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Abstract 
A free boundary value problem arising in plasma physics is reduced to a 

non-linear eigenvalue problem of a non-classical type. We establish the existence 
of solutions of the non-linear eigenvalue problem; these solutions are critical 
points of appropriate functionals. 

Introduction 
This paper studies the equations governing the equilibrium of a plasma in a 

cavity. The equilibrium is described by a free boundary value problem related 
to the Maxwell equations; the unknowns are the shape at equilibrium of the 
plasma and the values of some characteristic function (the flux function) inside 
the plasma and in the surrounding vacuum. Once the shape of the plasma is 
known (i.e., once the free boundary is determined), the flux function is defined by 
the solution of a linear elliptic problem in the vacuum and by the solution of a 
linear elliptic eigenvalue problem in the plasma (cf Sections 1 and 2 for the 
precise equations). 

Several free boundary value problems have been solved by the methods of 
variational inequalities (cf, for instance, [2], [3], [8], [10], [13], [22]), but the 
present problem seems to rely on different methods. Our goals in this paper are 
to show that the problem is equivalent to finding critical points of some functional 
k 1 with respect to some other functional k 2 and to show the existence of these 
critical points. 

In Sections 1 and 2 we treat two versions of the problem. In Section 1 we 
consider a simplified (but classical) form of the problem involving linear equa- 
tions. The critical points are obtained as the points where the minimum of k 1 on 
a set k z = constant is attained. Section 2 deals with a more general form of the 
problem. In applying the same procedure to this problem we encounter the 
serious difficulty that the functional kl is not bounded from below on the whole 
function space considered. We overcome this difficulty by showing that the 
functional k~ is bounded from below on any set k2(v ) =const. To do this we 
employ the functional inequality established in Section 3. This inequality gives a 
bound for the /~  (or/~) norm of the positive part u+ =max  (u, 0) of a function u 
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in terms of the/5 norm of its gradient grad u and the ~ (or if) norm of its negative 
part u_ = max ( -  u, 0). Other forms of these inequalities may perhaps be proved 
but we restrict ourselves to the inequalities necessary for Section 2. Finally, in 
the Appendix we recall the derivation of the Tokomak equilibrium equations, 
which are based on the equations of magnetohydrodynamics and on the axisym- 
metric configuration of the machine. (This presentation follows C. MERCIER [19] ; 
see also [4].) 

There are several remaining open problems. These include the uniqueness of 
solutions, the regularity of the free boundary (to be studied in [14]), and the 
numerical approximation of the problem (to be studied in [7]). 

The problem treated here arose in recent work of the fusion of plasma and 
on the Tokomak machine done at the C.E.A. and the C.I.S.I. (in France). The 
author is grateful to C. MERCIER and his group for bringing this problem to his 
attention, and to S. ANTMAN for his remarks. 

1. A Model with Linear Equations 

1.1. The Problem 

Let f2 be an open set in ~x 2 with a boundary F of class rg4 such that 

(1.1) O<x,<xl <x**<oo, 'qx=(x1, x2)~.~"~. 

We define the self-adjoint operator ~<r by 

(1.2) s  
 xl, i=1 

is regular and uniformly elliptic in t]. 1 
The problem of the equilibrium of a plasma in a cavity is governed by the 

following equations (see C. MERCIER [19] and the Appendix). 
Let I > 0  be given. We seek an open set f2p (occupied by the plasma) with 

~p c • and we seek a function u: f2 ~ R such that 

(1.3) 5 Y u = - 2 b u  in f2p, 

(1.4) s  in 12v=f2-f2 p (the vacuum), 

(1.5) u = 0  on Fv = 0f2p, 

Ou. 
(1.6) O--v Is continuous on Fp, z 

(1.7) u = c o n s t a n t = y  on F (y unknown), 

. 1 Ou 
(1.8) e r = I '  

(1.9) u does not vanish in f2p; 

i We may also consider an abstract problem with a more general second order self-adjoint 
elliptic operator. 

2 v is the unit normal  on l'p (or F) pointing outward from f2p (or O). 
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(1.10) 

b is a given, continuously differentiable function on t] that satisfies 

O<bo <=b(x)<=b 1, V x ~ .  

Fig. 1 

(1.11) 

where, for (9 c O, 

The unknowns are u, 2, t~p; 2 plays the role of an eigenvalue. Although the 
equations (1.3) and (1.4) are linear, the whole boundary value problem (1.3)-(1.9) 
is non-linear. 

Remark 1.1. For Qp fixed the restriction of u to 12p is an eigenfunction for the 

operator ~f with a homogeneous Dirichlet boundary condition. Relation (1.9) 
implies that u is of constant sign on g2p and thus 2 is the first eigenvalue of s 
in Qp: 

2=  Inf aa~(v,v)= Inf aap(v,v) 
~n~(o,,) (by, v) v,n~o(o,J (by, v) ' 

v > O  

1 grad u. grad v dx, 
( J  

and a(u, v)=aa(u, v). 

Remark 1.2. The problem is positively homogeneous with respect to I: If we replace 
I by pI with p > 0, then u is changed into p u and Qp remains unchanged. [] 

Assume that u is a smooth solution of the problem (which means that ~ is a 
sufficiently smooth curve and u is smooth in ~). By application of the maximum 
principle we first deduce some information about the sign of u. 

Lemma 1.1. 

(1.12) 7>0  and u>O in ~2~, 

(1.13) u<O in f2p, 

and thus 

(1.14) 

O p(u) = ~ _  (u) = { x s ~ ,  u(x) < 0 } ,  

Or(u) = ~+(u) = { x e  ~ ,  u(x) > 0}, 

g(u)  = to(U) = { x e ~ ,  u(x)= 0}. 

Proof. If 7=0, then u=O in F2 v in contradiction to (1.9). If ), <0, then u <0 in (2 v, 
and by the strong maximum principle [9-], au/Ov<O on Fp; this contradicts (1.8) 
(I>0). Thus 7>0  and ~u/Ov>O on Fp. Since the sign of u is constant in f2p, this 
sign must be the negative one. 



54 R. TEMAM 

1.2. Equivalence with a Critical Point Problem 

It is convenient  to begin by reducing Prob lem (1.3)-(1.9) to the following 
problem.  

P rob lem 1.1. Find u and f2p such that (1.3)-(1.6) and (1.9) are satisfied and 

(1.15) u = 1 on F. 

If u' is a solut ion of (1.3)-(1.9), then u=u'/7 is a solution of P rob lem 1.1 (with 
the same f2p). Conversely,  ifu is a solution of P rob lem 1.1, then u' = 7 u  is a solution 
of (1.3)-(1.9) with 

I 
(1.16) 7 - +  1 Ou " 

It is easier to solve P rob l em 1.1 than to solve (1.3)-(1.9) (see R e m a r k  1.8). 
L e m m a  1.1 holds for a solution u of P rob lem 1.1. 

In order  to obta in  a var ia t ional  (or weak) formula t ion  of P rob lem 1.1 we 
assume that  u is a smoo th  solution of this p rob lem;  assuming also that Fp is a 
sufficently smoo th  curve, we mult iply (1.3)-(1.4) by v e t o ( f 2  ) and integrate the 
result ing expression over  ~p and ~2 v. ( ~ ( ~ )  is the collection of ~ functions 
with compac t  suppor t  in Q.) We find 

. l  Ou -)_ 7 vdr+a. (u, v)=  - X ( b u  , v), 

~ 1 Ou 
~ vdF+ao+(u, v)=0.  

We add these relat ions and use (1.6) to get 

(1.17) a(u, v)=  - 2 ( b u _ ,  v), 

which holds for each v eCg~ (f2)and, by continuity,  for each v e H~(f2). 3 
Conversely,  let us assume that  u is sufficently smooth,  that  

ro = to(u)= {x, u(x)= 0} 

is a smoo th  curve, and that  u - 1 E H ~ ( f 2 )  satisfies (1.17) for each v in H~(f2). Then, 
again, it is a s tandard  exercise in variat ional  formulat ions  to check that  u is 
solut ion of  P rob l em 1.1 (see also the p r o o f  of  T h e o r e m  1.1). 

Setting U = U o +  1, uoeH~(f2 ), we consider the following variat ional  problem.  

Prob lem 1.2. Find u o in H~((2) and 2~R such that 

(1.18) a(Uo, v )=  -2 (b (u0  + 1)_, v), V veH~((2). 

In the sequel we shall solve P rob lem 1.1 in its weak form, Prob lem 1.2: The 
fact that  u= u o + lwith a u o solution of (1.18) is a classical (or strong) solution of  

3 Hm(12), m an integer, is the Sobolev space 

{u~L2(f2), D'u~=LZ(Q), V 0~=(0~1 . . . . .  ~n)' IO(I ~-m/" 

H~'(~2) is the closure in H"(f2) of the space ~q~~ For all the properties of Sobolev spaces (density, 
compactness, imbedding theorems .... ) see LIoNs & MAGENES [18], NE~AS [21]. 
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Problem 1.1 is then a problem of regularity of u o and of F o (u) = {x ~ (2, u o (x) + 1 = 0} 
(see below). 

The next step is to transform Problem 1.2 into a critical point problem. For  
this purpose we introduce the functionals 

(1.19) k 1 (v) =�89 v), 

b 
(1.20) kz(v)=�89 1)_, (v+ 1)_)= ~ 5 [(v+ 1)_]2dx. 

The functional k 1 is differentiable on HI(O ) with differential* 

(1.21) (k'l(v), w) =(v, w), V v, weH~(O), 

and we infer from Lemma 1.2 below that k z is differentiable on H i (O) with differen- 
tial 

(1.22) ( k ' 2 ( v ) ,w )=- (b (v+ l )_ ,w)=-  Ib [ ( v+ l )_]wdx ,  VwsHoa(O). 
12 

The relation (1.18) is equivalent to 

(1.23) (k'l (Uo), v) = 2 (k 2 (Uo), v) V v e H i (O) 

o r  

(1.24) k' 1 (Uo) = 2 k 2 (Uo), 

and Problem 1.2 is now equivalent (cf [12]) to 

Problem 1.3. Find the critical points of k 1 on the subsets kz(v)=const, of HI(O); 
2 is the corresponding critical value. 

In the next subsection we establish the existence of critical points. We conclude 
this paragraph with 

Lemma 1.2. Assume that g~L~(O), ~LZ(Y2). Then the functional 

k(u)= 

is Gdteaux differentiable on L2(O) with differential 

<k' (u), v) = - ~ g[(u+~)_]vdx.  

Proof. We can restrict ourselves to the case q~ = 0. The function s --* (s_)2 is differen- 
tiable with differential - 2 s .  Hence, for almost every xm O, 

ez(x)- [(u(x)+ 2v(x) ) - ]2 -  [u(x)-]2 ~ - u  (x) v(x) 
22 

as 2~0 .  

4 G~tteaux differentiability (cf [11], [17]) is sufficient for our purposes; ( , )  denotes the pairing 
between the space (H~(O) here) and its dual. 
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On the other  hand, since s is Lipschitzian, the modulus of ea(x) is bounded  
by ]u(x)[ Iv(x)l (for 2__< 1). The dominated  convergence theorem is thus applicable 
and we obtain the result. 

1.3. Existence o f  Critical Points 

We recall the following well known property.  

Lemma  1.3. Let  h 1 and h 2 be two differentiable real-valued functionals on a Banach 
space X.  Assume that u minimizes (or maximizes)  h I on the set h2(u)=c and that 
h 2 (u)#O. Then there exists  2 ~ R  such that 

h', (u) = 2 h' 2 (u) 
(u is a critical point) .  

L e m m a  1.4. (i) For every c > O, the minimum of  k 1 (v) on the set k 2 (v)= c is attained 
at a point u o which is a critical point o f  k 1 on the set {k 1 (v) = c}. 

(ii) For every c > 0 ,  the maximum of  k2(v ) on the set kx (v )=c  is attained at a 
point u o which is a critical point o f  k 2 on the set {k I (v)= c}. 

Proof.  (i) Let  

(1.25) a = Inf {k I (v), k 2 (v) = c}. 

Obviously a>=0 is finite. Let Uom be a minimizing sequence for (1.25). The 
sequence is bounded  in H i (f2) (due to the Poincar6 inequality) and is thus relatively 
compact  in /2  (f2). Therefore  there exists a subsequence (still denoted Uom ) such that 

(1.26) Uom ~ u o weakly in H~(Y2) and strongly in L 2 (f2). 

Then (Uom + 1)_--* (U o + 1)_ strongly in /2(f2) and k 1 (Uo)= lim k 2 (Uom) =C. On the 
other  hand, by the weak lower semi-continuity of k 1 (see, for instance, [17], [20]) 

k 1 (Uo) < lim k 1 (Uom) = a 
m-, oo 

so that :r  1 (Uo). 
We must still show that k'2(Uo)#O (cf Lemma  1.3). We infer from (1.22) that 

k2(uo)=0 implies that ( u o + l )  = 0  , and this is impossible since k2(uo)=c~O.  

(ii) The proof  is similar. 

1.4. The Main  Resul t  

Theorem 1.1. For every f i x e d  c > 0 ,  Problem 1.1 possesses at least one solution 
u = u o + 1, with 

(1.27) S b (x) [u_ (x)] 2 d x = c. 
f~ 

The function u belongs to W 3' ~(f2)for all ~ >= 1 and to ~2,,1(f~)for all t 1 satisfying 
0 < t / < l .  5 

5 Wm, r(f2) ' m integer,  1 < r < m,  is the Sobolev space 

{u~E(f2), D~' u ~ E ( O ) ,  V ~ = ( a  1 . . . . .  a n, [~1 <m}.  

qCm,~(~), m integer,  0 < q  < 1 is the space of m t imes con t inuous ly  differentiable funct ions in 12, such 
tha t  the mth der iva t ives  are H61der con t inuous  wi th  e x p o n e n t  t/. 
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Let the sets f2p, f2v, Fp be defined by (1.14). Then u satisfies (1.3), (1.4), (1.5) 
and u is analytic in 12p and in g2v. In the neighborhood of each point x~Fp such that 
grad u(x)4:0, Fp is a cg2 curve, and (1.6) is satisfied. 

Finally if Fp is a cgl curve and if 
1 

(1.28) ~= - 1 0u o ' 

then u'=Tu=~(u o + 1) is a solution of(1.3)-(1.9). 

Proof. We choose a Uo that minimizes kl on {k 2 (v)=c}. It is a critical point of k 1 
on this set and is thus a solution of Problems 1.2 and 1.3; u = u o +  1 is a solution 
of Problem 1.1. 

Writing (1.18) with v~c~~ we see that u = u o +  1 is such that 

(1.29) ~ u = 2 b u _  

in the distributional sense in f2. Since u~Hl(f2), it follows from SxgMpaccrIia's 
results [.23] that u_ also belongs to H 1 (f2). The standard regularity results for 
elliptic problems (u = 1 on F) then imply that u als0 belongs to H 3 (I2). The Sobolev 
imbedding theorems imply that Hl(f2)c/~(I2) for all ~ satisfying 1 < ~ < o o  and 
that H3(f2)c WI'~(f2) for all ~t satisfying 1 <r < oo. Again using STAMPACCmA'S 
results [23] and the results on the regularity of solutions of elliptic problems [1], 
we find that u_ ~ W L "(O), 2 b u_ ~ W ~' "(f2), and u e W 3' "(I2) for all ~ satisfying 
1 < ~t < oo. Because of the Sobolev imbedding theorems, u~Cg 2" ,t(~) for all r/satis- 
fying 0 < r / < l .  In general u_ belongs neither to cr nor to W2"(I2) for any 

> 1; we cannot expect to improve these results on the global regularity ofu in f2. 
Since u is continuous in O, the sets f2p, f2~, Fp as defined in (1.14) make sense; 

f2p and f2~ are open and Fp is closed. Setting v = ~ E ~ ~  (f2p) (or cg~ (f2~)) in (1.18), 
we see that u=  u 0 + 1 satisfies (1.3) (or (1.4)). Thus u is an analytic function in f2p 
and in O,. 

We observe that t2p is not empty because k2 (u) = c > 0 and that f2o is not empty 
because u--1 on F. We note that Fp has an empty interior since otherwise, by 
writing (1.18) with wCg~~ we should find 

L~~ in O - O p .  

Then u would be analytic in I 2 - ~ p  and equal to zero on an open subset, the 
interior of Fp; then u would vanish in f2~, and this is impossible since u--1 on F. 

Finally, at each point x ~ Fp such that grad u(x) 4: O, the implicit function theorem 
implies that F~ is a smooth curve in some neighborhood of x, say C. In this case 
(1.8) is satisfied in (_9. Indeed, multiplying (1.19) by vEC~((9)and using Green's 
formula in (_9 ~ f2 v and in (9 ~ f2v, we find 

[__10U]vdr=2(bu v), 
-(LPu, v)=a(u,v)+ ~ I_ xt Ov J - '  

rp 

where 

(1.30) [_1_1 Ou] =the  jump of 1 ~u 
I_ xl Ov J x-T ~3~-- on Fp. 
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A comparison of this expression with (1.18) shows that 

[ 1  Ou] 
I-x1 t3v ] vdF=O" rp 

Since v is an arbitrary function in c6f ((9), the jump (1.30) vanishes. 

1.5. Miscellaneous Remarks 

Remark 1.3. It is clear that 2 is the first eigenvalue of ~ in f2p for the Dirichlet 
boundary condition and that the restriction of u to f2p is the corresponding eigen- 
function (u has a constant sign in Op). Hence 

(1.31) a(u_,u_) a~p(u,u) <a~p(v,v) Vv~H~(f2p), v>O. 
)'=(bu_,u )=(bu ,u_) = (by, v) ' 

This can also be deduced from (1.18). Since u =  1 on F, u_ belongs to HI(O ) 
and we can set v 1 = u  in (1.18). We find the first equality in (1.31). For wH~(f2p), 
let ~:(x)=v(x) for xEQ v and let ~(x)=0 for x e f 2 - O  v. Then ~eH~(Q) and w= 
u+ + p ~ -  l~H~(t2). We have k2(w)=c provided 

2c p2_  
(b ~, ~) 

Thus 
kt(uo)=kl (u-  1)_<k~ (u+ + p ~ -  1), 

which yields the inequality contained in (1.31). 

By homogeneity (1.31) also holds for yu. 

Remark 1.4. Due to (1.29) and Remark 1.4, u = u o + 1 is solution of the non-linear 
Dirichlet problem 

~ u = b 2 ( u ) u  in g2, 

(1.32) u=  1 on F, 
(u_, u_) a 

2 (u) 
(b u, u_) 

Conversely one can show that any solution of (1.32) defines a solution u o = u - 1 

of Problems 1.2, 1.3. Hence for each fixed c > 0, the Dirichlet-type Problem (1.32) 
possesses at least one solution u such that ( b u ,  u ) = c .  

We see that u ' - -?u  (see (1.28)) is solution of 

~u'- -b2(u ' )u '  in f2, 

(1.33) u'=? (unknown constant) on F,  

r~ 1 t~u' ~ - v  dv=I. 

Remark 1.5. The set f2~ is connected. 
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It is clear that one of the connected components of 12 v contains F in its boundary 
(u-- 1 on F). If (9 is any other connected component of f2 v, then (9 does not inter- 
sect F, and we should have 6cg2,  ~ u = 0  in (9, and u = 0  on 0(9 which implies 
u---0 in (9, leading to a contradiction ((9 r Qv)- 

Remark 1.6. We can pose (1.3)-(1.9) directly as a critical value problem without 
using the intermediate unknown u 7. This approach will be used in the next section 
for a more general problem. Here we confront the difficulty that the functionnal 
h 1 is not bounded in the whole space. 

Remark 1.7. For  the regularity ofFp, cf 1-14]. 

2. The General Case 

In this section we study a more elaborate model describing the equilibrium 
of a plasma in a cavity. 

2.I. The Problem 

Let there be given a twice continuously differentiable real-valued function g 
on ~ • R6 that satisfies the following conditions: 

(2.1) There exist numbers f l> 1, b t, b 2 > 0  such that 

bl ( lUra-1)<~u (X,u)<bg(lule+l), u  Vu,  

(2.2) O g (x, 0) = 0, 7 
Ou 

(2.3) O~g(x,u)>O for u<0 .  7 
au 

We retain the assumptions on f2 and ~ that are stated in Section 1. We con- 
sider the following modification of the problem (1.3)-(1.9), obtained by replacing 
(1.3) with a non-linear equation. 

Problem 2.1. Find an open set f2p, ~v c f2, and a function u: f2 ~ such that 

(2.4) ~ u= + 2 ~ u  (X, U ) in f2p, 

(2.5) ~ r  in f2v=12-~p ,  

(2.6) u = 0  on Fp=0f2 v, 

Ou 
(2.7) Ov is continuous on Fp, 

(2.8) u = constant = 7 on F (7 unknown). 

(2.9) ~ 1 O_uu dF = I, 
rp x~ Ov 

(2.10) u does not vanish in f2p. 

6 L e m m a  2.1 will  show tha t  it suffices to have  g def ined only  on ~ x ] - oo, 0]. 
7 Cf  R e m a r k  2.1. 
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As before, the unknowns  are u, )~, s 2 plays the role of an eigenvalue. For  
s fixed, 2 is a critical value of the functional a~p(u,u) on the subset of Ho~ (s 
defined by 

S g(x, u (x)) dx = constant.  

The  formula t ion  of the whole Prob lem 2.1 as a critical point  p rob lem will 
be ob ta ined  below. We observe that  this p rob lem is not homogeneous  with 
respect to I so that  its reduct ion to a p rob lem like 1.1 is not possible. 

A priori in format ion  abou t  the sign ofu can be obtained exactly as in L e m m a  1.1. 

L e m m a  2.1. I f  u is a sufficiently regular solution of Problem2.1, then ? > 0 ,  u > 0  
in s and u < 0  in s Hence 

s = s (u) = {x ~ s u(x) < 0} ,  

(2.11) s = s (u)-- {x~s u(x) > 0}, 

r~(u) = ro (u) = {x  ~ ~ ,  u(x)  = 0 } .  

2.2. Equivalence with a Critical Point Problem 

Let v denote  a function in cg~ (~) that  is constant  on F (the value on F is denoted 
v(F)). Assuming  that  u is a sufficiently regular solution of P rob lem 2.1 and that  
Fp is sufficiently smooth ,  we can mult iply (2.4) and (2.5) by v, integrate the resulting 
expression over  s and [2 v, and apply the Green  formula.  We obtain  

~  ~u 

1 ~u 1 gu 
- 2   vvdF + r! vdF +aov (u, v) =0 

Adding  these relat ions and using (2.2), (2.9), and (2.11), we find 

Og (x, - u_ (x)) v(x) dx + I v(F). (2.12) a (u, v) = - 2 j  

By cont inui ty  this relation holds for each v in 

(2.13) W =  {ve/-/1(s v = c o n s t a n t  on F}.s 

Conversely,  if ue  W satisfies (2.12) for each ve  W and if u is sufficiently smooth,  
then we can prove  that  u satisfies (2.4)-(2.9) (see the p roof  of Theorem 2.1). We 
therefore arrive at a weaker  form of Prob lem 2.1: 

P rob lem 2.2. Find u in Wand 2ER such that 

Og 
(2.14) a ( u , v ) = 2 j ~ u  (X, - u _ ) v d x + I v ( r ) ,  V v e W .  

a It is clear that W is a closed subspace of H 1 (Q) and that (~o~ (Q)c~ W is dense in W (since (s (s 
is dense in Ho1((2)). 
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We now introduce the following functionals: 

(2.15) k I (v) = �89 a (v, v) - I v (F). 

(2.16) k2(v ) = ~ [g(x, - v_ (x))-g(x,  0)] dx. 

The functional k~ is defined, continuous, and differentiable on W with differential 

(2.17) (k'x (v), w)=a(v ,  w ) -  I w(F). 

We prove in Lemma 2.2 below that k 2 is also defined and differentiable on W, 
with a differential 

(2.18) (k'2(v), w)  =~  ~ag (x, - v _  (x))w(x)dx. 

Admitting for the moment the conclusions of Lemma 2.2, we observe that the 
relation (2.14) is equivalent to 

(2.19) k' 1 (u) = 2 k~ (u), 

and Problem 2.2 is equivalent to 

Problem 2.3. Find the critical points of k x on the subsets k 2 (v) = constant of W; 2 is 
the corresponding critical value. 

Lemma 2.Z The function k 2 in (2.16) is defined, continuous, and differentiable on 
L~+1((2) and thus on IV. Its differential is given by (2.18). 

Proof. By integrating (2.1) we find that, 

(lut ) /lul p+' x 
(2.20) b, y-f~-Iul =< - [g (x ,u ) -g (x ,O) ]<b2  [-f~+tul) for x6f}, u<0,  

so that there exists b 3 >0 such that 9 

(2.21) Ig(x, u) -g (x ,  0)l =< b3([uf +1 + 1). 

Thus, for each vELP+I(f2), the function x~---,g(x, -v_(x) )  is integrable, and by a 
theorem of KRASNOSEL'S~II I15], the functional 

I g(x, - v (x ) )dx  
(a 

is continuous on L ~+1 (f2), as is k 2 . Using (2.1) and similar arguments, we see that 

is a continuous mapping from La+l(O)xlf,+x(o) into IR. That k 2 is Ggtteaux- 
differentiable on LP+*(f2) with (2.18) as its differential then follows from the 
Lebesgue dominated convergence theorem, as in Lemma 1.2. 

9 By (2.3), g(x, u)-g(x,O)<O for x e ~ ,  u<0.  
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2.3. Existence of Critical Points 

In marked  contras t  to the si tuation of Section 1, the functional k 1 is not  bounded  
f rom below on the whole space W. However ,  due to a special inequality proved  in 
Section 3, kl is bounded  f rom below on the sets kg(V)=C (c ~=0) of W. This permits  
us to p rove  

L e m m a  2.3. For every c > 0 ,  kx is bounded from below on the set {v, kz(v)=e} of W 
and the minimum of k~ is attained at at least one point u, which is a critical point 
of k 1 on this set. 

Proof.  We first show that  there exist two constants  c', c" depending on g, c, and 12 
such that  

(2.22) O<c' <[v_[L~+l~) <c" < + c~ 

for each v in W satisfying kz(v)=c. 
The existence of c" follows easily f rom the left inequality in (2.20). For  the 

existence of c', we proceed by contradict ion,  and we assume the existence of a 
sequence v,, e W such that  k 2 (Vm) = e and I(vm)_ IL~ + 1ca~ -+ 0. Replacing v m by - (vm)_, 
we may  assume that  v m converges to 0 in L a +1 (f2), and since k 2 is cont inuous on 
LP+I (f2), we should have k 2(0) = c, in contradict ion to the assumpt ion  c =t= 0. 

The next step consists in the p roof  that  

(2.23) kl(v ) is bounded  f rom below on the set k2(v)=c in W(c>0) .  

We infer f rom (2.22) and the inequality (3.29) of Section 3 that  

[v+[ _-< ~ [grad V[ 2 -'~ C" 6((X, /~ '-  1, c'), 

for each ~ > 0  and for each v in the set k2(v)=c. (I.I is the /2 no rm and 6 =  
6(~, 3 +  1, c ' ) > 0  is a constant  depending on ~, 3, c'). Thus  

(2.24) Jr[ __< Iv+[ + Iv_[ __<, [grad v[ 2 + c" (1 +~) .  

Now,  by the trace theorem,  there exists a constant  c I depending only on f2 
such that  

[v(F)[<=cl {[gradv[2+[v[2} ~, Vv~W. 

Relat ion (1.1) then implies 

k 1 (v) > 1 [grad v[ 2 - I c 1 [grad v[ - I c I [v[. 
zx** 

F r o m  (2.24) we obta in  

(2.25) kl(v)>(\4x**l - I c ~ ) [ g r a d v [ 2 - I Z c  2 x * * - I c l c " ( l + 6  ). 

Choos ing  c~= 1/81c~ x**, we obtain  

(2.26) k I (v) > ~ [grad v[ 2 - c'", 
~SX** 
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where 
e'"= -I~c~x**-Ieac"(1 +6(~, fl+ 1, e')). 

Thus k a is bounded from below on the set under consideration. Now set 

(2.27) ~ = Inf {k I (v), v~ W, k2(v ) =c} 

and consider a minimizing sequence u m of (2.27). From (2.26) and the preceding 
remarks, this sequence is bounded in H a ((2) and by the weak compactness of H a (~2) 
we can extract a subsequence (still denoted by urn), such that u,, converges to some 
limit u, weakly in W and strongly in ~(Q) for 1 < q < oo. Clearly k z (urn) ~ k 2 (u) = c. 
The weak lower semi-continuity of k~ implies that ka (u)= ~. Thus u minimizes 
k a on {v, k2(v)=c }. 

To finish our proof we must show that k2(u)+O. This follows from (2.3): If 
k 2 (u) = 0, then u_ -- 0 and k z (u) = 0 in contradiction to c 4= 0. 

2.4. The Main Result 

Theorem 2.1. For everyf ixed c > O, Problem 2.2 possesses at least one solution u with 

G(u)=c. 

The function u belongs to wa'~(f2) for all ct~ 1, and to cg2"'~(O) for all ~1 satisfying 
0=<~/< 1. 

Let the sets ~2~, ~2v,F p be defined by (2.11). Then u satisfies (2.4), (2.5), (2.6), (2.8) 
and u is analytic in ~2~. The set F v has an empty interior in IR 2. In the neighborhood of  
each x~Fp such that gradu(x)#0,  Fp is a ~2 curve and (2.7) is satisfied. Finally if 
Fp is a piecewise ~2 curve, then (2.9) is also satisfied. 

Proof. The proof is essentially the same as that of Theorem 1.1. By restricting 
(2.14) to functions v in (~~ (s we find that 

?g 
(2.28) s  + 2  ~U-U (x, - u _ )  

in the distributional sense in f2. 
Since u~Hl(f2),  the function - u _  belongs to/3(f2) for any q >  1, and by (2.1) 

ag 
~u (x, - u )  also belongs to Lq(f2) for any q >_ 1. Using the results of [1], we obtain 

u~ WZ'q(f2) for any q. Hence ueCgl(f2) and - u _  is a Lipschitzian function be- 

longing to W 1' q(f2) for any q > 1 (cf. [233). It is then easy to show that ~ (x, - u )  

is in W a' q(f2) for any q > 1. It follows from [1] that u is in W 3' q(O). The other points 
are proved exactly as in Theorem 1.1. 

Remark 2.1. (i) With our assumption on g, we cannot obtain the analyticity of u 
in fa r. As usual, if we require that g have more regularity, then we can prove that 
u has correspondingly more regularity. In particular, if g is analytic, then we can 
prove that u is also analytic. 
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3. A Non-Classical Inequality 

In this section, we prove a non-classical inequality that relates the positive 
part of a function to its gradient and to its negative part (assumed to be different 
from 0). 

Theorem 3.1. We assume that f2c  IR", n = 2, 3, is a bounded open set of class cg2. 
For each a > 0  there exists a function 6~: ]0, + oo [--. IR, such that 

(3.1) ]U+IL2~ ) < a  [ grad u [~2~: + 6~(lu_ [L2~) 

for every u in Hi(f2) such that ]u [L~o)4=0. 

Remark 3.1. (i) An inequality like (3.1) is not possible for the functions u such that 
u =0. 

(ii) For each ~>0,  a > 0  there exists a constant 6(c~, a) such that 

(3.2) lu +IL2~ <~ ] grad U[22 ((2}n .qt- 6((~, a) lU_ IL2C~) 

for every u in H ~ (f2) satisfying 

(3.3) 0 < a < [u_ [z~a) �9 

We obtain (3.2) by writing (3.1) with cc replaced by cca and with u replaced by 
u 

v = - - .  We find (3.2) with 6(a, a)=6~,(1). 

(iii) It follows from the inequality (3.1) that Dirichlet integrals like 

(3.4) j" [grad ul a dx - 2 j" fu  dx 
o 

(feL2(f2)) are bounded from below on the subsets (3.3) of H 1 (f2) and on manifolds 
of the type lU[L2(~)- ' - ' :a>O.  

Proof.* (i) The proof of (3.1) amounts showing that the functional 

(3.5) el (u)=a l grad u]2 -1u +l 1~ 

is bounded from below on the set 

(3.6) cga= {u~H1 (O)[]u] =a} (a > 0). 

Since this result is not obvious, we introduce a regularized functional 

el~(u)=a[gradu]2 +a]u]Z-Ju+[, e>0. 

We shall show that e~ is bounded from below on the whole space H ~ (f2) and 
attains its minimum on ga. After establishing the properties of the minimizer, 
we shall then allow e to approach 0. 

(ii) We observe that 
1 

(3.7) [u+l__<lul< 2 lu12 + ~ ,  

lo We omi t  the subscr ipt  L:(f2), and  as before (., .) and  I'1 denote  the scalar product  and  the n o r m  
either in Lz(f2) or  in LZ(f2) ". 

* Note Added in Proof. See in [27] an  a l ternate  p roof  of  this inequali ty,  due to H. BREZIS. 
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so that the functional e 1 e is indeed bounded from below on H* (~2) and thus on 
~,. Let u,,,, denote  a minimizing sequence for el~ on go. Because of (3.7), u~= is 
bounded  in H~(O) so that there exists a subsequence (still denoted by u,,~) that 
converges weakly in H~ (I2) to some limit u~. The injection of Hi(O) into LZ(f2) is  
compact  and the mapping ~ ~ ~_  is cont inuous on ~ (f2). Hence u~m ~ u~ strongly 
in /~(12) and (u~)_-- .  (u~)_ strongly in L2(f2). It is then clear that I(u,)_ I = a. By 
the weak lower semi-continuity of e~ e, we have 

el~(ue)< lim el~(ue,,) , 
m - ,  o:3 

so that u, minimizes e~ e on g~. 
(iii) We note  that  s u e + - u  e_ belongs to the set ~, for every s > 0 ;  hence 

e~,(s u~+ -u~_) attains its min imum at s = 1 and 

d 
(3.8) d--s el e(su~ + - u~-)]s=l = O. 

By a result of  G. STAMPACCHIA [23] 

I grad (s u e + - u e_)l 2 = s 2 I grad u~+ 12 + I grad u~_ 12. 

It is clear that 

Thus  (3.8) becomes 

(3.9) 

and we have 

(3.10) 

]sue+ -u~-12 = s 2 lug+ 12 -t-] ue-12. 

lu.+ I = 2~ I grad ue+ 12 + 2 e  lue+ 12 

et e(u~)= a ]grad ue+] 2 + e  ]u e_ ]2 - � 8 9  ]u~+ ]. 

(iv) If ue+ is different from zero, the functional  el e is differentiable at ue and 
its differential is defined by 

(3.11) (e ' l~(u~),v)=2a(gradu~,gradv)+2e(u ~, v ) -  l-~(u~+ v) VwHI(s  ]ue+l 

The set ~a is also the set .of u in H 1 (O) such that  

(3.12) ez(U)=]u_]g=a 2. 

Because of L e m m a  1.2 and L e m m a  1.3, there exists a 2,~ IR such that 

ei,(uO =,L 4%) 
(ue + 4: 0), and this amounts  to 

( e'l~(u~), v)  = 2 ,  ( e'2(ue), v), 
o r  

(3.13) 

V v ~ H 1 (0) 

(grad us, grad v)+ e(u,, v)= ~ (u e +, v)-2e(u~ , v). 



66 R. TEMAM 

It is easy to deduce from (3.13) that u s is solution of the non-linear Neumann  
prob lem 

us§ -~.~(u~)_ in O, (3.14) -c~ A u~ + ~u~=2 lu~+l 

(3.15) ~v on Of 2. 

(v) As e ~ 0, e u~ remains bounded i n / 2  (f2). Indeed, if u is some fixed element 
of G 

e 1 ~(u~) < e 1,(u) < c o , 
whence 

cte Igrad Ue[ 2 ..~. ~2 IGI2 <e JUt+ I-t-eCo< ~- JU~I 2 +C 1 �9 

The  integrat ion of (3.14) over f2 gives 

/ - - - - / 3  Ue/ dx, lx  _dx= Z us+ x 
o \21u~+l ] 

and since the r ight-hand side of this relation is bounded,  2, u~_ is bounded in 
(o): 

(3.16) I'~, (G)-hL' (a} < c2" 

On the other  hand, since I(u,)_ I = I(u,)_ IL2(O} = a, we have 

(3.17) I 2~(u~)_ IL2 (~j = 2~ a. 

By the interpolat ion theorem of M. RIESZ (cfi [16], for instance), we infer from 
(3.16) and (3.17) that  

(3.18) IA~(u~)_ IL~ (f2)~ C 3 I;~1 ~. 

We deduce from (3.14) and the preceding results, that  the norm of A u s in L ~" (f2) 
is majorized by c 4 + c 3 2~. F r o m  (3.15) and the classical regularity results for elliptic 
problems (cfi AGMON, DOUGLIS & NIRENBERG.[1]) we conclude that  

Ilu~ll w~,,~ ~ / ~  < c5 (1 +2~). 
By the Sobolev imbedding theorems, W 2' ~, (f2) ~ H 1(s [ 4 _  1 < 1~ and therefore 

\5 n 2] 
(3.19) II Ue H H' (I~)/IR ~ C6 (1 + ~.~). 

We now set v=u, in (3.13) and then use (3.10) to obtain 

2~Lu~_12=~lgrad u,12 +elu~12-�89 u~_12 +elu~_l 2. 

Thus 2~>0. Inequali ty (3.19) then implies that  

(3.20) ,~ea 2 < e a  2 + c 7 + c 8 , ~ .  

This inequali ty shows that 2~ remains bounded as e ~ 0 and (3.19) then implies 
that  

(3.21) Ilu~ll.~(~)~ < const. 
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(vi) Before passing to the limit as e--* 0, we establish that  the family u~ itself 
is bounded  in Hi(f2). Because of (3.21), there exists numbers  k, such that  u,+k~ 
remains bounded  in H 1 (~2) as e ~ 0; hence a sequence e,, --. 0 can be extracted for 
which 

(3.22) u~., + k~m --* v, weakly in H 1 (t2) and strongly in L 2 (12). 

We must  show that  the k, remain bounded.  If not, the sequence e,, can be chosen so 
that  [k~l--*oo. Let  0~(x)=l  if u~(x)<0 and let 0 , (x )=0  otherwise. By (3.22), 
0~ (u~ + k, - v) --* 0 in L 2 (f2) (we write e instead of e,,): 

S O~(u, +k~-v)2 dx-oO. 

We expand the integrand of this expression, observe that  O~u, = - ( u ~ ) _  and 
[(u~)_ [=  a, divide by k 2, and let e-o 0 to obtain 

S O~dx--*O. 

The Schwarz inequali ty then implies that  

[(u,)_ [L'tO)<a( I O, dx) ~--* O, 
o 

which is impossible because the sequence (u~)_ is bounded  in H 1 (f2) (by (3.6) and 
(3.21)) and is relatively compact  in L2 (t2) and because I(u,)_ I = a .  Thus by contradic-  
tion, the k~'s are bounded  and 

II u, I1 n~(o) < const. 11 

(vii) The passage to the limit e ~ 0 is now elementary. There exists a sequence 
(still denoted by e) which converges to 0 and such that  

u, -~ ff weakly in H 1 (f2). 

The convergence is also strong in L2(f2) and (u~)_ -~ fi_ strongly in L2(f2) so that  
I f f  I= a. Now for any fixed v in the set (3.6), we have 

e I (fi) = a [grad ~l 2 - 1~ + ] < lim_ e I (u~) = lim el~(u~) < lim'el ~(v) = el (v). 
e ~ O  ~ 0  e ~ O  

Hence the infinum of e x on the set 8, is finite and is at tained at the point  ~. The 
passage to the limit in (3.13) (2~ ~ 2) also gives 

(3.23) a (grad ~, grad v) = 2 J f i ~  (~ + '  v) - 2 (fi_, v), V v e H 1 (f2). 

The relation (3.1) is finally proved with 

(3.24) - 6 (a, a) = inf {a [grad v[ 2 - I v +  [} --- a Igrad ~l 2 - I~ + I. 
v ~$a 

Remark  3.2 ( /5  norm inequalities). (i) An inequality similar to (3.1) or (3.3), but  
involving U norms can be obtained. Fo r  example (see also point  (ii)), assume that  

11 We only consider the case u,+ 4=0. If u~+ =0 ,  this conclusion is very easy. 
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f2 ~ IR 2 is a bounded open set of class (~2. Then for each a > 0, for each q > 1, there 
exists a function 6,,q: ]0, + ~ [  ~ R ,  such that 

(3.25) lU +]L2(O)<~ Igrad ulZ~(a)~ + 6,,o([u_ [Lq(12)), 

for every u in H 1 (f2) such that u # 0. 
The proof of (3.25) is exactly the same as the proof of (3.1). We consider the 

functionals ea and e~, as before, but the set g, is replaced by 

.~={u~Hl(f2)llU lL,~o)=a} (a>0).  

The minimization of e~ on ~ leads to the existence of u~H~(f2) satisfying 

(3.26) -~Au~+au,= u,+ 2~ [(u~)_]q_l, 
2tu~+l 

~3ua 
(3.27) - - = 0  

av 

instead of (3.14), (3.15). 
Only minor modifications of the arguments are necessary in the subsequent 

steps of the proof: 2, is bounded, u~ is bounded in H 1 ((2)/R, u~ is bounded in H 1 (O), 
and u~ converges weakly to fi which minimizes e 1 on ~ .  

(ii) From (3.25) and the imbedding of H1 (f2) into/5((2), r >  1, we deduce that 

(3.28) IU+ILqCO) <a[gra  d 2 ' UlL2c~ ~+,~,q([u_lLqC,~). 

Indeed, if q > 2, we have 

and the passage to (3.28) is easy. 
Using the same homogeneity arguments as in Remark 3.1 (ii), one can infer 

from (3.25) or (3.28) that 

(3.29) I u + I L~o~ --< ~ Igrad ul~s~)~ + 6 (~, q, a)lu _ I L ~ ,  

(3.30) [u + [ L ~  < ~ [grad u[~(~ + ~' (~, q, a)[u [L~O) 

for every u in H 1 ((2) such that 

(3.31) ~<=IU_ILq~,~ (a>0).  

Appendix. Equilibrium Equations in the Tokomak* 

The Tokomak machine is represented as an axisymmetric torus with axis Oz. 
In a plane 0 x z the cross-section of the Tokomak is an open set (2 with boundary F 
representing the cross-section of the shell. The plasma fills a subdomain ~2p of s 
with boundary Fp, and the complementary region f2-((2v u Fp)= (2v is empty, x 2 

* According to [19]; see also [4]. 
12 We do not  consider here equilibrium in the presence of electric currents circulating in s v. 

See [53, [63. 
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The Equations 

The space is referred to the cylindrical coordinate system (r, 0, z); er, e 0, e~ 
denote the usual orthonormal vectors. 

In the vacuum, Maxwell's equations are 

(1) div B = 0  in O. 

(2) rot B = 0  in f2~, 

In the plasma, the magnetohydrodynamic (MHD) description of the macroscopic 
equilibrium gives the equations 

(1') div B = 0 in f2p, 

(2') rot B = #o J in Op, 

(3) grad p=J  x B in f2p, 

where 

B=Bre,+Boeo+B~ez, J=Jrer+Joeo+d~ez, and p 

are the magnetic flux, the current, and the pressure. Due to the axisymmetry, all 
the quantities B,, Bo, Bz, J,, Jo, Jz and p are independant of 0. Therefore equation 
(1) is equivalent to 

(4) div B = I ~ - - ~ ( r B ~ ) + ~ = O ,  

and we conclude that there exists a locally defined function ~b (the flux function) 
such that 

(5) B ,  = + - - -  Bz  . . . .  �9 
r a z '  r 0r 

Later, using the boundary conditions, we shall see that ~b is a single-valued function 
in the whole domain O. For convenience we set f = f ( r ,  z)=rBo. Then 

Now, with this representation of B, the equation (2) (or (2')) becomes 

(7) 

(7') 

where 

(8) 

5e~b = 0  in Or,  

cb eo + Vf x eo/r = #o J in Qv, 

(1 V] 0 1 0 1~ 2 (r r) 



70 R. TEMAM 

The equation (3) can now be written as 

0p 1 0qJ 1 0 f  2 
= - - -  ~(~ ~t �9 r2 , /~o ~r r Or 2 0r 

0 _ 1  ( 0qJ0f  ~f0~O) 
(9) - ~ -  -~ 0z Or 0z Or ' 

Op 1 ~ 1 Of 2 
= - - 2 ' ~ 0 .  

/'/o 0Z r 0 z  2 r  2 0 z  

The second equation (9) implies that Vfis parallel to VO, in f2p so that f depends 
only on ~: 

, dgo 
(10) f 2  = g o ( ~ ) ,  [7f2 =go" VO, where go =-d~.. 

From the first and third equations of (9) we now deduce that 

I g;) 17@ Vp= ( - I  ~q,-~Te~ 

Again 17p is parallel to V~k, and p depends only on ~O: 

(11) P =gl(ff), 17p=g'~. 17~9. 

Relations (10) and (11) imply that the equations (9) are now equivalent to the 
single equation 

(12) ~q~=-porg'l(~)-~rg'o(~k), in f2p. 

Due to (5), (7), (10), (11), all the unknowns are functions of ~b, and ~ is solution 
of (7) and (12). Of course go and gx are unknown functions of ~k, but they cannot 
be determined by using only Maxwell equations. They are constitutive functions 
for the plasma. Below and in the text, we impose very mild restrictions on the 
form of these functions. 

The Boundary Conditions 
Let v be the unit outer normal vector and �9 be the unit tangent vector to Fp 

or F. Since F is a conducting shell, we have 

B . v = O  on F. (13) 

We similarly require that 

(14) 

(15) 

1 0~ 
By (5), B-v . . . .  

B . v = O  on Fp, 

B- �9 is continuous on Fp. 

1 0@ 
r 0z and B. T= r 0v . Hence =0  locally on Fp and F; this 

shows that ~ is a single-valued function in f2 and @ is constant on Fp and on F. 
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Since ~k is defined up to an additive constant, we choose 13 

(16) g ,=0 on Fp, 

(17) ~=cons t an t  =7 on F. 

Finally (15) reduces to 

(18) Ov is continuous on Fp. 
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Other Assumptions 

The preceding equations do not assume any physical hypothesis on the plasma, 
except its description by the M.H.D. model. Some simplifying assumptions are 
now necessary in order to obtain the models treated in the text. 

Following MERCIER [19], we make the following assumptions, considered as 
very realistic: 

(19) p = 0  

(20) 

Thus by (11) and (16), we have 

(21) 

and by (7') and (12), we have 

and Jo=O on Fp, 

Jo:~O in f2p. 14 

gl(0)=0 

#oJo=~eg,=-#org'l(g,)-~g'o(g,)=o on r~, 

i.e.~ 

(22) g• (0) = g'l (0) = 0. 

The assumptions (20) and (21) imply that necessarily 

(23) ~O. 0 in Qp. 

Two Models 

In Section 1 we consider the simplest model: p(~k) and f2(~k) (i.e., go and gx) 
are quadratic functions of ~k. Then (21) and (22) imply 

f2(~h) =go(~) = bo + b2 r 
(24) p(~)=gl(~l)=a2 I/I 2, 

Since f 2 and p (the pressure) are __>0, we must have 

(25) bo, b2, a2 ~ 0. 

13 In doing so, we restrict ourselves to the case in which F e is connected, i.e., in which I2p is 
simply-connected. 

14 l.e., in particular, Jo does not change its sign in g2p. 
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I n  t h i s  case  (12) r e d u c e s  to  

(26) ~a~t  = - ( 2 / ~ o r a 2  + ~ )  I ~ in  f2p. 

S ince  Ao 0 = 0  in f2 v (cf (7)), the equations are linear (although the whole boundary 
value problem for q/ is nonlinear). 

I n  S e c t i o n  2 we c o n s i d e r  a m u c h  m o r e  g e n e r a l  m o d e l  w i t h  o n l y  m i l d  m a t h e -  

m a t i c a l  r e s t r i c t i o n s  o n  go a n d  gl .  I t  is a l so  a s s u m e d  in b o t h  Sec t i ons  t h a t  t he  

t o t a l  c u r r e n t  in  t h e  p l a s m a  is g i v e n :  

I=#~ I ~,I~q~bdrdz=flp r ~?v dF" 

After this work was completed, appeared the paper of GRAD, KADISH & STEVENS 

[25 ] ,  which treats the free boundary Tokomak equilibrium problem under different 
assumptions (in particular, cylindrical geometry, no currents, and constant pressure 
inside the plasma). A similar problem arises in the theory of vortex rings in an ideal 
fluid (cf. [-26]). 
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