
Multiphase thermomechanics with interfacial structure 
1. Heat conduction and the capillary balance law 

MOR TON E.  G U R T I N  

1. Introduction 

In [1986 g, 1988 g] I began the development of  a nonequilibrium thermomecha- 
nics of two-phase continua, a development based on dynamical statements of  the 
thermomechanical  laws in conjunction with GmBs's notion of a sharp phase- 
interface endowed with energy and entropy. I have since come to realize that 
there is an additional balance law appropriate to the interface 6. This law, which 
represents balance of capillary forces, has the form ~ 

f c v +  f ~  = 0, (1.1) 
t3e c 

with c an arbitrary subsurface of ~ and v the outward unit normal to the boundary 
curve 8c of ~. Here C(x, t), the capillary stress, is a linear transformation of tan- 
gent vectors into (not necessarily tangent) vectors, while ~r(x, t), the interaction, 
is a vector field; C(x, t) represents microforces exerted across 8e in response to 
the creation of  new surface; ~t(x, t) characterizes the interaction between the inter- 
face and the bulk material. I view (1.1) as a balance law which is supplementary 
to the usual laws for forces and moments. 

Balance of capillary forces has the local form 

div~ C + :r = 0, (1.2) 

with divo the surface divergence on ~. The normal component  of  (1.2) arises in 
previous theories, emerging as an Euler-Lagrange equation corresponding to 
the requirement that a global Gibbs function be stationary. 2 This is not surprising: 
balance laws often follow as Euler-Lagrange equations, an example being balance 

1 In the absence of external supplies. 
2 HERRING [1951], CAHN & HOFFMAN [1972, 1974]; the notion of capillary forces 

is implied by these authors. Another special case of (1.1), the requirement that Cu be 
continuous across a corner, was derived variationally by HERRING [1951] and used by 
HERRING and others to discuss the formation of facets. 
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of forces in elastostatics. Such variational derivations underline the consist- 
ency between theories and, what is more important, often point the way 
toward a correct statement of the relevant law. On the other hand, such derivations 
tend to obscure the fundamental nature of balance laws as basic axioms in any general 
dynamical framework which includes dissipation. 

In [1986g, 1988g] I derived the normal component of (1.2) as a consequence 
of the second law. While this approach might seem advantageous, the more general 
framework necessitates a more complicated constitutive theory: in the present 
study, capillary balance furnishes a relation between the interfacial temperature 
and the curvature, orientation, and normal velocity of  the interface; this relation 
is a constitutive postulate in [1986g, 1988g]. 

It is the purpose of this paper to develop a fairly complete thermomechanics 
based on capillary balance as an independent axiom. To avoid inessential compli- 
cations that might obscure an understanding of this law, attention is limited to 
nondeformable bodies in the absence of diffusion. The addition of diffusion is 
elementary; the extension to deformable bodies will be the subject of  [1988s]. 

The theory is based on three physical laws: balance of capillary forces, balance 
of energy, growth of entropy. A fundamental assumption underlying balance of  
energy is that interfacial forces supply power to the interface through the velocity 
Vrn, where m is a unit-normal field for the interface and V is the corresponding 
normal velocity; in particular, the power expended on the interface by the capillary 
stress has the form 

f (Vm) .  Cv, (1.3) 3 

indicating a sharp departure from classical ideas. Power is generally the product 
of a force acting on a material point (particle) and the velocity of the point. Here 
material points do not move, but power is expended, and this power is reckoned 
by the motion of the phase boundary. 4 

A fairly general constitutive theory is considered for the interface. The free 
energy f and entropy s are allowed to depend on the temperature 0, and- - to  
have a theory of sufficient generality to model crystal growth--also on the orien- 
tation m and the normal velocity V; in addition, constitutive equations are given 
for the symmetric and normal components, s Csyrn and c, of the capillary stress, 
and for the normal component z~ of the interaction: 

f----riO, m, V), s = ~(0, m, V), 

Csy m = Csym(O, m, V), c = ~:(0, m, V), (1.4) 

~r - -  z~(O, m ,  V) .  

3 Cf .  R e m a r k  4.4.  
4 Conceptually, it is useful to identify the interface with a collection of particles 

transported with velocity Vrn. This view is emphasized by AN~ENENT & GURTIN [1988a]. 
5 At each point the capillary stress C maps tangent vectors into vectors in I~3; we 

write C = T + rn | c, where T maps tangent vectors into tangent vectors; Csy m is 
then the symmetric part of T. 
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Use of  the second law 6 then leads to the following list of  constitutive restric- 
tions: 

(i) the free energy, the entropy, and the normal and symmetric components of  the 
capillary stress are independent of  the normal  velocity V and 

~(0, m) = --~of(a, m),  ~.(0, m) = --~mfiO, m),  
(1.5) 7 

Csym(0, m)  is a surface tension of amount  f(O, m);  

(ii) the interaction ~(0, V, m)  equals the jump in bulk free energy across the 
interface minus a drag force of  the form fl(0, m,  V) V, { / >  0. 

In classical theories of  melt ing-- in which the interface is devoid of  structure--  
changes of  phase occur at the transition temperature 0M, which is the temperature 
at which the bulk free energies of  the two phases coincide. Within our theory 
a flat and stationary interface has temperature 0M, but a curved and moving inter- 
face need not;  in fact, the relation 

u = f ( m )  n + ~,,~,,,f(m). L -- fl(m) V, (1.6) 

for the (dimensionless) temperature difference 

0 --  0M 
U 

0M 

as a function of  V, the curvature tensor L, and the corresponding mean curvature 
H, follows f rom capillary balance as an approximation appropriate to a weak inter- 
face; that is, to an interface for which the interfacial densities are small and the 

dependence on V weak. Here f ( m )  = f(OM, m), fl(m) = fl(OM, m, 0), and we 
have chosen a scaling in which the latent heat l satisfies 1 = 1. 

The usual heat equation in bulk combined with (1.6) and a similar approxi- 
mation for balance of  energy lead to the partial differential equations and free- 
boundary conditions: 

Ciu" = - -d iv  q, q = - - K  i Vu in bulk,  

u = B ( m ) .  L - - / 3 ( m )  V / 

/ o n  the interface, (1.7) 
V = [ql " m 

Here Ci and Ki, respectively, denote the (appropriately scaled) bulk specific heat and 
bulk conductivity (tensor) for phase i (i = l, 2); q is the heat flux; [q] is the jump 
in q across the interface; B(m) �9 L represents the first two terms on the right side 
of  (1.6). 

Global  growth conditions are found for the system (1.7) in a bounded domain 
under various boundary conditions. In particular, for a bounded solid S(t) in a 

6 In the manner of COLEMAN & NOLL [1963]. This procedure is applied in [1988a], 
but the absence of capillary balance severely complicates the analysis. See also MUaDOCH 
[1976], who obtains restrictions for a materially stationary interface in a deforming 
continua. 

70~g denotes the derivative (usually partial) of g with respect to z. In particular, 
O,,,g is the surface gradient with respect to m on the surface of the unit ball in R 3. 
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liquid melt, enclosed by a container B whose boundary 0B is held at the spatially 
constant temperature U = U(t), 

where 

{j } F(o)" + U vol (S)" + ((7/2) (u - -  U) 2 ~ 0, (1.8) 

F(o) = f f(m) 
O 

is the total interfacial free-energy at the transition temperature. 
We also consider perfect conductors, which are materials with infinite thermal 

conductivity. We give a plausibility argument, based on our general theory, leading 
to the conclusion that, for a boundary held at the temperature U = U(t), the mo- 
tion of  the interface is governed by the relation 8 

tS(m) V - -  B(m) .  k = --U(t)  (1.9) 

in conjunction with various kinematical equations relating V and L to the motion 
of the interface. For  an interface consistent with (1.9), 

F(v)" + U vol ( S ) ' ~  0. (1.10) 

2. Primitive quantifies 

We consider a body consisting of  two phases separated, at each time t, by an 
interface ~(t), and write Bi(t) for the subregion of the body occupied by phase i. 
We assume that the body occupies all o f R  a; that the Bi(t) are closed regions with 
R 3 as their union and o(t) as their intersection; and that o(t) is a smoothly propa-  
gating surface. 9 We orient o(t) by a choice of unit normal field m(x, t), called the 
orientation of  o(t), chosen so that 

re(x, t) coincides with the outward unit normal to OBl(t). 

We write V(x, t) for the normal velocity of  o(t) in the direction re(x, t), L(x, t) 
for the curvature tensor on o(t), and H : tr L for (twice) the mean curvature. 

The thermodynamics of  the body is described by three types of  fields: bulk 
fields that describe the bulk behavior of  the individual phases; superficial fields 
that describe the behavior of  the interface; external supplies that describe the 

s Generalizing "flow by mean curvature" in which V = H ( c f .  BRAKKE [1978], 
ALLEN & CAHN [1979], GAGE & HAMILTON [1986], GRAYSON [1987]). Consequences of 
(1.9), for the motion of an interfacial curve in ~2, will be discussed by ANGENENT & 
GURTIN [1988a]. 

9 Concerning surfaces, we use the notation and many of the results of GURTIN & 
MURDOCH [1974], MURDOCH [1976, 1978], and GURTIN [1986g, 1988g]; these are dis- 
cussed in the Appendix. To agree with standard terminology, we take L = --V~m, 
rather than L = Vom as was done in [1986g, 1988g]. 



Multiphase Thermomechanics with Interfacial Structure 199 

interaction between the body and the external world. In particular, we have the 
following primitive quantities: 1 o 

bulk fields 
~(x, t), 
~(x, t), 
O(x, t), 
q(x, t), 

interfacial 
e(x, t), 
S(X, t), 

bulk internal energy (volume), 
bulk entropy (volume), 
absolute temperature, 
heat flux (area), 

fields 
interfaeial internal energy (area), 
interfacial entropy (area), 

C(x, t), capillary stress (length), 
~r(x, t), interaction (area), 

external supplies 
q(x, t), hulk heat supply (volume), 
r(x, t), interfacial heat supply (area), 
b(x, t), capillary supply (area). 

Here e, ~, 0, and q are bulk scalar fields; ~t is a bulk vector field; e, s, and r are 
superficial scalar fields; C is a superficial tensor field; ~t and b are superficial vec- 
tor fields. (Superficial and bulk fields are defined in the Appendix.) 

We assume that the 

temperature is continuous across the interface; (2.1) 

generally, we will not specify regularity hypotheses other than to note that the 
remaining bulk fields are allowed to suffer jump discontinuities across the interface. 

3. Basic laws 

3.1. Balance o f  capillary forces 

Let ~(t) be a sufficiently regular subsurface of  o(t), and let v(x, t), a vector 
field tangential to o(t), be the outward unit normal to the boundary curve 8c(t). 
The integrals 

of Cv, ,f~' ,f b (3.1) 

represent forces involved with the creation of  new surface: the first gives the force 
exerted across 0c by the interface; the second and third give forces exerted on ~: 
by the bulk material and by the external world. 

We write Csym, Cskw, and c for the symmetric, skew, and normal components 
of  the capillary stress C (cf. the paragraph containing (A 8)). The interracial force 
Cv in (3.1) is then the sum of  a tangential force (Csym + r V and a normal 
force (c .  v) m. 

lo (volume) is shorthand for "per unit volume", and so forth. 
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We postulate that each subsurface . ( t )  be consistent with balance of capillary 
forces 

f t . +  f b +  f~=0. (3.2) 

This law has an equivalent local form, which is easily derived using the surface 
divergence theorem (A16): 

div~ C + b + ~ = 0 (3.3) 

with divo the surface divergence on ,~ (cf. (A13)). 
We regard the normal velocity V as intrinsic in the sense that superficial forces 

supply power to the interface through the velocity Vm. The next result character- 
izes this power. 

Theorem of expended power. 

f ( V m ) .  Cv  + f V m .  (b + at) = -- f (VC~,m " L + c" m~ (3.4) 

Proof. By (A7), (A8), (All), (A12), (A14), and (B1), 

div~ (VCrm) = V m "  divo C + C" Vo(Vm), 

C �9 Vo(Vm) = --  VC~ym �9 k -- c �9 m~ 

(3.3) and (3.5) imply (3.4). [ ]  

(3.5) 

The left side of (3.4) gives the total power expended on , ,  while the right side 
catalogs the manner in which this power is used: --VCsym " L represents power 
expended in creating new surface; - - c  �9 m ~ represents power expended in chang- 
ing the orientation of the interface. Note that the skew part of C does not expend 
power. Note also that for Csym a surface tension tr, VCsym " L = Vtr[-[ 

If  we introduce the normal components 

:r = ~r �9 m, b = b .  m (3.6) 

of  the interaction and capillary supply, then, by (A14)24 and (3.6), the normal 
component of (3.3) has the form 

C s y  m " L -~- divo c + b + ~z = O; (3.7) 

this relation is central to what follows. 

Remark 3.1. The balance law (3.2) should be viewed as a conservation law over 
and above the usual balance laws for forces and moments. When the current theory 
is extended to include deformations of the body, balance of forces across the inter- 
face yields the equation 

div~ T + f  = - - [ T I m  (3.8) 

for the bulk and interracial Cauchy stress tensors T and T and the interracial 
body force f (cf. GURTIN & MURDOCH [1974], ALEXANDER & JOHNSON [1985, 
1986], LEO [1987], and FONSECA [1988]); in this extended theory (3.2) and (3.8) 
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are separate balance laws (GuRTIN • STRUTHERS [1988s]), and for that reason 
one should not attempt to identify C, b, and ~ with T, j', and ! T] m, as tempt- 
ing as this might seem. Introducing conservation laws which bear formal resem- 
blance to the usual balance laws for forces and moments, but are, in fact, supple- 
mentary to such laws, has been fruitful in other theories, especially those which 
model internal structure; an example is ERICKSEN'S [I 961 ] theory of liquid crystals 
(cf. TRUESDELL t~ NOLL [1965], Section 127). [ ]  

Remark 3.2. Let r(x) = x -- Xo. Then given any sufficiently regular subsur- 
face c of 6, 

M(~)= .f r A C .  + f r ~ + f r A b 
t~e ~ c 

is the total moment (about Xo) exerted on ~ by the capillary stress, the interaction, 
and the capillary supply. By (A17) and (3.3), 

M(c) = -- f (m A C + 2CskwP). 
ac 

Thus the existing forces, by themselves, do not satisfy balance of moments: 
- - m  A C -- 2 Cskw P represents a distributed couple, per unit length of 6, that must 
be balanced by surface couples in the interaction between the interface and the bulk 
material. Such couples are regarded as indeterminate in the present theory. [ ]  

3.2. Balance of  energy. Growth of entropy 

Consider an arbitrary fixed subbody .(2 with n the outward unit normal on 
~/2, and let e be the portion of 6 that lies in /2: 

~(t) ----- ,(2/5 v(t). 

The internal energy and internal entropy o f / 2  are given by 

f e + f e ,  f n + f s .  
.O ,c .(2 c 

/2 can lose energy and entropy because of  the possible motion of  the interface 
relative to ~[2; these flows are represented by the quantities outflow (e, ,(2) and 
outf low(s, /2)  defined by (B2) (cf. [1986g], p. 218). The integrals 

-- ~f q . n ,  -- e f (q/O).n,  ~f q, of q/O, 

respectively, measure bulk heat and entropy flow into .(2 by conduction, and heat 
and entropy supplied directly to .(2 by the external world. We also allow the external 
world to supply heat and entropy to the interface; these supplies are represented 
by the terms 

f r, f r/O 
c c 

Finally, the power expended on .(2 is given by the left side of (3.4), but without 
the term involving ~r (since ~ represents interactions within [2). 
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In view of  this discussion, the f i r s t  two laws for 12 have the form:  

balance of energy 

I/ / /  e + e q- outflow (e, D)  = - -  f q .  n + f q § f (vm). C v  
t3.Q .Q Oe 

+ f Vm.b+ fr ,  (3.9) 11 
c r 

growth of entropy 

l/ /1 ~ +  s + o u t f l o w ( s , Q ) > -  f(q/O).n+ fq/O+ fr/O. (3.10) 12 
O R  D ~ 

In view of the general balance theorem (Appendix B), we are led to the classical 
local bulk relations 

e" = - -d iv  q § q, 
(3.11) 

~" ~ - -d iv  (q/O) + q/O, 

in conjunction with the interface conditions 

[el V +  e ~ - -  e I t V =  - - [q l  " m + r + divo (Vc) + Vb,  
(3.12) 

--  [~i V + s ~ - -  s H V  ~ ( - -  [q]- m + r)/O. 

Crucial to the derivation of (3.12) is the assumption that 0 be continuous across 
the interface. 

Remark 3.3. We have taken the normal velocity of  the interface as the kine- 
matic variable that characterizes the manner  in which capillary forces expend pow- 
er; tangential motion does not induce power. As is consistent with a "constraint"  
of  this form, we leave as indeterminate  the tangential component  of  the interaction 
:r and therefore concern ourselves only with n, b, and the normal  componen t  

(3.7) of  balance of forces (3.3). Moreover,  the skew component  Cskw of  the 
capillary force enters neither (3.7) nor the interface conditions (3.12), and hence 
will not appear  in any of the subsequent results. However, while irrelevant to our 
further discussions, Csk w does appear when discussing interfaces with corners. 

[ ]  

Remark 3.4. Heat  flow within the interface is easily accounted for by the addi- 
tion of an energy flow 

- f h . v  

11 Cf. [1988 g]. Similar versions of the first law, but without the capillary stress, are 
contained in the work of MOECgEL [1975], FERNA~DEz-DIAZ & WILLIAMS [1979], and 
GURTIN [1986g]. 

12 Cf. [1986g, 1988g]. 
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to the right side of (3.9), and by the addition of an entropy flow 

- f ( h / O ) ,  v 
~c 

to the right side of (3.10), where h(x ,  t), a tangential vector field, is the interracial 
heat flux. [ ]  

3.3. Free-energy inequalities 

The subsequent analysis is simplified if we introduce the bulk and interfaeial 
free energies 

~v = e - -  0~?, f :  e - -  Os. (3.13) 

The local relations (3.11) may then be combined to give the bulk free-energy 
inequality 

1" : :  7'" + r/O" q- 0 -1 q �9 g ~ O, (3.14) 

where 

g = ~70 (3.15) 

is the temperature gradient. Further, in view of (3.7) and (B1), (3.12) imply the 
interfacial free-energy inequality: 

y : = f ~  -+- sO ~ + c .  m ~ § V ( - - f H  + C s y  m " / - -  l~ol + ~r} =< o. (3.16) 

Remark 3.5. The global axioms (3.2) and (3.9) for force and energy balance are 
together equivalent to the corresponding local relations (3.3), (3.11)1, and (3.12),. 
Further, granted force and energy balance, the global axiom (3.10) expressing 
growth of entropy is equivalent to the free-energy inequalities (3.14) and (3.16). 

Remark 3.6. The difference between the left and right sides of (3.10) is 

- f (!1/0) - f (y/0); 
-Q c 

thus -- 1"/0 is the bulk entropy-production per unit volume, --y/O is the interfacial 
entropy-production per unit area. [ ]  

4. Constitutive equations. Thermodynamic restrictions 

4.1. Bulk  and interfacial constitutive equations 

We consider, for the two phases (i = 1, 2), bulk constitutive equations of the 
form 

V' = V'~( O, g), ~ = ~(0, g), q = qi(O, g) (4.1) 
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with g : V0 the temperature gradient. These are supplemented by inteffacial 
constitutive equations: 

f = f(O, m ,  V), s = ~(0, m,  V),  

r  : Csym( 0, m, V), c = 6(0, m, V), (4.2) 

z~ = ~(0, m,  V). 

In view of Remark 3.3, we leave as indeterminate the tangential component of 
the interaction n ,  and, since the skew component Cskw of the capillary stress is 
irrelevant to all subsequent discussions, we do not discuss its corresponding con- 
stitutive behavior. 

Note that, by (3.13), the constitutive equations (4.1) and (4.2) induce auxiliary 
relations for the internal energies: 

e : e i ( O  , g ) ,  e ---- ~(0, m,  IT). (4.3) 

4.2. Thermodynamic restrictions 

Given any time interval T, any temperature field O(x, t), (x, t) E R 3 x T, and 
any motion of the interface ~(t), t E T, the constitutive equations (4.1) and (4.2) 
may be used to compute a corresponding process (~0, r/, q,f ,  s, Csym, c, :r). The local 
capillary balance (3.7) and the local energy balances (3.11)2 and (3.12)2 then deter- 
mine the capillary supply b and the heat supplies q and r needed to support the 
process. 13 Granted this, Remark 3.5 implies that the global law of entropy growth 
(3.10) will be satisfied if and only if the free-energy inequalities (3.14) and (3.16) 
are satisfied. 

Definition. The constitutive equations are compatible with thermodynamics if 
given any temperature field and any motion of the interface, the corresponding 
process satisfies (3.14) and (3.16). 

The inequality (3.14), when required to hold for all temperature fields, is equi- 
valent to the requirement that ~i(O, g) and ~i(O, g) be independent of g and satisfy 

~t(O) = --~dpi(O), qt(O, g) " g <= 0 (4.4) 

(CoLeMAN & NOEL [1963], COLEt~aN & MIZEL [1963]). The next theorem, our main 
result, gives corresponding restrictions for the interfacial constitutive equations. 

13 One might object to the premise of the availibility of arbitrary supplies, especially 
the capillary supply b. Allowing a supply for each balance law is an assumption now 
standard in continuum mechanics. Assumptions of this form are generally tacit throughout 
physics. Indeed, statical equations are often derived from the requirement that a function- 
al, for example a global free energy, be stationary. The corresponding analyses generally 
require arbitrary variation of the underlying state, with the assumption left tacit that 
suitable supplies are available to support such variations. 
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Compatibility theorem. The constitutive equations are compatible with thermo- 
dynamics i f  and only if, in addition to (4.4), the following restrictions are satisfied: 
(i) j~O, m, V), Csym(O, m, V), ~(0, m, 11") and 5(0, m, V) are independent of  the 
normal velocity V and satisfy 

5(0, m) = --O0J(O, m), ~:(0, m) = --O, nf(O, m),  

Csym(O, m) : f(O, m) I(m), 
(4.5) 

so that the free energy determines entropy and the normal and symmetric compo- 
nents of  the capillary stress, and the symmetric component is a surface tension of  
amount f(O, m); 

(ii) the interaction :~(0, V, m) has the form 

s m,  V) = ~p2(O) - -  ~01(0) - -  fi(O, m,  V) V, (4.6) 

where the kinetic coefficient fl(O, m, V) is consistent with 

/~(0, m,  11) ~ O. (4.7) 

Proof. We must show that (i) and (ii) are equivalent to the requirement that 
the interfacial inequality (3.16) hold in all processes. In view of the constitutive 
equations (4.1) and (4.2), (3.16) is equivalent to the inequality 

( a o f  + ~) " 0 ~ + ( 0 , , ~ +  i:) . m ~ + ( O v f )  " V ~ 

+ V~--fH -~ Csym" / ~- (~1 --  ~2) -~- ~} "~ O, 
(4.8) 

where, for convenience, we have omitted all arguments. 
Assume that (4.8) holds for all temperature fields and motions of  the interface. 

In view of the Variation Lemma ([1988g]), the rates 0 ~ m ~ and V ~ in (4.8) may be 
specified independently of  the other quantities; this leads to all of the assertions 

of  (i) except those concerning Csym, and also to the inequality 

v{--f(o, m) H + Csym(O, m, V)" L + (7'1 -- ~'2) (0) + ~(0, m, V)} ~ O. 

Since the dependence on L is linear, Csym must be consistent with (i), and the 
remaining inequality implies (4.6). Conversely, the assertions (i) and (ii) trivially 
yield (4.8) in all processes. [ ]  

Remark 4.1. By definition, :r and V are components with respect to the same 
direction, so that, for V positive, n may be regarded as a force in the direction of  
motion exerted on the interface by the bulk material. Equation (4.5) gives this 
force as the sum of two terms. The first term is a force l~! which is positive if the 
phase into which the interface is moving has higher free energy (and is thus less 
stable) than the other phase. The second term --/~V is, by (4.7), negative, and 
represents a drag force, a force on the interface which opposes its motion. [ ]  
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Remark 4.2. The paper [1988g] begins with an arbitrary energy flux j . v  
in place of ( V m ) .  Cv  : Vc �9 v in (3.9) and shows, as a consequence of the second 
law, that j necessarily has the form Vc. However, the more general framework 
necessitates a more complicated constitutive theory: in the present study, capillary 
balance furnishes a relation between interfacial temperture, curvature, orientation, 
and normal velocity; such a relation is a constitutive postulate in [1986g, 1988g]. 
Moreover, the structure of the constitutive theory in [1988 g] leads to the (somewhat 
strange) requirement that the interfacial entropy be independent of orientation. 

[] 

To avoid repeated hypotheses, we now make the following: 

Assumption. We assume, for  the remainder o f  the paper, that the constitutive 
equations are compatible with thermodynamics, and that the capillary supply and 
the bulk and interfacial heat supplies vanish: 

b : 0, q :  0, r : 0 .  (4.9) 

Note that (3.13) and (4.5) yield the Gibbs relations 

f o  --_ __sO o __ c " m ~ e ~ = Os ~ --  c . m ~ (4.10) 

while (3.14), (3.16), (4.4), (4.5)3, (4.6), (4.10), and Remark 3.6 imply that 

OF = q .g, y = --/3V 2. (4.11) 

5. The general free-boundary problem 

5.1. Bulk equations. Interface conditions 

The equations derived thus far combine to form an important free-boundary 
problem for the temperature. The differential equation, to be satisfied in bulk, is 
balance of energy (3.11)2. If we let 

c , ( o )  = ~o~,(o) (5.1) 

denote the bulk specific heats, and assume that the heat flux is given by Fourier's 
law 

q,(O, 70)  = --K,(O) 7 0  (5.2) 

with Ki(O)E lin (R3,R 3) the conductivity tensor for phase i, then balance of 
energy has the form 

C,(O) 0" = div {K,(0) V0}. (5.3) 

Equally important are the conditions expressing force and energy balance for 
the interface. The latter is given by (3.12)t. By (4.5)3, the equation (3.7) expressing 
normal force-balance has the form 

= - - f H  --  di% c, (5.4) 
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or equivalently, using (4.6) and writing fl =/~(0, m,  V), 

i~ol = ~ v  - - f H  - -  divo c. (5.5) 1" 

The basic equations which govern the evolution of the interface are the 
bulk equations (5.3), the interface conditions (3.12)1 and (5.5), and the appro- 
priate interfacial constitutive equations: 

bulk equations 

interface conditions 

C~(O) O" = div{Ki(O)~70 },  (5.6) 

Ep;(0)I = ~ v  - - f H  -- divo c ,  

[ei(O)] V = - - [ K i ( O  ) VOl " m + e ~ - -  e H V  --  divo (Vc ) ,  (5.7) 

f : f(O, m ) ,  e = ~(0, m ) ,  fl = fl(O, m ,  V), c = --O,,,f(O, m ) .  

Here we have used the obvious notation for the jump in a bulk constitutive func- 
tion; for example, 

lv, i(O)l = v,2(o) - ~o~(o), I g , ( o ) V O !  = K~(O)VO -- KdO)VO. 

5.2. Initial conditions. Boundary  conditions 

Appropriate  initial conditions are: 

O(x, O) = Oo(x) for all x E R 3 , 
(5.8)  

Bi(O ) --- Boi 

with Oo(x) the prescribed initial temperature and B0i the prescribed initial phase 
regions. 

Since the body (the region of  space occupied by the two phases) is all of  R a, 
conditions at infinity are required. Such conditions are standard if the interface 
is finite. 

Thus far we have limited our discussion to unbounded bodies. I f  the body B 
is a bounded region (fixed in time), then boundary conditions are required. When the 
interface o(t) touches the boundary, conditions expressing balance of capillary 
forces are needed at the juncture of  the interface and the boundary;  these require 
a detailed description of the boundary interface between the individual phases and 

14 Within a statical theory (V = 0) HERRING [1951] and CAHN & HOFFMAN [1974] 
derive an equation of this form as a necessary condition for the free energy to be a mini- 
mum. With c and V zero, (5.5) is usually referred to as the Gibbs-Thomson relation 
(cf., e.g., MtJLLINS & SEKERKA [1964], eq. (3b)). In [1986g, 1988g] the relation (5.5) 
(with fl = 0) follows as a consequence of the second law, but the derivation requires 
a constitutive equation (for the interfacial temperature) which in a sense replaces the 
law of capillary balance. 



208 M.E. GURTIN 

8B, a description beyond the scope of this paper. Here we shall restrict our atten- 
tion to situations in which the interface does not touch the boundary; in the same 
spirit, when discussing boundary conditions away from v(t), we will ignore the 
effects of a boundary interface. Appropriate boundary conditions are then a 
prescription of 

O(x, t) on a portion of ~B and / 
q(x, t )"  n(x)  on the remainder, with ~j (5.9) 
n the outward unit normal to OB. I 

The free-boundary problem described by (5.6)-(5.9) is extremely difficult, 
chiefly because of the nonlinearities inherent in the free-boundary conditions (5.7). 
For that reason we shall develop, in the next section, an approximate theory for 
weak interfaces. 

6. Weak interfaces 

6.1. Behavior near the transition temperature 

We assume that there is a unique temperature 0m, called the transition tempera- 
ture, at which the bulk free energies coincide: 

~01(OM) : ~pe(0M)- (6.1) 

Remark 6.1. In the absence of interfacial structure (i.e., for f ,  c, and fl identically 
zero) (5.7)1 yields [~Pl = 0, so that 0 : 0m. This is a free-boundary condition 
of the classical (Stefan) theory of melting. As we shall see, within the current 
framework the interfacial temperature will generally not equal the transition 
temperature. [ ]  

The difference 

l ~"  E 2 ( O M )  - -  /~I(0M) (6.2) 

in energy between phases at the transition temperature is the latent heat, which 
we assume to be nonzero: 

l ~ 0. (6.3) 

By (3.13), (4.4),, and (6.2), 

Oo{~p2(0) -- Wl(0))10=oM = --Z/OM. (6.4) 

We are interested in behavior near the transition temperature and therefore 
introduce the (dimensionless) temperature difference 

0 --  0 M 
u = 0~ (6.5) 
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Then, by (6.1), (6.2), and (6.4), for u small, 

~2(o) - v,l(o) = - t u  + O(u2), 

E2(o) - ~1(o) = 1 + O(u). 

209 

(6.6) 

6.2. Approximate conditions for weak interfaces 

We now derive approximate interface conditions appropriate to a weak inter- 
face; that is, an interface whose free energy, internal energy, and kinetic coefficient 
are small, and whose kinetic coefficient depends only weakly on V: 

f(0, m) ---- 6f::'(0, m), ~(0, m) = 6e*(O, m ) ,  
(6.7) 

/~(0, m, V) ---- 6/3*(0, m, 6V). 

Here 6 > 0 is small and the starred quantities are O(1) in magnitude. By (4.5)2, 

?.(0, m)  = ~c*(O, m) .  
For  convenience, let 

fo(m)  = f(OM, m),  Co(m) = C(OM, m) ,  
(6.8) 

rio(m) = fi(Ou, m ,  0). 

Then, if we argue formally, it is clear from (6.6)1 and (5.7)1 that u = 0(6), so 
that, by (6.6) and (6.7), the interface conditions (5.7) have the asymptotic forms 

lu = --rio(m) V + fo(m)  U + divo co(m) + 0(~2), 

lV  : --[Ki(O ) ~701. m + 0(6).  

Neglecting higher-order terms and, for convenience, dropping the subscript zero, 
we are led to the approximate interface conditions: 

lu ---- --ri(m) V + f ( m )  H + divo c(m),  
(6.9) 15 

lV  = -- IK,(O) 701.  m .  
By (4.5)2 , 

c(m) - -  - ~ . J ( m ) ,  

and we may use (Al l )  to write (6.9)1 in the form 

tu = - r i ( m )  v + f ( m )  H + ~m~mf(m) " L, 

showing that the interfacial temperature generally depends on the entire curvature 
tensor, rather than simply on the mean curvature. I f  we let B(m) denote the linear 

~5 Cf. [1988g], eq. (6.5). The boundary condition (6.9)2 is a classical Stefan condition. 
Free-boundary conditions of the form lu = --fl(m) V were introduced by FRANK 
[1958] and used by CHERNOV [1963a, b]; lu = f H  was introduced by MULLrNS & 
SEKERKA [1963, 1964]; IU = - - f l V + f H  was used by VORONKOV [1964]. See also 
SEIDENSTICKER [1966], TARSHIS & TILLER [1966], and the review articles by SEKERKA 
[1968, 1973, 1984], CHERNOV [1971, 1974], DELVES [1974], and LANGER [1980]. 
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transformation from rn I into R 3 defined by 

B(m) w -----f(m) Iv + [0,,,~,,~ f(m)] w for w E m i ,  (6.10) 

then (6.9)1 has the succinct form 

lu = - - f l (m)  V + B(m).  L. (6.11) 

7. Free-boundary problems for weak interfaces 

7.1. The quasi-linear and quasistatic problems 

We now consider free-boundary problems based on the approximate inter- 
face conditions (6.9)2 and (6.11) in conjunction with (5.6) linearized about the 
transition temperature 0u: 

Ciu" = div (K i Vu), Ci = Ci(Ou), Ki = Ki(Ou).  

We label phases so that phase 2 has the higher internal energy at the transition 
temperature. Then 

/ > 0, (7.1) 

and to avoid an unnecessary constant, we rescale by defining C* = Ci/(OM1), 
K* = Ki/(Oul), f *  = f / l ,  and t*  = ~/l. Then, dropping the star superscript, 
we are led to the quasilinear system: 

Ciu" = div (Ki Vu) in bulk, 

u ---- - - f l (m)  V q- B(m).  I. ~ (7.2) 
on the interface, 

V = --  IKi Vul  �9 m 

with B(m) given by (6.10). Note that, by (4.4)2 and (4.7), 

f l (m) >= O, Ki is positive semi-definite. 

The quasilinear problem is stated by (7.2) supplemented by the initial conditions 
(5.8) and the boundary conditions (5.9) (with 0 replaced by u and with q = -- Ki Vu).  

Generally, one expects the interface to move slowly in comparison to the time 
scale for heat conduction. With this in mind, we consider the qoasistatic system 
which neglects the terms Ciu" in the bulk equations: 

div ( K  i ~Tu) ~- 0 in bulk, 

u = --fl(m) V q- B(m).  L '1 (7.3) 

J on the interface. 
V = --  IKi ~Tul �9 m 

The quasi-static problem is stated by (7.3) suplemented by (5.8)2 and (5.9). (The 
condition (5.8)1, involving the prescription of u(x, 0), is dropped.) If  the body is 
infinite, the boundary conditions (5.9) are replaced by conditions at infinity. 

In discussing the above problems, it is assumed that the interface does not 
touch ~B; in particular, the initial data must be consistent with this assumption. 
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7.2. Growth theorems 

We now establish Lyapunov functions for solutions of the quasi-linear and 
quasi-static systems. We restrict our attention to a bounded body and to the follow- 
ing two types of  boundary conditions: 

(i) isolated boundary: 

n �9 g i Vu = 0 on ~B for all time; (7.4) 

(ii) thermally uniform boundary: 

u = U on OB for all time. (7.5) 

In (ii), U = U(t), a function of  time alone, is the prescribed boundary tempera- 
tare. 

By (6.8), 
F(~) = f f (m)  (7.6) 

o 

is the total interfaeial free energy at the transition temperature, and, by (4.11) and 
Remark 3.6, 

~(u) = ~, f Vu . r ,  Vu + f fl(m) V 2 >= 0 (7.7) 
i = 1 , 2  B i o 

is, within the approximation of a weak interface, proportional to the total produc- 
tion of entropy. 

Growth theorem. ~6 Let u be a solution of the quasi-linear system with Ca -~ 
C 2 = C .  

(i) I f  the boundary is isolated, 

{vol (B1) -- C : u } "  = 0 ,  

(7.8) 

{ : /  F ( ~ ) + � 8 9  u 2 = - - ~ ( u ) = < O .  

(ii) I f  the boundary is thermally uniform, 

I: I f(o)" + Uvol  (B,)" + �89 C (u - -  U )  2 = --~(U) ~ 0 .  (7.9) 

Let u be a solution of the quasistatic system. 
(iii) I f  the boundary is isolated, 

vol (BI)" ---- 0, F(o)" ---- - -~(u)  ~ 0. (7.10) 

(iv) I f  the boundary is thermally uniform, 

F(o)" + Uvol  (BI)" = - -9 (u )  ~ 0. (7.11) 

16 Cf. [1986g], Sections 10, 11; [1988g], eqs. (7.9), (7.10). We write vol (D) for the 
volume of regions D in 1~ 3. 



212 M.E. GURTIN 

Proof. The proof  is based on three identities. The first, a direct consequence 
of the divergence theorem, asserts that 

E f div h = f h . n  --  f [h i .  m (7.12) 
i = 1 , 2  B i O B  a 

for any bulk vector field h. The other two identities are: 

f V = vol (B1)', f u V  = --F(~)" --  f f l (m) V 2 . (7.13) 17 

The first of (7.13) follows from (B3)1. We now sketch a proof  of (7.13)2; this proof  
uses only interface condition 

u = - - f l (m)  V + f ( m )  H q- ~m~mf(m)"  L (7.14) 

and the fact that ~ is a closed surface. In view of (B3)2 with O ---- B, (7.6), (A11), 
(B1), and the surface divergence theorem (A15) with e = a, 

F(o )"  = f f (m)  ~  f f (m)  HV,  
a o 

= f ~ , . f (m) .  m ~ - f f ( m )  HV,  
a 

= - -  f ( S m S m f ( m ) "  L q - f ( m ) H }  V;  
a 

and (7.13)2 follows from (7.14). 
Let u be a solution of the quasi-linear system with C1 = C2. Since u is con- 

tinuous across the interface 

(J/ u" = f (u')', (7.15) 
B 

p ----- 1, 2. Let q be the bulk field defined by q ----- K i ~Tu in Bi. Assume that the 
boundary is isolated in the sense of (7.4). Then (7.8), follows from (7.12) with 
h = q, (7.2)1.3, (7.13)1, and (7.15); while (7.8)2 is a consequence of (7.12) with 
h = uq, (7.2)1, 2, (7.7), (7.13)2, and (7.15). On the other hand, assume that the 
boundary is thermally uniform. Then, since U(t) is independent of x, 

f uq .n  = U f q .n;  (7.16) 
O B  ~ B  

(7.9) follows from (7.12) with h = q and with h = uq, (7.2), (7.7), (7.13), (7.15), 
and (7.16). 

Finally, (7.10) and (7.11) follow from (7.8) and (7.9) with C =- 0. [ ]  

Remark 7.1. In view of the agreement (7.1), phase 2 has higher internal energy 
at the transition temperature; thus for a solid-liquid system Bl ( t )  would be the 
region occupied by the solid phase. If  the boundary is supercooled, then U < 0, 
and the fact that Uvol  (B1) is negative in (7.9) and (7.11) at least indicates the 
tendency of the solid phase to grow. [ ]  

17 [1988g], eq. (6.6). 
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For an isotropic material the quasi-static system reduces to the Mullins- 
Sekerka system? a 

Au = 0 in bulk, 

u = --f lV + fH,  V -~ - - [ k  i VU] �9 m on the interface, 

with fl, f ,  and ki scalar constants and A the laplacian. In this case (7.10) becomes 

vol (B1)" = 0, f a r e a  (o)" = --N(u) < 0, 

while (7.11) takes the form 

f a r e a  (o)" + U vol (B1)" = --N(u) ~ 0. 

An analogous simplification holds for the quasilinear problem. 

8. Perfect conductors 

Consider the quasilinear system (7.2) for a bounded region with boundary 
held at the spatially constant temperature U(t) (cf. (7.5)). We now discuss the asymp- 
totic form this system takes when the conductivity o f  each phase is large. Precisely, 
we consider (7.2) and (7.5) with 

K i replaced by t~-lKi (8.1) 

under the assumption that O is small. In a formal perturbation for u in powers 
of  O, it is clear that the lowest-order term, also written u, should be consistent 
with 

div ( K  i ~Tu): 0 in bulk, [K i Vu]-m--- -0  on the interface, 
(8.2) 

u = U on ~B 

as well as the interface condition u = --fl(m) V + B(m) �9 L. Under reasonable 
assumptions, the problem (8.2) has the unique solution u(x, t) :-- U(t); the only 
equation then left to solve is the free-boundary condition for u: 

fl(m) V -  B(m).  L = --U(t) on the interface. (8.3) 

This equation, together with kinematical conditions for o(t), forms a boundary- 
value problem for the evolution of the interface. 

Let F(o) be defined by (7.6) and ~(~) by 

~(~) = f t ' ( m )  V 2. 
O 

Then (7.13)2 with u = U and (7.13)t yield the 

Growth theorem for perfect conductors. For an interface consistent with (8.3), 

F(o)" + Uvol (Bl)" = --~(v) ~ 0. (8.4) 

la [1963, 1964], although MOLLrNS & SEK~RKA take /~ = 0. 
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Remark 8.1. If, instead of a thermally-uniform boundary, we consider an 
isolated boundary, then the condition u = U in (8.2) is replaced by (K i Vu)- 
n = 0 on ~B; (8.2) thus modified still has the solution u(x, t) ~ U(t), but now 
U(t) is indeterminate. On the other hand, for ~ in (8.1) small but nonzero, (7.8) is 
satisfied (granted C1 = C2 ---- C), we therefore expect that an isolated perfect 
conductor is described by the interface equations 

fl(m) V - -  I t (m).  L ---- --U(t), vol (Bt)" = COO', (8.5) 

where Co ---- C vol (B). Within the approximations underlying the linear heat 
equation, (8.5)2 is the requirement that the internal energy be constant. Moreover, 
(8.4) remains valid; thus, by use of (8.5), 

{F(J) + �89 CoU2} �9 ---- - -~(~) ~ 0. (8.6) 

Remark 8.2. For  materials which have both large conductivity and small 
specific heat, one might consider the previous analysis with (8.1) supplemented 
by replacement of Ci by 6Ci. In this instance, the arguments leading to (8.3) and 
(8.4) remain unchanged, but (8.5) is replaced by the system 

~ ( m )  v -  B ( m )  . L = - - U ( t ) ,  vol (al)" = 0,  (8.7) 

while (8.6) reduces to 
F(o)" ---- - -~(~) ~ 0. (8.8) 
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and by the National Science Foundation. 

Appendix on surfaces 

A. Surfaces 

We use the notation and many of the results of  GURTIN & MURDOCH [1975], 
MURDOCH [1976, 1978], and GURTIN [1986g, 1988g]. Given inner product spaces 
q/" and W', lin (~e', W') is the space of linear transformations from Y/" into ~ ;  
lin (~r W') is equipped with inner product A �9 B = tr (ABr). Here tr denotes 
the trace, B r is the transpose of  B, and we write u- v for the inner product of  
u and v, regardless of the space in question. Further, A E lin (~e', ~e') is symmetric 
if A ---- A r, skew if A = - -At ;  more generally, each A E lin ("//-, q/') admits 
a unique additive decomposition into symmetric and skew parts 

�89 (A + A r) and �89 (A - -  A T ) .  (A1) 

The tensor product of v E ~e" and w E W" is the transformation v | w E lin (W', ~e') 
defined by ( v |  z = ( w ' z ) v  for all zEW' .  

Let m be a unit vector. I ( m ) E l i n ( m •  3) is the inclusion of  m • into 
R 3 : I(m) maps a E m • into a considered as a vector inR 3. P(m) is the perpendica- 



T(x)E lin (re(x) • R3), 

Moreover,  
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lar projection f rom R 3 onto the plane mZ: for each a E R  a, P(m) a E  m • is 
defined by 

P(m)  a = a - -  ( a .  m )  m .  (A2)  

We consider P(m) as an element of  lin (R 3, m• Thus the codomain 19 of P(m) 
is m • and not Ra;  with this agreement, 

I (m) r  = P(m).  (A3) 

Let J denote a smooth, oriented surface in R 3 with unit normal field m(x), 
the orientation of 6. Then re(x) • is the tangent plane to ~ at x E o. We use the 
shorthand 

I(x) = I(m(x)),  P(x) = P(m(x)), (A4) 

so that P(x) is the projection onto the tangent plane at x, while I(x) is the inclusion 
of  the tangent plane into R 3. 

We will consistently use the following terminology: 

superficial scalar or vector field: a scalar or vector field on 6; 

tangential vector field: a superficial vector field whose values are tangential to 6; 

superficial tensor field: a field C on o with values C(x)E lin (m(x)•  

tangential tensor field: a superficial tensor field r whose values satisfy 
C(x) a E re(x) • for each a E m(x)  • 

For  C a superficial tensor field: 

C tangential <=> C ---- IPC r Crm : 0. (A5) 

The first implication in (A5) is immediate. To derive the second, note that  
m .  Ca : a .  Crm for a C m • and m �9 Ca  = 0 for all such a if and only if C 
is tangential. 

Let T be a tangential tensor field. Although T(x) maps tangent vectors into 
tangent vectors, we consider the codomain of T(x) to be R 3. Postmultiplying by 
P(x) transforms T(x) to an element of  lin (m(x)• m(x)X), premultiplying by 
P(x) extends T(x) to an element of  lin (R 3, R3), and neither of  these adjustments 
changes its essential character: 

T(x) a : P(x) T(x) a : T(x) P(x) a for every a E m(x)  • but 

P(x) T(x)C lin (re(x) • m(x)X),  T(x) P(x)E fin (Ra,lz3). 

PT symmetric r TP symmetric, 

PT skew <::> TP skew. 
(A6) 

Indeed, let PT be symmetric. Then PT = Tr l .  Also, by (A5), T = I PT and 
T r = T r I P .  Thus T P = I P T P = I T r l P = I T  r, and TP  is symmetric. The 
remaining assertions of  (A6) are proved analogously. 

19 We very carefully identify the domain Y: and codomain W" of transformations in 
lin (~ ,  ~ ) ;  identification of the codomain is crucial, since the domain of the transpose 
is the codomain of the original map. 
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Guided by (A6), we refer to a tangential tensor field T as symmetric or skew 
according as P(x) T(x) (or equivalently T(x) P(x)) is symmetric or skew at each 
x E a. With this terminology, the inclusion | is a symmetric tangential tensor field. 
A further consequence of this definition is that 

T .  F = 0 for T symmetric and F skew. (A7) 

Similarly, we define the trace, tr T, of  a tangential field T by tr T = tr (PT) 
= tr (TP). 

Let T be a tangential tensor field. Then T admits the unique decomposition 

T = Tsy m @ T~kw, 

where Tsy  m and Tskw, respectively, are symmetric and skew tangential tensor fields 
called the symmetric and skew parts of  T. In fact, 

Tsy m = �89 I (PT + Tr l ) ,  Tsk w = �89 I (PT --  T r l ) ;  

i.e., e.g., the symmetric part  o f T  is the symmetric part  of  P(x) T(x)E lin (re(x) • 
rn(x)• postmultiplied by I(x) to convert to 1in (rn(x) • Ra). 

Each superficial tensor C admits the unique decomposition 

C = Csy m ~-  Csk  w ~- m | c,  (A8) 

where C~ym is a symmetric tangential tensor field, C~k w is a skew tangential tensor 
field, and c is a tangential vector field. Indeed, 

c ----- C r m ,  (A9) 

while Csy m and Cskw are the symmetric and skew parts of  the tangential tensor 
field C -- m | Crm.  We will refer t o  Csym, Cskw, and c, rospectively, as the 
symmetric, skew, and normal components of  C. I f  for some scalar field tr, 

C = Csy m = O "1 , (A10) 

then C is a surface tension a. 
We write V~ for the surface gradient. 2~ For  @ a superficial scalar field, Vo@ 

is a tangential vector field; for v a superficial vector field, V~v is a superficial tensor 
field. The trace of  P V~v is the surface divergence of  v: 

di% v = tr P( V~ v). 

The superficial tensor field 
L = - -V~m (A11) 

is the curvature tensor. A classical result is that  

L is tangential and symmetric. (A12) 

We write 
H =  t r L  

for (twice) the mean curvature. 

2o For z = z(t) a curve on ~, ~(z)" = Voff(z). z', v(z)" = [V~v(z)] z ' ;  for v tan- 
gential, P V,v is the covariant derivative of v. 
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Let C be a superficial tensor field. Then div~ C is the unique vector field on 
with the property 

a .  div~ C = divo (Cra) (A13) 

for all vectors a. 
The surface gradient and surface divergence obey the usual laws for the differ- 

entiation of scalar products and inner products (cf. GURTIN & MURDOCH [1975]. 
eq. (2.17)). Less standard are the identities: 

divo (Cry) = v �9 div~ C + C �9 Vov, 

divo C = divo (Csy m + Cskw) + (divo c) m --  Lc, 
(A14) 

m �9 divo C~kw = 0, 

m �9 divo C s y  m ~ -  C s y  m " L .  

Here v is a superficial vector field, while C is a superficial tensor field with C~ym, 
Cskw, and c the corresponding symmetric, skew, and normal components.  

The identities (A14)1,2 are easily derived using (A13) and (A8), while (A14)3,4 
are consequences of(A14)1 with v = m in conjunction with (A5), (AT), and (A11). 

I f ,  is a sufficiently regular subsurface of ~ whose boundary curve c% is suffi- 
ciently smooth, and v is a tangential vector field, then the surface divergence theo- 
rem asserts that 

f v"  v ~ fd ivo  v ,  (g15) 

where v, a vector field tangential to o~ is the outward unit normal to 9,. For  C a 
superficial tensor field and a a constant vector, e t a  is tangential, and (A13) and 
(A15) yield 

f r  = f div~ C. (A16) 

Given vectors a, b E R 3, we define 

a A b : a | 1 7 4  
Further,  we write 

r ( x )  = x -  Xo 

for the position vector from a fixed point Xo E R a. We then have the following 
identity (cf GURTIN & MURDOCH [1975], p. 305), valid for C a sufficiently smooth 
superficial tensor field: 

/rACy= f ( r  A divo C + IC~-- CP), 
e 

or equivalently, by (A8) and the definitions given in the paragraph containing 
(A7), 

frACv= f{rAdivoC--mAc--2CskwP), (A17) 

with the tangential field c here viewed as having values in R 3. 
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B. Smoothly propagating surfaces 

Suppose now that ~(t) is a smoothly propagating surface ([1988 g], Appendix D), 
so that, for each time t, ~(t) divides R 3 into closed regions Bl( t )  and B2(t) with R 3 
as their union and ~(t) as their intersection. We orient o(t) by choosing, as unit 
normal field m(s ,  t), the outward unit normal to ~B~(t). We write V(x, t) for the 
normal velocity of  o(t) in the direction m(x ,  t). 

We use the following notation regarding time derivatives: for 4~ = if(t), 
4," = d4,/dt; for 4~ a bulk field, 4r(s, t) = ~,~(s, t); for 4~ a superficial scalar or 
vector field, 4~ ~ is the normal time-derivative, the time derivative following the 
interface (cf. [1986g], eq. (4.4); [1988g], eq. (D5)). Then (cf. [1988g], eq. (D15)) 

rn ~ = - -V.V.  (B1) 

Superficial fields and tangential fields are as specified in Appendix A, but 
here they are defined for all x E ~(t) and all t; in the same spirit, bulk fields are 
fields on R a for all time. The assertion that a relation or inequality is satisfied 
"in bulk"  signifies that it holds "in the interiors of  B~(t) and B2(t) for all t " ;  
similarly, the quantifier "on the interface" is shorthand for "on  ~(t) for all t " .  

For  v a bulk vector field or a bulk tensor field, div v is the corresponding diver- 
gence. For  'h a bulk field we write [~l for the jump in 4~ across the interface (the 
limit f rom phase 2 minus that f rom phase 1). 

Let 32 be a (sufficiently regular) closed region of space with outward unit 
normal n, and let 

~(t) = 32 A o(t), 32i(t) = 32/q Bi(t ).  

For  g a superficial scalar field, 

outflow (g, 32) : f gVp/(1 - -  p2)1/2, p : m "  n;  (B2) 

this integral represents the rate at which g is carried out of  32 across ~32 due to 
the motion of  the interface. We then have the identities: 

{/) g -~ f g" + f g" - -  f [gl V, (B3) 21 

l// g q- outflow (g, 32) = f (gO _ g H V ) .  
c 

The next result, which we state without proof, 22 allows the reduction of  global 
balance laws to differential equations and jump conditions. In the statement of  
this theorem 32 and c are as specified above, while v, a vector field tangential to 
6, is the outward unit normal to ~c. 

21 (B3)1 is standard; I am not aware of a rigorous proof of (B3)2 (cf. SCRIVEN [1960], 
MOECKEL [1975]), although a proof is given by ANGENENT ~r GURTIN [1988g] for n a 
curve in 1~ 2. 

22 Essential ingredients of the proof are the identities (B3); cf. the proof of (6.4) 
and (6.5) of [1986g] and (2.5) of [1988g]. 
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General balance theorem. L e t  or and fl be bulk scalar fields, u a bulk vector field, 
v a tangential vector field, g and b superficial scalar fields, all sufficiently smooth. 
Then: 

O) the balance law 

lJ /1 oc+ g +outflow(g,D)---- f u . n + f fl + I v . v +  f b 
OD 12 Oe e 

holds for all $2 i f  and only i f  

(B4) 

~x" = div u + fl in bulk, 

--[~x l V + g ~  on the interface. 
(85) 

(ii) (B4) holds with " = "  replaced by " ~ "  i f  and only i f  (B5) holds with the same 
replacement. 
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