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1. Introduction 

Various physical problems [3, 4, 18, 32] are governed by equations of the 
form, 

(1.1) L[u] - (  A-1) u, + Bu =0 

for an unknown function u(xl .... , x=, t)=u(x, t), where 

(1.1') A u -  ~ AijDiju, Oiju=--O2u/OxiOxj, ut=Ou/Ot , 
i , j = l  

(1.1") Bu-  ~ bijDi, u+ ~ b,D,u-bu, Diu=-Ou/Oxl. 
i , j = l  / = 1  

The real constant matrices (a~j) and (btj) will be assumed to be symmetric and 
positive definite, and the constant b will be assumed to be positive. Let A (A), 
2(A), A(B) and 2(B) be, respectively, the maximum and the minimum eigen- 
values of the matrices (aij) and (bij). Then for every real vector ~= (~1, ..., era), 
we have 

2(A) 1~]2= < ~, Aij~i~j~A(A)]~[ 2, 
i , j = l  

2(B)1s ~ bu~i~j<a(B)l~[ 2. 
i , j = l  

A brief survey of equations similar to (1.1) was made in [30], where mixed 
problems for pseudo-parabolic equations had been studied. We refer to the 
references in [30] for earlier results on equations of this type. Much progress on 
mixed problems in a cylindrical domain has recently been made [19, 27-31]. The 
objective of this work is to study the solutions of (1.1) in the whole space R ' x  R 
under the initial condition 

(1.2) y(x, o)= Uo(X) 

in an appropriate function space. 
Because of the lack of Lp and Schauder estimates for solutions of elliptic 

equations in the whole space, we have restricted our attention to equations with 
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real constant coefficients. On the other hand, the constancy of the coefficients 
insures that the problem considered here is truly in the whole space R m. 

By means of Fourier transforms, the solution can be informally expressed in 
closed form; see equation (2.4). This formula is elegant and it furnishes a method 
for numerical computations for problems of this type. The question is how to 
insure that this formula will be valid under various initial conditions. In fact, it 
is not even obvious that it defines a real-valued function for real Uo(X)and ac- 
cordingly it is necessary to demonstrate this fact. When the Cauchy data Uo is 
rapidly decreasing, the justification can be carried out in an elementary manner; 
see w When Uo(X ) belongs to a Sobolev space Wk'P(Rm), we have appealed to 
the Fourier multiplier theorem for integrals; see w 3. For pointwise solutions, we 
use the principal fundamental solution; see w Although this involves some hard 
analysis, nevertheless it gives the finest results; moreover, it is through the principal 
fundamental solution that formula (2.4) is justified under the broadest possible 
initial conditions; see w Under various initial conditions, we have established 
the existence, uniqueness and asymptotic behavior of the solution, with particular 
attention to the regularity question. In short, the solution is just as regular as its 
initial data, but no more. 

2. Rapidly Decreasing Solutions 
Throughout this section we shall assume that the Cauchy data Uo (x) is a real- 

valued function in the space S of rapidly decreasing functions [36]. We wish to 
construct a solution u(x, t) of the problem (1.1) and (1.2), which stays in the space 
S for all time t in R, R being the whole real line. To this end, we assume for the 
moment that such a solution exists and that its time derivative also belongs to S 
for all t in R. By taking the Fourier transform of (1.1) and (1.2), we find that the 
Fourier transform ~(~, t) of the solution u(x, t) satisfies the equations 

(l+A(~))~tt(~,t)=-(B(r162 in RmxR, (2.1) 

(2.2) 

where 

h(~,0)=ho(~) in R m 

A(~)--~(2/.c) 2 '~ (lij~i~j, B(O=(2~) 2 ~.~ bij~i~j, 
i , j = 1  i , j = l  

m 

b(~)- -2~zi~ b j ~ j .  
i = 1  

Consequently, for all values of ~ and t, ~ (~, t) is explicitly given by the expression 

{ B(~)+b(~)+b t (2.3) ~(~, t )=exp A(~)+I  t ~o(~)-F(~,  t)Uo(O. 

Now define the function u(x, t) in Rmx R by the formula 

(2.4) u(x, t)- S F(~, t)~o(~)e2~i<r d~ 
R m 
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where (4, x )  denotes the inner product of the vectors 4 and x. We proceed to 
show that the function u(x, t) defined in (2.4), together with its time derivatives 
of all orders, is in S for all t in R and that it is the solution of the Cauchy problem 
(1.1) and (1.2). To show this, we first consider the functions 

{ B(O+b(O+b } B(O+b(4)+b 
(2.5) F(~, t ) - e x p  A ( O + I  t , f ( 0 -  A ( O +  1 

Let a be an m-vector with non-negative integer components, and let 

"'-  8"'/0 4~', D= = -  ~<' ,2 ,,, Di = D1 D2 ...Din, I~l=~l+...+~z. 

An application of induction shows that for all ct, I ~ I > 0, 

(2.6) D'F(4, t )= P,(~, t) [ A ( 0 + l ] 2 1 ,  I F(~,t) in RZ• 

where P~(~, t) is a polynomial in 4 and t whose degree in 41 . . . .  ,4,, is less than 
that of the denominator by at least I ~ I. Accordingly, for every ct there is a constant 
M,(t) depending on ~ and t such that 

(2.7) 1411~'il D'F(4, t)l <M,(t) 

uniformly in R". Thus F(~, t) is infinitely differentiable, and its derivatives in 4 
of order I~1 are of the order O(141-1~1) as I l l - '  oo. 

Since the Fourier transform maps the space S onto itself continuously [35, 36], 
it follows from the estimates in (2.7) that the function F(4, t ) r io (0  lies in S for 
all t in R and that the function u(x, t) defined in (2.4) belongs to S for all t in R. 

Clearly, for all integers n > 0, we have 

~"u(x, t)/~t"= S rf(4)]"F(4,  t)fio(4)e2~i<r d~ 
R m 

in Rmx R, by virtue of the absolute and uniform convergence of the integral. 
Moreover, in analogy with (2.6) we have 

Q,~(4, t) 
(2.6') D'[(f(O)"t(~, t ) ] -  [A(0+112.1.1 t (~ ,  t) in R'~xR 

where Q.~(~, t) is a polynomial in 4 and t whose degree in 4 is less than that of 
the denominator by at least I~J. Thus, for all ~ and n, there is a constant M . .  
depending on n, ~ and t such that 

(2.7') I ~ I ~ iDa(If (0]"  F (4, t)) [ < M, ~ (t) 

uniformly in 4. Hence the time derivatives of u(x, t) of all orders are in S for all t 
inR. 

Since all the derivatives of u (x, t) in (2.4) can be calculated by differentiation 
under the integral sign, it follows from (2.4) that u(x, t) satisfies equation (1.1) 
pointwise in Rmx R. Moreover, by letting t--+0 in (2.4), the Fourier inversion 
theorem [37] insures that (1.2) is also pointwise satisfied in R m. 
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Consider now the asymptotic behavior of the solution as t ~ oo. It follows 
directly from (2.4) that 

(2.8) lu(x, t)l <sup  IF(4, t)[ S Ifio(~)l d~. 
R m 

Moreover, the positivity of the quadratic forms A (4) and B(O insures that, for 
all t in R, 

IF(4, t)[ <exp { -  4n2A(A )4rc22(B) 1412+b1~ [2+ 1 t}. 

Using the expression on the right-hand side of the above inequality, we conclude 
that 

J'exp { -  b t} if 2 (B) < A (A) b, 
(2.9) F (4, t) < 

- - [ e x p l - t 2 ( B ) / A ( A )  " if ~(n)=>A(a)b. 

Thus we have from (2.8) and (2.9) 

lu(x, O l < e x p { - k t )  ~ 1~o(01 d4 
Rrn 

where k=b or 2(B)/A(A). That is, u(x, t) decays expontially in t as t--* oo. Similar 
reasoning shows that the time derivatives of u(x, t) of all orders also decay to zero 
expontially in t as t--, oo. We summarize the preceeding results in 

Theorem 2.1. I f  u o (x) belongs to the space S of rapidly decreasing functions, 
then the Cauchy problem (I.1) and (1.2) has a unique solution u(x, t) which, together 
with its time derivatives of all orders, belongs to S for all t in R. Moreover, both 
u(x, t) and its derivatives decay tO zero expontially in t as t--, oo. 

Remark 2.2. As we shall see in w the proof of the uniqueness of the solution 
in the space S (for all t in R) is precisely the same as that given in [30]. 

Remark 2.3. Theorem 2.1 assures us that if u(x, t) is a pointwise solution of 
(1.1) and if its restriction to any instant t belongs to S, then it lies in S for all 
times t. 

Remark 2.4. It is not obvious that if the Cauchy data Uo(X) is real-valued, 
then so is the solution u(x, t). That this is so will be proved in w 

3. Solutions in Sobolev Spaces 

We have seen that if the Cauchy data Uo(x)eS, then the solution u(x, t)is in S 
for all t in R and is given explicitly by formula (2.4). We now wish to consider 
whether the formula (2.4) still holds if the initial values u o (x) belong to W k' p (Rm), 
the Sobolev space of functions whose distribution derivatives up to and including 
the order k, k > 2 ,  belong to LP(Rm), l < p < o 0 .  To this end, we note that the 
concepts of strong and weak (distribution) derivatives are identical. Also, for 
1 < p < 2 ,  the Fourier transform carries wk'I'(R m) into wk'q(R ~') with I/p+ 1/q= 1. 
If u is in LP(Rm), p >  2, then its Fourier transform is in general a temperate distri- 
bution. 
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Lemma 3.1. I f  Uoe W2'p(Rm), 1 < p <  ~ ,  then the function u(x, t) defined by 
(2.4) belongs to W2'p(R m) for all t in R. Moreover, the time derivative ut of u in 
W2'p(R m) also belongs to W2'p(R=) for all t in R, while the space derivatives of u 
and ut up to and including the second order can be calculated by differentiating 
under the integral sign. 

Proof. We first check that u(x, t)e W2'p(R m) for all t in R. In fact, the estimate 
(2.7) for F(~, t) insures that F(~, t) is a Fourier multiplier for the Fourier multi- 
plier theorem for Fourier integrals [7], [20]. According to this theorem, there is a 
constant Ap, m depending on p and m such that 

(3.1) Ilu ( ' ,  t)ll 2, p<Mhp, m IlUo[12, p 

where 
M - m a x  {M~, [gl<m},  

the M~'s being the constants appearing in (2.7), and where we have adopted the 
usual norm on Sobolev spaces. 

Next, we show that for all t in R, 

- a F  , a u(x, t )=) ,~-~-  (~ t)~o(~)e2~<r (3.2) Or 

in W2'p(R') .  From the definition of u(x, t) in (2.4) and from the mean-value 
theorem applied to F(~, t) in the variable t, we see that ut(x, t) is the limit as 
h -~ 0 in W 2' ~ (R ~) of the function 

S f(~)F(~, t)F(~, Oh)fio(~)e2~'<r 0 < 0 < 1 .  
Rm 

Accordingly, to establish (3.2) it suffices to show that as h ~ 0 

(3.3) Sf(OF(~,t)[F(~,Oh)-l]?,o(Oe2~'<r in W z' ' .  
Rm 

To see this, we note that F(r Oh)-l=O(Ihl) as h ~ 0 .  Also, for vectors fl with 
non-negative integer components satisfying I/~1-> 1, we have 

D~EF(r P,(~,Oh) F(r 
I-1 +A(r  2 lal 

where Pa(~, Oh) is a polynomial in ~ and h of degree at most 31ill in ~. Conse- 
quently, Leibniz's rule gives 

D'[f(~) F(~, t) (F(~, Oh)- 1)] 

P,-a(~, t) Pa(r Oh) 
----i#1~_~ i~1 (1 +a(~ ) )  2 I~-#l F(~, t) F(~, Oh). Oh 

_ E t  2 Ipl 

where P--a(r  t) is a polynomial in ~ and t of degree at most 31~-BI  in r 
Hence there is a constant M,(t) depending only on c~ and t such that 

(3.4) I~1 I~l [D ~ [ f ( ~ ) e  (~, t) (V(~, 0 h ) -  1)]1__< M~(t). 
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Again the multiplier theorem for Fourier integrals assures us that 

(3.5) I[(f(O F(~, t) (F(~, Oh)-l)?zo(O)v[12,n<M(t)[hi an, m IIuol12, 9, 

where (f)v stands for the inverse Fourier transform of f ,  M(t)=max{M~(t), 
I~l<m}, g~(t) are the constants appearing in (3.4), and An,,, is a constant 
depending only on p and m. The proof of (3.3) is now complete, and hence 
formula (3.2) is established. Our proof shows moreover that ut(x, t)also stays in 
W2'p(R m) for all time t. Since all time derivatives of F(~, t) are of class C ~~ in 
and are also Fourier multipliers for Fourier integrals, the same reasoning as that 
used in deriving (3.2) leads to the formula 

t~n n 

(3.6) dt n u(x, t )= S a~-ff~-~ F(~, t)Uo(Oe2~i<e'X>d~ 
amdt  

in the space W2'p(Rm), valid for all integers n. 

For evaluation of the space derivatives of u (x, t), we first establish the formula, 

(3.7) Dju(x, t)= ~ F(~, t)(Djuo)^(Oe2~i<g'X> d~ 
R m 

in W I'p(R m) for all t in R. To prove this, we note first that D~uo lies in WI'P(R ~) 
and that F(~, t) is a Fourier multiplier. Hence the multiplier theorem for Fourier 
integrals assures us that the integral in (3.7) defines a function u* (x, t) in W I'p(Rm). 
Consequently, to establish the validity of (3.7) it suffices to show that for all t 
in R 

[u (x+h , t ) -u (x , t )  u*(x,t)]] ~ 0  as h ~ 0  (3.8) 
I h I[1,p 

where x +h=(xl,  ..., xy-1, xj+h, xj+ l, ..., Xm). NOW the expression inside the 
norm sign in (3.8) is equal to 

(3.9) ~ F(~, t)e2~'<r S - [ uo(y+h)-uo(y)  t~u~ e -2~'<~'r> dy; 
Rm R~ h ~Yi J 

thus the function F(~, t) has been shown to be a Fourier multiplier for Fourier 
integrals. It follows immediately that the 11" Ill,p-norm of the function in (3.9) is 
less than or equal to 

MAp m u~176 t3u~ I 
I 

' h ayy 1, p 

where M and .,49, m a r e  the constants of (3.2). Formula (3.7) follows from this 
fact and the assumption that uoeW2'p(Rm). Moreover, since uoEW2'p(Rm), a 
repetition of these arguments shows that for t~R 

(3.10) Dij u (x, t) = ~ F (~, t) (Dij Uo) ̂  (r e 2 ~ ~<r ~> d 
R ~ 

in the space LP(Rm). Since OF(f, t)/t~ t is also a Fourier multiplier, it is now clear 
from (3.2) that 

(3.11) Dijut(x , t )= ~ Ft(r t)(Dijuo)^(~)e2Xi<*'X> d~ 
R m  

in the space L p (R '~) for all t in R. The proof of Lemma 3.1 is now complete. 
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By virtue of (3.10) and (3.11), we have for all t in R 

L[u(x, t ) ]= ~ L[F(~, t)~o(~)e2~'<r in LP(Rm), 
Rm 

where L is the differential operator in x and t given in (I.1). Thus the function 
u(x, t) defined in (2.4) obeys 

(3.12) IlZl-u]llo, p=0 foral l  t in R, 

since L[F(~, t) exp{2ni(r x>}]=0 identically in ~ and t. 

To show that u(x, t)=Uo(X) in wz'P(R ") as t ~ 0 ,  we observe that the Fourier 
inversion theorem holds in LP(Rm); see [26]. Hence u o (x)= (~)V(x) in W2'p(Rm). 
Consequently, we may write 

u(x, t)-Uo(X)= S fF(~, t)-l]?to(r in W2'p(Rm). 
R m  

The reasoning used to derive (3.5) shows that 

llu(', t)-uo[12,p<Mav, mt Iluollz, p, 

from which our contention follows. 

It has been shown that the function u(x, t) defined in (2.4) satisfies (3.12) 
and that it assumes the initial values Uo (x) in W 2' p (Rm). To prove the uniqueness 
of the solution in W2'p(R m) for all t in R, let ul(x, t) and U2(X , t) be two such 
solutions. Their difference v(x, t) is a solution in W2'P(R ") for all t in R which 
takes on homogeneous initial data. Accordingly, the Fourier transform ~(~, t) 
of v(x, t) satisfies the equations 

~(~,0)=0 in W2'p(R m) 

(1 +A(r t )= - [B(O+ b(~)+ b] fi(r t) 

in W2'p(R m) for all t in R. As a consequence, v(~, t ) = 0  in W2'p(R m) for all t 
in R. Thus we conclude from the uniqueness theorem for Fourier transforms that 
v(x, t ) = 0  in W2"p(Rm). 

Suppose now that Uoe Wk'p(R m) with k>2 .  For k=3, the reasoning used to 
derive (3.7) and (3.8) leads to the conclusion that for all t in R 

Dij k u (x, t) = ~ F(~, t) (Dij k u0) ̂  (4) e z ~ <r ~> d 
R m 

in LP(Rm). Since F(~, t) is a Fourier multiplier, this shows that u(x, t)~ W3'P(R m) 
for all t in R. Finally, by induction, we see that for all t in R and I~1 = k 

D~u(x, t )= ~ F(~, t)(D'uo)^(~)eZ"'<r 
R m 

in LP(Rm); hence u(x, t)~ wk'p(R m) for all t in R provided Uo~ W~'p(Rm). This 
proves that the solution u(x, t) of the Cauchy problem (1.1) and (1.2) is just as 
regular as the initial data, but no more. Although we cannot assert that u(x, t) is 
differentiable in x in the ordinary sense even if k is sufficiently large, nevertheless 
much can still be said about the differentiability of the solution. 
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If E(t) denotes the bounded linear operator (mapping W2'v(R m) into itself) such 
that u(x, t)=E(O Uo(X) solves the Cauchy problem, then for every t in R the 
operator E(t) leaves each of the subspaces W k' v (R'), k > 2, invariant. 

For the asymptotic behavior of the solution u(x, t) as t--, oo, we turn to the 
estimates in (3.1), (2.9), (2.7) and (2.6). It is clear that if uoe Wz'v(R') ,  then for 
all t in R 

(3.13) llu(., 0112,v <M' e-ktAv, m [luoll2,v 
where M '  is a constant, k is the constant in (2.9), and Ap,,, is the constant in 
(3.1). We now observe that if uoeWk'p(R m) with k->2, then the estimates in 
(3.13) still hold with II'lh,p-norm replaced by II-IIk,rnorm. We summarize the 
preceeding results in 

Theorem 3.2. I f  uo(X) belongs to Wk'P(Rm), k > 2, l < p < c ~ ,  then the Cauchy 
problem (1.1) and (1.2) has a unique solution u(x, t) which, together with its time 
derivatives of allorders, stays in Wk'V(Rm) for all t in R. Moreover, both u and its 
derivatives decay to zero expontially in t as t ~ oo. 

4. Solutions in Banach Spaces 

We introduce the Banach spaces Ck+~(R m) consisting of functions whose 
derivatives of order k are uniformly H61der continuous in R m with exponent ~, 
0 < ~ <  1. More precisely, for every v(x) in ck+~(Rm), the quantity 

{ 'D~ v (x ) -  DJ v(Y) ' ; x, y in R% l j [ = k } 
Hk~(V)-- sup , i x_y l  ~ 

is supposed finite. The H61der norm on ck+~(R m) is defined by 

[Ivll~+~-Iv I~ + H~(v) 
k 

Ivlk- ~ sup{IDJv(x)[; x~R ~, IJl =i}. 
i = O  

Evidently, Ck+~(R m) is a Banach space under this norm. 

Suppose that the Cauchy data uo(x) in (1.2) belongs to Ck+~(Rh'). We wish 
to construct the unique pointwise solution of (1.1) which (together with its time 
derivatives of all orders) lies in Ck+~(R m) for all t in R. An essential step in this 
construction is to derive an estimate for solutions of an elliptic equation with real 
constant coefficients in the whole space. 

Let ,4 be the differential operator in (1.1), 

Au = - ~ a~jD~u. 
|, j =  l 

The principal fundamental solution H(x -y ) ,  [8, 9, 14, 15, 22], of the equation 
A u -  u = 0 in R m, m > 1, is given explicitly by 

12m oo m--3 / ~ \ m - 3  
(4.1) H ( x - y ) = C - t p  e-P~t 2 ~1+--~--} 2 e- 'd t  

0 \ 1"11 I 
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where 
. 1  

C==_2A~(27t)----Z-F , A=det(a~j) 

(4.2) p2 _ ~, Aij (x~- y,) (x j -  y j), 
i , j = l  

the matrix (A~j) being the inverse of (a~j). We note that C is only a normalizing 
factor and that H ( x - y )  is a function of the vector x - y  alone. Thus H ( x - y )  is 
invariant under translation. 

From the explicit expressions in (4.1) and (4.2) we see that H ( x - y )  is defined 
and of class C ~ on R = x R m- D, where D stands for the diagonal of the Cartesian 
product Rmx R m. Using the explicit expression for H(x, y), we obtained (by 
means of elementary estimates) the following useful results: 

There exist positive constants a, Ro such that for vectors ~ with 0 < I ~ I -~ 2, 

(4.3) [o~,n(x-y)l<const.(exp(-a [x -y l} )  forall Ix -y l>Ro;  

moreover 

(4.4) ID~n(x-y)l<const. Ix-y12-m-1"l(l+62, m6O, l~lloglx-Yl) 

for 0=<1~1<2 in every neighborhood of D, where 62,,~, tSO,l~l are Kronecker 
deltas. 

The existence of the constants a and R o was proved by GIRAUD [14] for 
principal fundamental solutions of elliptic equations with variable coefficients, 
as was the singular behavior (4.4) near the diagonal D. For later applications, 
we emphasize the crucial fact that the constants appearing in (4.3) and (4.4) are 
independent of x and y. In other words, (4.3) and (4.4) hold when x varies in the 
whole space R m. 

Let L ( x - y )  be defined on Rmx Rm-D by the formula 

. r(m/2) 1 
2A, nm/2(m_2) p~-Z, m>2 

(4.5) L ( x - y ) =  
[ 2 ~ - ~  log(I/p), m=2  

where p(x -y )  is given by (4.2) and A-det(a~j). Then near the diagonal D we 
have for 0=<lctl_-<2, 0<fl<l, 

( 4 . 6 )  I D ~  ( H  - L )  ( x  - y )  [ < c o n s t .  I x - y I a - m -  I~1 - ~2, ~, 60 ,  I~1 fl  

when x varies on the whole space R ~. Such weakly singular behavior was proved 
by GmAUD [14] for equations with variable coefficients in every bounded subset 
of Rmx R ~. The truth of (4.6) is then an obvious consequence of the fact that 
H - L  is a function of x - y  alone. 

Lemma 4.1. Let H ( x - y )  be defined by (4.1). Then for all v(x) in C~ m) and 
for all x in R m, we have 

(4.7) Dx, xj S H(x -y ) v ( y )dy=  ~ Dx, x jH(x-y)v (y )dy- - -1A, jv (x )  
R m Rra 

5 Arch. Rational  Mech. Anal., VoL 49 
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where the integral on the right-hand side is taken in the principal value sense and 
D~xl denotes a2/dx~ ~xj. 

Proof. The properties of H(x-y )  in (4.3) and (4.4) assure us that 

(4.8) Dx~ S H(x-y)v(y)dy= S Ox, H(x-y)v(y)dy, xER m, i = l  . . . .  , m ,  
Rm R m 

To prove (4.7) we first put 

(4.9) q,(x)- ~ H(x-y)v(y)dy, ~i(x; 6 ) -  ~ Dx, n ( x - y ) v ( y ) d y  
R m R m -  I ( x ,  t$) 

where I(x, 6) is the ellipsoid centered at x and defined by p(x -y )<& From (4.8) 
we see that 9~(x; 6)~Dig(x) uniformly in x as 6-00.  By virtue of (4.3) we have, 
for every 6 > 0 and for all x in R m, 

D~o,(x, 6)=  S O~,~n(x-y)v(y)dy  
R m -  I (x, b) 

(4.10) -- ~ D~,H(x-y)v(y)Xi(y)dtTy 
OI(x, 6) 

where aI(x, 6) denotes the boundary of I(x, 6) and Xj the direction cosines of the 
exterior normal to aI(x, 6). 

The second integral in (4.10) can be written as a sum 

Dx, L ( x -  y)v(y) Xj(y) d *y 
~I(x, 6) 

+ ~ D~,(H-L)(x-y)v(y)Xj(y)dtTy-II+I2 �9 
Ol(x, 6) 

It is not difficult to check [22] that Ix may be written as the sum of two integrals, 
one of which goes to zero as 6 ~ 0 uniformly with respect to x while the other is 
equal to -Azjv(x)/m for all x in R". In the integral/2 the function v(y) is bounded 
while H - L  satisfies (4.6). Hence the value o f /2  is bounded by e6, with the con- 
stant c independent of x and 6. Thus /2  ~ 0 uniformly with respect to x as 6 ~0 .  

Since 9~(x, 6)-..Otp(x)/Ox~ uniformly, formula (4.7) will be established if we 
can show that as 6 ~ 0 the first integral in (4.10) converges uniformly with respect 
to x. To prove this, we write this integral as the sum 

I a + I 4 - - {  ~ + j" }Dx, x jH(x-y)v(y)dy  
R m -  B(x, k) B(x, k ) - I ( x ,  6) 

where B(x, k) is a ball with center at x and radius k. It suffices now to establish 
the uniform convergence of I ,  as 6 ~ 0. To this end, we write 

1,--15+16-- ~ Ox, x j (H-L) (x -y )v (y )dy  
B(x, k ) -  I (x, 6) 

+ ~ Ox,~jL(x-y)v(y)dy. 
B(x, k) - I ( x ,  6) 

From (4.6) we see that Is converges uniformly in x as 6 --, 0. Since we may keep k 
fixed, the uniform convergence o f / 6  as 6--, 0 follows in a standard way; see, 
e.g., [20, 22]. The lemma is thus established. 
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Remark 4.2. The lemma just proved shows that if v e C ~ (Rm), then r = H *  v 
satisfies the equation A ~p-~o = v in R ' ,  where " , "  denotes convolution. 

Lemma 4.3. Let H ( x - y )  be the principal fundamental solution given in (4.3). 
Then, for every v in C~ 

H ~ ( [ Dx, x~ H (x - y) v (y) d y) < const. II vii o + 

Rm 

where the integral is understood to be singular. 

Proof. Write the given singular integral as the sum of three integrals 

{ ~ Dx, x ~ n ( x - y ) +  ~ D~,~ j (H-L) (x -y )+ ~ D~,xjL(x-y)}v(y)dy 
Rm-- B(x, k) B(x, k) B(x, k) 

and call them fl(x), f2(x) and fa(x),  respectively. Here B(x, k) is a ball with 
center at x and radius k. The constant k will be chosen so large that (4.3) holds. 
Since H ( x - y )  is a function of x - y  alone, it can be checked that for all vectors h 

If~(x+h)-f~(x)l=[ S Dx, xsH(x-y) (v (y+h)-v (y ) )dY[  
R m - B ( x ,  k) 

co 

<C1H~ [hr $ rm-l e-"r dr, 
k 

where H ~ (v) is the H61der constant of v with exponent ~, and C1 is a constant 
independent of v and x. Since the integral is convergent it is clear that 

(4.11) H~ H~ for all v in C~ 

For a fixed choice of k, we note from (4.6) that 

[02(H-L)(x-y)/Ox~Oxjl<=kl/r m-1+62'"# in B(x,k) 

where the constant kl is independent of x. Since H - L  is also a function of x - y  
alone, we have for all vectors h 

If2 (x + h ) - f 2  (x) I = 1 J" O~, xj (H - L) (x - y) (v (y + h) - v (y)) d y I < C2 H ~ (v) I h I ~ 
B(x, k) 

where the constant C2 is independent of v and x. Thus, 

(4.12) H~176 for all v in C~ 

To bound the HOlder constant of fa (x) in R m, we write the kernel of the 
integral defining f3 (x) in the form: 

~ 2 / . ( x - y )  = F(O) 
OxiOxj I x - y [ "  

where 0 varies over the surface of a unit sphere of dimension m - 1 .  Here F(O) 
is infinitely differentiable in 0 and has mean value zero, ~F(O) dO = 0. For  a detailed 
justification of these statements, see for example [20, p. 59]. Now we show that 
the function 

(4.13) fa ( x ) _  = ~ F(O) F(O) B(~,R) [x--yl m v(y)dy= ~ (v(y)-v(x))dy n(~,k) I x - y l  m 
5"  
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is uniformly H61der continuous in R m and that its H61der constant is less than 
or equal to a constant multiple of [IV[Io+~. A proof of this non-obvious fact is 
carried out in detail for Theorem 1.6 in [20]. We make two observations. First, 
we can choose k so large that Mikhlin's proof gives 

(4.14) [f3(x+h)-fa(x)l<C;n~ ~ for all I h l < l < ~ .  

The constant C~ is independent of v. It is, moreover, independent of x because 
the characteristic F(O) in (4.13) is independent of the pole x. Secondly, f3(x) is 
bounded. In fact, (4.13) shows that 

sup If3 (x) l < const. H ~ (v). 

Hence, we conclude that 

F 'rr [f3(x+h)-f3(x)l_=.~3 Ivlolhl ~ for all I h [ > l .  

Accordingly, for all vectors h, 

If3(x+h)-f3(x)l<C3 Ilvllo+~ Ihl ~ 

where the constant C3 is independent of v and x. This means that 

(4.15) n~  llvllo+~. 

The lemma now follows directly from (4.11), (4.12) and (4.15). 

Lemma 4.4. The principal fundamental solution given in (4.1) generates a 
bounded convolution integral operator which maps C~ m) into C2+~(Rm). That 
is, if 

(4.16) u(x)-- S H(x-y)v(y )dy ,  v~C~ 
Rm 

then 

(4.17) [[ u [[ 2 +, _-< const. [[ v I[ o + ~. 

The same constant holds for all v in C~ 

Proof. From the estimates in (4.3) and (4.4) for H(x -y )  we see that 

(4.18) [ u [o =<const. Iv[ o. 

Similarly, it follows from (4.8), (4.3) and (4.4) that 

(4.19) lull <const.  [rio. 

The constants in these two inequalities are valid for all v. 
From formula (4.7) we have, for I~1 = 2, 

(4.20) l u h =  ~ sup I S D~n(x-y)v(y)dy[+const.  Ivl. 
1~1=2 x R"  
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For each of these integrals (with I~l = 2) we have 

j" D~ H (x - y) v (y) d y 
R m 

={ ~ D ~ H ( x - y ) +  $ D ~ ( n - L ) ( x - y ) +  $ D~L(x -y ) }v (y )dy  
ix-wl >-k Ix-y[ <k Ix-wl <k 

--11+I2+I a. 

By virtue of (4.3), [Ill is bounded by a constant multiple of Ivlo if k is large 
enough. By virtue of (4.4), 1/21 is also bounded by a multiple of Ivlo. Since the 
characteristic of the kernel D~L(x-y) ,  with 1~1=2, has mean value zero, the 
absolute value of the singular integral I3 is less than const. H~ as is easily 
seen from (4.13). Hence 

(4.21) I $ D~n(x-y )v (y )dy l<cons t .  llvll2+,, 1~1=2, 
R m  

for all v in C~ Thus we conclude from (4.20) and (4.21) that 

(4.22) lul2_-_const. Ilvllo+~ forall v in C~ 

By combining the estimates in (4.18)-(4.22) and Lemma 4.3, we obtain the desired 
estimate in (4.17). 

Theorem 4.5. Let A and B be the second order differential operators in (1.1') 
and (1.1"), respectively. Suppose that u o (x) is a given function in C 2 +~(Rm). Then 
the Cauchy problem 

L[u]=(A- I )u t+Bu=O in RmxR 

(4.23) u (x, O) = u o (x) in R m 

has a unique solution u(x, t) which, together with its time derivatives of all orders, 
belongs to C2+'(Rm) for all t in R. Moreover, it is analytic in t for all t. 

Proof. Let H ( x - y )  be the principal fundamental solution of A u - u = O  in R m. 
Then H ( x - y )  is given by the formula in (4.1). Define the linear operator . . . .  

(A c2 +'(R ") -~ c2 +'(R m) 

by the formula 

(4.24) ( A - I ) - ~ B u  = -  ~ n ( x - y ) B u ( y ) d y  forall u in C2~'(R').  
Rm 

According to Lemma 4.4, the linear operator ( A - I ) - X B  is bounded. By virtue 
of the completeness of the space C~+'(Rm), the operator E(t) defined for all t in 
R by 

(4.25) E ( t ) = e x p { - t ( A - I ) - ~  B} - ~ ( - t ( A - I ) - t  B)n/n! 
n = O  

is alS0 a bounded linear operator mapping Cz+'(R ~) into itself. It follows in the 
usual way (see, e.g., [30]) that 

(a) {E(t), teR) is an analytic Abelian group such that E(tl +t2)=E(tl)E(t2) 
for all tl, t2 in R, and that E(0)=I ;  
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(b) E(t) is continuous in t with respect to the uniform operator topology; 

(c) E(t) is differentiable in the uniform operator topology and 

(4.26) E ' ( t )=  - ( A - I )  -I BE(t), t~R. 

Now for every given u0 (x) in C 2 +~ (R m) we can define 

(4.27) u(x, t)=-E(t)Uo(X) for aU t in R. 

Then u(x, t)eCZ+~(R m) for all t in R. If follows from (4.26) that, for all t in R, 

ut(x, t ) = - ( A - I )  -1Bu(x, t) in C2+~(Rm). 

By applying the differential operator ( A -  I) to both sides (from the left), we find 
that, for all t in R, 

(A-I)ut(x, t)+Bu(x,t)=O in C~ 

Property (a) of E(t) insures that u (x, 0)= Uo (x) in C 2 + ~ (Rm). This shows that the 
function u(x, t) defined in (4.27) solves the Cauchy problem (4.23). 

Since the power series in (4.25) converges uniformly for t in R with respect 
to the uniform topology on &~ it is clear that u(x, t) is analytic in t 
for all x in R m. Verification of the uniqueness of the solution of (4.23) can be 
carried out in the same way as in [30]. The proof of the theorem is now complete. 

In conclusion, we raise the question whether the solution u(x, t) will have 
higher order differentiability if its initial data Uo (x) does. The answer is given by 

Theorem 4.6. I f  the initial data uo~Ck+~(Rm), k >=2, then the solution u(x, t) 
belongs to Ck+~(Rm) for all t in R. 

Proot. The properties listed in (4.3) and (4.4) for H(x-y )  insure that for all v 
in C 1 +~(Rm), 

0 S H(x -y )v (y )dy= ~ z--~H(x-y)o(y)dy.  (4.28) 0 xj Rm Rm v ~ 

Now for (x, y)eR m x R - D  we have 

0 0 av(y) 
(4.29) Oyj [H(x -y )v ( y ) ]=-  Ox----~. H ( x - y ) v ( y ) + H ( x - y )  O y--~. 

By virtue of (4.3) and (4.4), we have also 

lira lira I [H(x-y)v(y)]dy 
R-,oo 8~o 8___lx-yl~R ~Yj 

= lira ~ H(x-y)v(y)Xj(y)dtry 
R--, oo [ x - y l = R  

- -  lira ~ H (x -- y) v (y) Xj (y) d try = 0 
e-*o l x - Y l = e  

where X~(y) stands for the direction cosines of the exterior normals to I x - y  I= R 
and I x - y l = ~ .  Thus, 

(4.30) ~ , 6  [n(x-y) v(y)] dy=O. 
R" o y j  
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Hence from (4.29) and (4.30) we obtain the useful identity 

(4.31) ~,, ~-~-f H(x-y)v(y)dy= S H(x-y) Or(y) dy 
Rm o y j  

provided ve C 1 +~(R"). 

Suppose now that Uo(X)~Ca+~(Rm). Then BuoeC 1+~, where B is the dif- 
ferential operator defined in (1.1"). As in the derivation of (4.28), we have 

(4.30') O~j ~, H(x-y)Buo(y)dy=~,. a--ff~f H(x-y)Buo(y)dy. 

By virtue of (4.31) and (4.30) we have 
82 

Ox~OxjJ H(x-y) Buo(y)dy 

-- 0x,0 jm a_~_f H(x_y)Buo(y)dy 
(4.31') 

- 0x~0 R,. ~ n(x-Y) a--ff-Yf nu~ 

OH(x-y) 0 = S BUo(y)dy. R,, Oxi Oyj 
Using formula (4.31) and the proof of Lemma 4.3, we conclude that 

82 
RS H(x-- y) Buo(y ) dy dxi Oxj OXk 

(4.32) - I I-I(x-y) Buo(y)dy R" OX~OXj 

1 Aijo_~kBuo(x). 
m 

We conclude now from formulas (4.30)-(4.32) and Lemma 4.4 that the operator 
(A - I)  - 1 B defined by 

(A-I) -1Buo = - I H(x-y)Buo(y)dy 
Rra 

maps Ca+'(R m) into Ca+'(R m) in such a way that 

(4.33) I[ (A - I ) -  1 B u o[I 3 + ~--< const. II Uo II 3 + ~. 

It now suffices to remark that, if uoeCa+'(Rm), then the solution u(x, t) defined 
by 

u (x, t) = exp { - t (A - I ) -  x B}. u o (x) 

belongs to Cs+~(R m) for all t in R. 

By induction on k, it follows that if uo~C k+', then 

I I (A-I ) -  x Buoll~+~_-__ Iluoll~+~ 

for all integers k > 2 .  The proof is now complete. 
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5. Unification of Methods. 
Hiilder Continuity of Weak Solutions 

In w and w the Cauchy problem was solved by means of Fourier transforms. 
The solutions so obtained are either infinitely differentiable or belong to certain 
Sobolev spaces. In either case, they vanish at infinity. The fact that these solutions 
are real-valued has not yet been confirmed. In w we constructed the solutions 
by using the principal fundamental solution. These solutions are obviously real- 
valued and solve the problem in the pointwise sense, though they need not vanish 
at infinity. We wish to show that the results in w 2 and w 3 can also be obtained by 
using the principal fundamental solution. In this way, we shall be able to derive 
more information about the solutions. 

Theorem 5.1. Suppose that, as functions of x, u(x, t) and ut(x, t) belong to 
C2+~(Rm) for all t in R and that u(x, t) is a pointwise solution of equation (1.1) in 
RmxR. I f  the Cauchy data u(x, 0)=Uo(X ) belongs to the space S of rapidly de- 
creasing functions, then, as a function of x, u(x, t)eS for all t in R. 

Proof. Recall that the principal fundamental solution H(x-y )  is of class C | 
on Rmx Rm-D and possesses the properties listed in (4.3) and (4.4). Accordingly, 
it is a rapidly decreasing distribution [10, 26], and hence a temperate distribution. 
As a temperate distribution on R m, it satisfies the equation 

(5.1) A H - H =  - 6  

where 5 is the Dirac measure. Forming the Fourier transform of (5.1), we get 

(5.2) H(~) = 1/[A(~)+ 1]. 

The fact that H is a rapidly decreasing distribution insures that, for every Uo in 
the space S, the extended convolution theorem for Fourier transforms is appli- 
cable to H,  Buo, where B is the differential operator in (I.1). Thus 

(5.3) (H, Buo),.=,~(Buo)^= B(~)+b(~)+b A(~)+ 1 rio(O. 

From the detailed analysis in w we see that the right-hand side in (5.3) is in S. 
Hence for all Uo e S, 

(5.4) (H* Buo) (x)eS. 

In the notation of (4.24), the relations (5.3) and (5.4) can be written 

( (A-  I ) -  t B Uo) ̂ (~) = B (~) + b (r + b 
A(O+ 1 Uo(~), 

(5.5) S H(x--y) (Buo) (y) dyeS. 
R m 

By induction on n, we conclude from (5.5) that for all integers n > 0  

(5.6) ([(A-I)-IB]"uo)^(r162 A ( O + I  fi~ 
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since the factor of u0 (0  on the right-hand side in (5.6) is a multiplier in S for all 
n. It follows that, for all t in R, the series 

oo t" [ B(~)+b(~)+b ]" 
-=3- S ( -1)"  A ( O + I  fi~162 

n = O  i ~ .  Rm 

defines a function in S. Since the order of summation and integration may be 
interchanged, we have for all t in R 

exp(_t(A_i)_lB}.uo(x)= , e x p  f B( r  t e2X'("x> ~.  A(r )+1  t rio(O d~, 

which is what we set out to prove. 

Theorem 5.2. Suppose that, as functions of x, u(x, t) and ut(x, t) belong to 
C2+~(Rm) for all t in R and that u(x, t) is a pointwise solution of equation (1.1) in 
RmxR. If the Cauchy data u(x, 0)=Uo(X) is in C2+~(Rm)n W2"v(Rm), then as a 
function of x, u(x, t) stays therefor all t in R. 

Proof. Since H(x) is a temperate distribution, the Fourier transform is given 
by the expression in (5.2). Since for uoe W2'V(Rm), Buo is certainly a temperate 
distribution and since H(x) is actually a rapidly decreasing distribution, the con- 
volution H(x-y)*Buo(y) is well-defined. Moreover, the convolution theorem 
for Fourier transforms is applicable [10, 20]. Hence formula (5.3) still holds in 
the present case. Since the factor (B(O+b(O+b)/(A(O+l) is a Fourier multi- 
plier for integrals, we conclude from the multiplier theorem and (5.3) that 

(5.7) IIH* nuoll 2, ~ M  Ilulh., 

where M is a constant depending only on p, m and the multiplier. Using the 
notation introduced in (4.24), we can write (5.6) as 

(5.8) I I (a - / )  -1 nuol}2,p <M Iluolh, r 

By induction on n, it follows that for all integers n > 0 

(5.9) [(A-I)-~B]nuo(x)= S r [B(O+b(O+b ]. 

in the space Wz'P(Rm). Moreover, by repeatedly applying the estimate in (5.8) 
to the equation (5.9), we obtain the estimate 

(5.10) II [ ( a -  I ) -  ~ BJ" uolh. v <Mn Iluo Ih, 

where the constant M is the same as that in (5.8). Hence for all t 

E(t) Uo-exp{ - t (A - I ) - l  B} . Uo 

~, .(--t)" f [ B(r162 ]" ~> 
(5.11) = . ~ o  nt ~mL ~ . fio(r z~<r de 

=:mexpf_ t B(O+b(~)+bA_2(ff~i J )'~~ dr 
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in Wz'P(Rm). In fact, it follows from (5.10) and (5.11) that 

[[E(t)uo[[2,p<=e ult[ [lUo[[2, p for all t in R. 

The proof is now complete. It may be noted that the last inequality is a good 
estimate for t<0. 

For weak solutions of elliptic and parabolic partial differential equations, the 
regularity theorem [23-25] asserts that weak solutions can be identified with 
H61der continuous ones. We might suspect that similar results hold for weak 
solutions of pseudo-parabolic differential equations. Simple examples show, 
however, that solutions of pseudo-parabolic equations cannot be smoother than 
their initial data. On the other hand, there is a big gap between the spaces W 2,p 
and C 2 +'. It is interesting to ask the question whether the solution u(x, t) belongs 
to W2'Pc~ C~ z) for all t if it is so at any fixed instant. 

Theorem 5.3. Suppose, that, as a function of x, u(x, t) belongs to W2'p(R m) 
for all t in R and that u(x, t) is strongly differentiable in t and satisfies equation 
(1.1) in LP(Rm) for all t in R. I f  uo(x)=-u(x, O) is in W2'p(Rm)c~C~ then, 
as a function of x, u (x, t) stays there for all t in R. 

This result implies that all weak solutions are H61der continuous, if it is so 
at any fixed instant. We expect the same is true for the solutions obtained in [30], 
although we are unable to prove this at the present time. 

Proof of Theorem 5.3. Since Uo(X)~W2'p(Rm), the existence of a unique 
solution u(x, t) which belongs to W2"p(R m) for all t in R has been established 
in w We shall show that under the additional restriction uo(x)eC~ the 
solution u(x, t) also belongs to C~ m) for all t in R. 

It was shown in w that the solution in W2'p(R m) for all t in R is given by the 
formula 

{ B(~)+b(~)+b ' 
u(x, t)=~mex p t Uo(Oe2~'<r t~R 

(the equality holding in W2'p(Rm)). In the proof of Theorem 5.2 we have shown 
that, for all integers n > 1, 

Uo-- o 1" 
in Wz'p(Rm). Hence 

u(x, t)= ( - - t (A--I ) - lS)"  
n=O n! U~ 

(5.12) =Uo(X)+t S H ( x - y ) B u o ( y ) d y  
Rra 

t 2 
+-~. ~ .~H(x-y l )dYl  " B~m H ( y l - y ) B u o d y + " "  

where B stands for the differential operator in (1.1"), and the equality holds in 
W2'P(Rm). 
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To simplify the notation, we write 

(5.13) Un(X)= J" n(x-y)Bun-l(y)dy,  n = l , 2  . . . . .  
Rm 

Then (5.12) can be written 
oO rl 

t) = Uo (x) + .  t W~ ' (5.14) u(x, ~ --~. u.(x) in P(R'), t6R. 
= 1  " 

We wish to show that each u,(x) is H61der continuous with exponent a, and that 
its H61der constant does not exceed a constant multiple of Iluollo+~. 

By virtue of the properties of H(x-y)  listed in (4.3) and (4.4), 

ul(x)-  S H(x-y)Buo(y)dy 
R m 

(5.15) = ~, bij I - x - -H(x -y )  uo(y)dy 
i , j = l  R m O X i  

+ ,-~=b' H(x-y)uo(y)dy-b  R',I H(x-y)uo(y)dy, 

that is, we can shift one differentiation from Uo to H under the integral sign. For 
uo~C~ W 2,p, we have 

[ 0 ] 0 (x-y) 0.o(y) 
(5.16) ~ -~-~-n(x-y)uo(y) = ~xiOxj u~ 8xt Oyj 

in the sense of distributions. Moreover, using (4.3) and (4.4), we get 

0 [~-~H(x-y)uo(y)]dY lim ~ O y ~ 
p ~ O  R r a - l ( x ,  p) 

(5.17) =lira ~ ~O H(x-y)Xj(y)uo(y)dtry 
p ~ O  ~ l ( x , p )  O X i  

1 
= - - -  a i j  Uo ( x )  m 

< 2 where I(x, p) is the ellipsoid defined by Z, Ao(xi--yl)(xj--yy)=p, Xj(y) are 
direction consines of the exterior normals to OI(x, p), and (.4~j)= (a~j)-1. Conse- 
quently, we have from (5.16) and (5.17) 

. O 2 
(5.18) I OH(x-y) Ouo(y ) dy= I H(x-y)  Uo(y)dy - Aouo(x); 

em Ox~ dy e~ ~x~axj 

in fact, the existence of the singular integral on the right-hand side has been 
proved in Lemma4.1.  By combining (5.15) and (5.18), we obtain the useful 
formula 

Ul(X)- ~ H(x-y)Buo(Y)dy 
(5.19) a,- 

= ~ (BH(x-y))uo(y)dy- ~ b,jA~j Uo(X) 
R m 1, j m  I m 
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With the help of the notations introduced in w for H61der norms, it follows 
from (5.18) and Lemma 4.3 that 

(5.2o) 

0 0 0 H~ (ul) = H~ ( H* B Uo) < H~ ( BH * Uo) + const. H ~ (Uo) 

< const. II u o II o + �9 + const. H ~ (Uo) < const. I[ Uo I1 o + ~. 

Moreover, (5.18) and (4.21) imply 

(5.21) 
l ul Io = ]H* Buo 1o <_ IBH* Uo 1o + const, l uo Io 

~ const. IlUollo+=+const. Iluollo+=. 

Thus, (5.20) and (5.21) imply that 

(5.22) II u 111 o + �9 < const. 1[ Uo 11 o + =. 

Clearly, we can choose the constants in (5.20)-(5.22) to be the same. Calling this 
constant C, and using (5.22) and (5.20), we find by induction on n that 

n~ Iluollo+~. 

It  follows from this and (5.14) that 

(5.23) o o o~ [ t 1" 0 I,I n ,  (u(x, t))<n, (Uo)+  Z ~ V .  H ,  (u.)_<_ Iluollo+=e c 
n = l  �9 

This proves that the solution u(x, t), given by (5.12), is H61der continuous with 
exponent ~. 

Remark 5.4. It follows from (5.21) and (5.23) that 

Ilu ( ' ,  011o§ < Iluollo§ c Itl, uoeCO+~(Rm). 

This is a good estimate for t<0 .  

Remark 5.5. Since for real-valued functions Uo (x), the function 

n ( x - y ) B u o ( y ) d y  
R m  

is also real-valued, Theorems 5.1 and 5.2 insure that the solutions obtained in w 
and w 3 are all real-valued. 

Remark 5,6. The arguments used in the proof of Theorem 5.3 show also that 
if u(x, t) is a solution in W2'p(R m) for all time t, then u belongs to Ck+~(R~'), 
k > 0 ,  for all time t if its restriction to any fixed t belongs to ck+~(R~'). 

Remark 5.7. By Lemma 4.1, the right-hand side of (5.18) is equal to Dtj(H.uo). 
Consequently, (5.19) can be written ( A - I ) - I B  �9 u o = B ( A - I ) - i . u o  for uo in 
wz'p(Rm), o r  in C2+r o r  in C~ t~ W2'p(Rm). In other words, the 
operators ( A - I ) - 1  and B commute in these spaces (of course, this will not be 
the case for differential operators with variable coefficients). 
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