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Introduction

In this article we regard thermostatics as being that branch of thermo-
dynamics which deals with bodies which are at rest at the present time and
which, for all practical purposes, mziy be regarded as having been at rest at
all times in the past.

We attempt to develop here a rigorous theory of thermostatics for continuous
bodies in arbitrary states of strain. The thermodynamics of chemical reactions,
phase transitions, and capillarity is not discussed. Our-aim is to derive some
of the fundamental laws of hydrostatics and elastostatics from thermodynamic
principles. Among these laws are the existence of elastic potentials for stress-
strain relations, the known inequalities of hydrostatics, and some new inequalities
for hydrostatics and elastostatics.

In his classic work, “On the Equilibrium of Heterogeneous Substances”,
J. W. GiBgs [I] laid down criteria for determining whether a given (global) state
of a body is thermodynamically stable. He used these criteria to derive particular
equations and inequalities which represent conditions (in some cases necessary
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and other cases sufficient) for various special states to be stable. The equations
GiBBS obtained as necessary conditions for thermodynamic stability are now
recognized as fundamental laws in physical chemistry. GisBs also derived
inequalities which, apparently because they are in obvious accord with everyday
experience and thus might be mistakenly called trivial, have attracted relatively
little attention and are sometimes not even mentioned in modern thermodynamics
courses. For example, in his treatment of homogeneous systems at rest under
uniform hydrostatic pressure, GI8Bs showed that a necessary condition for such
a system to be in a stable state is that both its heat capacity at constant volume
and its adiabatic modulus of compression be non-negative. It is inequalities of
this type which are emphasized in the present paper. We take, however, a point
of view different from that of Gisss.

In the classical treatments of thermostatics (e.g., [1], [2]) the adjective stable
is used in two senses. It is sometimes used as a modifier for the word equilibrium;
i.e. one refers to “‘states of stable equilibrium”’; or it is used as a modifier for the
word state; i.e. one refers to “‘stable states”’. In this paper we never use the word
stable in the former sense. The theory which we develop here makes a careful
distinction between local states, referring to a material point in a body, and global
states, referring to the body as a whole. A local thermomechanic state is specified
by giving the entropy density and the local configuration at a material point.
A global thermomechanic state, on the other hand, is specified only when the
entropy field and the complete configuration are specified for the entire body.
We regard thermal equilibrium to be a property of local states. We consider just
one type of thermal equilibrium. We define a state of thermal equilibrium as a
local thermomechanic state which minimizes an appropriate potential rather than
as a state at which a first variation vanishes. We regard stability as a property
of only global states. We consider several types of stable states, defined as global
thermomechanic states which minimize certain energy integrals subject to dif-
ferent constraints.

Our theory is based on two physical postulates. The first asserts that, at a
material point, any local thermomechanic state can be an equilibrium state
provided the local temperature and local forces have appropriate values. The
second postulate is essentially the assumption that, at least in continuum
mechanics, absolute temperatures are never negative. We believe that these
physical postulates, which are stated in terms of our definition of equilibrium,
contain the physical content for the statics of continuous media of the First and
Second Laws of Thermodynamics. From our postulates we prove relationships
between the stress-strain equation and the caloric equation of state, and we
derive various inequalities restricting the form of the caloric equation of state.
We should like to propose that the inequalities which we obtain for the finite
theory of elasticity answer some of the questions raised by C. TRUESDELL [3] in
his recent article, “Das ungeléste Hauptproblem der endlichen Elastizitits-
theorie”.

Although our definition of thermal equilibrium is new, some of the definitions
of the stability of global states which we propose tor study are similar to stability
definitions considered by GiBss [1] and J. Hapamarp [4]. In particular, our
concepts of isothermal and adiabatic stability at fixed boundary are closely related
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to, but not identical to, Hadamard stability*. We briefly discuss G1BBS theory
of the stability of fluid phases in §16. In a future article we hope to give a
discussion of GiBBS’ theory.of the stability of fluid mixtures.

We regard the main tasks of the science of thermostatics to be, first, the
exploration of the consequences for the caloric equation of state of the existence
of local states of thermal equilibrium and, second, the derivation of useful
necessary and sufficient criteria for global states to be stable. In the present
paper, § 6-+§13 are devoted to the first task and § 14— § 16 deal briefly with
the second. From our present point of view, we should say that the great classical
thermodynamicists, GiBBs and DUHEM, devoted their main efforts to the second
task. '

It will be noticed that in this paper we never mention 'such notions as ‘‘re-
versible processes’” and ‘‘quasi-static processes”; in fact, our theory of thermo-
statics, being a truly statical theory, has no need of “processes” at all.

In writing the present paper we have striven for a level of mathematical rigor
comparable to that of works in pure mathematics rather than to that customary
in physics.

Notation and basic mathematical concepts. We often find it convenient to
distinguish between functiohs and their values. The basic local thermodynamic
variables are denoted by light face Greek minuscules: &, v,%,9,.... Symbols
such as £,£,¢... and P,9, P ... represent real valued functions whose values are
the thermodynamic variables ¢ and . )

We denote vectors and points of the three-dimensional Euclidean space &
by bold face Latin minuscules: v, 2,y ....

Second order tensors are denoted by light face Latin majuscules: F, U, @, R, I.
However, we reserve the symbols X and Z to represent material points of a
physical body. The term tensor is used as a synonym for linear transformation.
Tensors of order higher than two do not occur in this paper. For the trace of
the tensor F we write tr F and for the determinant of I we write det F. We
say that F is invertible if F has an inverse F1; i.e. if det F 5=0. The transpose
of F is denoted by F”. The identity transformation is written I. For the com-
position, or product, of two linear transformations 4 and B we write simply 4 B.

* Hadamard stability requires (roughly) that the first variation of the integral
of the elastic potential vanish, and that the second variation be non-negative, for all
smooth variations in the state of strain which are compatible with a fixed boundary.
This sort of stability is necessary but not sufficient for stability at fixed boundary
as we define it here. In the theory of the propagation of waves in a perfectly elastic
solid, Hadamard stability of a particular rest state implies the reality of all roots
of the wave velocity equation for acceleration waves of arbitrary direction which
might impinge on an object in that state. J. L. ErickseEN & R. A. Tourin [5] have
recently considered a modification of Hadamard stability in which they require that
the second variation of the integral of the elastic potential be strictly positive. They
use their definition of stability to prove uniqueness theorems in the theory of small
deformatjons superimposed on large. R. Hirr [15] also has recently discussed rela-
tionships between uniqueness and stability. In the third article of his ‘““Recherches
sur Délasticité” P. Dunewm [6] formulated several definitions of stability which are
applicable to bodies with fixed and partially free surfaces; he also derived several
necessary conditions on the equation of state for particular states of strain to be stable.

7*
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Let h(x) be a function for which both the range and the domain consist of
either vectors or points in Euclidean space . Assume that for & in some region
the derivative

2 h@+sv)| =Vh@;v) (1)

exists for all ¥ and is continuous in @. It is the content of a fundamental theorem
of analysis that Fh(a; v) is then a linear function of », and hence we can write

Phix;v)=[Vh(x)]v, (2)

where Vh(x) is a linear transformation (tensor), called the gradient of h at x

Similarly, the gradient of a real valued function {(F) of a tensor variable F
is a tensor valued function {r(F) defined by the relation

= tr[{p(F) 4], )

where A4 is an arbitrary tensor. If Cartesian coordinates are used, and if ||£;;]|
is the matrix of F, then the matrix of { is given by

lee@l=5 -

where 7 is the row and 7 the column index.

—C(F-{—sA

We make frequent use of the following theorem, called the polar decomposition
theorem: Any invertible tensor F has unique decompositions

F=RU=VR (4)

where R is orthogonal (i.e., RRT=1I) and U,V are positive definite symmetric
tensors (i.e., U=UT, V=VT, and the proper numbers of U and V are all real
and greater than zero). In addition, we have

U=RTVR, U:=FTF, V:=FFT. (5)

Consider a smooth (i.e., continuously differentiable) real valued function
{ (w) whose domain #” is a region in a finite dimensional vector space. The
function ¢ is called strictly convex if either of the following two equivalent condi-
tions are satisfied:
(a) For all w, and w,==w, in # and all positive «, 8 with a+8 =1, the
inequality
ooy + fwy) <al(wy) + T (2es) (6)
holds.
{b) For all w and w*==1w in #” the inequality
£ (w*) — L (w) — (w* —w) - V{w) >0 )
1s satisficd.
When #7 is a region in the space of all tensors, we use the notation of (3)
and the convexity incquality (7) becomes

L(F*) — 5(F) — tr [(F* — F) &p (F)] > 0. @)
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For a twice continuously differentiable function { (w) to be strictly convex in %",
it is sufficient that the second gradient 'V { (w) be positive definite for w in %",
This condition is not necessary, however: if { (w) is convex, it follows only that
PV (w) is positive semidefinite.

1. Mechanical preliminaries

We give a brief summary of those concepts from the mechanics of continuous
media that are relevant to the present investigation. For a detailed discussion
we refer to [7] and [8].

A body & is a smooth manifold of elements X, Z, ..., called material points*.
A configuration [ of # is a smooth one-to-one mapping of # onto a region in a
three-dimensional Euclidean point space &. The point ® =f(X) is the position
of the material point X in the configuration f. The mass distribution m of & is
a measure defined on all Borel subsets of #. For the total mass of & we write
m (). To each configuration f of # corresponds a mass density g.

Consider a neighborhood A"(X) of a material point in a body; 7.e., a part
of the body containing X in its interior. Let g be a smooth homeomorphism
of A#7(X) into the three-dimensional vector space ¥” such that X itself is mapped

into the zero vector 0. The inverse mapping of g is denoted by ?]1. Let g, and g,
be two such homeomorphisms. The composition gzo?fl of g, and :(_;11 is defined by

-1 -1

(92091) (@) =g:(9:(@)).
It is a mapping of a neighborhood of 0 onto another neighborhood of 0. We
define an equivalence relation “~" among all these homeomorphisms by the

condition that g,~ g, if the gradient of the mapping g,o 511 at 0 is the identity I.
The resulting equivalence classes will be called the local configurations** M of X.
If M, is the equivalence class of g, and M, the equivalence class of g, then the

gradient at 0 of g,0 ), i.c.

-1
G =V(gs09:)(0), (1.1)
depends only on M, and M,. We write '
G=MM™", M,=GM,, (1.2)

and call G the deformation gradient from M, to M,; G is an invertible linear

transformation.
It is often convenient to employ a local reference configuration M, and to
characterize the other local configurations

M=FM, (1.3)

by their deformation gradients F from the local reference configuration M,. If,
in this way, two local configurations M; and M, correspond, respectively, to F
and F, then the deformation gradient G from M, to M, is given by

G=RE™', E=GE. (1.4)

* The term ‘‘particle’’ is often used. We prefer ‘“material point’’ to avoid confusion
with molecules and other physical particles,
** The term ‘‘configuration gradient” was used in [7].
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The rofation tensor R, the right stretch tensor* U , and the left stretch tensor V
of a deformation gradient F are defined by the unique polar decompositions

F=RU=VR, (1.5)

where R is orthogonal, while U and V=RURT are symmetric and positive
definite. We note that U and V have the same proper numbers; these proper
numbers are called the principal stretches vy, vy, v3. A deformation gradient G
is called a pure stretch if its rotation tensor reduces to the identity I; i.e., if G
is symmetric and positive definite and hence coincides with its own right and
left stretch tensors.

The mass densities at X corresponding to the local configurations M; and M,
are denoted, respectively, by g, and g,. We have

Q= TdetG| 01, (1.6)
where G is related to M, and M, by (1.2).

2. Thermomechanic states

A global thermomechanic state, or simply a state, of a body % is a pair {f, }
consisting of a configuration f of # and a scalar field » defined on &; % is called
the entropy distribution of the state.

A local thermomechanic state, or simply a Jocal state, of a material point X
is defined as a pair (M, #) consisting of a local configuration M of X and a real
number 7, called the entropy demsity (per unit mass) of the local state**.

In the following we often use a local reference configuration M, and, according
to (1.3), characterize the other local configurations M by the deformation gradients
F from M,, We then use the pair (F, %) to characterize the local states.

Two local states (F,%) and (F’,#’) will be called eguivalent if they differ
only by a change of frame of reference. The local configuration transforms under
a change of frame according to the law F'=QF where Q is orthogonal. We
assume that the entropy density 7 is objective; i.e., it remains invariant under a
change of frame. Thus, the local states (F, 7) and (F’, %) are equivalent if and

only if , . ,
y F'=QF, 75'=n9 (2.1)
for some orthogonal Q.

We say that two global states {f, n} and {f’, 9’} are equivalent if they differ
by only a change of frame. This is the case if and only if

7(X)=n(X), F(X)=QF(X) (2.2)
for all X in the body and some orthogonal tensor Q independent of X. Here,
I(X) and FF'(X) arc the deformation gradients at X corresponding to f and f’
respectively.

* The term “strain tensor” was used in [7].

** In this article, pairs in braces, { }, always refer to global properties; the elements
of such pairs are ficlds over #. On the other hand, pairs in brackets, (), always refer
to {ocal properties and have clements which are either real numbers or tensors. Note
that the symbol 5 m {f, %} and (M, ») denotes different entities; in the first case ¢

denotes o ficld while in the second case it denotes a number. No confusion should
ar se however.,
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3. The caloric equation of state
A material is characterized by a real valued function of local states, whose
values ¢ are called the energy demsities (per unit mass) of the local states. We
pick a fixed local reference configuration M, and characterize the state (M, 7)
by the pair (F, n) where F =M M. We write

e=E(F,n). (3-1)

It is assumed here that the function & has continuous derivatives with respect
to F and n*.

We assume that the energy density is objective; z.e. invariant under a change
of frame. It follows from (2.1) that the function & must satisfy the relation

E(QF,m) =&(F,n) (3.2)
for all orthogonal Q. Using the polar decomposition (1.5) and putting Q =RT
in (3.2) we see that . «

62 e=(F, ) = (U, n); 33)
i.e., that the energy density is determined by the right stretch tensor U and the

entropy 7.
The function & in (3.3) depends on the choice of the local reference configura-

tion M,. The function & corresponding to some other local reference configura-
tion M, is related to & by . . '
Vo wE ) =2FGy, (3-4)

where G =M, M, is the deformation gradient from M, to M.

The equation (3.3) characterizes the thermal and mechanical properties of a
material in statics. It is called the caloric equation of state of the material.

4. The isotropy group

It may happen that the energy function & remains the same function if the
local reference configuration M, is changed to another local reference configura-
tion M, = H M, with the same density. It follows from (3.4) that  then satisfies

the relation - .
8(F.m) =#(FH,m). (4.1)

Since M, and M, have the same density, it is clear from (1.6) that |det H| =1;
t.e., H is a unimodular transformation. The unimodular transformations H for
which (4.4} holds form a group, called the ¢sotropy group % of E or of the material
defined by &. This group depends, in general, on the choice of the local reference
configuration, but it can be shown that the groups corresponding to two dif-
ferent local configurations are always conjugate and hence isomorphic.

We say that the energy function & defines a simple fluid if its isotropy group
% is the full unimodular group %. If ¥ =% for one reference configuration,
then ¥ =% for all reference configurations. A material point is called a fluid
material point if its energy function defines a simple fluid. The caloric equation

* For the application to physical situations it is necessary to limit the domain
of £ to a region in the space of local configurations and an interval on the y-axis. We
do not supply the mathematical details which may arise in the consideration of limi-
tations of this kind.
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of state (3.3) then reduces to the form

E=¢8(F,n) =%,7y), (4.2)
where 1 et F 1 .
U—-?—| e IE (4.3)

is the specific volume of the local configuration M =FM,; ¢ and g, are the mass
densities corresponding to M and M,. The function € in (4.2) does not depend
on the choice of the reference configuration.

We say that a material point is an tsotropic material point if the isotropy
group of its energy function &, relative to some local reference configuration,
contains the orthogonal group @. Those local reference configurations of the
material point for which % contains @ are said to be undistorted. A simple fluid
is isotropic, and all of its local configurations are undistorted. For any isotropic
material, it follows from (3.2) and (4.1) that & satisfies the relation

EQUQY ) =8(U,7) (4.4)
for all symmetric and positive definite U and all orthogonal Q, provided the local
reference configuration for & is undistorted. Taking Q =R, so that V=RURT
is the left stretch tensor, we see that for isotropic material points the caloric
equation of state (3.3) may be written in the form

e=8F,n=28V,n). (4.5)

Tt s a further consequence of (4.4) that for each fixed value of 7, ¢ may be
capressed as a symmetric function of the three principal stretches vy, v,, v5:

e=8(F,n) =&(V,n) =&(v, v, v3;9) =&(v;,7). (4.6)

It may also be expressed as a function of the three principal invariants Iy, I1y,
Hly of V and U: e=2&(V,n) =&y, Iy, III,; 7). (4.7)

We say that the energy function & defines a simple solid if its isotropy group
% is contained as a subgroup in the orthogonal group @. A material point is
called a solid material point if its energy function g, relative to some local con-
figuration as a reference, defines a simple solid. The local reference configurations
with this property are again called the undistorfed states of the solid material
point. For an isotropic simple solid, the isotropy group ¥ is identical to the
orthogonal group 0.

Throughout the rest of this paper, whenever we discuss isotropic materials
it is to be understood that the local reference configuration for the energy density
function is undistorted, unless the reference configuration is explicitly specified.

5. Foices, stresses, and work
A system of forces is a system of vector valued measures, one for each part
of the body # under consideration*. One must distinguish between contact and

body forces. The contact force acting across an oriented surface element in %
will be denoted by de.

* For a detailed axjomatic treatment ¢f. [8].
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Definition of mechanical equilibrium. In order that a body & be in mechani-~
cal equilibrium under a given system of forces, two conditions must be fulfilled
for each part P of B: (a) the sum of the forces acting on P must vawnish, and (b)
the sum of the moments, about any point, of the forces acting on P must vanish.

The condition (a), called the force condition, depends only on the body and
the force system, not on the configuration of the body. The condition (b), callec
the moment condition, does depend on the configuration of the body; i.e., for a
given force system, the moment condition may be satisfied for one configuration
but not for another.

The force condition alone implies that, for each configuration, the contact
forces d ¢ arise from a stress-tensor S, so that

de=5nd4, (5.1)

where 7 is the unit normal vector of the oriented surface element and 44 its
area in the configuration under consideration. For fixed contact forces de, the
stress tensor S will be different for different configurations.

We consider now a neighborhood A47(X) of a material point X and assume
that a system of contact forces de is given for A#7(X). Let f, be a fixed reference
configuration and f some other configuration of A°(X). If d¢ is such thdt the force
condition is satisfied, then (5.1) is valid for all configurations; we can write for
the reference configuration f,, in particular,

de=S,n,dA,, (5.2)

where n, is the unit normal of the oriented surface element in the reference
configuration f,, and d4, is the area of the surface ¢lement in f,. We denote
the position vector, in the configuration f, of a typical material point Z in A(X),
relative to the position of X as origin, by p, and we consider the tensor K defined

by =1 ®de 5.
A (X)
where /#°(X) denotes the boundary surface of A(X) and v (A'(X)) the volume

of #(X) in the configuration f, and where ® denotes a tensor produc.. If the
force condition is satisfied, the relation (5.1) is valid, and we have

KT 1 __ )
oy J Smepdd

XY
In the limit as A7(X) shrinks to X, we obtain, after using Green's theorem,
ST= lim K. (54)
H(X)>X

The same argument, with the configuration f replaced by the reference configura-

tion f,, gives s‘ i .
Ty t,(vt o) [p Sde, (5.5)
AT

where v, (A'(X)) is the volume of .#°(X) in the reference configuration and p,
the position vector, in the reference configuration, of a typical material point Z
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in #(X), relative to the position of X as origin. The position vector p of Z in
the configuration f is related to p, by the relation
p=Fp,+o(lpl) (5-6)
where F is the gradient at X of the deformation from f, to f and where
lim 2(@)
40

Substitution of (5.6) into (5.3) and use of (5.4) and (5.5) yields

5=§FS,, (5.7)

where ¢ and g, are, respectively, the mass densities at X in the configurations f
and f,. '

The skew part of K, defined by (5.3), is the moment about X, per unit volume,
of the contact forces de acting on A7(X) in the configuration f. If the moment
condition is satisfied for the configuration f, then the total moment (i.e. the
moment of the contact forces and the body forces) about X in f must vanish.
Since the moment per unit volume about X of the body forces on A7(X) goes to
zero as A7(X) shrinks to X, it follows from (5.4) that S must be symmetric if
the moment condition is satisfied in f.

We say that a material point X is in local mechanical equilibrium, when the
body is in a given-configuration and under a given force system, if the stress
tensor S exists at X and is symmetric.

The local behavior at X of a system of contact forces is completely determined
by the tensor S, defined by (5.2). It is called the Kirchhoff tensor* of the system.
For a given force system, the Kirchhoff tensor depends only on the choice of
the reference configuration and remains the same if the actual configuration is
changed. From (5.7) we see that the existence of the Kirchhoff tensor S, and
the symmetry of F S, are necessary and sufficient conditions for local mechanical
equilibrium at a material point in the local configuration determined by F.

In order that a body % in a configuration f be in mechanical equilibrium,
it is not sufficient that all its material points be in local mechanical equilibrium;
i.e., that the stress tensor exist and be symmetric at each material point. Global
mechanical equilibrium will prevail only if, in addition, Cauchy’s law

divS+ob=0 (5.8)

is satisfied. In this equation, S, g, and the density b of the body forces are to
be regarded as fields with domain f(%).

We consider now a smooth one-parameter family of configurations f(s) with
deformation gradients F(s) at X. The work per unit mass done on A(X) by the
contact forces de along the path of configurations f(s) from s==5, to s=s, is
defined by : ‘

) 1 - ip
Y (X f[ KA ‘“J’“’ (5.9)

S

A(X)
* Cf. TruespeLL [9], (26.5).
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where m (A(X)) is the mass of A7(X) and p(s) denotes the position vector, in
the configuration f(s), of a typical material point in A#7(X). Assuming that the
contact forces de¢ are independent of s, we obtain :

_ 1 [ ‘ :
W= p(sy) -de— [p(s)- dc]’. (5.10)
k| e e | |
Observing (5.3), (5.4) and (5.7), and taking the limit A7(X)—>X, we get
o,w =tr[F(sy) S,] — tr[F(s;) S,]. (5.11)

This relation shows that —-;— tr(F S,) has the physical meaning of the potential

r
energy, per unit mass, of the local contact forces.

6. Definition of thermal equilibrium
A force temperature pair for a material point X is a pair (S,,®#) consisting
of a tensor S,, to be interpreted as the Kirchhoff tensor of a system of contact
forces at X, and a real number 9, to be interpreted as the temperature at X.

Let a force temperature pair ‘ °”, #) be given and consider the function
x P 1
ME =2F)—Ltr(FS) —yb. (6.)

To help motivate the definition of thermal equilibrium given below, we make
the following remarks. According to (5.11) the term —-%- tr (F S,) is the potential

energy, per unit mass, of the local contact forces. The term —#@ may be inter-

preted as a thermal potential energy. Thus, the value 4 =i(F , ) gives a kind
of free energy per unit mass of the local state (F, ) when under the action of
the force temperature pair (S,, &).

Definition of thermal equilibrium. The local state (F,n) is called a stale
of thermal equilibrium under a given force temperature pair (S,, #) if

(a) the stress temsor S =(gfg,)F S, is symmetric,

(b) the inequality

A(F*, %) > A(F,n) (6.2)
holds jor all states (F*,n*)==(F,n) such that
F*=GF, (6.3)

where G is symmetric and positive definite.

The condition (a) means that F corresponds to a local configuration in local
mechanical equilibrium {¢f. § 5). The condition (b) means that a change of state
increases the free energy A provided that the configuration of the changed state
is related to the original configuration by a pure stretch G (cf. § 1).

7. Conditions for thermal equilibrium

In this section we show that, for a local state (F, n) to be a state of thermal
equilibrium under the force temperature pair (S, , #), the following three conditions
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are necessary and sufficient:

() The stress tensor S=-£ FS, is given by the stress relation™*
%

r

S=pF&s(F,n). (7.1)
(B) The temperature & is given by the lemperature velation

ﬂzén(F»"?)' (7.2)
(y) The inequality

E(F* %) —&(F,m) — tr[(F*—F) & (F,n)] — (p* — ) &,(F,q) >0 (73)

holds if (F*, *) 3=(F, %) and F* is relate< to F by F*=GF, where G is positive
definite and symmetric.

We assume first that (F, ) is a state of thermal equilibrium and prove the
validity of («), (8), and (y). By (6.2) and (6.3), the function j(GF, 7n*) of the
symmetric tensor variable G and the scalar variable * has a minimum for G =71
and #*=17. By a theorem of calculus, it follows that the derivatives of z(GF ,1*)
with respect to G and #* must vanish for G =1 and 5*=y. If we set the derivative
of ):(GF , *) with respect to #* equal to zero at #* =7, we obtain the temperature
relation (7.2). The gradient of i (GF,n*) with respect to G may be computed
using the formula (3) of the mathematical preliminaries and (6.1); we obtain
the equation

tr{[FéF(F,n) ~éFS,]A} =0, (7.4)

which is valid for arbitrary symmetric tensors 4. Using (5.7) the equation (7.4)
may be rewritten in the form

tr{[oF&p(F,7) — S]4} =o. (7.5)

By the condition (a) of the definition of thermal equilibrium, S is symmetric.
It follows from (3.2) and Theorem I of reference [10], p. 42, that pF &z (F, ) is
also symmetric. Thus, the tensor pF &, (F, ) — S is symmetric. On the other
hand, (7.5) can be valid for arbitrary symmetric 4 only if pF&z(F,n)—S is
skew; whence it follows that ¢F &g (F, ) —S must vanish, which proves (7.1).
The inequality (7.3) is obtained simply by substitution of (7.1) and (7.2) into
the inequality (6.2), after i is. replaced by its definition (6.1).

"We assume now that the conditions («), (8), and (y) are satisfied. It then
follows from (7.1), (3.2) and the theorem of reference [10] mentioned above that
the stress tensor S must be symmetric, so that condition (a) of the definition
of thermal equilibrium is satisfied. Furthermore, the Kirchhoff tensor is given by

Sr=e&r(F, 7). (7.6)

Substitution of (7.6) and (7.2) into the inequality (7.3) gives the inequality (6.2);
hence condition (b) of the definition of equilibrium is also satisfied.

* This is the familiar stress-strain relation of finite elasticity theory (cf. [10], (16.4)).
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8. The fundamental postulates
We are now able to lay down our two fundamental postulates:
Postulate I. For every local state (F,7) for which &(F,n) is defined there

exists a force temperature pair (S,, ¥) such that (F, n) is a state of thermal equilibyium
under (S,, D).

Postulate II. The energy function &(F,n) is stricily increasing in n for each
fixed F.

Postulate I and the results of the previous section yield the following theorems:

Theorem 1. The force temperature pair (S,,9) which makes the local state
(F,n) a state of thermal equilibrium is given by

S,=eer(F,n), (8.1)
#=2,(F,7). (8.2)

Theorem 2. The energy ﬁmction £ obeys the inequality
E(F*m*) —E(F,n) —tr[(F*— F) & (F,n)] — (* —n) &,(F,n) >0 (8.3)

for any two local states (F,n) and (F*, y*), in the domain of definition of &, which
are related by
F*=GF, (8.4)

where G is symmetric and positive definile.

The discussion of the previous section shows that Theorem 2 is equivalent to
Postulate I. In fact, if we are given a state (F,#), we can define a force tem-
perature pair (S,,#) according to (8.1) and (8.2) and then use the inequality
(8.3) to prove that (F,#) is in equilibrium under (S,, #).

The inequality (8.3) of Theorem 2 is a restricted convexity condition on the
function &. If we take, in particular, F*=ZF, then (8.3) reduces to

(F,n*) —8(F,n) — (p*—n)&,(F,n) >0 (8.5)

for n*==%. This inequality is the content of the following corollary to Theorem 2:

Theorem 3. For each fixed local configuration, the emergy density is given by
a strictly convex function of the entropy density.

This theorem is equivalent to the statement that & (F, 5) must be a strictly
increasing function of % for each fixed F. It follows that the equation (8.2) can
be solved for # in a unique manner:

n="7(F,43). (8.6)

Here, 4 is a strictly increasing function* of ¢ f6r each F. The fact that (8.6)
is obtained by solving (8.2) for # is expressed by the identity

8, [F,ii(F,9)] = 9. (8.7)
* The specific heat ¢ at fixéd strain is given by ¢=%7,(F, #). Hence, it is a

consequence of Theorem 3 that c¢/# is never negative and, for each F, is strictly
positive except possibly for a nowhere dense set of values of 9.
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If we take n*=# in (8.3), we obtain
B(F*,m) — 2(F,n) — tr[(F* — F) & (F, )] > 0; (8.8)

this inequality holds whenever F*=GUF, where G <=1 is symmetric and positive
definite.

A local state (F,#) is called a natural state if the corresponding stress (8.1)
vanishes. Keeping the entropy fixed, we may use the local configuration of the

natural state as the reference configuration, so that F =I'and &z (I, ) = 1s=o.
In this case, the inequality (8.8), by (8.4), reduces to e

E(G,n) >89, (8.9)

which is valid for arbitrary symmetric and positive definite G==I. Replacing
G by the right stretch tensor U of an arbitrary deformation gradient F and

using (3.3), we see that B(F,m) 2 (1) (8.10)

this expression becomes an equality only when F is orthogonal; ¢.e., when (F, %)
is equivalent to (I, ). Hence, the energy density is smallest in a natural state.
It should be pointed out that this observation, though important for the theory
of simple solids, is vacuous for fluids. For, we shall prove in § 11 that the stress
on a fluid material point in thermal equilibrium is always a strictly positive
pressure; thus, for a fluid there is no natural state.

We note that the restriction (8.4) on the inequality (8.3) of Theorem 2 is
essential for application of the present theory to physical situations. This
restriction means that the local configurations corresponding to F* and F must
be related by a pure stretch. If, for example, these local configurations were
related by a rotation so that F*==QF, with @ an orthogonal transformation,
then the left side of (8.8) would reduce to tr[(Q —1I)F&z(F,n)], since &(F*)
would equal &(F) by (3.2). The stress relation (7.1) shows that the left side of

(8.8) would then become ; tr[(Q—1)S]. One can show that this expression

can be made negative by an appropriate choice of Q if S has at least one negative
proper number. Thus, the inequality (8.8), were it to hold for arbitrary pairs
F, F*, would exclude the possibility of thermal equilibrium under compression
stresses, which is certainly not in accord with experience*.

9. An alternative axiomatization
In this section we hope to make clear our reasons for assuming Postulate 11
and to motivate further our definition of equilibrium.
It follows from Postulate II that, for each fixed F, the caloric equation of
state has a unique solution for #:

n=n(F, e, (9-1)

and that the function # is strictly increasing in & for each F. This one-to-one
correspondence between ¢ and » at each I makes it possible to give an alternative

* It has also been pointed out by HiLL {15 that an assumption of unrestricted
convexity of ¢ in the deformation gradient would lead to unacceptable physical
behavior.
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axiomatization of our present theory of thermostatics by taking £ and F as
independent variables and defining thermal equilibrium in terms of the func-
ti9n 7. In such a formulation a local thermomechanic state is characterized by
a pair (F, g), and thermal equilibrium is defined as follows:

Alternative definition of thermal equilibrium. The local state (F, £) is called
a state of thermal equilibrium under the force temperature pair (S,, ¥, with & =0, if

(a) the stress temsor S =(g/o,)F S, is symmetric,

(b) the inequality

AF, ) >AEF*, %) + 5 [ —F) 5] — £ 9.2)

holds for all states (F*, ¢*)2=(F, &) such that F*=GF, where G is symmetric and
positive definite.

Theorem 4. The definition of thermal equilibrium given in § 6 and the alternative
definition of thermal equilibrium are equivalent (for ¢ ==0) if Postulate 11 is assumed.

Proof. In §7 we showed that, under the original definition of § 6, in order
for a state (F,n) to be a state of thermal equilibrium for the force temperature
pair (S,, #) it is necessary that

B =8,(F,n). (9:3)

By a very similar argument it can be shown, using the alternative definition of
thermal equilibrium, that in order for the state (F, ¢) to be a state of thermal
equilibrium it is necessary that

5 =TelF, 5. | (9-4)

Now, by Postulate II, the functions & and % are strictly increasing in 7 and ¢,
respectively, for fixed F. Hence, # cannot be negative if (S,, @) is to be a force
temperature pair for some state of thermal equilibrium, regardless of which of
the two definitions is used. Since we here assume ¥ 3=0, we have #>0, and
(9.2) can be multiplied by # and then rearranged to give

— 9% (F*, &%) — «;—tr(F* S)+e*>—9h(F, &) — QL tr(FS,)+¢. (9.5

r

‘Noting the relations

(9-6)

and (6.1), we see that {9.5) is equivalent to (6.2). The requirement that (F, ) ==
(F*, n*) and the requirements on G =F*F1 are the same for (6.2) and (9.5).
The condition (a) is obviously the same in both definitions; hence the definitions
are equivalent, q.e.d.

From a certain point of view the alternative definition of thermal equilibrium
given in this section is more fundamental than the original definition of §0.
The alternative definition is more closely related to the physical notion that,
since entropy tends to increase, equilibrium states should be, in some sense,
states of maximum entropy. The definition of § 6 is closely related to the idea,
which is often used in mechanics, that equilibrium states should be, in some
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sense, states of minimum potential. It should be emphasized that the two
definitions are equivalent only if Postulate II is assumed; ¢.e., only if states of
negative temperature are excluded. Of course, negative temperatures never
ocecur in continuum mechanics, but there are subjects in which they do occur
(¢f. [11], [12]). Statistical mechanical considerations suggest that for systems
capable of negative temperatures a practical definition of thermal equilibrium
should be based on the idea of maximum entropy.

10. Infinitesimal deformations from an arbitrary state

Here we consider the classical theory of infinttesimal deformations from an
arbitrary initial configuration. We make no attempt to justify the use of the
theory of infinitesimal deformations as an approximation to the theory of finite
deformations.

In the theory of infinitesimal deformations one considers cases in which
F*=GF is obtained from F by superimposing an infinitesimal deformation. The
infinitesimal strain tensor E is defined as the symmetric part of G —1I.

In the special case in which G is positive definite and symmetric (i.e., when
F* is related to F by a pure stretch) we have

E=G-1, (10.1)
and the excess energy &(GF,n) — &(F, n) is a function of E alone:
o(E)y=8(GF,n) —&(F,n). (10.2)

Equation (10.2) is valid approximately even when G is not symmetric.

In the infinitesimal theory it is assumed (i) that (10.2) is valid exactly for
all G and (ii) that the excess energy is exactly given by the sum,

0 (E) =0y (E) + 02 (E), (10.3)

of a term oy (E) linear in E and a term o,(E) quadratic in E.

By taking the gradient of (10.2) with respect to £ and then putting £ =0,
it is easily shown that the linear term ¢y (E) must be given by

0y, (E) =tr[EF & (F,n)]. (10.4)
Hence, using the stress relation (7.1), we have
o, (E) :«;tr(ES), (10.5)
where S is the stress of the original state (F,#).
Now, the fundamental inequality (8.8) may be written
8(GF,n) —&(F,n) —tr[(G — I) F & (F,n)] >o0. (10.6)

From (10.1), (10.2) we get
o(E) —tr[EF & (F,n)] >0, (10.7)

and it follows from (10.3), (10.4) and (10.5) that
0,{E) = o (E) ——%tr(ES) >0. (10.8)
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This inequality is the content of the following theorem:

Theorem 5. For an infinitesimal deformation superimposed, at fixed entropy,
on an arbitrary state, the excess energy is the sum of a positive definite quadratic
form in the infinitesimal strain tewsor E of the superimposed strain and a linear
term L tr(E S), where g is the density and S the stress corresponding to the original
state.

If the original state is a natural state in which the stress vanishes, the above
theorem reduces to the familiar statement that the strain energy is a positive
definite quadratic form in the infinitesimal strain tensor. For isotropic materials,
this statement is equivalent to following well known inequalities for the Lamé
constants:

#>0, 3A+2u>0, (10.9)

which state that the shear modulus and the compression modulus must be positive.

11. Simple fluids
For simple fluids we have, by (4.2) and (4.3},

E(F,n) =¢(|detF|v,,n), (11.1)

where v,=1/p, is the specific volume in the reference configuration. Taking the
gradient of (11.1) with respect to £, we obtain '

& (F,m) =%, (0,n)vF?, (11.2)
where v==|det F|v,. On substituting (14.2) into the fundamental inequality
(8.3) and using (8.4), we obtain

X, g*) —E0,7) — vE, (0, tr(G —I) — (* —7) Fy(0,m) >0, (11.3)

which must hold for all positive definite symmetric G =FF* whenever either
G =1 or ==n*.

We assume now that v*=v; 7.e., that |det F*| =|det F|, which means that
G is unimodular. We also choose *=1. Then (11.3) reduces to

—vE, (v, tr(G—1I)>0, (11.4)

which must be valid for all symmetric positive definite unimodular tensors G % 1.
Let g,, g5, g be the proper numbers of G. We then have

8:>0, £8&E=1 (11.5)
and .
tr(G—I) =g +8+8&—3- (11.6)
Using the fact that the arithmetic mean is greater than the geometric mean,
Bt S Yo, (11.7)
we see that (11.5) and (11.6) imply
tr(G — Iy > 0. (11.8)

Arch. Rational Mech. Anal., Vol. 4 8
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Hence, it follows from (11.4) that
g,(v,) <O (11.9)
for all v and # for which Z is defined. Thus, €(v, ) must be a strictly decreasing
function of v for each fixed #.
Substitution of (11.2) into (7.1) shows that the stress relation reduces to

S=—pnl, {(11.10)
where

plv,g) =—5,(v,7) (11.11)
is the hydrostatic pressure. By (11.9) it is positive.
For further exploitation of (11.3) we choose G-=ul, a>0. Since

det F* v*
3 — —
@ =|det G| =| Gz | =%
we have
3 —‘v*
G=( T)I" (11.12)

Substitution of (11.42) into (11.3) yields the inequality

B0t = 50,) — 3080 (| 2~ 1) = = )y lom) >0, (1103

which must be valid for all v, v*, 5, * except, of course, when both v =v* and
n=n* In order to understand the significance of this inequality we introduce
the new variable

y={v (11.14)
and define the function g by

5(1},77):?(1},77):3(13/5,77). (11.15)

A straightforward calculation shows that (11.13) is equivalent to the inequality

E@* %) — &) — 0*—9)E,(v,n) — (p* — ) &,(n.) >0,  (11.16)

which states that £(v, %) is strictly convex in » and # jointly. If (v, %) happens
to possess continuous second derivatives, it follows that the matrix

[

vy

(11.17)

ol

el’i‘
.. . - - - 8” v ” 17
must be positive semi-definite.

We summarize in the following theorem:

Theorem 6. For a simple fluid in thermal equilibrium, the stress S reduces to
a hydrostatic pressure S = —p(v,n)1. The pressure p (v, n) = —&,(v, n) is always
positive. The energy density €(v, ) is a strictly convex function of the cube root v
of the specific volume and the entropy n jointly.

It is not hard to show that, for simple fluids, the positivity of $(v, 5) and
the convexity of (», ) are not only necessary but also sufficient conditions for
the validity of the fundamental inequality (11.3). Hence, these conditions are
also sufficient conditions for the validity of Postulate I for simple fluids.
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~ 12. Isotropic materials
For isotropic materials in general, if we pick an undistorted state as reference,
we have, by (4.5), . " .
y (43) B(F, ) =2(VRy) =2(V,n), (124)
where V is the left stretch tensor, defined by the polar decomposition F =V R.
On computing the gradient of (12.1) with respect to V, we find
2 (F,m) =R7&,(V,7). (122)

If we substitute (12.2) into {7.1) and again use F = VR we see that the stress
relation may be written in the form

S=eVe& (Vg =e& (V. n)V. (12.3)
On substituting (8.4), (12.1) and (12.2} into the fundamental inequality (8.3)
and observing that 3(F*) = 8(GF) = 8(GVR) =3(GV),
we obtain
BCV.n*) —E(V,y) —tr[(G =D VEV,n)] — (f* —n) & (V.,9) >0. (12.4)
This inequality must be valid for all 5, #* and all symmetric and pcsitive definite
G and V, except, of course, when both #=#* and G =1.
We consider now the special case when G and V' commute; 7.e., when
V*¥*=GV (12.5)

is symmetric. In this case the tensors ¥ and V* have an orthonormal basis of
proper vectors in common. The matrices of V and V'*, relative to this basis, are

2, 0 0 w0 0
I7i={owof, Ivl=]o u of. (12.6)
0 0 v, 0 0 vy

where the v;‘and the v} are the proper numbers of V and V*, respectively. The
matrix of &, (V, %) is ‘

&g 00
lev(V.m)l=]0 & 0. (12.7)
0 0 g
where
& =& (v 1) —~6( ) (12.8)

are the partial derivatives of the function (4.6). Substitution of (12.5), (4.6),
{12.6), and (12.7) into (12.4) gives the inequality
3

EWf, %) — B(yim) — X (0f — v) (v, m) — (1* — M) §y(v,m) >0, (12:9)

i1
which is valid except when #*=1 and v;=v¥ for all . We have thus proved *

* We have shown that for isotropic materials the inequality (12.9) is a necessary
condition for validity of the fundamental inequality (8.3). At the present time, it
is an open matter as to whether (12.9) is.sufficient for the validity of (8.3) in the
isotropic case, or whether further inequalities which are independent of (12.9) cén be
deduced from Postulate I for isotropic materials.

g*
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Theorem 7. For an isotropic material, the energy density E(v;,m) is a strictly
convex function of the principal stretches v; and the entropy demsity 7 jointly.

If € happens to be twice continuously differentiable, it follows that the matrix
811 812 &3 &
&y, By E53 E
Ba1 f22 f2a (12.10)
€31 €32 £&33 &3y

&1

5,)2 5”3 F
is positive semidefinite. Here the indices 1, 2, 3, and % denote the derivatives
of € with respect to vy, v,, v5, and 7, respectively.

A corollary of the convexity inequality (12.9) is

Theorem 8. For an isolropic malerial, the functions €;(v;,n), defined by (12.8),
have the property that v,>v, implies ;(v;, n)> &, (v;, ).

Proof. Without loss of generality, we take ¢ =1 and 2 =2. We then choose
v¥ =v,, v3 =v;, v§ =v;, and n*=7. Since €(v;,n) is a symmetric function of
the principal stretches v; (¢/. §4), and since the »* differ from the v, only by
their order, we have

gyt ) =%(v,m).
Hence (12.9) reduces to
. — {ve — %) & (v;,7) — {vy — vg) &;(v;, ;) > 0;
i.e.,

vy — ) [El(vi”?) - 52(1’7'"'7)] > 0.

Thus, if v,>v,, then & (v;, n)>&,(v;, ), q.e.d.

In an isotropic material, the left stretch tensor V and the stress tensor S
have an orthonormal basis e; of proper vectors in common. The e; determine
the principal axes of stress. It follows from (12.3), (12.6), and (12.7) that the
principal stresses are given by

s;=0v;8;(v;,m). (12.11)

When measured per unit area in the undistorted reference state, these principal
stresses must be replaced by
$i =0, (v;, 7). (12.12)

Hence Theorem 8 has the following simple physical interpretation:

Theorem 8a. If, at a given value 0, the prz’ﬁcipal stretch v, is greater than the
principal stretch vy, then the principal stress, measured per unit area in the un-
distorted reference state, in the divection of v; is greater than that in the direction of v,,.

It should be noted that the statement of this theorem does not necessarily
remain valid if the principal stresses are measured per unit area of the deformed
state*, except when these stresses are all positive; 7.e., except in a state of pure
tension.

* Such a statement was proposed as a postulate by M. BAKER & J. L. ERICKSEN
[13]. In our theory, only the modification given by Theorem 8a is valid. Related
inequalities have been studied by ]J. Barra [14].
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13. The free energy

It is often useful to employ the deformation gradient F and the temperature
#, rather than F and the entropy #, as the independent variables. This is possible
because, by (8.2) and (8.6), there is a one-to-one correspondence between # and
for each fixed F.

The free energy function P is defined by
P(F.9) =&[F,f(F,9)] — 84(F,9), (13.1)

where the entropy function # is defined in (8.6) as the unique solution of the
equation (8.2). The values ¢ of the free energy function  are called free energy
densities™*. '

Differentiation of (13.1) with respect to F, using the chain rule, gives
Pr(F,9) =& [F, i (F,8)] +&,[F, fi(F,8)] fjp (F,¥) — 87 (F, D).

It follows from (8.7) that the last two terms canéel, 'so that

§r(F,0) = ¢ [F, 7 (F, 9)]. (13.2)
Differentiation of (13.1) with respect to ¢ gives
Po(F,9) = — 7(F, D). (13.3)

From Theorems 1 and 2, (13.2), and (13.3) we get
Theorem 9. For the force temperature pair (S,, #) to make the local state (F, n)
a state of thermal equilibrium, it is necessary and sufficient that S, and n be given by
S,=e,$r(Br9), (13.4)
n=—9s(F,9). (13.5)

On multiplying (13.4) on the left by (g/g,) F and noting that S =(gfg,) F S,,
we get the following form for the stress relation:

| S =oF§:(F,9). (13.6)
Assuming that two temperatures ¢, ¢* and two deformation gradients F, F*
are given, we now put: - .
¢ U = i(F,0) = —Fo(F.9)
n*=7(F*, 0% = — Po(F*, 9%). (13.7)

By substituting (13.1)—(13.7) into the fundamental inequality (8.3) of Theorem 2,
we obtain

Theorem 10. The free energy function P obeys the tnequality
PE, D) —§(F,8) — tr [(F*— F) 5 (F,n)] — (8* — 9) §o(F*,8*) >0 (13.8)
for any two pairs (F ,9) and (F*, 9%) %= (F, &) in the domain of definition of § which
are related by F*—GF, (13.9)

where G is symmetric and positive definite.

" * The term “Helmholtz free energy per unit mass’ would also be in accord with
common usage.
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As Theorem 2, so also Theorem 10 is equivalent to Postulate I.
If in (13.8) we take the special case F*=F and interchange # and 9*, we

btai . . -
obtam P(F, %) — §(F, 9) — (0% — ) §,(F, 8) < 0. (13.10)
This inequality, which is valid for all F and all #*==4, states that the free energy

function § (F, ) is strictly concave in 9 for each F,
Putting 9*=% in (13.8) gives the following restricted convexity of % in F:
§E* ) — §(F,9) — tr[(F*— F) §(F. 9)] >0, (13.11)
the restriction being the condition (13.9).

The considerations and results of § 11 and § 12 on simple fluids and isotropic
materials remain valid if the energy function & is replaced by the free energy
function 9, except that the convexity of &(F, 5) in 7 corresponds to the concavity
of f(F, ¥) in 4. We summarize the relevant results.

For a simple fluid, the free energy density reduces to a function of the specific
volume v and the temperature ¢ only:

v=9(F,9) =p(v.9). (13.12)
The stress reduces to a hydrostatic pressure given by
S==pdI, PO =—-%@9. (13.13)

The pressure is always positive. The function 9, giving the free energy as a
function of the cube root » of the specific volume and the temperature,

P9 =909, (13.14)
satisfies the inequality ‘

PO 0% — 90, 9) — (0% —9) §,(1,9) — (* — ) Bo(v*, %) > 0. (13.15)

This inequality implies that % (v, #) is strictly convex in » for each ¢ and strictly
concave in 4 for each .

For isotropic materials in general, the free energy reduces to a function of
the temperature ¢ and the three principal stretches v;, v,, v;, computed relative

to an undistorted state: . _
P(F,9) =9 (v, 5,055 9). (13.16)

The function ¥ is symmetric and strictly convex in the variabies vy, v,, v3; P is
strictly concave in #. Theorems 8 and 8a remain valid if € is replaced by ¥;
i.e., if the temperature, rather than the entropy is fixed at a given value. The
stress relation may be written in the form

S=eVy(V,9), (13.17)

where V is the left stretch tensor.
The forms, (13.6), (13.13), and (13.17), of the stress relation are useful in
discussing experiments involving equilibrium states for which the temperature
is controlled, while the forms, (7.1), (11.10), and (12.3), are appropriate for

discussing experiments involving equilibrium states for which the entropy is
controlled.
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14, Thermal stability

Consider a body # and a global thermomechanic state {f, 5} of #, defined by
a configuration f of 4 and an entropy distribution % of #; (¢f. §2). Let the
caloric equation of state of the material point X of & be given by

e(X) =¢[F(X),n(X); X]. (14.1)

Here F(X) is the deformation gradient at X of the configuration f relative to
some reference configuration f,. We do not assume that the body is homogeneous,
and hence the function & may depend explicitly on X as indicated in (14.1).
The total entropy of & in the given state is defined by

H = [ 7(X)dm (14.2)
E
and the total internal energy of & by
E =,f E[F(X),n(X); X]dm. (14.3)

In this section we shall deal with situations in which the deformation gradient
F(X) is kept fixed at each X while the entropy field =9 (X) is varied. It will
not be necessary to make the dependence of & on F explicit, and the following
abbreviated notation will be convenient:

E[F(X),n(X); X] = ¢(X,7(X)). (14.4)

Definition of thermal stability. Let {f, 7} be a state of B and let E and H
be, respectively, the total internal energy and total entropy corresponding to the state

{f, n}. We say that {f, 7} is a thermally stable state of B if every other state {f.n*},
with the same configuration as {f, n} and the same total entropy as {f, n},

H* —;fﬁ(X)dm:H:gfn(X)dm, (14.5)
has a greater total infernal energy than the state {f,' n}; ie.,
E*=gfe(X,17*(X)) dm>E=gfs(X,17(X)) dm. (14.6)

We give another condition, equivalent to the one given above, which could
also be used to define thermal stability.
Theorem 11. A4 state {f, n} of B is thermally stable if and only if every other
state {f, n*} with the same configuration as {f, 1} and the same total energy as {f, n},
E*:gf e (X, n*(X)) dm=E=éf s(X,n(X)) dm, (14.7)
has a lower total entropy than the state {f, n}; i.e.,
H =gf17(X) dm > H* =;f n*(X)dm. (14.8)

Proof. We show that the hypothesis of Theorem 41 is necessary for thermal
stability by showing that if there exists a state {f, 7} (with #, not identical to #)
which obeys the equation (14.7) of Theorem 11 but violates (14.8), then there
must exist a state {f, 7y} (with #, not identical to 5) which obeys the equation
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(14.5) of the definition of thermal stability but which does not obey (14.6). Let
7, be the entropy density distribution which obeys (14.7) but not (14.8); we

construct 7, as follows: H—H
72(X) =n (X) +W, (14.9)
where H, is the total entropy corresponding to #,. The total entropy correspond-
ing to 7, 1s Hy = [ 75 (X) dm = H. (14.10)
%

Hence, the state {f,7,} obeys the equation (14.5) of the definition. We have
assumed that #, is not identical to 5 and that H; = H. If H, = H, then #, is the
same as 7, and hence different from 5. In this trivial case of n,=1,, it follows
from the fact that #, obeys (14:7) that

Qfs(X, 7e(X)) dm zgfa(X, m (X)) dm =gfe(X,77(X)) dm., (14.11)

If H, >H, then 7,(X)<<n, (X) for all X in #. It then follows from Postulate II
of §8 and the assumption that 7, obeys (14.7) that

[e(X,ne (X)) dm <Qfs(X,171(X)) dm = [ &(X,n(X)) dm. (14.12)
# 4

It is clear from (14.12) that 7, is not identical to 7. Hence, whenever H; =H,
we have, by the construction (14.9), a state {f, n,} with 7, different from % but
with H,=H and

E, :gfe(x,nz(X))dmgg[e(x,n(X)) dm=E. (14.13)

Thus, a violation of the hypothesis of Theorem 11 implies the existence of a
state different from {f, #} which obeys (14.5) yet violates (14.6).

The sufficiency of the hypothesis of Theorem 11 is proved analogously by
starting with a state which obeys (14.5) of the definition, but not (14.6), and
then using Postulate II to construct a state which obeys (14.7) of the theorem,
but which violates (14.8).

The main result of the present section is the following theorem:

Theorem 12. A state {f, n} of a body s thermally stable if and only if it is
of uniform temperature; i.e., if and only if

¥ =g, (X,n(X)) (14.14)

1s a constant, independent of the material point X.

Proof. To show the necessity of & =constant, we observe that, by (14.6),
the function #(X) is the solution of the variational problem

gf (X, n*(X)) dm = Minimum (14.15)
subject to the constraint (14.5). It follows that the first variation of

J (X)) — (X)) dm (14.16)
must vanish for #*=#. Here « is a constant Lagrange parameter. We obtain

a = g, (X, n(X)) =9 = constant. (14.17)
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To prove the sufficiency of # =constant, we substitute the function values
F(X), n(X) and *(X) for F, 5 and #* in the convexity inequality (8.5). Using
the abbreviation (14.4) and the equation (14.14), we get

(X, *(X)) — & (X, 7 (X)) — [*(X) —n(X)]#=0. (14.18)

This inequality must be strict for some X if »* and » are different continuous
functions. If ¢ is a constant and if (14.5) holds, then integration of (14.18) over
the body £ gives the inequality (14.6), which proves that {f, 5} is thermally stable,
g.e.d.

15. Mechanical stability

Consider a state {f,n} of a body #. According to Postulate I of §8 it is
possible to find a temperature field & and a stress field S such that every material
point of # is in thermal equilibrium for the force temperature field defined by
Sand §. Infact, Sand are given by the stress relation (7.1) and the temperature
relation (7.2), respectively. If a field of body forces b is given, then the state
{f,m} will be a state of mechanical equilibrium if Cauchy’s condition

DivS+ob=0 (15.1)

holds. If {f,n} is such that every material point is in thermal equilibrium, it
is always possible to choose b such that the state {f, 7} is a state of mechanical
equilibrium. We need only to define b by (15.1). We say that the fields S, &,
and b, given by (7.1), (7.2) and (15.17, make {f, n} a state of equilibrium. We
call S,# and b, respectively, the stress, temperature, and body force fields of
{f.m}.

‘V%/e investigate the possible meaning that can be given to the statement that
an equilibrium state {f, #} is stable. First, we require that it be thermally stable
which, according to Theorem 12, means that the temperature 4 must be uniform.
In addition, we require that some condition of mechanical stability be satisfied.
One must distinguish between various types of isothermal mechanical stability and
adiabatic mechanical stability.

In the case of isothermal mechanical stability, one compares the given
equilibrium state {f,} with a class of states {f*, #*} corresponding to the same

uniform temperature ¢ =9(F,n) as the given state. Each of these states is
charactcrized by its configuration f* alone, because the corresponding entropy
distribution is then determined by

n =7 (F*,93). (15.2)

External forces or boundary conditions must be prescribed for each of the
comparison configurations f*. The configuration f is called stable if the increase
in the total free energy would always be greater than the work done on the
body by the external forces if the configuration were to be deformed into any
of the comparison configurations f*. We give more precise definitions in two
special cases.

" Definition of isothermal stability at fixed boundary (IFB stability). A
equilibrium state {f, n} is called IFB stable if {f, n} has a uniform temperature 9
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and if for every state {f*,n} which satisfies the following conditions:
(a) f* lies in a prescribed neighborhood™ of f,
(b) f*(X) =f(X), when X belongs to &, (15.3)
(c) the temperature corresponding to {f*, n} is equal to & for all X in B,

the following inequality holds :

J@E) —yE b (f*—f}dmzo. (15.4)
Here & is the boundary of 4, and w(F) is an abbreviation for
p(F) = (F(X),9; X); (15.5)

F*(X) and F(X) are the deformation gradients at X for the configurations f*
and f, respectively, both computed relative to the same fixed reference configura-
tion. As in' § 14, we do not assume that the body is homogeneous, and hence
the function § may depend explicitly on X.

We say that {f,#} is strictly IFB stable if the inequality (15.4) is strict
whenever {f*, n*} obeys (a), (b) and (c) and is such that f*==f.

Note that the surface tractions do no work if the boundary is fixed and that
— ff* - bdm is a potential of the work done by the body forces if these are

#

held at their values b (X) in the equilibritim state {f, n}.

The type of stability considered is affected by the prescription of the neigh-
borhood in the requirement (a) of the definition of IFB stability. A global state
may be stable with respect to some (small) neighborhood without being stable
with respect to other (larger) neighborhoods.

Definition of isothermal stability at fixed surface tractions (IFT stability).
An equilibrium state {f,n} is called IFT stable if {f,n} has a uniform temperature
D and if for every state {f*, 77} which satisfies the following conditions:

(a) f* lies in a prescribed meighborhood of f,
(b) the temperature corresponding to {f*, n} is equal to O for all X in B,
the following inequality holds:

F=£f{W(F*) —p(F) —b-(f*—[)}dm —gf (f*—f)-Sndad=z0. (15.6)

Here & is the boundary surface of the region occupied by 4 in the configuration f;
d A is the element of that surface; and n is the exterior unit normal.

Note that — f J*-SmdA is a potential of the work done by the surface
F

tractions if they are held at their values in the equilibrium state {f, 5}.

An IFT stable state is always also IFB stable. This follows'from the fact
that the surface integral in (15.6) gives no contribution if the boundary condition
(15.3) holds, so that the inequalities (15.4) and (15.6) become the same in this casc.

* A neighborhood of a configuration is defined by the metric
S(f,1*) =§gg{lf*(X) —f (X +|F*1X)F(X) — 1]}

over the space of all configurations.
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If the inequality (15.6) holds for all states which obey items (a) and (b) of
the definition of IFT stability and is, furthermore, a strict inequality for all
such states for which F*(X)==F(X) for at least one material point X, then we
say -that {f, 5} is strictly IFT stable against deformations and rotations. For in
that case (15.6) can reduce to an equality only if f* is related to f by a simple
rigid translation.

To investigate adiabatic mechanical stability, one compares the given equi-
librium, state {f,#} with a class of states which correspond to the same total
entropy as {f,n}. We again censider two special cases.

Definition of adiabatic stability at fixed boundary (AFB stability). 4n
equilibrium state {f, n} 1s called AFB stable if {f 1} is thermally stable and if for
every state {f* n*} which satisfies the following conditions:

(a) f* lies in a prescribed neighborhood of f,
(b) f*(X) =f(X), when X belongs to B,
(c')«gfn*(X) am =af17(X) am,

the following inequality holds:
J ), 7X); X] =3 [F(X),9(X); X] = b- (= [)}amz 0. (15.7)

If the inequality in (15.7) is strict for all {f*, 77*} satisfying (a), (b) and (c)
and for which f*==f, then we say that {f, } is strictly AFB stable.

Theorem 13. A thermally stable equilibrium state {f, n} is AFB stable if and
only if for every state {f*, n*} which satisfies the following conditions:

(a) f* lies in a prescribed neighborhood of f,

(b) f*(X) -f(X) when X belongs to &,

{c) gf{e (F*X),n*(X); X)—b. f*}dm~—f{e EF(X),n{X); X) b. f}dm (15.8)
the following inequality holds:
gfn*(X)dmégfn(X)dm. (15.9)

Furthermore, {f, } is strictly AF B stable if and only if (15.9) is a strict inequality
for every state {f*, n*} <={f, n} obeying (a), (b) and (c).
We omit the proof of Theorem 13 because it is analogous to that of

Theorem 11. Of course, the validity of Theorem 13 requires the assumption of
Postulate II.

Definition of adiabatic stability at fixed surface tractions (AFT stability).
An equilibrium state {f,n} is called AFT stable if it is thermally stable and if for
every state {f*, n*} which satisfies the following conditions:

(a) f* is in a prescribed neighborhood of f,
(b)gf nHX) dm =:gf77(X)dm,

the following inequality holds:
gf{é[F*(X),n*(X):X}—EEF(X). 7(X); X]—b-(f*—f)}dm —

15.1
— f*— SndAgO. (15.10)
F
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It will be noticed that a state which is AFT stable is always AFB stable.

If the inequality (15.10) holds for all states which obey (a) and (b) and is a
strict inequality for all such states for which F*(X)==F(X) for at least one X,
then we say that {f, #} is strictly AFT stable against deformations and rotations.

It is clear that, in analogy to Theorem 13, an alternative, but equivalent,
definition of AFT stability can be formulated in which a stable state is defined
to be one of maximum entropy among all those states for which (15.10) reduces
to an equality.

The definitions of IFB, IFT, AFB and AFT stability given above are ap-
plicable only to those physical situations in which the body force field b =b(X)
is independent of the comparison configuration f*. If one is interested in studying
cases in which the body force on X depends on X and is also a functional of f*,
one can modify the definitions of stability by connecting the comparison state
f* to f by means of a continuous one-parameter family f,, 0<s<1, fo=f, fi=F*
and replacing the term _ f b (f*—f)dm

n (15.4), (15.6), (15.7), (15.8) and (15.10) by

_fbefs X gsam.

If the body force on each materlal point is derivable from a single-valued poten-
tial, then the integral exhibited above is independent of the paramatization,
and is simply the difference in the potentials at f and f*.

In the definitions of IFT and AFT stability, we assumed that not only the
body forces but also the contact forces at the surface do not depend on the
comparison configuration. One can also study, in a way analogous to that outlined
above for the body forces, those cases in which the surface tractions depend on
the comparison configuration.

Theorem 14. A state which has isothermal stability of a certain type also has
adiabatic stability of the corresponding type.

Proof. Consider a state {f, n} which has a uniform temperature & and which
has isothermal stability of a particular type. Let f* be a configuration which
satisfies the boundary conditions, if any, for the appropriate comparison con-
figurations. Define the entropy field #, by

m(X) =7 (F¥(X),9), (15.11)

where F* is the deformation gradient field corresponding to the configuration f*.
By (13.1) we have

PF*9) ~P(F,8) =2(F5m) —8(F.) —(m—n)d.  (15.42)
Here F corresponds to f. .Let #* be any entropy distribution satisfying the
condltlon
gfn )dm = [n(X)dm, (15.13)
#

which is required for comparison states in adiabatic stability. Define the field

b
Ay B=¢8F*n*) —E(F*,n) — (n* —n) 0. (15.14)



Thermostatics of Continua 125

From (8.5) we get B(X)=0
for all X. From (15.12) we have

YD) —PF, ) =eF*n*) —E(l,n) —f—(n*—m)d.  (15.15)

We integrate (15.15) over #. According to (15.13) we get no contribution from
the term — (5*—n)®; hence, since f# is non-negative,

gf (@™ 9) —'?(F,ﬁ)]dmégf (8(F*n*) —8(F,n)]dm.  (15.16)

Since the work W done by the external forces in going from f to f* is the same
in adiabatic and isothermal stability, it follows from (15.16) that if

QI [§(F*9) —9(F,9)]dm —W (15.17)

is non-negative, then '
J[E(F*,n*) — &(F,np)]dm — W (15.18)
&

is non-negative (and strictly positive when (15.17) is strictly positive). Hence,
the isothermal stability of {f, n} implies the corresponding adiabatic stability for
{f.m}, g.e.d.

Although in writing our proof of Theorem 14 we have used a notation which
implies that % is homogeneous, it is clear that the same argument is valid when
& is not homogeneous.

It appears to us that the converse of Theorem 14 need not be true; i.e., an
equilibrium state may have adiabatic stability without being isothermally stable.

16. Gibbs’ thermostatics of fluids
We now consider a type of stability which was proposed by Gisss* for
fluids free from body forces. GIBBS states** that he had in mind a physical
situation in which the fluid is “‘enclosed in a rigid envelop which is non-conducting
to heat and impermeable to all the components of the fluid”. . A body which
may be regarded as being in such an envelop is usually called an ““isolated system”".

Definition of G stability***. An equilibrium state {f, n} of a fluid body &
is called G stable if the following condition is satisfied. Let {f*, n*} be any other
state with the same total volume and the same total entropy as {f, n},

fotdm=[vdm, [y*dm=[yndm, (16.1)
# # # r

* See the section of [I] which is entitled “Internal stability of homogeneous
fluids as indicated by the fundamental equations”, (b), pp. 100— 115, particularly the
subsection entitled ‘‘Stability with respect to continuous changes of phase’ (b),
pp- 105—111.

** 1] (b), p- 100.

*** In this definition we again restrict ourselves to those physical situations in
which fluctuations in chemical composition are surpressed. We have in mind situations
in which chemical reactions are prohibited and in which the fluid is either homo-
geneous or does not allow diffusion. For fluids the homogeneous case is the one of
practical importance. Situations in which flow is permitted but diffusion is prohibited
are rare.
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then {f, n} has a lower total internal energy than {f*, n*},
[ & [0*(X), 7*(X); X] dm > [ 8 [0(X),7(X); X] dm, (16.2)
@ ]

unless v*(X) =v(X) and y*(X) =n(X) for all X in &.

In (16.1) v and v* denote the specific volume fields for # corresponding to
the configurations f and f*.

In the following alternative definition f and ¢ are taken as the independent
variables, and the permitted comparison states are such that the total internal
energy and total volume of the body are conserved during the variations. This
alternative formulation may suggest to the reader why G stability is regarded
as being appropriate for discussing the physics of isolated systems composed of
fluids:

Alternative definition of G stability. An equilibrium state {f, &} of a fluid

body & is called G stable if any other state {f*, £*} with the same total volume and
the same total internal energy as {f, €},

fo*dm=[vdm, [e*dm=[¢edm, (16.3)
£ # & #
has a higher total entropy,
[7[v¥(X), e*(X); X]dm < [7[v(X), e(X); X]dm, (16.4)
2 2

unless v*(X) =v(X) and e*(X) =¢(X) for all X in B.

The function 7 in (16.4) is obtained by solving & =& (v, %; X) for %, which
is possible in a unique way because £ is strictly increasing in #.

The. proof of the equivalence of the two definitions of G stability is analogous

to the one given for Theorem 11 of § 14 in the case of thermal stability; one
must again use Postulate II of § 8.

The main result of this section is

" Theorem 15. An equilibrium state {f,n} of a fluid body is G stable if and
only if its temperature and pressure are uniform.

Proof. To prove that the condition is necessary we observe that the func-
tions v, % are solutions of the variational problem

J & (v*, n*; X) dm = Minimum (16.5)
4
subject to the constraints (16.1). Therefore, the first variation of
JE@*,n*; X) — An* — pv*]dm
E

must vanish for v*=v and #*=y. Here 2 and p are constant Lagrange para-
meters. It follows that

g,(v,n; X) = A =constant, §,(v,7; X) = = constant. (16.6)
Hence, by (8.l2) and (11.11), both the temperature, & =g,(v,n; X), and the
pressure, p = — g, (v, n; X) are uniform over #.

To prove the sufficiency of the condition of the theorem, we assume that ¢
and p are uniform and that (16.1) holds. From the convexity inequality (11.46),
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the inequality (11.9), and the fact that v =43, ¥>0, is a convex function of »,
one can easily infer that & (v, ) must be convex in v and 5. Hence, the inequality

Bk, % X) —E(* n; X) — (v* — 0) &, (0,7, X) —(* — ) § (v, 7; X) 20 (16.7)

is valid at all material points X in #; (16.7) cannot reduce to an equality for
all X unless v(X) =v*X) and 5 (X) =»*(X) for all X. Since p =—¢,(v,%) and
9 =FE, ('v 7) are independent of X, integration of (16.7) over # gives

f 8'”*; *X)—san dm-f—pf(v*—v am — ﬂf _:'7 dm>0
n

The condition (16.1) states that the last two terms vanish and hence that (16.2)
holds, g.e.d.

In his discussion of the stability of homogeneous fluids, GiBBs used a defini-
tion of stability which is.identical to what we have called G stability, except
that he did not demand, as we do, that {f, #} be an equilibrium state*. Gisss
was able to prove that uniform values of &,(v, ) and &,(v, ) are necessary for
his stability and, furthermore, that the mequahty (16.7) is also necessary. He
also realized that the constancy of €, and &, over # and the validity of (16.7)
are sufficient for his stability. If he had gone a step further and postulated that
for homogeneous fluids stable states exist for every value of v and # for which &
is defined, he would have obtained (16.7) as a property of the function . Such
a procedure, however, cannot yield the statements, made in Theorem 6, that
— §, is positive and that £ is jointly and strictly convex in » and 7.

We conclude with

Theorem 16. An equilibrium state {f, v} of a fluid body & is G stable if and
only if both of the following conditions hoid .

(@) The temperature corresponding to {f, n} is uniform.

(b) Any other state {f* n*} with the same total volume,

gf v*dm =gfvdm, (16.8)

and the same uniform temperature & has a higher total free energy,
Jo@*0; X)dm> [§(v,8; X)dm, (16.9)
a &

unless v¥(X) =v(X) for all X in &.
Proof. The proof that the conditions (a) and (b) are sufficient for the G
stability of {f, n} is completely analogous to the proof of Theorem 14 of §15.

The necessity of the condition (a) for the G stability of {f, 5} follows from
Theorem 15. To prove that (b) is necessary we assume that {f, %} is stable.
We consider another state {f*, #7*} which obeys (16.8) and which has the uniform
temperature #. Since v =1® is a convex function of » for »>0, and 9, (v, #) <0,
the inequality (13.15) implies that

P, X)—pv,d; X) — (v*— )9, (v,9; X) =0; (16.10)

* GieBs does not use either our Postulate I or our definition of (local) thermal
equilibrium.
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(16.10) cannot reduce to equality for all X unless v(X) =v*(X) for all X. Now,
since we are assuming that {f, 5} is stable, it follows from Theorem 15 and (13.13)
that 9, (v, &; X) is independent of X. Thus, by (16.8), if we compute the mass
integral of (16.10) over %, the last term on the left makes no contribution, and
we get (16.9). Hence, when {f, 5} is G stable, the condition (b) is valid, q.e.d.

This theorem shows that for G stability of fluids adiabatic and isothermal
stability are equivalent.

Acknowledgement. This research was supported in part by the Air Force Office
of Scientific Research under Contract AF 49(638)-541 with the Mellon Institute and
bty the National Science Foundation under Grant NSF-G 5250 to Carnegie Institute
of Technology.

References

(1] (a) GiBss, J. W.: On the equilibrium of heterogeneous substances. Trans. Conn.
Acad. 3, 108—248, 343—524 (1875——1878), or (b) The Scientific Papers of
J. WiLLarD GiBBs 1, 55—372, particularly §5—62 and 100—115, Longmans,
Green, 1906.

[2] DuneM, P.: Dissolutions et Mélanges. Travaux et Mémoires des Facultés de
Lille 3, No. 2, 1—136 (1893).

[3] TruespDELL, C.: Das ungeltste Hauptproblem der endlichen Elastizitéitstheorie.
Z. angew. Math. u. Mech. 36, 97—103 (1956).

[4] Hapamarp, J.: Legons sur la Propagation des Ondes et les Equations de I'Hydro-
dynamique. Paris 1903. '

[6] EricksEN, J. L., & R. A. TouriN: Implications of Hadamard’s condition for

) elastic stability with respect to umiqueness theorems. Can. J. Math. 8,
432—436 (1956).

[6] Dunem, P.: Recherches sur l'élasticité. Troisiéme partie. La stabilité des
milieux élastiques. Ann. Ecole Norm. (3) 22, 143—217 (1905).

[7] Norr, W.: A mathematical theory of the mechanical behavior of continuous
media. Arch. Rat. Mech. Anal. 2, 197—226 (1958).

[8] Norr, W.: The fundations of classical mechanics in the light of recent advances
in continuum mechanics. Proceedings of the Berkeley Symposium on the
Axiomatic Method, 266—281, 1959.

9] TruespEiLL, C.: The mechanical foundations of elasticity and fluid dynamics.
J. Rat. Mech. Anal. 1, 125—300 (1952); 2, 593—616 (1953).

(16] Nowri, W.: On the continuity of the solid and fluid states. ]J. Rat. Mech. Anal.
4, 3—81 (1955).

(117 RamseEy, N. F.: Thermodynamics and statistical mechanics at negative absolute
temperatures. Phys. Rev. 103, 2028 (1956).

[12] CoLEMAN, B. D, & W. NoirL: Conditions for equilibrium at negative absolute
temperatures. Phys. Rev. 115, 262 —265 (1959).

[13}] Baker, M., & J. L. ErRicksEN: Inequalities restricting the form of the stress-
deformation relations for isotropic elastic solids and Reiner-Rivlin fluids.
J. Washington Acad. Sciences 44, 33—35 (1954).

[14] Barrta, J.: On the non-linear elasticity law. Acta Tech. Acad. Scient. Hungaricae
18, 55—65 (1957).

[15] HiLr, R.: On uniqueness and stability in the theory of finite clastic strain.
J. Mech. Phys. Solids 5, 2290—241 (1957).

Mellon Institute
Pittsburgh, Pennsylvania
and
Carnegie Institute of Technology
Pittsburgh, Pennsylvama

(Received August 24, 1959)



