VlnO(t)ll2 is uniformly bounded in t, then when (9.8) holds, and when ~ - I I  
If V ln O( t)llL2 ---~ 0 as t--~ oo. 

Corollary 9.1.1 Assume that Ue=O and let ~ have a global isothermal minimum 
at (1, Oe). Then given any e > 0 there exists a 6 > 0 such that any process rc = (x, v, O) ~ 
with 

S v2(0)dm<~, Sx(O)[O(O)-Oe]2dm<6 

[~ (F(0), 0e)-- ~ (1, 0e) ] dm < 6 

I Cf. GURTIN (1973a) ,  T h e o r e m  9.3. 
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satisfies 
~r2(t)dm<e, ~( t ) [O( t ) -O~]2dm<e,  

g~ g~ 

d~ 

I[~(F(t) 'Oe)-~(l 'O~)] dm<e'  I ~y(Tr~)dmdz<e 
O ~  

for all t~[0, d~). 

Assume now that the set AdmissConfig is endowed with a topology, and sup- 
pose that each n=(x ,  v, 0)E~ has t ~-~x(t) continuous. Then Corollary 8.2, in the 
present theory, reads 

Theorem 9.5. Let t2 o c AdmissConfig be a potential well for U relative to an 
admissible configuration x o. Then given any e > 0 there exists a 6 > 0 such that any 
process ~z=(x, r, 0 ) e #  which is consistent with (9.5) and has x(0)~[2 o satisfies (9.6) 
and has x(t)eQ 0 for all t~[0, d=). 

Further, when the topology on AdmissConfig is generated by a pseudo-metric 
d, then Theorem 9.5 and the definition of a strong local minimum imply 

Theorem 9.6.1 Let U have a strong local minimum at an admissible configuration 
x o. Then given any e > 0  there exists a 3 > 0  such that any process x=(x ,  v, 0 ) e ~  
which is consistent with (9.5) and has 

d(x(0), Xo) < 3 
satisfies (9.6) and has 

d(x(t), Xo)<e 
for all ts[0,  d~). 

Remark. It is important to note that in deriving the results of this section the 
only constitutive relations used were (5.2) and (5.5). For an elastic material the 
stress is given by a constitutive relation identical in nature to (5.2) and obeys a 
stress relation similar to (5.5) The fact that these relations were not needed is far 
from trivial. Indeed, (5.2) and (5.5) are satisfied by large classes of viscous materials; 2 
these include, of course, the classical linearly viscous fluid. Therefore the results of 
this section are valid, almost without change, for such materials. Of course, the 
corresponding specific entropy production y will not have the simple form (9.7), 
but will generally involve the strain rate F. For a linearly viscous fluid ? is quadratic 
in the spatial velocity gradient. When the viscosity is constant and the velocity 
zero on the boundary, the Poincar6 inequality can be used to derive, in conjunction 
with (9.8), an inequality of the form 

OD 

C1 ~ I/rl/~2dt <~ .  
0 

Remark. For an insulated boundary (4.1)5,6 and (4.4) imply that Q and J 
are identically zero. We therefore conclude from (3.5)2 that Ge=O and (3.4)2, 
(3.5)2 are satisfied trivially for any choice of  environmental temperature 0~. There- 

t Cf .  KOITER (1969, 1971); GURTIN (1973a), Thin. 9.6. KOITER used an unnecessarily stringent 
definition of a strong local minimum. 

2 Cf. COLEMAN & NOLL (1963); COLEMAN • MIZEL (1964). 
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fore, for this type of environment there is a one-parameter family of equilibrium 
maps, one for each choice of 0~, and for each such choice all of our results are valid. 

I0. Materials with Memory 

For a material with memory the state involves not only the present configura- 
tion and temperature, but also the past histories of these quantities. With this in 
mind we define 

ConfigHist = the set of all maps x*:-(0, oe)--, Config, 

TempHist = the set of all maps 0* : (0, oe) --, Temp. 

Each x*eConfigHist represents a possible configuration history for N; x*(s), 
s > 0, gives the configuration occupied by N, s time units into the past. A similar 
interpretation applies to each 0*eTempHist. Let x eConfig and 0eTemp. Then 
x~eConfigHist and 0CeTempHist are the constant histories defined by 

xC(s)= x, O~(s)=O Vs>0 .  

A body with memory is a continuous body M, consistent with the hypotheses 
of Sections 3 and 4, whose state space, local state functions, equilibrium map, 
and process class satisfy (M1)-(Ms) listed below. 

(M 0 The state space S is a subset of the set of all ordered arrays of the form 

a=(x,  v, O, x*, 0"), (10.1) 
where 

x~Config 

rEVel 
O~Temp 
x* ~ ConfigHist 
O* ~ TempHist 

is the current configuration, 

is the current velocity, 
is the current temperature, 

is the past history of the configuration, 
is the past history of the temperature. 

We assume that (x, v, Oe, X*, 0"), (X, ~, O, X c, OC), and 

~0 =(X, O, Oe, X c, OCe) (10.2) 

belong to Z whenever (10.1) belongs to S. 

(M2) The local response functions ~, ~, and 0 are given by (5.1), (10.1). 
(M3) The equilibrium function is given by 

Equil (x, v, 0, x*, 0")= (x, 0, 0e, x c, 0~). (10.3) 

Thus an equilibrium state is one in which the current configuration is arbitrary, the 
current velocity vanishes, and the current temperature is the environmental 
temperature 0e, and in which the configuration and temperature have, at all past 
times, been equal to their current values x and 0 e. In view of (10.3), the equilibrium 
state space Z o can be identified, in a natural manner, with the set AdmissConfig 
of all admissible configurations. When we wish to make this identification explicit, 
we will refer to (x, O, Oe, X c, OCe) as the equilibrium state corresponding to x. 
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(M4) The local response functions e and r/are given by constitutive equations 
of the form 

e~(X)= ~(L(X), X), 

,7,(x) = rT (L (x), x), 
where 

f ,  = (F, O, F*, 0"), F = Vx, F* = Vx*. 

We assume that for each admissible choice of X, F* (X), and O* (X), g and O, con- 
sidered as functions ofF(X) and O(X), are smooth maps with domain Lin + x ~ +  + 
The free-energy ~ is defined by 

~ (f.) = ~ ( f . ) -  0 0 (f~), (10.4) 

where, for convenience, we have suppressed the argument X. We define the 
equilibrium free-energy ~ on Lin § • IR + + • ~ by 

t~(F, 0)= ~(F, 0, F c, 0~), (10.5) 

where, for F e L i n  + and 0~IR + +, F ~ and 0 ~ are the histories defined by F~(s)=F 
and 0 ~ (s)= 0 for all s > 0. Thus q~ (F, 0) is the value of the free-energy when the 
deformation gradient and temperature have, at all past times, been equal to their 
current values F and 0. We assume that a 

0 = -- g2 @' 02 ~2 @ < 0,  (10.6) 2 

and that, for each aEZ, 

(Ms) Each process 

q~(F, O)<(,(F, O, F*, 0"). (10.7) 

t -  ~, =(x(t), v(t), o(t), x', 09 (10.8) 

in ~ (where x(t)~Config, v(t)~Vel, 0(t)~Temp, xt~ConfigHist, 0'~TempHist) is 
maximal and satisfies the compatibility condition 

_ =~,O(t-s), O < s < t  ~'x (t - s), 0 < s -< t 0 t (s) (10.9) 
x' (s )=(x~ s > t  (O~ s > t  

for all tE [0, d~). Of course, (4.3) requires that 

v=:~. (10.10) 

Note that, by (10.3), n starts from equilibrium if and only if 

v(O)= O, 0(0)=0 e , x~ c, 0~ (10.11) 

Of future use is the following obvious generalization of Ericksen's Lemma. 3 

1 COLEMAN (1964) (eqs. (7.8b), (8.21)) has shown that for a material with fading memory (10.6)1 
and (10.7) are consequences of the second law of thermodynamics. The assumption (10.6)2 is simply 
the requirement that the instantaneous specific heat ~2 g be strictly positive. 

2 Here, of course, 82~ is the derivative of ~(F, 0, F*, 0", X) with respect to 0 holding the remaining 
arguments fixed. 

3 COLEMAN & DILL (1973), Thm. 4.3. 
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Lemma 10.1. There exists a function f,~-~ sc(f,) such that 

8(fa)--Oe~-l(fa)=~l(F, Oe, F*,O*)-l--lc(.fa)[O-Oe] 2 , K(fa) > 0 (10.12) 

for every a ~ Z. 

The proof of this lemma is given in the Appendix. 
By (4.2) and (10.12), 

V(a)= Ue(X)+ ~ [~(F, 0~, F*, 0")+ s~(f,)(0-0e) 2 +�89 v 23 dm, 

where we have used (4.5) to justify writing Ue(x) in place of U, (a). In the equilibrium 
state (10.2), f~o=(F, 0~, F c, 0~); we therefore conclude from (6.1), (6.4), and (10.5) 
that 

U(x) = U~(x)+ ~ ~(F, 0~) am, 

(10.13) 
TOy) = ~ E(b (F, 0 e, F*, 0 " ) -  ~ (F, 0~) + ~ ( f , ) ( 0 -  Oe) 2 + �89 v23 dm, 

where, for convenience, we have considered U as a function on AdmissConfig 
rather than as a function on 270. It is important to note that the potential energy U 
coincides with the potential energy of an elastic body provided we interpret the 
stored energy as the equilibrium free-energy ~. 

Proposition 10.1. (27, ~, Equil) is a dynamical system with V as an associated 
L yapunov function. 

Proof. By definition ~ is a process class, while (M3) insures that Equil is idem- 
potent. Thus (27, ~, Equil) is a dynamical system. By Theorem 3.1, V satisfies (L0, 
while (10.7), (10.12)2, and (10.13)2 yield (L2). To establish (L3) let i r ~  start from 
equilibrium and assume that T(g,)=0 for all t E [0, d~). Then (10.7), (10.12)2, a n d  
(10.13)2 imply that v(t)=0 and O(t)=O~ for all t~[0, d,), so that x(t)=x(O) for all 
t~[0,d~). Since ~ starts from equilibrium, (10.11) holds; hence (10.9) yields the 
conclusion that x' = x (0) c and 0 7 = O~ for all t ~ [0, d~). Thus ~ is a rest process. [] 

In view of Proposition 10.1 all of the results established in Chapter IV for 
general dynamical systems may be applied to materials with memory. In fact all 
of the results established in the previous section, for elastic materials, are valid 
here almost without change. We now list these results without proof. 

Theorem 10.1.1 For a process in ~ starting from equilibrium 

(t), oo)am+ (x (t)) __< 0 )am+ VAx(O)). 

Theorem 10.2. Assume that U e = O. Let ~ have a local isothermal minimum at 
(1, 0e). Then there is at most one process in ~ with C = Vx T Vx continuous, 

and x (X, O) = X, v (X, O) = O, 0 (X, O) = O~ V X ~ 

x~ O~ V X ~ ,  s>O 

1 Cf GURTIN (1973C), p. 96. 
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Moreover, this process, i f  it exists (in #~), is the rest process with 

x(X, t) = x ,  v(x ,  t)-- 0, 0 (x ,  t) = 0e 

for all X e ~  and te[-0, d~). I f  ~ has a global isothermal minimum at (1, 0e), then the 
requirement that C be continuous may be omitted. 

Assume now that a Hausdorff topology has been chosen for the set Admiss- 
Config. Let Xo, x t e AdmissConfig. We say that xt is attracted to x o if there exists a 
process in # starting from the equilibrium state corresponding to x 1 such that 

x( t ) -~Xo as t - ~  

(the limit being in the topology chosen for AdmissConfig). Further, we say that 
x o is locally asymptotically stable if there exist neighborhoods ~o, Ao of x o in 
AdmissConfig with ~2 o c A  o such that 

(a) for each process in # starting from equilibrium, x(0)e~2 o implies x ( t ) eA  o 
for all re[0, d~): 

(b) each x 1EA o is attracted to x o. 

Theorem 10.3. Assume that the potential energy 

U(x)-- ~ ~(F,  Oe) dm+ Ue(X ) (10.14) 

is continuous at an admissible configuration x o . 

0) 1 I f  an admissible configuration x 1 is attracted to Xo, then 

U (xo) <= U (xO. 

(ii) 2 I f  every configuration in a neighborhood of x o in AdmissConfig is attracted 
to x o, then U has a local minimum at x o. 

(iii) a I f  x o is locally asymptotically stable, then U has a strict local minimum 

a t  X o . 

Theorem 10.3 shows that the minimum energy criterion is, in a certain precise 
sense, necessary for the dynamic stability of a body with memory, provided the 
stored energy is identified with the equilibrium free-energy at the environmental 
temperature. 

The next result does not require a topology for the set AdmissConfig. 

Theorem 10.4. 4 Assume that the potential energy (10.13)1 has a global minimum 
at an admissible configuration x o. Then given any 5>0 there exists a b > 0  such that 
any process in # with 

v2(0) d in<3,  S ~(0)[0(0)- 0~] 2 d m < 3 ,  

f [~ (F (0), 0~, F ~ 0 ~ - ~ (F (0), 0e)] dm< 3, (10.15) 

U(x(O))- U(xo) < 3, 

' Cf. COLEMAN & DILL (1973), Thm.  6.4. 
2 Cf. COLEMAN & DILL (1973), Thm.  6.5. 
3 Cf. COLEMAN & DILL (1973), Thm.  6.7. 
* A related theorem is Thm. 6.2 of COLEMAN & DILL (1973). 



92 M.E. GURTIN 

satisfies 

v2(t)dm<e, ~ ~c(t)[O(t)-O~] 2 dm<e,  

I [q~ (F (t), 0~, V', 0 ' ) -  t~(F (t), 0~)] dm < e, (10.16) 

d= 

U(x ( t ) ) -U(xo )<e ,  ~ ~Y(TL)dmdz<e 
0 

for all t~ [0, d~), where ~(t)= ~.(f~). 

Corollary 10.1. Assume that U~ = 0 and let ~ have a global isothermal minimum 
at (1, Oe). Then given any e > 0 there exists a 6 > 0 such that any process in ~ with 

v2(O)dm<6, S ~c(0) [0(0)-  0e] 2 dm<6 

I e o, 0e)] dm<a 

satisfies 

Sv2( t )dm<e,  S~(t)[O(t)-Oe]2dm<e, 
JO 

~[~(F(t),Oe,V',O')-~/(1, O~)]dm<e, I I7 (~ )  d m d z < e  
BO 0 

for all t~[0, dO. 

Assume now that the set AdmissConfig is endowed with a topology, and sup- 
pose that each process in ~ has tF-+ x(t) continuous. 

Theorem 10.5. Let fa o c AdmissConfig be a potential well for U relative to an 
admissible configuration x o . Then given any e > 0 there exists a 6 > 0 such that any 
process in ~ which is consistent with (10.15) and has x(0)E~ o satisfies (10.16) and 
has x( t )eQ o for all te l0,  d~). 

Further, when the topology on AdmissConfig is generated by a pseudo-metric 
d, we have 

Theorem 10.6.1 Let U have a strong local minimum at an admissible configuration 
x o. Then given any e > 0  there exists a 8 >0  such that any process in ~ which is 
consistent with (10.15) and has 

satisfies (10.16) and has 

for all t~[0, d~). 

d(x(O), Xo)< a 

d(x(t), Xo) < 

11. Materials Described by Internal State Variables 

For bodies of this type the internal state is described by an internal state 
vector ~t=(~l,ct 2, ..., g,)elR", whose value may vary from point to point. This 

I Cf. COLEMAN • DILL (1973), Thm. 6.3. 
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vector enters all of the underlying constitutive equations of the material, and its 
evolution with time is governed by a constitutive equation of the form 

~i=h(F, O,~t), (11.1) 

where F is the deformation gradient. The equilibrium points of (11.1) are those for 
which 

h(F, 0, a0=0. (11.2) 

We assume here that 1 for each F and 0 there is a unique state vector 

0t =&(F, 0) 

such that (11.2) holds. These remarks should motivate the general theory presented 
below. 

A body described by internal state variables is a continuous body ~ consistent 
with the hypotheses of Sections 3 and 4 and the hypotheses ($1)--($5) below. 

($1) The state space S is a subset of the set of all ordered arrays of the form 

a=(x, v, O, ~t), (11.3) 

where xeConfig, reVel, 0eTemp, and atePC(~, 9) with ~ an open subset of IR". 

($2) The local response function i ,  ~, and 0 are given by (5.1), (11.3). 

($3) The equilibrium function is defined by 

Equil(x, v, 0, e)=(x,  0, 0e, ~t0), 
(11.4) 

�9 o(X)=~(F(X), 0 e, X), F= Vx, 

where &: Lin + x IR + + x ~ ~ 9 .  We assume, of course, that Equit has values in 2;. 

(S,) The local response functions e and q are given by constitutive equations 
of the form 

~. (x)  = ~(F(X), O(X), ~(X), X), 
(11.5) 

. (x) = ;7 (F (x), 0 (x), ~ (x), x )  

with ~ and ~/smooth functions on Lin + x IR + § x ~ x 8 .  We define the free-energy 
and the equilibrium free-energy ~b by 

(e, 0, ~) = ~ (F, 0, ~) -  0~ (F, 0, ~), 
(11.6) 

(e, o)= ~(V, O, ~(e, 0)), 

and we assume that 2 

and that 3 
~/= --02~, ~2~32 ~ <0 ,  (11.7) 

$(F, O)<=~(F, O, ~) (11.8) 

1 Cf. COLEMAN t~ GURTIN (1967), Eq. (6.17). 
2 Equation (11.7)1 is a consequence of the second law of thermodynamics (cf. COLEMAN • GURTIN 

(1967), Eq. (5.16)); (11.7)2 is the assumption that the instantaneous specific heat be strictly positive. 
3 Cf COLEMAN & GURTIN (1967), p. 607, where it is shown that (11.8) follows whenever each 

equilibrium point (F, 0, &(F, 0)) of the evolution equation (11.1) is, in a precise sense, asymptotically 
stable in the large at constant strain and temperature. 
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for all F e L i n  +, 0elR + +, and ~te~. 
($5) Each process 7r =(x, v, 0, ot)E:~ is maximal. Note that, by (4.3), 

v=J:,  

and that 7t starts from equilibrium if and only if 

1~(0) = O, 0 (0 )=  0e, ~(0)=~(17X(0), 0e). 

Lemma 11.1. There exists a function K: Lin + • IR + + • ~ • ~ --~ ~( such that 

~(F,O, at)-Oe~l(F,O,~t)=~(F,O,~t)+x(F,O,~)(O-O~) 2 , x(F,O, oO>O (11.10) 

for all F~Lin +, 0 ~ R  + +, and ~ .  

The proof of this lemma is contained in the Appendix. 

By (4.2) and (11.10)1, 

g(•) = Ue(X ) -.1.- ~ ['~ (F, 0e, ~)-~'- K(F, O, ~ ) ( 0 -  0e) 2 -~'-�89 V 2] dm, 

and therefore (6.1), (6.4), (11.4), (11.5), and (11.6)2 yield 

V ( x ) :  Ue(x)"[- ~ I~(e, Oe) din, 
gO 

T(a)= I [~(F, 0e, a ) -  t~(F, 0e)+ to(F, 0, ~)(0-  0e) 2 +�89 I)2"] dm, 

where, as before, we have considered U and U~ as functions with AdmissConfig, 
rather than Z o, as domain. Again we note that the potential energy U coincides 
with the potential energy of an elastic body provided we interpret the. stored energy 
as the equilibrium free-energy ~. 

Proposition 11.1. (Z,~,Equil)  is a dynamical system with V an associated 
L yapunov function. 

We omit the proof, which is almost identical to that of Proposition 10.1. 
In view of this proposition, all of the results established in Chapter IV for 

general dynamical systems may be applied to bodies described by internal state 
variables. These results are completely analogous to those stated in Section 9 for 
elastic bodies and in Section 10 for bodies with fading memory and therefore will 
not be stated explicitly here. 

Appendix 

We here prove Ericksen's Lemma (5.7) as well as its two generalizations (10.12) 
and (11.2). To prove (5.7) we expand the free-energy (5.4) using Taylor's formula 
with remainder: 

~l(e, Oe) : ~(F, O) + ~2 ~(F, 0)(0 e -- O) 2t'1 ~2 ~2 ~ ( e ,  0 , ) (0  e -- 0) 2 , 
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whe re  0 .  = 0 .  (F, 0) lies b e t w e e n  0e a n d  0. There fore ,  f rom the  de f in i t ion  

0)= -�89 0,), 
(5.4), (5.5), a n d  (5.6) yie ld  (5.7). 

In  the  a b o v e  p r o o f  we used  o n l y  the  p rope r t i e s  of  the  m a p  0~--~ ~ ( F ,  0). F o r  a 
m a t e r i a l  wi th  m e m o r y  we a p p l y  T a y l o r ' s  f o r m u l a  to the  m a p  0~-> ~ ( F ,  0, F* ,  0") 
in  exact ly  the  s a m e  m a n n e r  a n d  use (10.4), (10.6). 

F ina l ly ,  for a m a t e r i a l  descr ibed  by  i n t e r n a l  s tate  va r i ab les  we w o r k  wi th  the  
m a p  0~-~ ~ (F, 0, 0t) a n d  use  (11.6)1, (11.7). 
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