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Abstract 

An existence theorem is proved for homoenergetic affine flows described by 
the Boltzmann equation. The result complements the analysis of TRUESDELL 
and of GALKIN on the moment equations for a gas of Maxwellian molecules. 
Existence of the distribution function is established here for a large class of 
molecular models (hard sphere and angular cut-off interactions). Some of the 
data lead to an implosion and infinite density in a finite time, in agreement with 
the physical picture of the associated flows; for the remaining set of data, global 
existence is shown to hold. 

1. Introduction 

At about the same time (1956), C. TRUESDELL [1] and V. S. GALKIN [2] in- 
dependently investigated the steady homoenergetic flows of a gas of Maxwellian 
molecules according to the infinite system of moments associated with the Boltz- 
mann equation. Later GALKIN [3-5] extended his analysis to some typical un- 
steady homogenergetic affine flows. The book by TRUESDELL & MUNCASTER 
[6] gives a unified discussion of all these works, and provides further calculations 
linking these flows to more current research in the kinetic theory. 

While these analyses have the great advantage of leading to explicit solutions, 
which lend themselves to a detailed discussion of their properties, they suffer 
from two drawbacks: 
1) They are restricted to Maxwellian molecules. 
2) They provide solutions of the system of equations for moments, but no proof 

is given that a corresponding solution of the Boltzmann equation itself 
exists. 

The aim of this paper is to complement the above-mentioned analyses by prov- 
ing an existence theorem for the Boltzmann equation for a large class of molecular 
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models (including Maxwellian molecules with cutoff), when the initial data are 
compatible with a homoenergetic affine flow. Some of the data lead to an implos- 
ion and infinite density in a finite time, in agreement with the physical picture 
of the associated flows; for the remaining set of data, global existence will be 
shown to hold. In connection with these solutions, it should be noted that NI- 
KOL'SKII [7, 8] proved a general transformation which, for gases of inverse k th- 
power molecules (k ~ 7/3) or hard spheres, generates a solution for dilatations 
directly from any given spatially homogeneous solution. If  applied to KROOK 
& Wu'S solution [9, 10] this transformation produces a solution independently 
found by MUYCASTER [11]. The spatial dependence of the NIKOL'SKII solution 
[7] is a particular case of the one to be discussed here. 

2. Homoenergetic afline flows 

In this section we recall the basic ideas about homoenergetic affine flows. 
The defining properties are the following: 
a) The body force (per unit mass) X acting on the molecules is constant: 

X = const. (2.1) 

b) The density Q, the internal energy per unit mass e, the stress tensor p and the 
heat flux q may be functions of time but not of the space coordinates. 
c) The bulk velocity v is an affine function of position x: 

v = ~ ( t )  x q-vo( t  ). (2.2) 

This definition holds for a general material; for a gas described by the kinetic 
theory, a natural extension of property b) is immediate: 
b') The moments formed with the peculiar velocity 

c : ~ - - v  (2.3) 

may be functions of time but do not depend upon space coordinates. Here 
is the molecular velocity with respect to an inertial frame. 

The condition b') holds for the solutions obtained by TRUESDELL [1] and 
GALKIN [2-5]. For analyses relating directly to the distribution function f ,  this 
condition is transformed into 
b") The variable x appears in f only through v, given by Eq. (2.2), i.e.: 

f = f (c ,  t ) .  (2.4) 

An analysis of the balance equations based on a), b) and c) immediately leads 
to the following restrictions on E and Vo: 

~ §  2 = 0 ,  

bo § ~Vo = X. 
(2.5) 
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The general solution of this system is: 

~(t) = [3 + t~(0)] -1 R(0), 
(2.6) 

Vo(t) = [~ + tR(0)] -~ [Vo(0) -q- tX + �89 t2R(0) X], 

where ~ is the 3 • 3 identity matrix. This solution exists globally for t > 0 if the 
eigenvalues of R(0) are nonnegative; otherwise the solution ceases to exist for 
t = t 0, where - - to  I is the largest, in absolute value, of the negative eigenvalues 
of ~(0). 

In particular, if 

then [ 3  + t$(O)] -1 = ~ - -  t~'(O) 
v is then steady if and only if 

[R(0)] a = 0, (2.7) 

and therefore R(t) is independent of time, 

R ( 0 ) X = 0 ,  (2.8) 

and if vo(O) is chosen in such a way that 

~(0) Vo(0) ----- X. (2.9) 

In particular, this is always possible if X = 0. 
Eq. (2.7) is satisfied if and only if a coordinate system exists for which the 

matrix representation of ~(0) is given by (000) 
((K,~))= K 0 0 . (2.10) 

0 0 0 

For a simple proof of this, see the Appendix. 
Eqs. (2.5) are certainly necessary for the existence of a solution satisfying 

conditions a), b"), c). They are derived [6] under the assumptions a), b), c), and, 
of course, b') implies b). 

In order to show that Eqs. (2.5) are also sufficient, we consider the Boltzmann 
equation 

i" + x . -~=Q( f , f ) ,  (2.11) 

where Q(f , f)  is the collision operator [12, 13]. We choose c in place of ~ as an 
independent variable and use the same letterfforf(x, ~, t) andf(x,  c, t), although, 
of course, they are different functions of their arguments. Then we have to make the 
following replacements in Eq. (2.11): 

Of af  Of ~x Of.  
8-7 ~ 8 -7 -  8-7" - T~ ~~ 

a f  ~ 0 f  
0--~ - 8--c-" ~' '  (2.12) 

~ ~c" 
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Eq. (2.11) then becomes: 

~f of 
st~ oc~ (~  q- ~2) x - - ~  �9 (i) o -}- ~ v  o - x )  - -~c �9 ~tc = O ( f , f ) ,  (2.13) 

where Q(f,J)  is now expressed in terms of c rather than of g. 
In order to obtain a solution independent of x, as required by Eq. (2.4), the 

first equation of system (2.5) must be satisfied. If the second is also satisfied, 
then Eq. (2.13) becomes: 

of  of  
8--7 - 8-7" ~c  = Q(f, f ) ,  (2.14) 

and the space variable no longer appears explicitly. Note that the second equation 
of system (2.5) is also necessary for a solution satisfying Eq. (2.4) to exist, because 
if we multiply Eq. (2.13) by c and integrate, we obtain exactly Eq. (2.5), provided 
one recalls that, by definition, 

f cfdc = O. (2.15) 

Thus the existence of homoenergetic affine flows is reduced to proving an 
existence theorem for Eq. (2.14). We note that the latter can be cast into integral 
form provided we determine the semigroup corresponding to collisionless flow. 

To this end we consider the ordinary differential equation: 

dc 
- -  E c ,  c (O)  = Co ,  (2.16) 

dt 

which can easily be solved if the expression of E appearing in Eq. (2.6) is used. 
We obtain 

Hence, if we let 

we obtain 

c = [,~ q- t~(0)] -1 c o . (2.17) 

f~ (c ,  t)  -----f([~ + t~(0)] -1 c, t) ,  (2.18) 

0f ~ Of Of ~ = [Q(f,f)]~ (2.19) 
S t -  -~ 0c 

Integration with respect to t yields the integral form 

t 

f~ (c ,  t)  = f~ (c ,  O) + f [Q(f,f)]l  (c, s) ds. (2.20) 
0 

Other integral forms are possible when Q ( f , f )  can be split into two separate 
contributions (gain and loss terms), as is the case for hard sphere molecules and 
cut-off interactions. 
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3. A priori estimates of mass and energy densities 

In order to obtain an existence theorem, we need apriori estimates on the mass 
and energy densities, i.e. on the moments 

= lYr i c ,  2 E =  f cZfdc = T r p  (3.1) 

where Tr denotes the trace of a tensor. Eq. (2.14) yields the following two equa- 
tions: 

d~ + e Tr ~ = 0, (3.2) 
dt 

dE 
d-7 + Tr ( ~ )  + E Tr fl? = 0. (3.3) 

Eq. (3.2) immediately yields: 

t ] 
~(t) = ~(0) exp -- Tr ~t'(s) ds , (3.4) 

and since ~'(s) is explicitly known, the density is determined. Henceforth, in order 
to avoid trivialities, ~(0) will be assumed to be different from zero. 

Next let k denote the largest, in absolute value, of the elements of the matrix ~. 
Then, if we use the inequality 

lpul < �89 (p. + p,) (3.5) 
that applies to the stress tensor, Eq. (3.3) gives 

dE 
- -  < 6kE --  E Tr ~ ,  (3.6) 
d t =  

and 

/ J  
E(t)  <= E ( 0 ) e x p / j  [6k(s) - - T r  ~(s)] ds I . (3.7) 

We remark that ]Tr ~l and k are bounded for t ~ T<~ to, where - - to  1, is the 
largest among the negative eigenvalues of ~(0). If  there are no negative eigenvalues, 
both k and ]Tr ~1 are bounded for all positive t. 

It is also important to note that the solution we find must satisfy Eq. (2.15). 
It is easy to see, however, that, if satisfied at t = 0, Eq. (2.15) holds at any time 
provided f satisfies Eq. (2.14). In fact, if 

j =  f e fdc ,  

Eq. (2.14) yields 

and this linear equation has j ----- 0 
value. 

(3.8) 

d j  + J Tr ~ + ~ j  ----- 0, (3.9) 
dt 

as the unique solution taking 0 as an initial 
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4. The existence theorem 

We prove the existence of a solution for cut-off collision operators in two 
steps. In the first we consider a collision term 

Q(f , f )  -- f f f  B(o, lc - c , D ( f ' f ,  - f f , ) d c ,  dOde, (4.1) 

where the kernel B(O, [c -- c ,  [) is bounded: 

B(O, ]c -- c ,  D ~ a/~2 (a -- const.). (4.2) 

In this case we establish existence and give a proof of the H-theorem. Un- 
fortunately general molecules with a cut-off do not satisfy Eq. (4.2), but we show 
in step two how the general case can be handled as a limit of a series of problems 
in which Eq. (4.2) is valid. 

We begin by noting that 

J( f , f )  -- Q( f , f )  + af  f f .  dc. (4.3) 

is a positive functional of  the distribution funct ionfand increases whenfincreases. 
If  q~(c), the initial value of f ,  is in L 1, let us consider the following iteration scheme, 
where r is given by Eq. (3.4): 

-~f~+,  + a~(t)f~+, = [JOen,f.)] ~, fn+,(c, O) = 4'(c), n ~ O  

fo(c, t) = 0. (4.4) 

Here t runs from 0 to T. If r exists for any positive t, then T is arbitrary. 
Ifg(t)  is finite only for t < to, then Tis any positive number less than to. We find 
that {f,} is a monotone increasing sequence whose norm in L 1 is bounded by r 
hence it tends to an L ~ function f(c,  t). We can now take the limits in Eqs. (4.4) 
n--+ oo. To this end we consider the explicit formula giving f ,+ l  in terms of fn  
and ~, which has the advantage of containing a smooth monotone operator. 
Hence Eq. (4.4a) with f in place o f f ,  and fn+t holds. As a consequence, f will 
have a density ~(t) such that 

d6 
d-7 § a~ Tr  St = ab[~ --  Q(t)], 

~(0) = e(0) .  (4.5) 

The unique solution of this initial value problem is 

Hence f will satisfy 

~ ( t )  = ~ ( t ) .  (4.6) 

at [Q(f'f)]*' 

f (c ,  o) = ~(c). 
(4.7) 
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Hence an L I solution exists. This solution is the unique solution of the initial 
value problem (4.7); it is also unique among the solutions of the Boltzmann equa- 
tion taking the same initial values and having bounded density in 0 --< t ~ T. 

If  we assume that the initial data have a finite second moment E(O), then the 
inequality for E(t)  discussed in the previous section gives: 

E(t)  <= A r  = E(O) exp [6k(s) -- Tr ~(s)] ds , 0 ~ t ~ T. (4.8) 

We remark that the constant A x depends only on the initial values (through 
R(t) and E(0)) and T. 

We can now prove a rigorous H-theorem for Eq. (4.7), under the assumption 
that the initial data have a finite H-functional, H(0), where 

H(t)  = f f l o g  f dc. (4.9) 

The form of the H-theorem for Eq. (4.7) follows formally from a simple calcula- 
tion. By the identity 

t 
.~ TrS:~(s)ds 

Det [~ + t~(0)] = e ~ ~ D(t) (4.10) 

we have 

and hence 

d 
-d-7 In(t) H(t)] = f (Q(f , f))~ l o g f  ~ dc 

= O(t)  f Q ( f , f )  l o g f d c  ~ O, (4.1 l)  

H(t)  ~ H(O)/D(t), (4.12) 

In order to obtain this inequality rigorously, we use the method of ARKERYI) 
[14, 6]. One can write the Boltzmann equation in the form 

8"---i- q- ag(t) f~  = [J(f ' f )]~'  (4.13) 

where for convenience we take a ~ ( t ) ~  1 (this can be done by fixing the time 
interval and adjusting a in Eqs. (4.3) and (4.13)). We then define truncated initial 
data and collision terms by setting 

J~(~,f) = min ( J ( f , f ) ,  p), 

min @(c) 1 : \ 4,.,~(c) = + n  e -  , P ) .  

We also replace ~ by ~,, where 

9"f3/2 [ t ] 
exp -- f TrY(s) ds . era(t) = e ( t )  + m 0 

(4.14) 

(4.15) 

(4.16) 
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We can then approximate the solution to (4.13) by solutions of  

+ aer (t) f m,p = 

fn,m,p(0) ~ ~,p.  (4.17) 

The solution of the Boltzmann equation (4.1 3)with the initial value ~n oo is precisely 
fn . . . . .  In fact ~ . . . . .  is ~ c )  -k e-C:/n and ~,~,o~(0) : ~(0) -k :r312in. The evo- 
lution equation for the density, Eq. (3.2) immediately gives O~,~,~(t)= 0n(t). 

It  is easy to see [14] that 

= ' = ' n '  ~ ( 4 . 1 8 )  f~n$,m,p > fng,,m,,p, p ~ p , m > m , = n. 

Moreover,  since ao ~= 1, there are constants er, Cr, and Kr  such that e r and C r 
are independent of  p ~ 1 and for finite m, n, and p 

e r exp ( - -C rc  2) ~ f ~ . p ( c ,  t) ~ K r  ~ p .  (4.19) 

Then for finite n and p we easily have f~m.p Iogf~m,p E L t. Finally we proceed 
exactly as in [14, Theorem 2.1] to prove that 

H ~ : f f ~  l o g f  ~ dc : n ( t )  D(t )  (4.20) 

is a nonincreasing function of  t for f---- fn.m.p" In the last step of  Eq. (4.20), as 
well as in Eq. (4.11), we have used the fact that if we let 

c ~ : [~ -F- t~(0)] -~ c, (4.21) 

then the Jacobian in this change of variables f rom c to c ~ is D(t).  It  is now easy 
though tedious to pass to the limit when m, n, p go to c~, following again ARKERYD 
[14]. Eq. (4.11) is thus justified for any initial data ~b having a finite H-functional 
and belonging to L ~. 

As a consequence 

H(t )  ~ H r ,  (4.22) 

where again the constant H r  depends on the initial data and T. It  is to be noted 
that  Eq. (4.11) can be used to show that H(t )  decreases in time if D(t)  is non- 
decreasing. 

Generally molecules with a cut-off do not satisfy the boundedness assumption 
stated in Eq. (4.2). In order to overcome this we consider the more general condi- 
tion 

b 
B(O, i c - -  c ,  l) ~ ~-E (1 + c 2 + c2), b : const. (4.23) 

To deal with this case we first replace B by a cutoff expression 

B,~(O, [c - c ,  l) ----- min (B(O, [c - -  c ,  I), m) ,  (4.24) 

where m is a positive constant. Then 

 m(o, I c c ,  l) < am - -  a m = const., (4.25) = ~ 2  ~ 
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and we can apply the previous result to conclude that there is a solution f, ,  of 

O----i-= [Q(fm'fm)]~' 

fro(C, 0) = q~(C). (4.26) 

In addition, if the initial value possesses a finite moment E(0) and a finite H- 
functional, H(0), then Em and Hm will exist at any time t =< T and will satisfy 
the inequalities 

Era(t) <= Er, (4.27) 

Hm(t) ~ Hr, (4.28) 

where the constants E r and Hr do not depend on m. Finally, using the weak 
compactness criterion employed by ARKERYD [14] in his first proof and the 
equicontinuity in time of the sequence fm, we arrive at the following 

Existence Theorem. There exists a solution f of  Eq. (4.7), where the kernel 
B(O, ]c -- c. D of the collision term Q(f, f)  satisfies Eq. (4.23), and the initial mass 
density, energy density, and H-functional are finite at time O. These functionals 
remain bounded when 0 <_ t <_ T. The time T has the meaning explained previously. 
It is arbitrary provided O(t) exists for an arbitrary time interval and the constants 
Er and H r are finite for any positive T; both conditions are satisfied i f  ~(0) has 
no negative eigenvalues. I f  ~(0) possesses negative eigenvalues and to I is their 
largest absolute value, then T must not be larger than to. 

If  we add the assumption that the fourth moments of ~ exist, then we can 
prove a uniqueness theorem. To this end we have to prove that the fourth moments 
remain finite: 

Q(t) ~- f (1 ~- c2) 2 f(c, t) dc ~ Cr, 0 ~ t <-- T. (4.29) 

This is easily done following ARKERYD [15] and using a special case of POVZNER'S 
inequality [16] 

(1 + c'2) 2 -q- (1 + c,2) 2 -- (1 q- c2) 2 -- (1 q- c2) 2 ~ 2(1 + c 2) (1 + c2). (4.30) 

It can be shown that 

f (1 q- c2) 2 Q(f,f)  dc <: 4b(E r + Rr) Q(t), (4.31) 

where R r is the maximum value of the density in [0, T]. Hence Eq. (4.7) gives 

dQd_7 ~ Q T r ~  + 4 f c~c(1 -~ c2) f dc ~< 4b(Er + RT) Q, (4.32) 

and Eq. (4.29) follows with 

Cr = Q(0) exp ([4b(Er + Rr) q- 36kr q- Mr] T}, (4.33) 

where Mr  and Kr  are the maximum values of [Tr ~ I and k in [0, T]. 
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Uniqueness Theorem. Let f be the solution delivered by  the Ex i s tence  Theorem, 

I f  Q(O) exists,  so does Q( t )  in [0, T], and then the solution o f  Eq.  (4.7) is 

u n i q u e .  

Appendix 

Here we give a simple p roo f  that  Eq. (2.7) is satisfied if and only if a coordinate 
system exists for  which the components  o f  the tensor ~(0) are given by Eq. (2.10). 
The " i f "  par t  is trivially proved by direct computat ion.  We must  show, then, 
tha t  Eq. (2.7) implies the existence o f  a coordinate system for which Eq. (2.10) 
holds. 

To  this end we assume that  ((K/j)) is not  the zero matrix, since otherwise 
Eq. (2.10) is trivial. Then there is a vector x such that  ~x  =~ 0. Let us choose 
among  the vectors having this property and also having unit  (Euclidean) no rm a 
part icular  vector x 1 for which the no rm of  ~x l  takes its maximum value, K. Let 
x 2 denote ~ x l / K ;  then ~'X 2 = 0 and •2 is a unit vector. We can prove that  
x2 is or thogonal  to x l ;  otherwise, in fact, we could replace xl by (x l  - -  cx2)/  
(1 - -  c2) 1/2 where c = xl �9 x2 (c < 1) and ~x i  would equal K/( I  - -  c2) 112 ~> K. 
Let  now x3 denote a third unit vector given by x3/x x2, and hence or thogonal  
to both  xi and x2. I f  we take now a coordinate system whose unit vectors are xl, 
x 2 and xa, the elements o f  ((K/j)) are given by x i �9 ~ x j  ( i , j  = 1, 2, 3). We have 

Ki2 = xi" ffx2 = O, K 2 1 =  x 2 " ~ x  I = K x  2 " x 2 = K ,  

K i t  = x l  " ~ x l  = K x l  �9 x 2 = 0,  K31 " = x 3 �9 ~x  i = K x  3 �9 x 2 = O. 
(A.1) 

Five matrix elements are thus zero. Fur ther  let 

~ X  3 = a x  I + b x 2  -~- c x 3 ;  (A.2) 

then, applying ~ on both sides, we obtain 

0 = Kax2  + c ~ x 3 .  (A.3) 

This shows that  either ~x3 ---- H x 2  for  some constant  H o r  a ---- c = 0; the latter 
case reduces to the former,  however, due to Eq. (A.2). Hence 

K 3 3  = x 3 " ~ x  3 ~ H X  3 �9 x 2 = O, g l 3  = X l  " ~ x a  = H x l  " x 2  = 0 ,  

K 2 3  = x 2 �9 ~ x  3 = H i 2  " x 2 ~ H .  

(A.4) 

H, however, must  be zero because o f  the definition o f  K. In fact, otherwise, by 
letting 

'd = A x i  -q- Bx3 ,  A = K / N ,  B ~- H / N ,  N = ( H  2 + K2)  t/2, (A.5) 

we would find that  the square o f  the no rm of  ~ is given by A 2 + B 2 ----- 1 while 
that  o f  ~ is ( A K  + B H )  2 = K 2 + H 2 > K 2. However  this contradicts the fact 
that  K was defined as the maximum value of  ~x  over all vectors o f  unit norm.  
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