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1. Introduct ion 

The characterization of the least eigenvalue of a symmetric linear operator 
given by  RAYLEIGH [1] in t873 has been the basis of a considerable amount 
of investigation in the years since. This is due to the extremely convenient 
technique implied by  it for the estimation of the least eigenvalue and, under 
modification by  POINCARI~ [2], FISCHER [3], WEYL [4], COURANT [~] and others, 
for the higher eigenvalues of linear operators. 

RAYLEIGH made his discovery while considering conservative mechanical 
systems governed by  Lagrange's equations of small free motion: 

aL 
dt k O~d -- Oq---~ �9 = 0 '  i = 1 , 2  . . . . .  N,  

where L is the sum of a quadratic form in ql . . . . .  qu and of one in ql . . . . .  ON' 
the time (t) derivatives of the former. This reduces to a system of equations 
of the form 

A~] + C q = O ,  

where q is the vector (ql . . . . .  qz~) and A and C are constant symmetric matrices 
with positive definite quadratic forms. The solution to such a system is ex- 
pandable in functions of the form q = v  e TM, where v is a fixed N-vector and k 
is a real constant. These are referred to as the normal modes of the system. 
RAYLEIGH consequently sought pairs k, v satisfying 

(1) - - k 2 A v + C v = O .  

He discovered that  the minimum of the "Rayleigh quotient" (Cu, u)~/(A u, u)�89 
computed over all non-zero N-vectors u is a value of k for which there is a 
non-zero v satisfying (1). The notation (,) represents a positive definite inner 
product on N-space R N. 

RAYLEIGH did not have a similar success with non-conservative (dissipative) 
systems. However, recently DUFFIN [6, 7] has found a class of dissipative systems 
to which RAYLEIGH'S technique may be applied. A dissipative Lagrangian 
system of small free motion may be given the form 

A ~ - t - B O + C q = O ,  
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where A, B, and C are semi-definite, symmetric matrices. The "eigenvalue" 
problem is that  of finding pairs k, v, where k is a complex scalar and v is a 
non-zero complex N-vector, such that  

(2) k*Av+ kBv+Cv=O. 

Assuming an "overdamping" condition 

(3) d(u)=(Bu, u)2- -4(Au,  u)(Cu, u ) > 0  

for all non-zero N-vectors u, DUFFIN uses the roots of the quadratic 

(4) x2(A u, u) + x(Bu, u) + (Cu, u ) = 0  

viewed as functionals of u, as generalized "Rayleigh quotients". These "Rayleigh 
functionals" are necessarily real. Consequently, the eigenvalue problem (2) will 
possess real eigenvectors. Thus the vector space dealt with is taken to be real 
N-space. 

The overdamping condition (3) guarantees that  one of the functionals p, 
defined implicitly with (4), is defined for all non-zero vectors in N-space. DUrFIN 
[6J shows minimax values defined in terms of p to be eigenvalues. 

As in DOFFIN'S paper, no consideration of complex eigenvalues is under- 
taken here. Instead a more general eigenvalue problem is analyzed and the 
equivalence between minimax values and certain eigenvalues demonstrated. The 
techniques employed are not essentially different from those used by I)UFFIN 
on the operator xZA + x B + C .  

Attention is focused on the symmetric linear operator T,, dependent on the 
real parameter x. The pair k, v is referred to as an eigenpair (k is the eigenvalue 
and v, the eigenvector), if T~v=O. An assumption of the same force as the over- 
damping condition (3) is required. The direct assumption is made that  a con- 
tinuous, real functional p is definable on all non-zero N-vectors such that  

(5) 

(6) 
and 

(7) 

p (~ u) = p  (u) for ~ 4= 0, 

(r~(.)., . ) = o ,  

, e (T. . ,  ")1.=~(.) > 0, 

for all non-zero uER ~. We call such systems "overdamped", though they may 
arise in connection with non-Lagrangian problems. 

The assumption of positiveness in (7) is not critical. If (r~(,)u, u ) < 0  for 
all non-zero u, then the operator --  T, would satisfy (6) and (7) using the same 
functional p. 

The critical observation in the abstract development is a strengthened analogue 
(Lemma t) of Lemma 2 in Dur~IN [6]. I t  characterizes the sets {ulp (u) < h}, 
{ulp (u) = h}, and {ulp (u)> h} in terms of the quadratic form of T,. Because 
of the fact that  the functional p is independent of the length of its argument, 
Lemma 1 may be used as the basis of a geometric development on the unit 
sphere in N-space. However, a more direct approach is undertaken. 
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A degree of completeness is demonstrated in that  all eigenvalues in the range 
of p are obtained as minimax values of p and their eigenvectols span N-space. 

Rayleigh's Principle on constraints asserts that  a single linear constraint 
on a linear system vibrating about a static equilibrium causes the eigenfrequencies 
of normal vibration of the constrained system to be spaced between the eigen- 
frequencies of the original system. A consequence of the minimax theory given 
here is a Rayleigh's Principle for more general linear systems. Specifically, 
when Tx is restricted to operate on an (N--1)-dimensional subspace of R N, 
the ( N - - t )  eigenvalues in the range of p on the subspace separate the N eigen- 
values corresponding to no constraint. 

As an example of a class of operators T, fulfilling the hypotheses of this 
paper, the forementioned x2A + xB  + C with the overdamping condition (3) may 
be cited. The functional p may  be defined by  p (u) = - -  2 (Cu, u)/[(Bu, u) +Vd-(u)], 
where d(u) is defined by (3). Obviously, p(~u)=p(u) for v.=~0. Moreover, 
because B is positive semi-definite, p is defined for all non-zero u. We see that  
condition (7) is satisfied by  computing (T/c~I u, u) = 2 p (u) (A u, u) + (B u, u). This 
is + V2-(u). 

A second example is T~=-- (xA + F ~ - ~ B + C ) ,  where A, B, and C are 
symmetric operators satisfying (A u, u) < 0, (C u, u) < 0, and ((A + B + C) u, u) > 0 
for all non-zero u. Then p (u) may be defined as 

[- (A u, u) (C u, u) + ( Bu, u)V(A u, u)~ + ( Bu, ~)2_ (C~, u)2]/[(A u,~)~+ (Bu, u)~]. 
It  is a consequence of the conditions on A, B, and C that  (A u, u) 2 + (Bu, u) * -  
(Cu, u)Z>0 for all non-zero u. The expression for (T/l~)u, u) is complicated 
but  can nonetheless be shown to be positive for all non-zero u. 

The operator x3A + xB  + C can be treated, also. To guarantee that  a con- 
tinuous functional p exists, it is sufficient to know that  4 (Bu, u)3+ 27 (A u, u) • 
(Cu, u)*<O and (Au, u ) > 0  for all non-zero u. 

2. The Rayleigh Functional p 
To be precise, the symmetric linear transformation T x of R n into R N is taken 

to be dependent on the real parameter x so that  the derivative T~ exists and is 
continuous in x. I t  is assumed that  a continuous functional p exists satisfying 
(5), (6), and (7). From relation (6) one observes that  allowing a variation 6u 
of U, 

0 = ~p (U) (T;iulu , u) + 2 (Tp(u)u, ~ ) .  

Consequently, p(v), v is an eigenpair iL and only iL 6p(v)=O /or all By; that 
is, it, and only il, P is stationary at v. 

For each h in the range of p it is clear that  {u I P (u) ~ h} w {0) Q {u ] (Thu, u) = 0}. 
That the inclusion is actually equality is one consequence of the following funda- 
mental lemma. 

Le m ma  1. For minp(u)<--h~maxp(u) 

{u]p(u)<h)={u] (rhu, u ) >  0), 

{o)~ (ul p (u) ---- h} ----- {u I (T,u, u)=0}, 
{ul p (u )>  h} = {,, I (r,,~, ~) < o}. 
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Proof. Let  us suppose there to be a uaE{u [ (Thu, u ) ~ 0 }  such that  p (ua)>h .  
Let  u 0 represent a vector satisfying p(uo )=h .  The sign of u o is chosen so that  
(Th u o, ul) > 0. Then 

~ :  (1-~)~o + ~1~ {~1 (T: ,  ~)_>-o} 

for all ~ in 0 ~ m ~ t .  Since p ( u a ) > h  , there is a largest scalar/~ in 0 ~ / ~ < t  
satisfying p (u#) = h. Then p (u~) > h for /~ < ~ < t .  The following rela- 

(~ u~,,~) tions are assembled in the diagram: 
(Th u~, u~) > 0, ( T p ~  u~, u~) -- o ,  
(T~(~) u~, u~) > 0 f o r / / <  ~ ~ t. Clearly 

�9 there is an x~ in h < x ~ < p ( u ~ )  at  
" ~ ' " ' -  !~ /~u~j ,-x which (T~' u~, u~) = 0. Now letting 

. . . . . . .  #+  - ,  , , ~ , we see 

Since p(u#)=h,  this is a contradiction of (7). We are forced to conclude that 
~b(u)~h whenever (Th~ , u)>=0. A silnilar argument shows # ( u ) ~ h  whenever 
(Thu , u) --< 0. Consequently, 

{-I P (-)--h} ~{o} = { . l  (T : ,  .)----o}, 
and the other conclusions of the lemma follow. 

L e m m a  2. I]  u a, u~ . . . . .  u n are eigenvectors corresponding to eigenvalues 
p (ul) < p (u~) < . . .  < p (u,), then the vectors Us, u 2 . . . . .  u ,  are linearly independent 
and #(u~)<p(u~ + ... + u . ) < p ( u . ) .  

Proof. Since p(o~u)=p(u)  for ~=~0 and p(u l )<p(u~)  , u x and u 2 are linearly 
independent. Because b y  Lemma l 

16 (ua) < p (ua + u~), also by  Lemma t.  Similarly p (u a + u~) < p (u2). Induction on 
the length n of the sum is used. 

Suppose v = u a + -.. + u ,_  1 is non-zero and p (ua) < p (v) < p (u,_l). Because 
p ( u , _ l ) < p ( u , ) ,  v and u ,  are linearly independent. As before, (Tt,(~,)(v+u,) , 
(v + u,)) = (Tp(,~)v, v) > 0 b y  Lemma t.  Thus p (v + u,) < p (u,). In like fashion, 
we set w = uz + ...  + u ,  and assume w 4= 0 and p (u2) < p (w) < p (u,). Indepen- 
dence of ul and w and p (ul)< p (u 1 + w) follow by  the twice-used arguments. 

Since v + u,~=u a + ...  + u,----u~ + w, the assertion of the lemma is verified. 

3. The Minimax Theory 

The possibly non-linear occurrence of the parameter  x in T~ does not allow 
us to expect orthogonality for the eigenvectors of distinct eigenvalues. The 
minimax values therefore are not defined using orthogonality, as is commonly 
done. The distinction between minimax values is caused by  dimensional dif- 
ferences in subspaces used to define them. Given a subspace U of R N, we define: 

P ( U ) = m a x p ( u ) ,  over the non-zero u6 U, 

Q ( U ) = m i n p ( u ) ,  over the non-zero u~ U, 
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and 
k i = min P(U),  over the/'-dimensional subspaces U, 

h i =  max Q (U), over the/'-dimensional subspaces U. 

Compactness properties of finite-dimensional spaces guarantee that  P(U), Q (U), 
k i, and hj are all achieved for some vector or subspace. Hence the use of the 
max and min terminology is justified. The k's are referred to as min-max values 
and the h's, as max-min values. Separate investigations may be carried out 
for each, but  the usual duality is valid. 

As a first step toward proving an equivalence between the min-max and 
max-min values and a class of the eigenvalues, the following lemma is demon- 
strated: 

Le m ma  3. The rain-max values k l ~ k 2 ~  . . .  ~ k  N are precisely all of the eigen- 
values in the range o[ p. 

Proof.  Let  k :  k i, for an arbitrary/ '  in 1 =</'~ N. Let  k = P(V), where dim V: / . .  
The linear operator J, ,= I + m-lTk is formed for an arbitrary positive integer m. 
I represents the identity transformation. For m sufficiently large ( ~  M) Jm is 
non-singular. Hence the sequence {V,~)m~176 defined by V,~=JmV, is composed 
of subspaces of dimension/, converging to V. For each m a unit vector v,, may 
be chosen in V~ such that  p (v,,)= P(Vm). A second sequence of vectors {Um}~=M 
is composed of the predecessors of the v~ under Jm; Vm:J,~ u,~. Since the unit 
sphere of R N is topologically compact, a convergent subsequence {v~,) ~176 of {Vm)m~176 
may be chosen. Then {v~,} ~ and {u'} ~ have a common limit u in V, because 

IIv: -u: ll-- ' - 1  , , Ilum+m Tkum--umll=m-lllTku'~H tends to zero. 
For each m (the prime is dropped; the use of the subsequence being under- 

stood) 

(8) (T,v,,,,Vm)----(T,,u,~,u,~) + 2m-l(T,u,~,Tkum) +rn-*(T,T,  Um,T~um) 
and 

(9) (T, vm, V,,,)----(T,v,~,v,~)--(Tp<~,~)Vm,Vm)=(x--p(vm))(T;ovm vm) 

for some x 0 between x and p (Vm). Letting x = p (urn), we note p (Vm) = P(Vm) >-- k = 
P(V)>--__p(Um), SO that  p(u~), x 0, and P(Vm) all tend to k as m increases and 
k=p(u) .  Also, from (8) and (9) 

(t O) (p (urn) -- p (v,~)) (T;o v m, v,) ---- 2 m -1 (rp 0,,~)urn, T, urn)+m-* (Tp(~; T, u,~, T k u,~). 

As m increases, (T'.v m, v,~)---> (T;I,} u, u ) >  0, so that  the left side of (t0) is even- 
tually non-positive. We obtain 

0 ~2(Tp<~)um, TkUm) + m-'(Tpr Tkum), 

which tends to 0__>2 [ITkull 2. Thus T,u=O and k = k  i is an eigenvalue for each i 
in 1 < i < N .  

Finally, we let k, v be an eigenpair with minp(u)<--k~maxp(u) .  Then by 
Lemma t ,  (T,v, v)=O implies k=p(v) .  The letter ~ represents the largest of 
the dimensions of the subspaces contained in {u](Tku, u)>O}w{0} and V is 
taken to be such a 8-dimensional subspace. The subspace W generated by V 
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and the eigenvector v clearly belongs to {u I (Tku , u)>= 0}. Consequently, k~+l=< 
P ( W )  = k. However, because of the maximality of 6, k6+1-- > -- k. Therefore, k = ko+l, 
and the lemma is proved. 

Now the duality between the min-max and max-min values may be shown. 

Lemma 4. For each i in  t <--i<=N, 

k i =  hN-j+l. 

Proof. The transformation S , = - - T ( _ , )  with Rayleigh functional q defined 
by q (u) ---- -- p (u) satisfies the hypotheses laid down for T,. Let k~--< k~ <:..- =< k~v 
represent the min-max values of q. By their definition, 

k; = min max (--  p (u)) = min (--  min p (u)) 
dimU=j uE U 

---- -- max min p (u) --- --  h i. 

By Lemma 3, k~<= k~--<..-~ k~v is precisely the ordered family of eigenvalues 
of S, in the range of q. Because S , =  --T(_~), the eigenvalues of T, in the range 
of p = - - q  are --k~<=...<--_--k~. However, Lemma 3 asserts that  these are 
kl<_<_ <= k W. Equating these gives k i - - - -  k' �9 .. N_i+l=h2v_i+l. 

Lemmas 3 and 4 together yield: 

Theorem 1. The value k is a m in imax  value i], and only i], k is in the range 
o / p  and k, v is an eigenpair /or some non-zero v. 

Although the eigenvectors of distinct eigenvalues are not orthogonal, Lemma 2 
shows their independence. I t  is a simple step to 

Theorem 2. The eigenvectors o] T, with eigenvalues in the range o] p span R y. 

Proof. Suppose k = k i +  1 . . . . .  ki+ ~ and let V 1 be a subspace of dimension 
i + i  such that  P(V1)=k. The proof of Lemma 3 shows that  an eigenvector 
wtEV 1 may be found. Denoting the orthogonal complement of w 1 in V 1 by V 2, 
we note that  

kj+~_l_--< P(V~) =< P(g)  = ki+ ~ = kj+~_l. 

Thus an eigenvector w,~V 2 may be found. In this way i mutually orthogonal, 
and thus independent, eigenvectors are generated. 

Now for each distinct minimax value a maximal set of independent eigen- 
vectors is chosen. The set of all vectors so chosen is denoted by vl, v 2 . . . . .  v N. 
If the vectors of any subset all correspond to the same eigenvalue, then all linear 
combinations of them are eigenvectors of the common eigenvalue, also. Thus 

N 

for an arbitrary choice of the Oi s, w ~ ~, Oj v1 may be regarded as a sum of 
j = l  

eigenvectors whose eigenvalues are distinct. By Lemma 2, w =~ 0 and consequently, 
v~, v2 . . . . .  v g constitute a basis for R N. 

4. Constraints 
Mathematically, a linear constraint is taken to be the restriction of T, to 

a subspace of R N and the consideration of k, v as an eigenpair in the constrained 
system if, and only if, T,v is orthogonal to the restricted domain of T~. The 
result to be given concerns a one-dimensional constraint; that  is, T, is restricted 
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to the subspace [w~ x, w4:0, of all vectors orthogonal to w. The consequences 
of multi-dimensional linear constraints may be deduced inductively from the 
case of a one-dimensional constraint. 

The symbols k* and h* will be used to represent the minimax values of the 
functional p restricted to Ew~ • Since the constrained system fulfills all of the 
requirements, the lemmas and theorems already derived apply to it. Thus the 
k*'s and h*'s are all eigenvalues and * * k} = h(N-1)-i+z = h*-i. 

Because of the restriction in the available subspaces ki<=k* and h*<--h i 
for 1 - -< / '~N- - t .  Consequently, 

ki~_k*=-h*_i<=hN_i=ki+l 

or kj.~ k* =< ki+ z for t =</'=< N -  t. This proves our analogue of Rayleigh's Princi- 
ple: 

Theorem 3. The eigenvalues o/ T, in the range o/ p possess the separation 
property that under a one-dimensional constraint an eigenvalue is /ound in each 
closed interval between two adiacent eigenvalues o/the unconstrained system, 

5. Remarks 

The results obtained heretofore all have analogues in infinite systems; that  
is, when T, is a symmetric linear operator on an infinite dimensional space. 
The transition requires the replacement of certain vectors by  sequences of vectors. 
The "inf-sup" values kj and the "sup-inf" values h i have the "spectral" property 
that  sequences of vectors {vi}7~ and {w,}~~ exist which do not tend to zero 
and which satisfy 

lim Tk~vi=O and lim Th, w~=O. 
i---~ oo i---> oo 

A new approach to the analogue of Lemma 3 is necessary, and the duality ex- 
pressed by Lemma 4 is lost. 

In both finite and infinite dimensional cases a slight relaxation of the con- 
dition expressed by  (7) is possible. That  (T;oou, u) is non-zero is used only in 
proving Lemmas I and 3. I t  suffices for Lemma I to require only that  
{u[(T;iulu, u)>0}  be connected and dense in R n. Only a few alterations in the 
proof given are necessary. With this weakened hypothesis the alternative ap- 
proach to Lemma 3 mentioned in the previous paragraph is adequate. It  does 
not make use of non-zeroness of (T;l,lu, u) for any given u. 

As one might expect, the development given here is applicable to the case 
in which T x is a Hermitian map of complex N-space to itself. 

The results of this paper may be regarded from the point of view represented 
by abstract variational theory. MORSE [8, for instance I developed an "inf-sup" 
minimax theory for the stationary values of a real-valued function on a manifold. 
His theory deals with "inf-sup" values defined with classes of "cycles of a given 
dimension". I t  applies to the problem of this paper when p is regarded as a 
function on the unit sphere of R N. Here the "cycles" have been restricted to 
the intersections of subspaces of a given dimension with the unit sphere. Thus 
in the problem of this paper a much smaller and more easily described class 
of "cycles on the unit sphere" suffices. 

Arch.  Ra t i ona l  Mech. Anal . ,  Vo]. 16 7 
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