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I n t r o d u c t i o n  

In  this art icle we regard thermosta t ics  as being tha t  branch of thermo-  
dynamics  which deals wi th  bodies which are at  rest at  the present  t ime and 
which, for all pract ical  purposes, m a y  be regarded as hav ing  been at  res t  at  
all t imes  in the past. 

We a t t e m p t  to develop here a rigorous theory  of thermosta t ics  for cont inuous 
bodies in a rb i t ra ry  s tates  of strain. The thermodynamics  of chemical  reactions,  

phase transi t ions,  and capi l lar i ty  is not  discussed. Our" a im is to  derive some 
of the fundamenta l  laws of hydros ta t ics  and elastostatics f rom the rmodynamic  
principles. Among  these laws are the existence of elastic potent ia ls  for stress- 
s train relations', the  known inequali t ies  of hydrostat ics ,  and some new inequal i t ies  

for hydros ta t ics  and elastostatics.  

In his classic work, "On the Equ i l ib r ium of Heterogeneous Substances",  
J.  W. GIBBS [1 t laid down cr i ter ia  for determining whether  a given (global) s tate 
of a body is t he rmodynamica l ly  stable. He used these cr i ter ia  to derive par t icular  
equat ions  and inequal i t ies  which represent  condit ions (in some cases necessary 
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and other cases sufficient) for various special states to be stable. The equations 
GIBBS obtained as necessary conditions for thermodynamic stability are now 
recognized as fundamental laws in physical chemistry. GIBBS also derived 
inequalities which, apparently because they are in obvious accord with everyday 
experience and thus might be mistakenly called trivial, have attracted relatively 
little attention and are sometimes not even mentioned in modern thermodynamics 
courses. For example, in his treatment of homogeneous systems at rest under 
uniform hydrostatic pressure, GIBBS showed that a necessary condition for such 
a system to be in a stable state is that both its heat capacity at constant volume 
and its adiabatic modulus of compression be non-negative. It  is inequalities of 
this type which are emphasized in the present paper. We take, h6wever, a point 
of view different from that of GIBBS. 

In the classical treatments of thermostatics (e.g., Ill, [21) the adjective stable 
is used in two senses. It  is sometimes used as a modifier for the word equilibrium; 
i.e. one refers to "states of stable equilibrium"; or it is used as a modifier for the 
word state; i.e. one refers to "stable states". In this paper we never use the word 
stable in the former sense. The theory which we develop here makes a careful 
distinction between local states, referring to a material point in a body, and global 
states, referring to the body as a whole. A local thermomechanic state is specified 
by giving the entropy density and the local configuration at a material point. 
A global thermomechanic state, on the other hand, is specified only when the 
entropy field and the complete configuration are specified for the entire body. 
We regard thermal equilibrium to be a property ~)f local states. We consider just 
one type of thermal equilibrium. We define a state of thermal equilibrium as a 
local thermomechanic state which minimizes an appropriate potential rather than 
as a state at which a first variation vanishes. We regard stability as a property 
of only global states. We consider s~veral types of stable states, defined as global 
thermomechanic states which minimize certain energy integrals subject to dif- 
ferent constraints. 

Our theory is based on two physical postulates. The first asserts that, at a 
material point, any local thermomechanic state can be an equilibrium state 
provided the local temperature and local forces have appropriate values. The 
second postulate is essentially the assumption that, at least in continuum 
mechanics, absolute temperatures are never negative. We believe that these 
physical postula'tes, which are stated in terms of our definition of equilibrium, 
contain the physical content for the statics of continuous media of the First and 
Second Laws of Thermodynamics. From our postulates we prove relationships 
between the stress-strain equation and the caloric equation of state, and we 
derive various inequalities restricting the form of the caloric equation of state. 
We should like to propose that the inequalities which we obtain for the finite 
theory of elasticity answer some of the questions raised by C. TRUESDELL E31 in 
his recent article, "Das ungel6ste Hauptproblem der endlichen ElastizitAts- 
theorie". 

Although our definition of thermal equilibrium is new, some of the definitions 
of the stability of global states which we propose tor study are similar to stability 
definitions considered by GIBBS [11 and J. HADAMARD [41. In particular, our 
concepts of isothermal and adiabatic stability at fixed boundary are closely related 



Thermostatics of Continua 99 

to, bu t  not  identical to, Hadamard stability*. We briefly discuss GIBBS' theory  
of the stabil i ty of fluid phases in w t6. In  a future article we hope to give a 
discussion of GIBBS' theory .of  the stabil i ty of fluid mixtures.  

We regard the main  tasks of the science of thermostat ics  to be, first, the 
explorat ion of the consequences for the caloric equation of state of the existence 
of local s tates of thermal  equilibrium and, second, the derivat ion of useful 
necessary and sufficient criteria for global states to be stable. I n  the present 
paper,  w 6-~w t3 are devoted to the first task and w 14--w t6  deal briefly with 
the second. F rom our  present point  of view, we should say tha t  the great  classical 
thermodynamicis ts ,  GIBBS and DUHEM, devoted their main  efforts to the second 
task.  

I t  will be noticed tha t  in this paper  we never mention such  notions as "re- 
vers ible  processes" and "quasi-stat ic  processes";  in fact, our theory  of thermo- 
statics, being a t ru ly  statical theory,  has no need of "p roces se s "a t  all. 

In  writ ing the present paper  we have striven for a level of mathemat ica l  rigor 
comparable  to tha t  of works in pure mathemat ics  ra ther  than to tha t  cus tomary  
in physics. 

No ta t i on  and  basic  m a t h e m a t i c a l  concepts .  We often find it convenient  to 
distinguish between fnnctiofls and their values. The basic local therrrlodynamic 
variables are denoted by  light face Greek minuscules: 5, ~, ~/, v ~ . . . . .  Symbols 
such as ~, ~, 3 . . .  and ~, ~, ~ . . .  represent real valued ]unctions whose values are 
the the rmodynamic  variables e and ~,. 

We denote vectors and points  of the three-dimensional Euclidean space @ 
by  bold face Lat in  minuscules:  v, x,  y . . . .  

Second order tensors are denote~t by  light face Lat in  majuscules : F;  U, Q, R, I .  
However,  we reserve the symbols X and Z to represent material  points  of a 
physical body. The term tensor is used as a synonym for linear t ransformation.  
Tensors of order higher than two do not occur in this paper. For  the trace of 
the tensor F we write t r F  and for the determinant  of F we write det F.  We 
say tha t  F is invertible if F has an inverse F - l ;  i.e. if det F=~=0. The t ranspose 
of F is denoted by  F r. The ident i ty  t ransformat ion is wri t ten I .  For  the com- 
position, or product ,  of two linear t ransformations A and B we write s imply A B. 

* Hadamard stability requires (roughly) that  the first variation of the integral 
of the elastic potential vanish, and that  the second variation be non-negative, for all 
smooth variations in the state of strain which are compatible with a fixed boundary. 
This sort of stability is necessary but not sufficient for stability at fixed boundary 
as we define it here. In the theory of the propagation of waves in a perfectly elastic 
solid, Hadamard stability of a particular rest state implies the reality of all roots 
of the wave velocity equation for acceleration waves of arbitrary direction which 
might impinge on an object in t h a t  state. J .L .  ERIC~SE~ & R. A. TouPI~ [5] have 
recently considered a modification of Hadamard stability in which they require that  
the second variation of the integral of the elastic potential be strictly positive. They 
use their definition of stability to prove uniqueness theorems in the theory of small 
deformations superimposed on large. R. HILL El6] also has recently discussed reln- 
tionships between uniqueness and stability. In the third article of his "Recherches 
sur l'61asticit6" P. DUHEM [G] formulated several definitions of stability which are 
applicable to bodies with fixed and partially free surfaces; he also derived several 
necessary conditions on the equation of state for particular states of strain to be stable. 

7* 
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Let h (x) be a function for which both  the range and the domain consist of 
either vectors or points in Euclidean space o a. Assume that  for x in some region 
the derivative 

d _  h (x + s v) ,~0 = Vh (x; v) (1) 

exists for all v and is continuous in x.  I t  is the content  of a fundamental  theorem 
of analysis tha t  V h ( x ;  v) is then a linear function of v, and hence we can write 

Vh(x;v)  = [Vh(x)]  v,  (2) 

where V h ( x )  is a linear t ransformation (tensor), called the gradient of h at  x.  

Similarly, the gradient of a real valued function ~ (F) of a tensor variable F 
is a tensor valued function SF (F) defined by  the relation 

~ ( F  + sA)  s=o---- tr  E~F (F)A~, (3) 

where A is an arbi t rary  tensor. If  Cartesian coordinates are used, and if ]{/,][I 
is the matr ix  of F ,  then the matr ix  of ~F is given by  

where i is the row and j" the column index. 

We make frequent use of the following theorem, called the polar decomposition 
theorem: A n y  invertible tensor F has unique decompositions 

F = R g ---- V R (4) 

where R is orthogonal (i.e., R R T = I )  and U, V are positive definite symmetric 
tensors (i.e., U = U T, V = V T, and the proper numbers o/ U and V are all real 
and greater than zero). In  addition, we have 

U = R T V R ,  U 2 = F r F ,  V ~ ~- F F  T. (5) 

Consider a smooth (i.e., continuously differentiable) real valued function 
~(w) whose domain $]z is a region in a finite dimensional vector space. The 
function ~ is called strictly convex if either of the following two equivalent condi- 
tions are satisfied: 

(a) For  all wl  and W2::~:l~ 1 in Yf" and all positive :r with ac+fl ----- t,  the 
inequali ty 

holds. 

(b) For  all iv and w*4=w in W" the inequali ty 

~ ( w * )  - ~ ( w )  - ( w *  - w )  . r e ( w )  > o (7) 
is satisfied. 

\Vht.n "/]P is a region in the space of all tensors, we use the notat ion of ()) 
and the convexi ty  inequali ty (7) becomes 

(F*) -- r (F) -- tr  [(F* --  F) $v (F)~ > 0. (8) 



Thermostatics of Continua 101 

For a twice continuously differentiable function ~ (w) to be strictly cor~vex in W', 
it is sufficient that  the second gradient VV~ (w) be positive definite for w in'W'. 
This condition is not necessary, however: if ~ (w) is convex, it follows only that  
VV~ (w) is positive semidefinite. 

1. Mechanical preliminaries 
We give a brief summary  of those concepts from the mechanics of_continuous 

media that  are relevant to the present investigation. For a detailed discussion 
we refer to [71 and [81 . 

A body ~ is a smooth manifold Of elements X,  Z . . . . .  called material points*. 
A configuration f of ~ is a smooth one-to-one mapping of ~ onto a region in a 
three-dimensional Euclidean point space ~. The point a~ =~(X)  is the position 
of the material  point X in the configuration [. The mass distribution m of ~ is 
a measure defined on all Borel subsets of ~ .  For the total  mass of  ~ we write 
m (~).  To each configuration ~ of ~ corresponds a mass density ~. 

Consider a neighborhood .At(X) of a material  point in a body; i.e., a part  
of the body containing X in its interior. Let g be a smooth homeomorphism 
of J~r(x) into the three-dimensional vector space ~ such that  X itself is mapped 

into the zero vector 0. The inverse mapping of g is denoted by  .~1. Let gl  and gs 
- - 1  - - 1  

be two such homeomorphisms. The composition g2 o g l  of g2 and gl  is defined by  

I t  is a mapping of a neighborhood of 0 onto another neighborhood of 0. We 
define an equivalence relation " ,~"  among all these homeomorphisms by  the 

4 1  
condition that  g l ~  gs if the gradient of the mapping g2 o g~ at 0 is the identi ty I .  
The resulting equivalence classes will be called the local configurations** M of X. 
If  M 1 is the equivalence class of gl and M s the equivalence class of gs then the 

- - 1  
gradient at  0 of g2 o g l ,  i.e. - - 1  

o = v ( g s  o g l )  (0), 

depends only on M 1 and M s. We write 

G ----MsM~ -1, M2 ---- GM1, (t.2) 

and call G the de/ormation gradient from M 1 to M2; G is an invertible linear 
transformation. 

I t  is often convenient to employ a local re/erence configuration M, and to 
characterize the other local configurations' 

M = F M ,  (t.3) 

by  their deformation gradients F from the local reference configuration Air,. If, 
in this way, two local configurations M 1 and M 2 correspond, respectively, to F1 
and F 2 then the deformation gradient G from M 1 to M s is given by  

G = FsFx -~, F s = GF1. (t .4) 

* The term "particle" is often used. We prefer"material point" to avoid confusion 
with molecules and other physical particles. 

** The term "configuration gradient" was used in ,~7]. 
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The rotation tensor R, the right stretc'h tensor* U, and the left stretch tensor V 
of a deformation gradient F a re  defined by  the unique polar decompositions 

F = R U =  V R ,  (t.5) 

where R is orthogonal,  while U and V = R U R  r are symmetric  and positive 
definite. We note tha t  U and V have the same proper numbers;  these proper 
numbers  are called the principal stretches vx, v2, b 3. A deformation gradient  G 
is called a pure stretch if its rotat ion tensor reduces to the ident i ty  I ;  i.e., if G 
is symmetr ic  and positive definite and hence coincides with its own right and 
left stretch tensors. 

The mass densities at X corresponding to the local configurations M x and M,  
are denoted, respectively, by  & and 0~. We have" 

1 
0 2 -  lde ta l  01, (t.6) 

where G is related to M 1 and M 2 by  (t.2). 

2. T h e r m o m e c h a n i c  states  

A global thermomechanic  state, or s imply a state, of a body ~ is a pair {I, 7/} 
consisting of a configurat ion I of ~ and a scalar field ~ defined on ~ ;  ~/is called 
the entropy distribution of the state. 

A local thermomechanic  state, or s imply a local state, of a material  point  X 
is defined as a pair (M, t/) consisting of a local configuration 21//" of X and a real 
number  ~/, called the entropy density (per unit  mass) of the local state**. 

In  the following we often use a local reference configuration 21,/, and, according 
to (t. 3), characterize the other local.configurations M by  the deformation gradients 
F from M,. We then use the pair (F, t/) to characterize the local states. 

Two local states (F, ~/) and (F',  r/') will be called equivalent if they differ 
only by  a change of frame of reference. The local configuration transforms under 
a change of frame according to the law F ' =  QF where Q is orthogonal. We 
assume that  the en t ropy density ~/is obiective; i.e., it remains invariant  under a 
change of frame. Thus, the local states (F, t/) and (F', ~/') are equivalent if and 
only if 

F '  = QF,  ~' = ~ (2.t) 
for some orthogonal Q. 

We say that  two global states {[, ,/} and {f ' ,  ~?'} are equivalent if they differ 
by  only a change of frame. This is the case if and only if 

~/(X) = , / ( X ) ,  F'(X) = QF(X) (2.2) 

for all X in the body and some orthogonal tensor Q independent of X. Here, 
F(X) and F'(X) are tile deformation gradients at X corresi~onding to [ and l '  
respectively. 

* The term "strain tensor" was used in [7]. 
** In this article, pairs in braces, { }, always refer to ~lobal properties; the elements 

of such t)mrs are fiekls over .~. On the other hand, pairs in brackets, (), always refer 
to [,~ca[ prr ~md have elements which are either real numbers or tensors. Note 
theft 11w symbol *l m {/', ~l} and (31, ~/) denotes different entlties; in the first case r/ 
dc~,~tes :~ held while in the second case it denotes a number. No confusion should 
&r ~' ]lll\vev('r. 
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3. The caloric equa t ion  of state 

A material is characterized by  a real valued function of local states, whose 
values , are called the eno'gy densities (per unit mass) of the local states. We 
pick a fixed local reference configuration M, and characterize the state (M, ~/) 
by the pair (F, ~/) where F ---MM; q. We write 

= ~ ( F , n ) .  (3.~) 
I t  is a~sumed here that  the function ~ has continuous derivat ives with respect 
to F and ~*. 

We assume that  the energy density is objective; i.e. invariant under a change 
of frame. I t  follows from (2.t) that  the function ~ must satisfy the relation 

~(QF, n) = ~(F,,7) (3.2) 

for all orthogonal Q. Using the polar decomposition (1.5) and putting Q = R  r 
in (3.2) we see that  

-~ (F ,~ )  = ~(V,~) ; (3.3) 

i.e., that  the energy density is determined by  the right stretch tensor U and the 
entropy ~?. 

The function ~ in (3.3) depends on the choice of the local reference ,configura- 
tion 21//,. The function ~' correspQnding to some other local reference configura- 

tion M; is related to ~ by  ~'(F, ~) = ~ (F G, ~?), (3-4) 

where G = M ' M 7  i is the deformation gradient from M~ to M'.  

The equation (3.3) characterizes the thermal and mechanical properties of a 
material in statics. I t  is called the caloric equation o[ state of the material. 

4." The isotropy group 
I t  may  happen that  the energy function ~ remains the same function if the 

local reference configuration M~ is changed to another local reference configura- 
tion M / = H M ,  with the same density. I t  follows from (3.4) that  ~ then satisfies 
the relation 

~(F,~]) =~(F H,~t). (4.1) 

Since M; and 3/, have the same density, it is clear from 0.6) that  I det H] = t ;  
i.e,, H is a unimodular transformation. The unimodular transformations H for 
which (4.t) holds form a group, called the isotropy group ~ of ~ or of the material 
defined by  ~. This group depends, in general, on the choice of the local reference 
configuration, but it can be shown that  the groups corresponding to two dif- 
ferent local configurations are always conjugate and hence isomorphic. 

We say that  the energy function ~ defines a simple fluid if its isotropy group 
ff is the full unimodular group at/. If  ~r = q /  for one reference configuration, 
then ~ =ad  for all reference configurations. A material point is called a fluid 
material point if its energy function defines a simple fluid. The caloric equation 

* For the application to physical situations it is necessary to limit the domain 
of ~ to a region in the space of local configurations and an interval on the ~/-axis. XVe 
do not supply the mathematical details which may arise in the consideration of limi- 
tations of this kind. 
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of state (3.3) then reduces to the form 

= ~ (F, 7) = "g (v, 7), (4.2) 
where 

I = ] d e t F ]  1 v = - -  - -  (4.3) 
e er 

is the specific volume of the local configuration M = F M , ;  ~ and Q, are the mass 
densities corresponding to M and M,. The function ~ in (4.2) does not depend 
on the choice of the reference configuration. 

We say tha t  a material  point is an isotropic material point if the isotropy 
group of its energy funct ion  ~, relative to some local reference configuration, 
contains the orthogonal group 0. Those local.reference configurations of the 
material point for which fr contains 0 are said to be undistorted. A simple fluid 
is isotropic, and all of its local configurations are undistorted. For any  isotropic 
material, it follows from (3.2) and (4.1) tha t  ~ satisfies the relation 

e(Q U QT,~) = ~(U,~)  (4.4) 

for all symmetric  and positive definite U and all orthogonal Q, provided the local 
reference configuration for ~ is undistorted. Taking Q = R ,  so that  V = R U R  T 
is the left s tretch tensor, we see that  for isotropic material  points the caloric 
equat ion of state (3.3) m a y  be written in the form 

= ~ ( F , ~ )  = ~ ( V , ~ ) .  (4.5) 

I t  ,s a further consequence of (4.4) tha t  for each fixed value of B, e may  be 
=:,pressed as a symmetr ic  function of the three principal stretches v x, v 2, v3: 

e -~ ~(F,~)  = ~(V,~)  = ~(v 1, v2, v3; zl) = ~(vj., B). (4.6) 

I t  m a y  also be expressed as a function of the three principal invariants I v ,  l l v ,  
I I I v  of V and U: 

: ~ (V, ~7) : ~(Iv,  I I v ,  I I I r ;  ~). (4.7) 

We say that  the energy function ~ defines a simple sol~d if its isotropy group 
fr is contained as a subgroup in the orthogonal group 0. A material  point  is 
called a solid material point if its energy function h, relative to some local con- 
figuration as a reference, defines a simple solid. The local reference configurations 
with this proper ty  are again called the undistorted states of the solid material  
point. For  an isotropic simple solid, the isotropy group fr is identical to the 
orthogonal group 0. 

Throughout  the rest of this paper, whenever we discuss isotropic materials 
it is to be understood tha t  the local reference configuration for the energy densi ty 
function is undistorted, unless the reference configuration is explicitly specified. 

5. Forces, stresses, and work 
A system o/]orces is a system of vector valued measures, one for each part  

of the body ~ under consideration*. One must  distinguish between contact  and 
body  forces. The contact  force acting across an oriented surface element in 
will be denoted by  de.  

* For a detailed axiomatic treatment c/. [8]. 
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Definition of mechanical  equilibrium. In  order that a body ~ be in m e c h a n i -  
cal e q u i l i b r i u m  under a given system o//orces, two co'nditions must be/ul/illed 
/or each part # o~ ~ :  (a) the sum o/ the/orces acting on # must vanish, and (b) 
the sum o/ the moments, about any point, o/ the /orces acting on .~ must vanish. 

The condition (a), called the /orce condition, depends only on the body and 
.the force system, not on the configuration of the body. The condition (b), called 
the moment condition, does depend on the configuration of the body; i.e., for a 
given force system, the moment condition may be satisfied for one configuration 
but not for another. 

The force condition alone implies that, for each configuration, the contact 
forces de  arise from a stress-tensor S, so that  

de --- S n d A ,  (5.t) 

where n is the unit normal vector of the oriented surface element and dA its 
area in the configuration under consideration. For fixed contact forces de, the 
stress tensor S will be different for different configurations. 

We consider now a neighborhood .#'(X) of a material point X and assume 
that a system of contact forces de  is given for M/'(X). Let if, be a fixed reference 
configuration and [ some other configuration of M/'(X). If d e is such that  the force 
condition is satisfied, then (5.1) is valid for all configurations; we can write for 
the reference configuration if,, in particular, 

de = S ,n ,  dA, ,  (5.2) 

where n,  is the unit normal of the oriented surface element in the reference 
configuration if,, and dA,  is the area of the surface ~lement in i f , .  We denote 
the position vector, in the configuration if, of a typical material point Z in M/'(X), 
relative to the position of X as origin, by p,  and we consider the tensor K defined 
by 

K - -  t f v (W(X)) p | de,  (5-3) 
w--~ 

where 04/'(X) ' denotes the boundary surface of ,#'(X) and v (M/'(X)) the volume 
of Mr(X) in the configuration if, and where | denotes a tensor product. If the 
force condition is satisfied, the relation (5.t) is valid, and we have 

Kr_ t f sn| 
v (w(x)) 

x ( x )  

In the limit as Mr(X) shrinks to X,  we obtain, after using Green's theorem, 

S T =  lim K.  (5.4) 
..~'(X)--. X 

The same argument, with the configuration I replaced by the reference configura- 
tion I), gives 

S f  : l i r a  ..... I f p,,9 de, ( 5 . 5 )  
�9 ,'t.x',~x v,(~V(X)) 

.r "IX) 

where v, (.A/'(X)) is the volume of ~t'(X) in the reference configuration and p,  
the position vector, in the reference configuration, of a typical material point z 



t 06 BERNARD D. COLEMAN ~r WALTER NOLL: 

in ,/F'(X), relative to the position of X as origin. The position vector p of Z in 
the configuration if is related to p ,  by the relation 

p =- F p ,  + o (IP,[) (5.6) 

where F is the gradient at X of the deformation from if r to if and where 

lim o (d) = 0. 
d.--,.O d 

Substitution of (5.6) into (5.3) and use of (5.4) and (5.5) yields 

S = q~-FS,, (5.7) ~t 

where ~ and ~, are, respectively, the mass densities at X in the configurations [ 
and [, .  

The skew part of K, defined by (5.3), is the moment about X, per unit volume, 
of the contact forces d c  acting on JC'(X) in the configuration if. If the moment 
condition is satisfied for the configuration if, then the total moment (i.e. the 
moment of the contact forces and the body forces) about X in if must vanish. 
Since the moment per unit volume about X of the body forces on JV'(X) goes to 
zero as r shrinks to X, it follows from (5.4) that S must be symmetric if 
the moment condition is satisfied in if. 

We say that a material point X is in local mechanical equilibrium, when the 
body is in a given-configuration and under a given force system, if the stress 
tensor S exists at X and is symmetric. 

The local behavior at X of a system of contact forces is completely determined 
by the tensor S t defined by (5.2). It  is called the Kirchhoff  tensor* of the system. 
For a given force system, the Kirchhoff tensor depends only on the choice of 
the reference configuration and remains the same if the actual configuration is 
changed. From (5.7) we see that the existence of the Kirchhoff tensor S, and 
the symmetry, of F S, are necessary and sufficient conditions for local mechanical 
equilibrium at a material point in the local configuration determined by F. 

In order that a body ~ in a configuration if be in mechanical equilibrium, 
it is not sufficient that all its material points be in local mechanical equilibrium ; 
i.e., that the stress tensor exist and be symmetric at each material point. Global 
mechanical equilibrium will prevail only if, in addition, Cauchy's law 

div S + Q b = 0 (5.8) 

is satisfied. In this equation, S, ~, and the density b of the body forces are to 
be regarded as fields with domain [ (~ ) .  

We consider now a smooth one-parameter family of configurations if(s) with 
deformation gradients F(s) at X. The work per unit  mass done on .#'(X) by the 
contact forces de along the path of configurations If(s) from s = s  1 to s = s ,  is 
defined by 

' F ir  ] dp . d e  ds ,  (5.9) 

* C/. TRUI':."qDI'LL [9], (26.5). 
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where m(.A/(X)) is the mass of JV'(X) and p(s) denotes the position vector, in 
the configuration f(s), of a typical material point in .A/(X). Assuming that the 
contact forces de are independent of s, we obtain 

' [ w -  m(./c'(X)) 

Observing (5.3), (5.4) and (5.7), and taking the limit ,~(X)--)-X, we get 

- -  tr IF(s , )  - tr IF(s,)  S , ] .  

This relation shows that  - - t _  tr (F St) has the physical meaning of the potential 
~r 

energy, per unit mass, of t~he local contact forces. 

6. Definition of thermal  equilibrium 
A force temperature pair for a material point X is a pair (S r, ,9) consisting 

of a tensor S,, to be interpreted as the Kirchhoff tensor of a system of contact 
forces at X, and a real number ,9, to be interpreted as the temperature at X. 

Let a force temperature p a i r '  c' ,  ~) be given and consider the function 

t tr (F  S,) - -  7 ~9. (6. t)  (F ,  n)  = (F ,  n) - -  5 -  

T o  help motivate the definition of thermal equilibrium given below, we make 

the following remarks. According to (5] t t )  the term -- ! tr  (F S,) is the potential 

energy, per unit mass, of the local contact forces. The term - - 7 0  may be inter- 

preted as a thermal potential energy. Thus, the value 2 = ] ( F ,  7) gives a kind 
of free energy per unit mass of the local state (F, 7) when under the action of 
the force temperature pair (S,, 0). 

Definition of thermal  equilibrium. The local state (F, 7) is called a state 
ol thermal equilibrium under a given [orce t e m p e r a t u r e  pa ir  (S,, O) # 

(a) the stress tensor S = (Q/O,)F S, is symmetric, 
(b) the inequality 

(F*, 7*) > '~ (F, 7) (6.2) 

holds/or all states (F*, 7*) @(F, 7) such that 

F* = GF, (6.3) 

where G is symmetric and positive definite. 
The condition (a) means that F corresponds to a local configuration in local 

mechanical equilibrium (c]. w 5). The condition (b) means that  a change of state 
increases the free energy ~ provided that  the configuration of the changed state 
is related to the original configuration by a pure stretch G (cf. w t). 

7. Conditions for thermal  equilibrium 
In this section we show that,  for a local state (F, ~/) to be a state of thermal 

equilibrium under the force temperature pair (S,, 0), the following three conditions 



t 0 8  BERNARD D. COLEMAN ~: \VALTER NOLL: 

,are necessary and sufficient: 

(~) The stress tensor S = ~q F S ,  is given by the stress relation* 

S = qF  ~F (F, ~). (7.1 

(fl) The temperature ~9 is given by the temperature relation 

v~ = ~ (F, ~). (7.2) 
(7) The inequality 

(F* ,  ~*)  - -  ~ (F,  ,/) - -  tr  [ ( F *  - -  F )  iF  (F,  ~/)] - -  (~* - -  ~) ~ (F, ~) > 0 (7.3) 

holds if (F*, ~*) :~ (F, ~) and F* is related to F by F* = GF, where G is positive 
definite and symlnetric. 

We assume first that (F, ~) is a state of thermal equilibrium and prove the 

validity of (~), (fl), and (7)- By (6.2) and (6.3), the function 2(GF, r/*) of the 
symmetric tensor variable G and the scalar variable ~* has a minimum for G = I  

and ~* =~ .  By a theorem of calculus, it follows that the derivatives of 2(GF, ~*) 
with respect to G and ~* must vanish for G = I and z/* = ~. If we set the derivative 

of 2 (GF, r/* ) with respect to ~* equal to zero at ~* =r/,  we obtain the temperature 

relation (7.2). The gradient of 2(GF, ~*) with respect to G may be computed 
using the formula (3) of the mathematical preliminaries and (6.t); we obtain 
the equation 

tr{[FeF(F, r l ) - - ! F S , ] A } = O ,  (7.4) 
0r 

which is valid for arbitrary symmetric tensors A. Using (5.7) the equation (7.4) 
may be rewritten in the form 

tr{[~F~F(F, rl) -- S] A} = O. (7.5) 

By the condition (a) of the definition of thermal equilibrium, S is symmetric. 
It  follows from (3.2) and Theorem I of reference [10], p. 42, that ~F~F(F, rl) is 
also symmetric. Thus, the tensor ~F~,F(F, rl)-  S is symmetric. On the other 
hand, (7.5) can be valid for arbitrary ~ymmetric A only if ~F~F(F, ri)-  S is 
skew; whence it follows that OF~F(F, rt)--S must vanish, which proves (7.1). 
The inequality (7.3) is obtained simply by substitution of (7.1) and (7.2) into 

the inequality (6.2), after 2 is. replaced by its definition (6.t). 

W e  assume now that  the co.nditions (0c), (fl), and (Y) are satisfied. I t  then 
follows from (7.1), (3.2) and the theorem of reference [10] mentioned above that 
the stress tensor S must be symmetric, so that condition (a) of the definition 
of thermal equilibrium is satisfied. Furthermore, the Kirchhoff tensor is given by 

S, = 0, ~F (F, ~1). (7.6) 

Substitution of (7.6) and (7.2) into the inequality (7.3) gives the inequality (6.2) ; 
hence condition (b) of the definition of equilibrium is also satisfied. 

* This is the familiar stress-strain relation of finite elasticity theory (c[. [10], (! 6.4)). 
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8. T h e  f u n d a m e n t a l  pos tu la t e s  

We  are now able to lay down our two fundamenta l  postula tes :  

P o s t u l a t e  I. For every local state (F, 7) for which ~(F, 7) is defined there 
exists a force temperature pair (S,, ~9) such that (F, 7) is a state of thermal equilibrium 
under (St, ~9). 

P o s t u l a t e  I I .  The energy ]unction ~ (F, ~?) is strictly increasing in ~? ]or each 
fixed F. 

Postu la te  I and the results of the previous section yield the following theorems:  

T h e o r e m  1. The force temperature pair (St, ~9) which makes the local state 
(F, ~1) a state o[ thermal equilibrium is given by 

s ,  = ~ , ~ F ( F ,  ,~) , (8.t) 

0 = ~. (F, 7).  (8.2) 

T h e o r e m  2. The energy ]unction ~ obeys the inequality 

~(F*,, /*) - -  ~(F,~)  - -  t r [ ( F *  - - V )  ~F(F,~/)] - -  ( ~ * - - ~ ) ~ n ( F , ~ )  > 0 (8.3) 

]or any two local states (F, 7) and (F*, ~*), in the domain of definition of ~, which 
are related by 

F* = GF, (8.4) 

where G is symmetric and positive definite. 
The discussion of the previous section shows tha t  Theorem 2 is equivalent  to 

Pos tu la te  I.  In  fact,  if we are given a s ta te  (F, ~?), we can define a force t em-  
pera tu re  pa i r  (S,,  ~9) according to (8.t) and (8.2) and then  use the  inequal i ty  
(8.3) to prove  tha t  (F, 7) is in equi l ibr ium under  (S,,  zg). 

The  inequal i ty  (8.3) of Theorem 2 is a restr ic ted convexi ty  condit ion on the 
function ~. If  we take,  in part icular ,  F * = F ,  then (8.3) reduces to 

g:(F, rl* ) -- ~ (F, rl) -- (r~* -- rl) g:,7(F,~) > 0 (8.5) 

for ~7"q=~1. This inequal i ty  is the content  of the following corollary to Theorem 2: 

T h e o r e m  3. For each fixed local configuration, the energy density is given by 
a strictly convex ]unction of the entropy density. 

This theorem is equivalent  to the  s t a tement  t ha t  ~n (F, ~) mus t  be a s t r ic t ly  
increasing function of ~ for each fixed F.  I t  follows tha t  the equat ion (8.2) can 
be solved for ~ in a unique manner :  

= ~ (F, 0) .  (8.6) 

Here,  ~/ is a str ict ly increasing funct ion* of t~ fdr each F. The fact tha t  (8.6) 
is obta ined by  solving (8.2) for ~/ is expressed b y  the ident i ty  

5, IF, g/(F, v~)~ = O. (8.7) 

* The specific heat  c a t  fixdd strain is given by c=*9~o(F,O). Hence, it is a 
consequence of Theorem 3 tha t  c/O is never negative and, for each F, is strictly 
positive except possibly for a nowhere dense set of values of ~. 
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If  we take r/*----~/in (8.3), we obtain 

(F*, ~l) -- ~ (F, ~?) -- tr  [(F* --  F) ~F (F, ~)~ > 0; (8.8) 

this inequality holds whenever F * =  GF, where G 4:1 is symmetric and positive 
definite. 

A local state (F, ~/) is called a natural state if the corresponding stress (8.t) 
vanishes. Keeping the entropy fixed, we may  .use the local configuration of the 

natural  state as the reference configuration, so that  F = I and ~F (I, ~) = -1- S = 0. 
In this case, the inequality (8.8), by  (8.4), reduces to q 

(G, ~) > ~ (I, ~), (8.9) 

which is valid for arbi trary symmetric and positive definite G:#=I. Replacing 
G by  the right stretch tensor U of an arbi trary deformation gradient F and 
using (3.3), we see that  

~(F,n) >= ~(I,n); (8.10) 

this expression becomes an equality only when F is orthogonal; i.e., when (F, r/) 
is equivalent to (I, ~/). Hence, the .energy density is smallest in a natural state. 
I t  should be pointed out that  this observation, though important  for the theory 
of simple solids, is vacuous for fluids. For, we shall prove in w t I that  the stress 
on a fluid material  point in thermal equilibrium is always a strictly positive 
pressure; thus, for a fluid there is no natural state. 

We note that  the restriction (8.4) on the inequality (8.3) of Theorem 2 is 
essential for application of the present theory to physical situations. This 
restriction means that  the local configurations corresponding to F* and F must 
be related by a pure stretch. If, for example, these local configurations were 
related by a rotation so that  F * =  QF, with Q an orthogonal transformation, 
then the left side of (8.8) would reduce to t r [ ( Q - I ) F ~ F ( F , ~ ) ] ,  since ~(F*) 
would equal ~(F) by  (3.2). The stress relation (7.t) shows that  the left side of 

(8.8) would then become t t r [ ( Q - I ) S ~ .  One can show that  this expression 

can be made negative by an appropriate choice of Q if S has at least one negative 
proper number. Thus, the inequality (8.8), were it to hold for arbi trary pairs 
F, F*, would exclude the possibility of thermal equilibrium under compression 
stresses, which is certainly not in accord with experience*. 

9. An alternative axiomatization 

In this section we hope to make clear our reasons for assuming Postulate I I  
and to motivate further our definition of equilibrium. 

I t  follows from Postulate I I  that, for each fixed F, the caloric equation of 
state has a unique solution for ~: 

= ~ ( F ,  e), (9.t) 

and that  the function ~ is strictly increasing in e for each F. This one-to-one 
correspondence between e and ~ at each F makes it possible to give an alternative 

* I t  has also been pointed out by HILL [15j that an assumption of unrestricted 
convexity of ~ in the deformation gradient would lead to unacceptable physical 
behavior. 
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axiomatization of our present theory of thermostatics b y  taking e and F as 
independent variables and defining thermal equilibrium in terms of the func- 
tion 4- In  such a formulation a local thermomechanic state is characterized by  
a 'pa i r  (F, ~), and thermal equilibrium is defined as follows: 

Al ternat ive  defini t ion of t he rm a l  equi l ibr ium.  The local state (F, e) is called 
a state o] thermal equilibrium under the ]orce temperature pair (St, 0), with 0 ~ O, i] 

(a) the stress tensor S-~ (e/e,)F S, is symmetric, 
(b) the inequality 

1 (9.2) 

holds ]or all states (F*, e*) 4 = (F, ~) such that F * ~  GF, where G is symmetric and 
positive definite. 

T h e o r e m  4. The definition o] thermal equilibrium given in w 6 and the alternative 
definition o] thermal equilibrium are equivalent (]or z94= O) i] )Postulate I I  is assumed. 

Proo]. In  w 7 we showed that ,  under  the original definition of w 6, in order 
for a state (F, r/) to be a state of thermal equilibrium for the force temperature 
pair (S,, O) it is necessary that  

0 = ~ ( F ,  7). (9.3) 

By a very similar argument it can be shown, using the alternative definition of 
thermal equilibrium, that  in order for the state (F, e) to be a state of thermal 
equilibriur:n it is necessary that  

~- = ~/, (F, e). (9.4) 

Now, by  Postulate II, the functions ~ and fi are strictly increasing in ~/ and , ,  
respectively, for fixed F. Hence, 0 cannot be negative if (S,, ~9) is to be a force 
temperature pair for some state of thermal equilibrium, regardless of which of 
the two ' definitions is used. Since we here assume 04=0, we have ~ > 0 ,  and 
(9.2) can be multiplied by  0 and then rearranged to give 

1 t r ( F * S , ) + e * > - - O ~ ( F , e ) - - ~ t r ( F S , ) + , .  (9.5) - * * )  - o-- 

Noting the relations 
7 "  = ( F * ,  = ( F ,  

(9.6) 
e* = ~(F*,~*),  ~ = ~(F,~),  

and (6A), we see that  (9.5) is equivalent to (6.2). The requirement that  (F, 7) 4= 
(F*, ~/*) and the requirements on G = F * F  q are the same for (6.2) and (9.5). 
The condition (a) is obviously the same in both definitions; hence the definitions 
are equivalent, q. e. d. 

From a certain point of view the alternative definition of thermal equilibrium 
given in this section is more fundamental than the original definition of w 6. 
The alternative definition is more closely related to the physical notion that,  
since entropy tends to increase, equilibrium states should be, in some sense, 
states of maximum entropy. The definition of w 6 is closely related to the idea, 
which is often used in mechanics, that  equilibrium states should be, in some 
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sense, states of minimum potential. I t  should be emphasized that  the two 
definitions are equivalent only if Postulate I I  is assumed; i.e., only if states of 
negative temperature are excluded. Of course, negative temperatures never 
occur in continuum mechanics, but there are subjects in which they do occur 
(c/. [111, [121). Statistical mechanical considerations suggest that  for systems 
capable of negative temperatures a practical definition of thermal equilibrium 
should be based on the idea of maximum entropy. 

10. Infinitesimal deformations from an arbitrary state 

Here we consider the classical theory of infinitesimal de/ormations from an 
arbi trary initial configuration. We make no a t tempt  to justify the use of the 
theory of infinitesimal deformations as an approximation to the theory of finite 
deformations. 

In the theory of infinitesimal deformations one considers cases in which 
F* = GF is obtained from F by  superimposing an infinitesimal deformation. The 
infinitesimal strain tensor E is defined as the symmetric part of G -  I .  

In the special case in which G is positive definite and symmetric (i.e., when 
F* is related to F by  a pure stretch) we have 

E ---- G --  I ,  (10.1) 

and the excess energy ~ (GF, ~ ) -  ~ (F, ~) is a function of E alone: 

a (E) = ~ (GF, ~]) -- ~ (F, ~?). (10.2) 

Equation (10.2) is valid approximately even when G is not symmetric. 

In the infinitesimal theory it is assumed (i) that  (10.2) is valid exactly for 
all G and (ii) that  the excess energy is exactly given by the sum, 

a (E) = ~r 1 (E) + a2 (E), (t0.3) 

of a term al (E) linear in E and a term a 2 (E) quadratic in E. 

By taking the gradient of (10.2) with respect to E and then putting E = 0 ,  
it is easily shown that  the linear term al (E) must be given by  

a 1 (E) = tr [EF eF (F, r])~. (t0.4) 

Hence, using the stress relation (7.1), we have 

I t r (E  S) (10.5) .0" 1 (E) = ~ .  

where S is the stress ot ~he original state (F, ~). 
Now, the fundamental inequality (8.8) may  be written 

~ (G F, rj) -- ~(F,~) -- t r [ (G --  I) F ~F(F, B)I ::> 0. (10.6) 

From (10.1), (10.2) we get 
a (E) --  t r  lEE eF (F, ~)] > 0, (t 0.7) 

and it follows from (t0.3), (10.4) and (t0.5) that  

(E) = a (E) --  t tr  (E S) > 0. (10.8) G 2 
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This inequality is the content of the following theorem: 

Theorem 5. For an infinitesimal de]ormation superimposed, at fixed entropy, 
on an arbitrary state, the excess energy is the sum o] a positive definite quadratic 
[orm in the infinitesimal strain tensor E o[ the superimposed strain and a linear 

term I t r  (E S), where ~ is the density and S the stress corresponding to the original 
state. O 

If the original state is a natural state in which the stress vanishes, the above 
theorem reduces to the familiar statement that  the strain energy is a positive 
definite quadratic form in the infinitesimal strain tensor. For isotropic materials, 
this statement is equivalent to following well known inequalities for the Lam6 
constants: 

/ ~ > 0 ,  3 ~ + 2 # > 0 ,  (10.9) 

which state that  the shear modulus and the compression modulus must be positive. 

11. Simple fluids 

For simple fluids we have, by (4.2) and (4.3), 

~(F,~) = ~ ( [ d e t F [  v, ,~) ,  (t1.t) 

where %.= 1]~, is the specific volume in the reference configuration. Taking the 
gradient of (11.1) with respect to F, we obtain 

~ (F, n) = ~ Cv, n) v F -1, (t 1.2) 

where v-----IdetFlv,. On substituting (tt.2) into the fundamental inequality 
(8.3) and using (8.4), we obtain 

~ ( v * , ~ * ) - - ~ ( v , ~ 7 ) - - v - ~ ( v , ~ ) t r ( G - - I ) -  (~7"-- ~7) ~,(v,~) > 0, ('11.3) 

which must hold for all positive definite symmetric G = F F  *-t whenever either 
G: ~ I  or ~/~,)*. 

We assume now that  v * = v ;  i.e., that  i d a  F,i---- I det F I, which means that  
G is unimodular. We also choose ~*-----~. Then (11.3) reduces to 

- -  v ~ (v, ~) tr  (G - -  I )  > 0 ,  (t t .4)  

which must be valid for all symmetric positive definite unimodular tensors G ~ I. 
Let gt, g,, g3 be the proper numbers of G. We then have 

gi > O, glg2g3 = t ( t l . 5 )  
and 

tr (G - -  I)  ----- gt + g ,  + ga - -  3 .  (t 1.6) 

Using the fact that the arithmetic mean is greater than the geometric mean, 

3 . . . . .  gt+g~+g~ > ]/gtg~g3, (tt.7) 
3 

we see that  (tt.5) and (tt.6) imply 

tr(G --  I) > O. (11.8) 
Arch. Rat iona l  Mech. Anal. ,  Vol. 4 8 
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,Hence, it follows from (t t.4) that 
~o(v, 7) < 0 (11.9) 

for aU v and 7 for which ~ is defined. Thus, ~(v,'7) must be a strictlydecreasing 
function of v for each fixed ~. 

Substitution of (tl.2) into (7.t) shows that the stress relation reduces to 

s = - ~ (~, 7) x, (11.10) 
where 

~(v,  7 ) =  - ~o(~, ~) (11.11) 

is the hydrostatic pressure. By  (1 t.9) it is positive. 

For further exploitation of (It.3) we choose G,=od, o~>0. Since 

~a__ldetGl___ detF* _ v* 

we have 

Substitution of (t1.12) into (tt.3) yields the inequality 

-e(v*,7*l--e(v,71-3ve~(v,~l -1-(~*-~l~,,(v,71>o, (1t.t3/ 

which must be valid for all v, v*, 7, 7* except, of course, when both v ----- v* and 
~/=~*. In order to understand the significance of this inequality we introduce 
the new variable 

, = ~/~ (11.t4) 
and define the function ~ by 

~(v,~) = ~(~,~) = ~(~/~,~). (4t.t5) 

A straightforward calculation shows that (11.t3) is equivalent to the inequality 

~(~*,~*) - ~ ( ~ , 7 )  - ( ~ * - ~ ) ~ , ( ~ , ~ )  - ( 7 " - ~ ) ~ , ( ~ , ~ ) > o ,  (1t.t6) 

which states that ~(v, ~) is strictly convex in v and ~ jointly. If ~(v, 7) happens 
to possess continuous second derivatives, it follows that the matrix 

must be positive semi-definite: 

We summarize in the following theorem: 

Theorem 6. For a simple fluid in thermal equilibrium, the stress S reduces to 
a hydrostatic pressure S = - - p ( v ,  rl)I. The pressure p(v, ~) = -  "g,(v, 7) is always 
positive. The energy density ~ (v, ~t) is a strictly convex ]unction o] the cube root v 
o/the specific volume and the entropy ~ iointly. 

It  is not hard to 'show that, for simple fluids, the positivity of p(v, 7/) and 
the convexity of ~ (v, ~) are not only necessary but also sufficient conditions for 
the validity of the fundamental inequality (11.3). Hence, these conditions are 
also sufficient conditions for the validity of Postulate I for simple fluids. 
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12. I so t rop ic  m a t e r i a l s  

For isotropic materials in general, if we pick an undistorted state as reference, 

we have, b y  (4.5), ~(F,  rl) = ~ ( V R ,  rl) = ~(V,  rl), (12.t) 

where V is the left stretch tensor, defined by  the polar decomposition F = V R .  
On computing the gradient of (t2.4) with respect to V, we find 

eF( F ,  ~l) = R r  ~v (V ,  7)" (t2.2) 

If  we substitute (t2.2) into (7.t) and again use F = V R ,  we see that  the stress 
relation may  be written in the form 

S = e V ~ v ( V , n )  = ~ e v ( V , n )  V .  (t2.3) 

On substituting (8.4), (t2.1) and (t2.2) into the fundamental  i.nequality (8.3) 
and observing that  

~(F*) = k ( G F )  = ~ ( G V R )  = ~ ( G V ) ,  
we obtain 

~(GV,~/*) - - ~ ( V , ~ )  - -  t r [ (G - -  I )  V ~ v ( V , ~ )  ] - -  (7* - -  ~/) ~,(V,~) > 0. (t2.4) 

This inequality must  be valid for all 7, ~/* and all symmetric and pcsitive definite 
G and V, except, of course, when both ~7 =~7" and G = I .  

We consider now the special case when G and V commute;  i.e., when 

V* = G V (t2.5)  

is symmetric.  In  this case the tensors V and V* have an orthonormal basis of 
proper vectors in common. The matrices of V and V*, relative to this basis, are 

I1! ~176 tl Ilvll-- v, 0 l l v * l l =  0 v* 0 , (12.6) 

0 v 3 0 0 va* 

where the v i "and the v~ are the proper numbers of V and V*, respectively. The 
matr ix  of ~v (V, ~) is 

** 0 , (t217) 
0 

where 0 
ei --- ~i (vj , 7) = -~ i  ~ (vi ' ~1) (12.8) 

are the partial  derivatives of the function (4.6). Substitution of (t2.5), (4.6), 
(t2.6), and (12.7) into (t2.4) gives the inequality 

3 

(v*, 7*) - -  ~ (vj, 7) - -  ~ (v* - -  vi) ei (vi ,  ~1) - -  (~* - -  7 ) - ~  (vi,  ~) > O, (12'.9) 
i = 1  

which is valid except when ~/*=~ and v i = v *  for all i. We have thus proved* 

* We have shown that for isotropic materials the inequality (12.9) is a necessary 
condition for validity of the fundamental inequality (8.3). At the present time, it 
is .an open matter  as to whether (t2.9) is:sufficient for the validity of (8.3) in the 
isotropic case, or whether further inequalities which are independent of (12.9) c~n be 
deduced from Postulate I for isotropic materials. 

8* 
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T h e o r e m  7. For an isotropic material, the energy density ~ (z,i, ~) is a strictly 
convex [unction o / the  principal stretches v i and the entropy density ~] jointly. 

If  ~ happens to be twice continuously differentiable, it follows tha t  the matrix 

~21 e22 ~23 ~ (t2.t0)  
_~31 B3 2 ~3 3 ~3,1 

is positive semidefinite. Here the indices t, 2, 3, and ~/ denote the derivatives 
of ~ with respect to v 1, v2, v3, and ~/, respectively. 

A corollary of the convexi ty  inequali ty (12.9) is 

T h e o r e m  8. For an isotropic material, the [unctions-~i (vi, ~), defined by (t2.8), 
have the property that v~ > v k implies -~i (vi, ~) > -~k (vj, ~). 

Proo[. Without  loss of generality, we take i = 1 and k = 2. We then choose 
V*l=V2, v * = v  1, v * = v  3, and ~*=~/. Since ~(vi, ~) is a symmetr ic  function of 
the principal stretches v i (c[. w 4), and since the v7 differ from the v i only by  
their order, we have 

(v*, ~) = ~(vj, ~). 
Hence (i2.9) reduces to 

- (v2 - vl)  ~ l ( v j ,  ~ )  - (v l  - v2) ~ ( v j ,  ~ )  > 0 ;  
i.e., 

' (Vl --  *2) E-el (vi, ~) -- -~2 (vj, ~)] > O. 

Thus, if vx>v2, then ~l(vj, ~7)>e2(vj,~7), q.e.d.  

In  an isotropic material,  the left s tretch tensor V and the stress tensor S 
have an or thonormal  basis e/ of proper vectors in common. The e i determine 
the principal axes of stress. I t  follows from (12.3), (12.6), and (12.7) tha t  the 
principal stresses are given by  

s / =  e v/~/(v i,~}). (12.tl)  

When measured per unit  area in the undistor ted reference state, these principal 
stresses must  be replaced by  

s; = e, ~i (vi, ~])" (t2.12) 

Hence Theorem 8 has the following simple physical interpretat ion:  

T h e o r e m  8a. iT/, at a given value ~7, the principal stretch vi is greater than the 
principal stretch vk, then the principal stress, measured per unit area in the un- 
distorted re[erence state, in the direction o/vr is greater than that in the direction o/ v,.  

I t  should be noted tha t  the s ta tement  of this theorem does not necessarily 
remain valid if the principal stresses are measured per unit area of the deformed 
state*,  except when these stresses are all positive; i.e., except in a state of pure 
tension. 

* Such a statement was proposed as a postulate by M. BAKER & J. L. ERICKSEN 
[13J. In our theory, only the modification given by Theorem 8a is valid. Related 
inequalities have been studied by J. BARTA E141. 
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13. The  free energy 
I t  is often useful to employ the deformat ion gradient  F and the tempera ture  

*9, ra ther  than  F and the en t ropy  ~, as the independent  variables. This is possible 
because, by  (8.2) and (8.6), there is a one-to-one correspondence between ~7 and .9 
for each fixed F.  

T h e / t e e  energy/unction (o is defined by  

~ ( F ,  0) = ~ [F, ~ (F, *9)] - -  0~  (F,*9), ( t3. t )  

where the en t ropy  funct ion @ is defined in (8.6) as the unique solution of the 
equat ion (8.2). The values ~ of the free energy funct ion 9 are ca l led / ree  energy 
densities*. 

Differentiat ion of (t3.1) with respect to F,  using the chain rule, gives 

~F (F, 0) = ~F IF, ~ (F, *9)] + ~ IF, ~ (V, *9)] ~F (F, *9) - -  *9 ~F (F, ,9). 

I t  follows from (8.7) tha t  the last two terms cancel, 'so tha t  

~F (F, *9) = ~F [~, ~ (F, *9)]. (t3.2) 
Differentiat ion of (t 3.t) with respect  to *9 gives 

~po (F, *9) = -- ~ (F, ~9) . (13-3) 

F rom Theorems I and 2, (t3.2), and (.13.3) we get 

T h e o r e m  9. For the lorce temperature pair (St, ~9) to make the local state (F, ~) 
a state o~ thermal equilibrium, it is necessary and sul/icient that S, and ~ be given by 

S, = e, ~,F (F~, 0) ,  (t3.4) 

= --  ~o(F,  0) .  (13.5) 

On mult iplying (13.4) on the left by  (Q/Q,)F and not ing tha t  S =(QI~,)FS,,  
we get the following form for the stress relat ion:  

S ---- e F t ( F , * 9 ) .  (13.6) 

Assuming tha t  two tempera tures  *9, *9* and two deformation gradients  F,  F*  
are given, we now put. 

= ~ (F, *9) = - -  ~o (F, *9) 

~/* = ~/(F*, *9*) = --  ~0 (F*, *9*). (t3.7) 

By  subst i tut ing (t 3.t) - -  (13.7) into the fundamenta l  inequal i ty  (8.3) of Theorem 2, 
we obtain 

T h e o r e m  10. The/tee energy/unction ~ obeys the inequality 

(F*, *9*) --  ~ (F, ,9) - -  tr  [(F* --  F)  ~F (F, ~)] - -  (*9* --  *9) ~o/F*,  *9*) > 0 (t 3.8) 

/or any two pairs iF, O) and (F*, ,9*) =4-=- (F, *9) in the domain o/definition o~ (o which 

are related by F* = G F , (t3.9) 

where G is symmetric and positive definite. 

�9 * The term "Helmholtz free energy per unit mass" would also be in accord with 
common usage. 
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As Theorem 2, so also Theorem 10 is equivalent to Postulate I. 

If in (t3.8) we take the special case F * = F  and interchange 0 and 0", we 
obtain 

~(F,O*)  --  ~o(F,O) --  (O* - -O)  ~o~(F,O) < 0 .  (t3.t0) 

This inequality, which is valid for all F and all .9"~0 ,  states that the free energy 
function ~p (F, *9) is strictly concave in .9 for each F. 

Putt ing *9*=,9 in (t3.8) gives the following restricted convexity of *~ in F :  

~ (F*, 00) - -  ~(F,*9) - -  tr [(F* - -  F) ~F (F, *9)] > 0,  ( t3. t l )  

the restriction being the condition (t3.9). 

The considerations and results of w t I and w t 2 on simple fluids and isotropic 
materials remain valid if the energy function ~ is replaced by the free enorgy 
function ~, except that  the convexity of ~ (F, ~/) in ~ corresponds to the concavity 
of ~ (F, ,9) in *9. We summarize the relevant results. 

For a simple fluid, the free energy density reduces to a function of the Specific 
volume v and the temperature .9 only: 

~ =~(F , ,9 )  = ~pCv,,9). 03.12) 

The stress reduces to a hydrostatic pressure given by 

S =  - - p ( v , * 9 ) I ,  p(v, oo) = -- ~,(v,*9). (t3.t3) 

The pressure is always positive. The function ~, giving the free energy as a 
function of the cube root v of the specific volume and the temperature, 

~(~,.9) = ~p (~3,,9), (13 . t4 )  
satisfies the inequality 

~(v*,*9*) -- ~C~,.9) - (v* - v) ~,(v,*9) - (*9* - *9) ~(~*,.9") > o. (t3.15) 

This inequality implies that  ~ (v, *9) is strictly convex in v for each ,9 and strictly 
concave in .9 for each v. 

For isotropic materials in general, the free energy reduces to a function of 
the temperature .9 and the three principal stretches vl, v,, v~, computed relative 
to an undistorted state: 

(F, *9) = ~p (v~, v~, v3; .9). 03.16) 

The function ~p is symmetric and strictly convex in the variables v~, v~, v3; ~p is 
strictly concave in *9. Theorems 8 and 8a remain valid if ~ is replaced by ~p; 
i.e., if the temperature, rather than the entrol3y is fixed at a given value. The 
stress relation may be written in the form 

S = e Vqv(V ,*9) ,  (13.t7) 

where V is the left stretch tensor. 

The forms, (13.6), (13A3), and (t3.17), of the stress relation are useful in 
discussing experiments involving equilibrium states for which the temperature 
is controlled, while the forms, (7.t), (tt.10), and (12.3), a re  appropriate for 
discussing experiment~ involving equilibrium states for which the entropy is 
controlled. 



T h e r m o s t a t i c s  of C o n t i n u a  '1 '19 

14. Thermal stability 
Consider a body 5g and a global thermomechanic state {[, 7} of ~ ,  defined by  

a configuration [ of ~ and an entropy distribution ~ of 5g; (c/. w 2). Let the 
caloric equation of state of the material point X of ~ be given by 

e (X) = ~ EF(X), ~/(X) ; X-1. (t 4.t) 

Here F(X)  is the deformation gradient at x of the configuration if relative to 
some reference configuration if,. We do not assume that the body is homogeneous, 
and hence the function ~ may depend explicitly on X as indicated in (t4.t). 
The total entropy of ~ in the given state is defined by  

H = f ~7 (X) dm (t4.2) 

and the total internal energy of ~ by  

E = f  ~ [ F ( X ) , ~ ( X ) ; X ]  dm.  (t4.3), 
as 

In this section we shall deal with situations in which the deformation gradient 
F(X)  is kept fixed at each X while the entropy field ~ = ~  (X) is varied. It  will 
not be necessary to make the dependence of e on F explicit, and the following 
abbreviated notation will be convenient: 

IF(X),  n (X); X ]  = e (X, ~1 (3s ('14.4) 

Definition of thermal  stability. Let {if, ~7} be a state o/gg and let E and H 
be, respectively, the total internal energy and total entropy corresponding to the state 
{~, ~7}. We say that {f, •} is a lherrna l ly  s tab le  state o/gS i~ every other state {/, ~7"}, 
with the same configuration as {[, ~} and the same total entropy as {[, ~7}, 

H* - - f  n*(x)am = H --fn(x)am, 04.5) 

has a greater total internal energy than the state {if, ~}; i.e., 

E* = f e (X, ~*(X)) d m >  E = f e (X, ~ (X)) din. (t4.6) 

We give another 6ondition, equivalent to the one given above, which could 
also be used to define thermal stability. 

Theorem 11. A state {if,~?} o / &  is thermally stable i / a n d  only i /every other 
state {if, r/*} with the same configuration as {[, ~1} and the same total energy as {if, ~l}, 

E* = f e (X, n*(X)) d m =  E = f e (X, ~? (X)) am,  (`14.7) 

has a lower total entropy than the state {if, r/} ; i.e., 

H = f ~7 (X) d m >  H* = f ~*(X) din. (`14.8) 

Proo]. We show that the hypothesis of Theorem 1t is necessary for thermal 
stability by showing that if there exists a state {I, rh} (with r/1 not identical to ,/) 
which obeys the equation (`14.7) of Theorem `1'1 but  violates (t4.8), then there 
must exist a s~ate (if, ~/2} C with ~7, not identical to 7) which obeys the equation 
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(14.5) of the 'definition of thermal stability but which does not obey (14.6). Let 
2/1 be the entropy density distribution which obeys (14.7) but not (t4.8); we 
construct 2/3 as follows: H -  HI 

,2/3 (X) ---- 2/1 (X) + m ( ~ '  (t 4.9) 

where H1 is the total entropy corresponding to 211. The total entropy correspond- 
ing to 2/3 is 

H, = f 2/3 (X) dm ----- H .  (t4.10)  
a~ 

Hence, the state {I,2/2) obeys the equation 04.5) of the definition. We have 
assumed that  2/, is not identical to 2/and that HI >= H. If H1 = H, then 2/2 is the 
same as ~/1 and hence different from 2/. In this trivial case of 2/2----2/1, it follows 
from the fact that 2/1 obeys (t4:7) that 

f e(X, 2/ , (X))dm=f e(X, 2/ l(X))dm=f e(X, 2/(X))dm, (14.tl) 

If H I > H  , then 2/z(X)<2/l(X) for all X in ~ .  I t  then follows from Postulate II 
of w 8 and the assumption that 2/1 obeys (t4.7) that 

f , (Z,  2/ , (X))dm<f e (z ,2 / l (X) )dm=f  ~(X, 2/(Z))dm. (14.t2) 

It  is c lear f rom (14A2) that  2/2 is not identical to 2/. Hence, whenever Hi=> H, 
we have, by the construction (t4.9), a state {/', 2/2} with 2/2 different from 2/ but 
with H~= H and 

E2=fe(X,2/ , (X))dm~_fe(X,  2/(X))dm----E. (14.t3) 

Thus, a violation of the hypothesis of Theorem t t implies the existence of a 
state different from {[, 2/} which obeys (t4.5) yet violates (t4.6). 

The sufficiency of the. hypothesis of Theorem 11 is proved analogously by 
starting with a state which obeys (t4.5) of the definition, but not (t4.6), and 
then using Postulate II to construct a state which obeys (t4.7) of the theorem, 
but which violates (14.8). 

The main result of the present section is the following theorem: 

Theorem 12. A state {[, 2/} o/ a body is thermally stable i/ and only i/ it is 
o] uni]orm temperature; i.e., i] and only i] 

v ~ = % (X, 2/(X)) 04.14) 

is a constant, independent o/the material point X. 
Proo/. To show the necessity of O:const~ant, we observe that, by (t4.6), 

the function 2/(X) is the solution of the variational problem 

f e (X, 2/*(X)) dm : Minimum (t4.t 5) 

subject to the constraint (t4.5). I t  follows that the first variation of 

f [e (X, 2/*(X)) -- ~2/*(X)] dm 

must vanish for 2/*=2/. Here x is a constant Lagrange parameter. 

= % (X, ~1 (X)) = ~ = constant. 

(14.t6) 

We obtain 

(14A7) 
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To prove the sufficiency of ~9 = constant, we substitute the function values 
F(X),  ~I(X) and ~*(X) for F, 7 and ~* in the convexity inequality (8.5). Using 
the abbreviation (t4.4) and the equation (t4A4), we get 

~(X,~*(X))  -- ~ (X ,~ (X) )  -- [~*(X) -- 7(X)] ~_~ 0. (,4.18) 

This inequality must be strict for some X if 7* and 7 are different continuous 
functions. If ~9 is a constant and if (t4.5) holds, then integration of (t4.18) over 
the body ~ gives the inequality (t4.6), which proves that {f, 7} is thermally stable, 
q.e.d. 

15. Mechanical  stability 

Consider a state {f, ~} of a body ~ .  According to Postulate I of w 8 it is 
possible to find a temperature field ~9 and a stress field S such that  every material 
point of ~ is in thermal equilibrium for the force temperature field defined by 
S and ~9. In fact, S and v~ are given by the stress relation (7.t) and the temperature 
relation (7.2), respectively. If a field of body forces b is given, then the state 
{f, ~) will be a state of mechanical equilibrium if Cauchy's condition 

Div S + q b = 0 (15.t) 

holds. If {I, ~} is such that  every material point is in thermal equilibrium, it 
is always possible to choose b such that the state {I, ~/}is a state of mechanical 
equilibrium. We need only to define b by (t5.t). We say that  the fields S, ~9, 
and b, given by (7A), (7.2) and (t5A)*~ make {/, ~7} a state of equilibrium. We 
call S, ~9 and b, respectively, the stress, temperature, and body force fields of 

We investigate the possible meaning that  can be given to the statement that  
an equilibrium state {/, ~} is stable. First, we require that it be thermally stable 
which, according to Theorem t 2, means that the temperature ~9 must be uniform. 
In addition, we require that  some condition of mechanical stability be satisfied. 
One must distinguish between various types of isothermal mechanical stability and 
adiabatic mechanical stability. 

In the case of isothermal mechanical stability, one compares the given 
equilibrium state {[, ~/~ with a class of states {f*, ~*} corresponding to the same 

uniform temperature ~9----~(F,~) as the given state. Each of these states is 
charact~:rized by its configuration [* alone, because the corresponding entropy 
distribution is then determined by 

n = ~/(F*, ~9). (t5.2) 

External forces or boundary conditions must be prescribed for each of the 
comparison configurations ~*. The configuration l' is called stable if the increase 
in the total free energy would always be greater than the work done on the 
body by the external forces if the configuration were to be deformed into any 
of the comparison configurations l*. We give more precise definitions in two 
special cases. 

Definition of isothermal stability at fixed boundary  (IFB stability). An 
equilibrium state {[, 7} is called I F B  , f a b l e  i / { [ ,  ~} has a uni/orm temperature 
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and i / /or  every state ([*, ~} which satis]ies the ]ollowing conditions: 
(a) if* lies in a prescribed neighborhood* o/[,  
(b) if*(X) -----if(X), when X belongs to g~, (15.3) 
(c) the temperature corresponding to (if*, ~1) is equal to z9/or all X in ~ ,  

the/ollowing inequality holds." 

! {~p (F*) -- V0 (F) -- b .  (if* -- if)} dm ~ 0. (t 5.4) 

Here ~ is the boundary of ~ ,  and ~ (F) is an abbreviation for 

v,(1;) = q, (F (X) ,  0; X) ; (t 5.5) 

F*(X) and F(X) are the deformation gradients a t  X for the configurations if* 
and if, respectively, both computed relative to the same fixed reference configura- 
tion. As in" w t4, we do not assume thane the body is homogeneous, and hence 
the function r may depend explicitly on X. 

We say that  {if, ~/} is strictly IFB stable if the inequality (t5.4) is strict 
whenever {if*, ~/*} obeys (a), (b) and (c) and is such tha t / ' 4= [ .  

Note that the surface tractions do no work if the boundary is fixed and that  
-- fit* �9 b dm is a potential of the work done by the body forces if these are 

at 

held ~t their values b (X) in the equilibritim state {if, ~/}. 
The type of stability considered is affected by the prescription of the neigh- 

borhood in the requirement (a) of the definition of IFB stability. A global state 
may be stable with respect to some (small) neighborhood without being stable 
with respect to other (larger) neighborhoods. 

Definition of isothermal stability at  fixed surface tractions i lFT stability). 
An equilibrium state {[, ~1) is called i F T  s table  i /{[ ,  ~1} has a uni/orm'temperature 

and i / /or  every state {if*, ~/~ which satis/ies the [ollowing conditions: 
(a) if* lies in a prescribed neighborhood o][, 
(b) the temperature corresponding to {if*, ~/} is equal to ~9 /or all X in ~ ,  

the/ollowing inequality holds: 

F =  f {v/(F*) - -~(F)  -- b.  ( i f*--i f))dm - f ( p - i f ) .  S n d A  >=0. (15.6) 

Here ~ i s  the boundary surface of the region occupied by ~ in the configuration if; 
dA is the element of that  surface; and n is the exterior unit normal. 

Note that  - - _ f f * .  S n  dA is a potential of the work done by the surface 

tractions if they are held at their values in the equilibrium state {if, ~}. 
An IFT stable state is always also IFB stable. This follows'from the fact 

that  the surface integral in (t 5.6) gives no contribution if the boundary condition 
(t 5.3) holds, so that the inequalities (t 5.4) and (15.6) become the same in this case. 

�9 A neighborhood of a configuration is defined by the metric 

a (I, I*) = sup { II* (x) - l(X)]  + IF*-~(X) F(X) -- I I } 
x C ~  

o v e r  t h e  s p a c e  of  al l  c o n f i g u r a t i o n s .  



Thermostatics of Continua t 23 

If the inequality 05.6) holds for all states which obey items (a) and (b) of 
the definition of IFT stability and is, furthermore, a strict inequality for all 
such states for which F*(X) ~F(X)  for at least one material point X, then we 
say t h a t  {1, 7} is strictly IFT stable against de/ormations and rotations. For in 
that case (t 5.6) can reduce to an equality only if if* is related to ~ by a simple 
rigid translation. 

To investigate adiabatic mechanical stability, one compares the given equi- 
librium~ state {1, 7} with a class of states which correspond to the same total 
entropy as {f, 7}. We again consider two special cases. 

Definition of adiabatic stability at fixed boundary (AFB stability). An 
equilibrium state {~, 7} is called AEB stable it {I. 7} is thermally stable and i / /or  
every state {I*, 7*} which satisfies the /ollowing conditions: 

(a) 1" lies in a prescribed neighborhood o/I, 
(b) I*(X) =I(X), when X belongs to 
(c). fT* (x )dm = fT(X)  din, 

gt a~ 

the/ollowing inequality holds: 

f ( ~  [F*(X), 7*(X); X] -- ~ IF(X), 7 (X); X] -- b .  (I* --I)}  d m >  O. (t 5.7) 

If the inequality in (t5.7) is strict fo.r all {I*, 7*} satisfying (a), (b) and (c) 
and for which 1"4:I, then we say that {f, 7} is strictly AFB stable. 

Theorem 13. A thermally stable equilibrium state {1, 7} is AFB stable i] and 
only il /or every state {[*, 7*} which satisfies the/ollowing conditions: 

(a) 1" lies in a prescribed neighborhood o] [, 
(b) I*(X) = l ( X )  when X belongs to ~ ,  
( c ) ~  {~ (F,  (x),  7 * (x);  x )  - b.  l *} d m = f  {~ (F(X), 7 (X) ; X) -- b.  l }  d m, (t 5.8) 

the ]ollowing inequality holds: 

f T*(X) dm ~_ f T(X) dm. (t5.9) 

Furthermore, {~, 7} is strictly AFB stable i /and only it (15.9) is a strict inequality 
/or every state {I*, 7"} ~[={I, 7} obeying (a), (b) and (c). 

We omit the proof of Theorem t3 because it is analogous to that of 
Theorem t t .  Of course, the validity of Theorem t3 requires the assumption of 
Postulate II. 

Definition of adiabatic stability at fixed surface tractions (AFT stability). 
An equilibrium state {~, ~l} is called A F T  s tab l e  i / i t  is thermally stable and i t /or 
every state {I*, 7*} which satisfies the/ollowing conditions: 

(a) I*  is in a prescribed neighborhood o/I, 
(b) f 7*(X) am = f 7 (X) din, 

the ]ollowing inequality holds." 

j {~ [F*(X), 7*(X) ; X] -- ~ [F(X), 7 (X) ; X] - -b"  (1" --I)}  dm -- 
05.1o) 

- f ( I * - / ) "  S n d A ~ O .  
a~ 
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I t  will be noticed that  a state which is AFT stable is always AFB stable. 

If  the inequality (t5.t0) holds for all states which obey (a) and (b) and is a 
strict inequality for all such states for which F*(X) :~F(X) for at least one X, 
then we say that  {if, ~} is strictly AFT stable against de]ormations and rotations. 

I t  is clear that,  in analogy to Theorem 13, an alternative, but equivalent, 
definition of AFT stability can be formulated in which a stable state is defined 
to be one of maximum entropy among all those states for which (15.t0) reduces 
to an equality. 

The definitions of IFB, IFT,  AFB and AFT stability given above are ap- 
plicable only to those physical situations in which the body force field b = b (X) 
is independent of the comparison configuration if*. If one is interested in studying 
cases in which the body force on X depends on X and is also a functional of f*,  
one can modify the definitions of stability by connecting the comparison state 
I *  to if by  means Of a continuous one-parameter family f~, 0_--< s =< l, f0 =if, [1- - [*  
and replacing the term 

-- f b . (l* -- l )  dm 

in (t5.4), (t5.6), (t5.7), (t5.8) and (15.10) by 
1 

I f t h e  body force on each material point is derivable from a single-valued poten- 
tial, then the integral exhibited above is independent of the paramatization, 
and is simply the difference in the potentials at f and if*. 

In the definitions of I F T  and AFT stability, we assumed that  not only the 
body forces but also the contact forces at the surface do not depend on the 
comparison configuration. One can also study, in a way analogous to that  outlined 
above for the body forces, those cases in which the surface tractions depend on 
the comparison configuration. 

Theo rem  14. A state which has isothermal stability o[ a certain type also has 
adiabatic stability o] the corresponding type. 

Proo]. Consider a state {I, t/} which has a uniform temperature O and which 
has isothermal stability of a particular type. Let [*  be a configuration which 
satisfies the boundary conditions, if any, for the appropriate comparison con- 
figurations. Define the entropy field r h by 

~l (X) = ,~ (F*(X), 0),  (15.1 t) 

where F* is the aeformation gradient field corresponding to  the configuration [*.  
By (t3.t) we have 

~o(F*,O) --~(F,O) = ~(F*, ~h) --  ~(F, ~/) --  (Ill --  /]) ~. (15.t2) 

Here F corresponds to if. �9 Let ~/* be any entropy distribution satisfying the 
condition 

f rj*(X)dm --- - f~(x)dm,  (15.t3) 

which is required for comparison states in adiabatic stability. Define the field 
fl b y  

fl = ~ (F*,  ~*) - -  ~ (F*,  ~1) - -  (~* 7 ~1) 6 .  (15.14) 
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From (8.5) we get fl(X) > 0 

for all X. F rom (t5A2) we have 

fo(F*,O) - - f~ (F ,9 )=~(F*~n*  ) - -  ~(F,n) - - / 6 - -  (n*--  ~) O- (t5.t5) 

We integrate (15.t5) over ~ .  According to (t5.t3) we get no contribution from 
the term --  (r/*--r/)v~; hence, since/6 is non-negative, 

f [ ~ ( F * , O ) - - ~ ( F , ~ ) ] d m < f [ ~ ( F * , ~ l *  ) - - ~ ( F , ~ ) ] d m .  (t5.t6) 
a~ al 

Since the work W done by  the external forces in going from 1' to if* is the same 
in adiabatic and isothermal stability, it follows from (t5.t6) that  if 

f [~(F*, ~) - -O(F,O)]  am -- W (t5.t7) 
a~ 

is non-negative, then 
f [~(F*, ~*) - -  k (F ,n ) ]dm -- W (t5.t8) 

al 

is non-negative (and strictly positive when (t 5.t7) is strictly positive). Hence, 
the isothermal stability of {if, ~} implies the corresponding adiabatic stability for 
{if, q.e.d. 

Although in writing our proof of Theorem 14 we have used a notation which 
implies that  ~ is homogeneous, it is clear that  the same argument is valid when 

is not homogeneous. 
I t  appears to us that  the converse of Theorem t4 need not be true; i.e., an 

equilibrium state may  have adiabatic stabili ty without being isothermally stable. 

16. Gibbs' thermostat ics  of fluids 

We now consider a type of stabili ty which was proposed by  GIBBS* for 
fluids free from body forces. GIBBS states** that  he had in mind a physical 
situation in which the fluid is "enclosed in a rigid envelop which is non-conducting 
to heat and impermeable to all the components of the fluid". A body which 
may be regarded as being in such an envelop is usually called an "isolated system". 

Definition of G stabili ty***. An equilibrium state {if, ~1} o / a  fluid body 
is called G s tab le  if the following condition is satisfied. Let {if*, r/*} be any other 
state with the same total volume and the same total entropy as {if, ~}, 

f v * d m  = f v d m ,  f n * d m  = f ~ d m ,  (16.t) 

* See the  section of [1] which is ent i t led  " I n t e r n a l  s tabi l i ty  of homogeneous  
fluids as indicated by  the  fundamenta l  equa t ions" ,  (b), pp. 100- - t  t 5, par t icu lar ly  the  
subsect ion ent i t led " S t a b i l i t y  wi th  respect  to  cont inuous  changes of phase"  (b), 
pp. t 05 - t11 .  

** [1] (b), p. tOO. 
*** In this definition we again restrict ourselves to those physical situations in 

which fluctuations in chemical composition are surpressed. We have in mind situations 
in which chemical reactions are prohibited and in which the fluid is either homo- 
geneous or does not allow diffusion. For fluids the homogeneous case is the one of 
practical importance. Situations in which flow is permitted but diffusion is prohibited 
are rare. 
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*hen {I, has a lower total internal energy than {I*, 7"), 
f-~[v*(X),7*(X);X3dm> f '~[v(X),n(X);X]dm, (16.2) 

unless v*(X)----v(X) and 7*(X)----7(X) /or all X in ~.  
In (t6.1) v and v* denote the specific volume fields for ~ corresponding to 

the configurations [ and f* .  
In the following alternative definition ~f and e are taken as the independent 

variables, and the permitted comparison states are such that  the total internal 
energy and total volume of the body are conserved during the variations. This 
alternative formulation may suggest to the reader why G stability is regarded 
as being appropriate for discussing the physics of isolated systems composed of 
fluids: 

Alternative definition of G stability. An equilibrium state {I, ~} o /a  fluid 
body ~ is called G stable i[ any other state {/*, ~*} with the same total volume and 
the same total internal energy as {[, e}, 

f v* dm = f v d m ,  f ~* dm = f ~dm,  (16.3) 

has a higher total entropy, 

f ~ [ v * ( X ) , e * ( X ) ; X J d m <  f ~ [ v ( X ) , e ( X ) ; X J d m ,  (t6.4) 

unless v* (X) = v (X) and e* (X) : e (X) /or all X in ~ .  

The function ~ in (t6.4) is obtained by solving e = ~ ( v , ~ ;  X) for ~/, which 
is possible in a unique way because ~ is strictly increasing in 7. 

The proof of the equivalence of the two definitions of G stability is analogous 
to the one given for Theorem t t  of w 14 in the case of thermal stability; one 
must again use Postulate II of w 8. 

The main result of this section is 

Theorem 15. An equilibrium state {[, 7} o] a fluid body is G stable i/ and 
only i / i t s  temperature and pressure are uni]orm. 

Proo]. To prove that  the condition is necessary we observe that the func- 
tions v, 7 are solutions of the variational problem 

f ~ (v*, ~* ; X)  dm -~ Minimum (16.5) 
a 

subject to the constraints (t6A). Therefore, the first variation of 

f [~(v*,7*; X) -- ;~7" - - ~  v*] dm 

must vanish for v * = v  and ~*=7 .  Here ~ and/~ are constant Lagrange para- 
meters. It  follows that  

~ (v, ~/; X) ~- 2 = constant, ev( v, 7; X) =/~ = constant. (t6.6) 

Hence, by  (812) and ( t lAt) ,  both the temperature, v~=~(v ,  7; X), and the 
pressure, p = -- ~ (v, ~/; X) are uniform over ~ .  

To prove the sufficiency of the condition of the theorem, we assume that v~ 
and p are uniform and that (t6.t) holds. From the convexity inequality (11A6), 
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the inequality (tl .9), and the fact that v----v a, ~>0 ,  is a convex function of ~, 
one can easily infer that  ~ (v, 7) must be convex in v and 7. Hence, the inequality 

(v*, ~*; x )  - ~ (v*, 7; x )  - (v* - v) ~. (v, 7; x )  - (7* - 7) ~, (v, 7; x )  > o (46.7) 

is valid at all material points X in 8 ;  (t5.7) cannot reduce to an equality for 
all X unless v(X) =v*(X) and ~(X) ----~*(X) for all X. Since p------e,(v, 7) and 
vq ~_ ~n (v, ~/) are independent of X, integration of (t6.7) over ~ gives 

j {~(~*, ~*; x )  - ~(~ ,n;  X ) } d m  + pfst (v* - ~) am - -  Ofst (n* - n) a m  > o. 

The condition (t6.1) states that the last two terms vanish and hence that  (16.2) 
holds, q.  e. d. 

In his discussion of the stability of homogeneous fluids, GIBBs used a defini- 
tion of stability which is.identical to what we have called G stability, except 
that  he did not demand, as we do, that {/~, 7}. be an equilibrium state ~. GIBBS 
was able to prove that  uniform values of ~n (v, 7) and ~v (v, 7) are necessa.~ for 
his stability and, furthermore, that  the inequality (t6.7) is also necessary. He 
also realized that  the constancy of ~, and ~ over ~ and the validity of (t6.7) 
are sufficient for his stability. If he had gone a step further and postulated that  
for homogeneous fluids stable states exist for every value of v and ~7 for which 
is defined, he would have obtained (t6.7) as a property of the function ~. Such 
a procedure: however, cannot yield the statements, made in Theorem 6, that  
-- ~ is positive and that  ~ is jointly and strictly convex in ~ and ~/. 

We conclude with 

Theorem 16. An equilibrium state {I, ~7} o /a  fluid body Y$ is G stable i /and  
only i/both o/ the ]ollowing conditions hold: 

(a) The temperature corresponding to {I, ~} is uni]orm. 
(b) Any other state {[*, ~*) with the same total volume, 

f v* dm = f v am, (t6.8) 
St St 

and the same uni/orm temperature 0 has a higher total/tee energy, 

f V? (v*, ~; X) am > f g (v, v~; X) am, (t6.9) 
St st  

unless v*(X) = v (X) /or all X in g$. 
Proo/. The proof that  the conditions (a) and (b) are sufficient for the G 

stability of {/', 7} is completely analogous to the proof of Theorem t4 of w t5. 

The necessity of the condition (a) for the G stability of {/, ~) follows from 
Theorem t5. To prove that  (b) is necessary we assume that {if, ~/} is stable. 
We consider another state {1", ~*} which obeys (t6.8 i and which has the uniform 
temperature v% Since v = v  a is a convex function of v for v>O, and v),(v, 0 ) < 0 ,  
the inequality (t3.15) implies that  

~(v*,O;x) - ~ ( v , O ;  x )  - (v*-v)rp~(v,O;x)>o; ( t 6 . t 0 )  

* GIBBS d o e s  n o t  u s e  e i t h e r  o u r  P o s t u l a t e  I o r  o v r  d e f i n i t i o n  o f  (local) t h e r m a l  
e q u i l i b r i u m .  
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(16.t0) cannot  reduce to  equa l i ty  for all  X unless v(X) = v * ( X )  for al l  X.  Now, 
since we are assuming tha t  {[, 9} is s table,  i t  "follows from Theorem t 5 and  ( t3 . t3)  
t ha t  ~ ( v ,  ~9; X) is independen t  of X. Thus,  b y  (16.8), if we compute  the  mass  
in tegra l  of ( t6 . t0)  over  ~ ,  the last  t e rm  on the left makes  no con t r ibu t ion ,  and  
we get  (16.9). Hence,  when {f, ~} is G stable ,  the condi t ion  (b) is val id ,  q . e .d .  

This  theorem shows tha t  for G s t ab i l i t y  of fluids ad i aba t i c  and  i so the rmal  
s t ab i l i t y  are equiva lent .  
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