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w 1. Introduction 

In the quantum theory of the scattering of elementary particles by a potential, 
the wave packets describing scattered particles are asymptotically equal, for large 
time, to corresponding wave packets describing free particles. The correspondence 
is given by the wave operator of MOLLER [19, 20]. In this paper analogous 
concepts are developed for wave propagation problems of classical physics. 
I t  is shown that waves propagating in an inhomogeneous medium are asymptotic- 
ally equal, for large time, to corresponding waves propagating in a homogeneous 
medium. The correspondence is given by an analogue of the Moller wave operator. 
Since wave propagation problems for homogeneous media can be solved ex- 
plicitly, the results provide asymptotic solutions of wave propagation problems 
for inhomogeneous media. 

The wave propagation phenomena dealt with in this paper include electro- 
magnetic waves, acoustic waves, seismic waves, electric waves on transmission 
lines, and other wave propagation phenomena of classical physics. A unified 
discussion of these phenomena is possible because they are all governed by 
systems of partial differential equations which can be written in the matrix form 

n 

(1.1) E(x) ~u= E Aj Ou 
dt j=t  ~3x1 " 

Here x = ( x l ,  x2 . . . . .  Xa)eR n (space), t eR l (time), u=u(x, t) is a real m x 1 
(column) matrix which describes the state of the medium at position x and time t, 
and E(x), A1, A 2 . . . . .  A n are m xm matrices with the following properties: 

(1.2) E(x) is real, symmetric, and positive definite, 



38 CALVIN H. WILCOX: 

and 
(1.3) A 1, .4 2, . . . ,  A n are real, symmetric, and constant. 

Some of the wave equations of classical physics are exhibited in the matrix form 
(I.1) in the Appendix. 

The matrix E(x) defines the quadratic form* 

(1.4) tl = u* E(x) u 

which is interpreted as an energy density (energy per unit volume) in the applica- 
tions. The matrices A j define the quadratic forms 

(1.5) r,j = - u* A j u 

which are interpreted as the components of a Poynting vector describing the 
flow of energy (energy per unit area per unit time). Solutions of (1.1) satisfy 
a conservation of energy law which in differential form is 

(1.6) Orl " O~j 0 
Ot + j = ~ l - ~ f  = " 

Integration of (1.6) over x~R", O<<_t<T gives the conservation law in integral 
form: 

(1.7) S u*(x, T )E(x )u (x ,  T ) d x =  ~ u*(x ,O)E(x)u(x ,O)dx .  
Rn Rn 

It is well known that solutions of (1.1) are uniquely determined by their 
initial values 

(1.8) u(x,O)=cp(x), x~R". 

The solution u(x, t) of the initial value problem (1.1), (1.8) describes the propaga- 
tion of waves in a medium whose states are governed by (1.1) and whose initial 
state is described by q~(x). Hence, in what follows the initial value problem 
(1.1), (1.8) is called the propagation problem for (1.1). 

The matrices A j are assumed to be constant. If E ( x ) = E  ~ is also constant, 
the medium governed by (1.1) is homogeneous. In this case the solution of the 
propagation problem can be constructed by the Fourier transform method, 
the method of plane waves and other methods. Such solutions have been studied 
by many authors; see [6] for a bibliography. 

If E(x) is not constant, the medium governed by (1.1) is inhomogeneous. 
There is a large literature concerning the existence, uniqueness, and regularity 
of solutions of initial value problems which is applicable to this ease; see [6] 
for a bibliography. However, explicit methods for constructing the solution, 
comparable to the Fourier transform method for homogeneous media, are not 
available for inhomogeneous media. 

This paper is concerned with the propagation problem for an inhomogeneous 
medium which is "homogeneous at ~ "  in the sense that 

(1.9) lim E(x )=E ~ 
[xl~oo 

* If M is a matrix, M *  denotes the transpose of M. 
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exists. If the initial state r (x) has finite energy, then physical intuition suggests 
that the energy will propagate out to ~ as t ~ oo (or t ~ -  oo). Hence, if (1.9) 
holds, then for large t most of the wave will be in a region [ x [ > R  where E(x) 
is nearly constant. This suggests that u(x, t) may tend asymptotically, as t-~ oo, 
to a wave propagating in the homogeneous medium characterized by E~ i.e., 

(1.10) u(x, t),~u~ t), t ~ oo, 
where u ~ (x, t) solves 

(1.11) E ~ ~ u ~  ~ A i 
~u o 

~ t  ~ x j  " j = l  

A wave u~ t) with these properties is called an asymptotic solution of the 
propagation problem for (1.1). The reasoning leading to (1.10) is, of course, 
heuristic. It  is the purpose of this paper to make precise the meaning of the 
asymptotic equality (1.10) and to give conditions on E(x) and A J ( j =  1, 2, ..., n) 
which guarantee this behavior. 

Of course, solutions of (1.11) also are uniquely determined by their initial 
values 

(1.12) u~176 x e R  n. 

Thus if (1.10) holds, it follows that tp ~ uniquely determines u(x, t), and hence 
u(x, O)=~(x); 
(1.13) q~ = f2 tp ~ . 

Moreover, f2 is a linear operator since (1.10) is linear and u(x, t) and u~ t) 
are linear functions of q~ and tp ~ respectively, f2 is an analog of the Moiler wave 
operators of quantum mechanics. It  is called the wave operator for (1.1) in 
what follows. If f2 is known, then the asymptotic solution u ~ (x, t) of the propaga- 
tion problem (1.1), (1.8) can be constructed from tp~ by the methods 
available for homogeneous media. 

The energy form (1.4) defines a norm for the initial values q~(x), 

(1.14) [I q~ [I 2= j tp*(x) E(x) q~(x) dx,  
R ~ 

and the linear space Sa of initial values with finite energy is a Hilbert space 
with respect to this norm. The correspondence q~ ~ u ( . ,  t) defines a linear trans- 
formation U(t) on Jef which is an isometry (with respect to the norm (1.14)) 
by the conservation of energy law (1.7). In fact, as is shown below, U(t) defines 
a one-parameter group of unitary transformation on ~ .  The propagation problem 
has been studied from this point of view by PHILLIPS [15]. 

The constant energy form based on E ~ also defines a norm 

(1.15) II ~o I1~= S ~~176 F~~ ~~176 dx 
Rn 

which, in general, is different from (1.14). The space .L# o of initial values tp ~ 
with finite energy is a Hilbert space Wo with respect to the norm (1.15). 

In this paper the energy forms based on E(x) and E ~ are assumed to be 
equivalent; i.e., 

(1.16) c2~*E~176 f o r a l l x e R " a n d ~ e R  m, 
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where c and c' are positive constants. Under this hypothesis the norms (1.14) 
and (1.15) are equivalent; i.e., 

(1.17) c il ~o IIo_< II ~o II __<c' II ~0 IIo. 

Hence .La and L~' o are the same linear space of initial values and are Hilbert spaces 
with respect to two different, but equivalent, norms. 

If u(x, t) and u~ t) are solutions with finite energy of (1.1) and (1.11) 
respectively, then u(x, t)-u~ t) is in ~ (and also ~r by (1.17). It is shown 
below that this difference tends to zero in ~r (and, equivalently, in ~o) when 
t--. oo, 

(1.18) lim II u(., t)-u~ 0 II = 0 ,  
t--~ o0 

provided the initial values q~ and q~O are related by an appropriate wave operator. 
The asymptotic equality (1.10) is interpreted in this sense in what follows. 

The purpose of the preceding heuristic discussion is to motivate the work 
presented below. The remainder of the paper is organized as follows. In w 2 a 
precise formulation of the propagation problem is given in terms of self-adjoint 
operators on a Hilbert space, the existence of a solution is demonstrated, and 
some properties of the solutions that are needed later are derived. In w 3 asymptotic 
solutions and wave operators for the propagation problems are defined and a 
criterion for their existence is derived. w 4 describes a class of media, the uniformly 
propagative media, for which the asymptotic behavior for large time of waves 
can be estimated. A number of properties of such media which are needed later 
are derived in this section. In w 5 the Riemann matrix for a homogeneous medium 
is studied and used to obtain estimates for waves propagating in uniformly 
propagative media. In w 6 these estimates are used, together with the criterion 
of w 3, to obtain sufficient conditions for the existence of wave operators, and 
asymptotic solutions, for inhomogeneous media which are perturbations of 
uniformly propagative homogeneous media. Two such conditions are given. The 
first is applicable to perturbations of any uniformly propagative system. The 
second is applicable only to perturbations of systems of Maxwell type, a class 
of systems which includes MAXWELL'S equations and the equations of acoustics. 

This paper opens a new area of research on the wave propagation problems 
of classical physics, and the results presented here raise many more questions 
than they answer. Some unsolved problems and directions for future research 
are discussed briefly in w 7. 

w 2. A Hiibert Space Formulation of the Wave Propagation Problem 

In this section a precise formulation of the propagation problem 

0u z j 0u 
(2.1) E(x)"o-i-=j~"~flA Oxj' x~R", t>O, 

(2.2) u(x,O)=~o(x), x~R" 

is given, and the existence and functional properties of the solution are discussed. 
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From the physical point of view all initial values tp(x) with finite energy 
are admissible as initial states of a medium. Hence it is desirable to formulate 
the propagation problem in a way that admits all these initial states. Such a 
formulation, based directly on the conservation of energy law (1.7), was given 
by PHILLIPS in 1959 [15]. In this work PHILLIPS regards a solution of the propa- 
gation problem as a one-parameter group of unitary operators U(t) on the 
Hilbert space 3~ of initial values, 

tp ~ u ( . ,  t)=U(t)q), 

and proves the existence of such a solution for a large class of coefficient matrices 
E and A i. A second formulation, more directly connected with the partial dif- 
ferential equation (2.1), was given by the author in 1962 [17, 18]. In this work 
a class of solutions wFE (=wi th  finite energy) of (2.1), (2.2) was introduced, 
and the existence and uniqueness of such solutions was proved for all initial 
states cp(x) with finite energy. It is not difficult to show the identity of these 
two formulations of the problem, but the proof will not be given here. Instead, 
PHILLIPS' viewpoint is adopted and a simple direct construction of the solution 
operator U(t) is given. The construction makes use of a number of well-known 
definitions and theorems concerning self-adjoint and unitary operators on a 
Hilbert space. These may be found in Rmsz-NAGY [16]. 

If U(t) defines a continuous one-parameter group of unitary operators on W, 
then by STOtqE'S theorem [16] 
(2.3) U(t)= e -it H 

where H is a self-adjoint operator on o(~. Conversely, every self-adjoint operator 
H on ~ generates a continuous one-parameter group of unitary operators on Jr 
defined by (2.3). If (2.3) defines a solution operator for (2.1), (2.2), then formally H 
is the operator 

(2.4) i E(x)_ 1 ~ Aj O 
j=l ~Xj  " 

In this paper the solution of the propagation problem is defined by constructing 
a self-adjoint extension H of the differential operator (2.4) and then defining 
the solution operator by (2.3). The construction is given first for the case of a 
homogeneous medium (E(x)=E ~ constant). 

The system of partial differential equations (1.11) describing a homogeneous 
medium may be written 

(2.5) au~ =(E~ - 1 :_~IAJ~_ au~ = - a t axj  i Ho u 

where 

(2.6) Ho=i(E~ -1 ~ A j 
j= 1 axj " 

The factor i=V- - - l  has been introduced to make H 0 formally self-adjoint on J~'o. 
Because of its presence it is convenient to work with complex-valued initial 
values u~ 0)=tp~ and solutions u~ t). Of course, these solutions include 
all the real solutions which correspond to real initial values, because E ~ and 
the A j are real. 
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The matrix E ~ was assumed to be real and 
and positive definite. It follows that 

(2.7) J.2 ~. [ (.]2_-<;* E~ (_-<2'2 ~. [ (.[ 
~ t = l  ~ t = l  

where 

symmetric (hence Hermitian) 

for all ( e C m, 

Cm= {(=(( t ,  ~2, . . . ,  (m): (~ complex}, 

(=((1 ,  (2, "", (m) denotes the complex conjugate vector and 2 and 2' are positive 
constants, the smallest and largest eigenvalues of E ~ respectively. (2.7) implies 
that 

(2.8) A2 S ~ I~~ 2 dx< ~ ~~176 (~ dx<2'2 ~ ~ I~,,(x)l 2 dx 
R n a t = l  R n R n a t = l  

for each Lebesgue-measurable complex vector rp(x)=gol(x)+iq~2(x). If the 
energy, for homogeneous media, of such vectors is defined by 

$ ~0" (x) e ~ ~ (x) dx = ~ ~01. (x) e ~ ~ l(x) dx + ~ ~0 2.  (x) E ~ ,2  (x) dx ,  
R n R n R n 

then (2.8) implies that ~o (x) has finite energy if and only if, for each a = 1, 2 . . . . .  m, 

tp~L2(R n) =the Lebesgue space of complex-valued measurable, 
square-integrable functions on R n. 

Hence the direct sum 

Zao = L2 (R n) @ L2 (R ~) @"" 0) L2 (R~), m summands 

is the appropriate linear space of initial values with finite energy for (2.5). It is 
easy to verify that ~o is a Hilbert space ~o with respect to the energy inner product 

(2.9) (~, ~)o = [. rp*(x) E ~ ~(x) dx.  
R n 

It is shown next that the differential operator (2.6) has an extension which 
is a self-adjoint operator with respect to the inner product (2.9) on ~o- The con- 
struction makes use of the Plancherel theory of the Fourier transform. The basic 
theorems may be stated as follows [2]. If f(x)=~L2(Rn), then 

.f (p)= 1.i.m. 1 no~o (2n) ~/2 S elP'Xf(x)dx 
I x l < R  

exists in L 2 (R n) and 
1 

f ( x ) - - l . f ~ .  (2~)./21.1~Re-i'" f(p)dp. 
Here P=(Pl ,P2 ,  ..-,p,,)eR", p �9 x=p~x~ +P2 x2 + "'" +P,  xn, and 1.i.m. signifies 
convergence in L 2 (R~). Moreover, functions f and g in L 2 (R ") satisfy PARSEVAL'S 
formula 

(2.10) ~ f (x)  g(x) dx= ~ f(p) ~(p) dp. 
R n  R n 
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It follows that the Fourier transform defines a unitary transformation of L 2 (R") 
onto itself. The Fourier transform of a function ~ o ~  o is defined by 

(v )  = l (p) ,  (p),  . . . ,  (P))*. 

It follows easily from this definition and (2.10) that 

(2.11) (~o, ff)o= ~ q~*(x)E~ ~ ~o*(p)E~ 
R n Rn 

for all q~, ~L~ '  o. Hence the Fourier transform also defines a unitary transfor- 
mation of ~o onto itself. 

Of(x) 
If f (x)  and ~ are in L2 (R"), it follows that 

Of (p) = _ i p j f (p) . 

o o(x) 
Hence, if q~ (x) and ~ are in ~ for j = 1, 2 . . . . .  n, then 

n 

H o q) = i (E ~ t ~ A j O rp 
j= 1 ~ X j  

is in ~o and has the Fourier transform 

(Ho tp) (p) -- (E ~ p). 
j =  

This suggests the following theorem. 

Theorem 2.1. The operator Ho on ~o with domain 

D(H~ tp: Cp(p) and ~ Aj pj(~ are in 

and range defined by 

(2.12) (Ho r 1 ~ e_i~.p(Eo)_ 1 ~ AJpi?p(p)d p 
R--,oo (2~z)n/2lp I R j = l  

is a self-adjoint operator with respect to the energy inner product (2.9). 

ProoL The Plancherel theory implies that (2.12) defines a vector Ho ~O~o 
for each tpzD(Ho). Moreover, it is easy to show that D(Ho) is dense in ~o.  
Hence the adjoint operator H* is well defined. The proof of the theorem is 
completed by showing that Ho = H* (H* is an extension of Ho) and H~' = Ho, 
whence Ho = H*. 

To prove H o = H * ,  let q~, ~D(Ho) .  Then by (2.11) 

(Ho ~p, 0)=(Ho r ~b)o = j (no tp)* (p) E ~ O(P) dp. 
Rn 

Moreover 

(HotP)*(p) = (E~ - '  L A J p j  (o(p) =(o*(p) AJpj (E~ -1  
k j = l  / j 
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because (E~ * = E  ~ (A J) * =A s and ((E~ - a), =((EO),)-1. Thus 

(H o ~o, ~O)=R~ " ~b*(p) E~176 -a A j pj O(p) dp=(gp, Ho ~Oo)=(q~, Ho ~k)o. 

This proves that if ~k~D(Ho), then ~beD(H*) and H* ~k=Ho ~; i.e., Ho=H*. 
To prove H*=Ho, let ~eD(H*);  i.e., ~ o  and 

(2.13) (Ho q~, ~O)=(q>, 0) for some vector 0~a~ o and all q~eD(Ho). 

The vector O=H* ~k, by definition. Equations (2.11) and (2.13) imply 

AJps r S (~176176 
\ j =  1 / R n 

for all q~D(Ho). But D(Ho) is dense in ~o,  whence 

(E ~ r (p) = 0 (p) 

Thus ~eD(Ho) and 

1 �9 ^ 

(Ho~O)(x)=l.i.m. ~< e-~ 'P(E~ -x A'tpjq/(p)dp=O(x) in ~o .  
s-~oo (2r0n/2lp I R j=l 

This proves that if ~/6D(H*), then ~b6D(Ho) and Ho ~k=O=H* r i.e., H* =H. 
The propagation problem for an inhomogeneous medium governed by (2.1) 

is discussed next. System (2.1) may be written 
?1 

(2.14) Ou =E(x)_ 1 ~ Aj Ou = Ot j=~ Oxj - i  H u 
where 

n 0 (2.15) H=i E(x) -1 ~ A j 
j= 1 axj " 

It is easy to verify that H is a formally self-adjoint operator with respect to the 
energy inner product 
(2.16) (q~, ~k)= .[ q~*(x) E(x) ~(x) dx. 

R n  

Now, the energy forms based on E(x) and E ~ were assumed to be equivalent; 
see (1.16) which implies 

c2(*E~176 for all x~R" and (ECm. 

Combining this with (2.7) gives 

(2.17) #2 s [(,12<~* E(x) (< /d2  s 1(,[2, foral lxeR"and(eC",  

where # = 2  c and # '=2 'c ' .  It is assumed that the components E~a(x) of E(x) 
are Lebesgue-measurable functions in R". It follows from (2.17) that 

(2.18) #2 S ~ [cP~(x)l 2 dx<= ~ q~*(x)E(x)~(x)dx<=# '2 ~ ~ [q~,( x)[2 dx 
R n G t = l  R n R n ~ t = l  
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for each measurable complex vector tp (x). Thus if the energy, for inhomogeneous 
media, of such vectors is defined by 

II ~o 112= S r E(x) ~(x) dx,  
Rn 

then (2.18) implies that r has finite energy if and only if, as before, each 
tp,~L(R"), a = l ,  2 . . . . .  m. Hence Leo is also the appropriate linear space of 
initial values with finite energy for (2.14). It is easy to verify that Le o is a Hilbert 
space ~ with respect to the energy inner product (2.16). 

It is shown next that the differential operator (2.15) has an extension which 
is a self-adjoint operator with respect to the inner product (2.16) on W. Notice 
that formally 

n = i E (x ) - I  Eo (Eo) -1 y~ AJ ~ = E (x ) - I  Eo n o .  
j= t OXj 

This suggests the following generalization of Theorem 2.1. 

Theorem 2.2. The operator H on ~f~ with domain D(H)=D(Ho) and range 
defined by 
(2.19) (Htp) (x) = E-  l(x) E ~ (Ho tp) (x) 

is a self-adjoint operator with respect to the energy inner product (2.16). 

The proof makes use of the following lemma which is also needed in w 6 below. 

Lemma 2.1. I f  E(x) is a real symmetric positive definite matrix which satisfies 
(2.17) with positive constants #, #', then 

(2.20) --~-fi 1(~12<ff*E-X(x)(< i1(~12, for all x ~ R  ~ and (eC".  

Proof. (2.17) is equivalent to the statement that the (real, positive) eigen- 
values of E(x) lie between # and #'. (2.20) follows immediately since the eigen- 
values of E-l (x)  are the reciprocals of the eigenvalues of E(x). 

Proof at Theorem 2.2. To see that (2.19) defines a mapping from D(Ho) 
into ~ ,  note that for each ~o~D(Ho), Ho ~oe~ff (by Theorem 2.1) and hence 
~k =E~ ~o)~ ~ .  Now Lemma 2.1 with 

~=~(x), E-~(x)~=e-~(x)r 
implies 

;-2 =~ ~ ( ) 1  ( ) E ( ) 0 ( ) < - ~  ~ ( ) 1  J ~t x 2~-~ ~ *  X X X I a X 2 
=1  1 

whence 
(2.21) 9" (x) E(x) ~(x) e LI(R~), 

since t p e ~ .  (2.21) and (2.18) with tp replaced by ~ implies that 

(x) = E -  1 (x) ~ (x) = E -  l(x) E ~ (no ~o) (x) e ~ ;  

i.e., H maps D (H) = D (Ho) into .~. 
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The proof of Theorem 2.2 is completed by showing that H~H* and H* o H ,  
whence H---H*. First note that if ~o and ~9 are in ~ ,  

(~o, 0) = I ~o* (x) e (x) 0 (x) d x = ~ ~* (x) e ~ (e  ~ e (x )  ~ (x) d x 
(2.22) R- R -  

= (~, ( eo ) - i  E 4,)o. 

In particular, if r ~D (H), ~ ~ ~ ,  then (2.22) implies 

(2.23) (H~o, ~) =(0,  H <p) =(0 ,  (E~ - t  E H <p)o =(0 ,  Ho <P)o = (Ho <P, O)o. 

To prove HcH*, let q), ~,eD(H)=D(H~ Then, by (2.23) and the self- 
adjointness of Ho, 

(H <p, ~k) = (H o q~, ff)o = (~o, Ho ff)o = (Ho O, (P)o 

= ( H ~ ,  cp)= ((p, H e ) .  

Thus ~b~D(H*) and H*  ~=H~b;  i.e., HcH*. 
To prove H*cH, let ~OED(H*); i.e., ~ 9 ~  and 

(2.24) (Hq~, O)=(q), 0) for some O e ~  and all q~sD(H). The vector `9=H* ~, 
by definition. Equations (2.22) and (2.23), applied to (2.24), give 

(Ho ~o, ~)o =(q~, (E~ -1E`9)o for all q~sD(H)=D(H~ 

Since Ho is self-adjoint, this implies that OeD(H*)=D(Ho)=D(H) and 

H* ~ = H o ~b = (E ~ - 1 E ,9 = (E ~ - 1 E H* ~ .  
Thus 

n* t~=E-~ E~ 
i.e., H*cH. 

The Spectral Theorem [16] implies that the self-adjoint operators H o and H 
have spectral resolutions 

Ho=  ~ 2dE0(2 ), H= ~ ),dE().) 
- - o 0  - - o 0  

where Eo(2) and E()`) are resolutions of the identity for ~o and J(f, respectively. 
The solution operators for the propagation problems are defined by 

(2.25) Uo(t)=e -itu~ ~ e-~tZ dEo()`) 
- - o 0  

for homogeneous media, and by 

(2.26) U(t)=e -itH= S e-ltZdE(2) 
- -  o 0  

for inhomogeneous media. Thus 

u~ 0 =(Uo(0  ~o~ 
and 

u(x, t)=( U (t) ~p)(x) 
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are interpreted as the solutions of the propagation problems for homogeneous 
and inhomogeneous media, respectively. The following properties of the solu- 
tions follow directly from (2.25), (2.26) and the Spectral Theorem: see [19, p. 614] 
for the proofs. 

Corollary 2.1. 
(a) Uo(t) and U(t) define one-parameter groups of unitary operators on ~o 

and ~ ,  respectively. In particular, the following conservation of energy laws hold: 

j i u~176  and [ lu ( ' . t ) l l= l l~p l l  f o r a l l  t eR  t. 

(b) u~ ., t ) e C ( - ~ ,  ~ ; ~et~o) and u(., t ) e C ( - o %  ~ ;  A~); i .e. , for each teR 1 

lim 11 u~ ", t + z ) - u ~  ", t)Iio=0 and lim I[ u(-, t + z ) - u ( . ,  t)II = 0 .  
'~"* 0 "t --', 0 

(c) If  go~176 then u~ ., t )eD(H ~ for every teR 1. Moreover, u~ t)e 
C 1(_ 0% ~ ; ~o), and 

~u~ t) 
~t iHou~ ., t) for each t eR  x. 

The corresponding statements hold for u(. ,  t). 

w 3. Wave Operators and the Existence of Asymptotic Solutions 

This section deals with the abstract propagation problems formulated in w 2. 
The asymptotic equality as t --* oo of the solutions of two such problems is shown 
to depend on the existence of a wave operator, and a criterion for the existence 
of the wave operator is derived. The results presented in this section closely 
parallel analogous results for the quantum mechanical scattering problem due 
to COOK [5] and KURODA [12]. 

The following notations and hypotheses, suggested by the discussion in w 2, 
are adopted in this section. 

(3.1) Aao is a linear space over the complex number field. 

(3.2) (cp, ~/)o and (cp, ~/) are two inner products on Aao such that Ar o becomes 
a Hilbert space ~o with respect to (cp, ~)o and a Hilbert space A "~ with 
respect to (~p, ~). (#f'o and ~ are assumed to be separable.) 

(3.3) The norms associated with the two inner products are equivalent; i.e., 
there exist positive constants c and c' such that 

c Ilcp 1[o<__ I[~o II < c  ' II ~ I[o 
for all 9 e.W o . 

(3.4) H and Ho are linear operators on Aao, self-adjoiut with respect to (cp, ~b) 
and (cp, $)o respectively, and 

In w 
D(H)=D(Ho). 

u(t)=e-itH~p and u~176 ~ 
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represent solutions of the propagation problems for inhomogeneous and homo- 
geneous media respectively. Conditions on the initial states cp and q~o are sought 
which guarantee the asymptotic equality of u(t)  and u~ as t-~ oo in the sense 
that 

(3.5) lim II u ( t ) - u ~  [[ =l im II e-~tHq ~ --e-~tn~ q,O II =0.  
t--~ oo t - 4 o O  

By (3.3) this is equivalent to the condition 

lim II u(t)-u~ = 0 .  
t---~ OO 

Now 
11 e-~tnq'-e-~'n~176 II = [I q~--e~'He-i'n~ ~~ II 

because e ~ t ,  is a unitary operator on aft. Thus (3.5) is equivalent to the condition 

(3.6) l im II e ~' H e-~, , ,o  ~oo_ ~p II = 0 .  
t - ~ o o  

Since ~ is complete with respect to the norm II ~ II, (3.6) holds if and only if 

(3.7) f2 q~o = lime ~'" e -~ t no tpo exists 
t - ' *  oO 

in ~ for each q~~ o. Thus each solution u~ is asymptotically equal to a 
solution u(t)  if and only if (3.7) holds for each ~p~ i.e., if and only if the 
wave operator I2: aft o ~ ~ defined by 

(3.8) f2 = I2(H, Ho) = s-lim e it H e-it Ho 
t---~ O0 

exists (s-lim signifies strong limit). If f2 exists, then (3.5) holds with 

~p = I2 ~p ~ . 

A number of properties of the wave operator f2 follow directly from its exist- 
ence. These are summarized in the following theorem (cf. KURODA [12], pp. 438 
--442). 

Theorem 3.1. I f  the wave operator f2=t2(H, Ho) exists, then 

(a) f2 is one-to-one and bounded. In fact  

(3.9) c II q, I1o_-< Ii t2~o II_-<c' II ~o IIo f o r a l l  r  

where c and c' are the positive constants defined in (3.3); 

(b) f2 satisfies the following operator identities: 

(3.10) e-ltnt2=g2e -~trt~ - - o o < t < o o ,  

(3.11) E(2) t'2 = f2 Eo (2), - o o < 2 < o o ,  

(3.12) H f2=[2 H o . 

(c) I2 ~o = ~ ;  i.e., the range off2 is the whole space aft, if and only if f2(Ho, H)  
also exists. In this case t2(H, Ho) has an inverse and 

(3.13) I2(n, no)-* = I2 (no ,  H).  
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Proof. Write 
~2(t)=eitne -i'H~ so 9 - - s - l im~( t ) .  

t--+ oO 

Then since e ttn and e - ' tR~ are unitary with respect to the norms [[ cp [[ and [[ ~p [[o 
respectively, (3.3) implies 

c ][ ~P [[o = c  [[ e - i tn~ ~p []o < [[ e -itH~ ~ II -- II ~(t)  ~ II --- c '  II e-itH~ []0 =C'  H (P []0" 

Making t ~ oo and using the continuity of the norm [I ~P [[ gives (3.9). 
Notice that 

e-itH ~(s)_~e-itH eiSH e-iSHo eitHO e-itHo=~(s_t)e-itHo. 

Making s--, ~ in this identity gives (3.10). It is known that (3.10) implies (3.11); 
see, e.g., P~sz  & Sz.-NAGY [16], pp.383--384. Moreover, (3.11) implies 

M M 

(3.14) S 2d(f2Eo(2)r J" 2d(E(2)12cp), ( P ~ o .  
- N  - N  

The left-hand side of this equation tends to a limit ( = ~  H o q~) in g when 
M, N--,oo if and only if (p~D(Ho)=D([2Ho).  Similarly, the right-hand side 
tends to a limit ( = H I 2  cp) if and only if ~pED(H~2). Thus (3.14) implies (3.12). 

If both ~2(H, Ho) and 
f2(Ho, H) = s-lim eitU~ - i t u  

t"* OO 

exist, then the identity 

(eitn e- i"o)(dtHO e-~tU)q~=q~ , q~sX ~, 

implies the identity 
(3.15) f2(n, no) f2(no, H ) = I  

where I is the identity operator on o~ a. (3.15) implies that ~2 ~o = I2 (H, Ho) ~o = ~ .  
Conversely, f 2 ~ o = g  implies that for each ~ p e g  there is a ~ k ~ o  such that 

(3.16) ~o = C2 ~b = l i m e  i tu e -i trio ~1. 
t--+ oo 

Now (3.3) implies that 

c Ilei t '~ Ile-itHcp-e-it11~ 

_-< II e- i t  n r  r1~ ~ II = II q~--e~tne-itn~ II. 

Thus (3.16) implies that f2(Ho, H)~p=~k exists for each ~ p e g ;  i.e. f2(Ho, H)  
exists. 

The following theorem gives a simple sufficient condition for the existence 
of the wave operator f2=I2(H, Ho). It is an analogue of a condition for the 
existence of quantum mechanical wave operators due to COOK [5] (see also 
KURODA [12, p. 443]). 

Theorem 3.2. Let .Wo, II cp [Io, II q' 11, 1-1o and H satisfy hypotheses (3.1), (3.2), 
(3.3), and (3.4). Let ~ be a subset of .W o which satisfies 

(3.17) the linear manifoM determined by ~ is dense in X'o, 
4 A r c h .  R a t i o n a l  M e c h .  A n a l . ,  V o l .  2 2  
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and 
(3.18) ~ = D ( H o ) = D ( H ) .  

Then a sufficient condition for  the existence of the wave operator t2 = f2 (H, 1-1o) is 
oo 

(3.19) S 1[ (H - no)  e - i t  no q~ II d t < oo 
T 

for each t#6~ and some finite T (T  may depend on tp). 

Proof. If q~ ( t )=  e itn e- i t  no q~ defines a Cauchy sequence in ~ for t ~ 0% then 

f2 ~o = lim ~o (t) 
t "*  o0 

exists. It will be shown that (3.19) implies that q~(t) defines a Cauchy sequence 
for each q~ e ~o-  

First, let ~oE~. Then, by Corollary 2.1, q~(t)eD(Ho)=D(H ) for every t. 
Moreover, tp(t)eCl(  - 0% oo; ~ )  and 

dtp(t) =i H eitlte_itHo qg_e i tn (_ i  Hoe_itltoqg)=ieitl~(H_Ho)e_itHo q~ (3.20) dt  

since H commutes with e itr~. Thus 

tp(t)- tp(s)=i i e i~n(H-Ho)  e-i~n~ d~, 
s 

and it follows that 

liei~H(H--Ho)e-i~inOdz t l[ q~(t)-q~(s)II = ---- ~ II ( H - H o )  e- '  ,Ho q~ 1[ dr 
s 

because e i ' n  is unitary with respect to I[ tp ll- T h u s  (3.19) implies that q~ (t) defines 
a Cauchy sequence for t ~ o o  if tpe~.  If tp'~W o is an arbitrary vector, then 

[1 eitn e-itlt~ tP'--eiSH e-iSn~ ~P ' II 

--< II tp(t)--tp(s)[I + II eitlle-itH~ 9) I[ + II eiSHe-islt~ 

--< 11 ~, ( t ) -q~(s)I I  + 2 c '  II q r  II 

by (3.3) and the unitary properties of e itn and e -~tH~ This inequality and (3.17) 
imply that eitne-~tH~ ' defines a Cauchy sequence when t ~ o o  for every 
~ 0 ' ~ e  o . 

w 4. Uniiormly Propagative Homogeneous Media 

This section describes a class of homogeneous media, the uniformly propaga- 
tive media, for which the asymptotic behavior for large time of waves can be 
estimated. The definition of this class depends on the concepts of normal speed 
surface, slowness surface and wave cone for a system 

(4.1) E ~ ~ u ~  A j 
~u o 

~3t j=t  Oxj " 
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These concepts are defined, the uniformly propagative media are introduced, 
and a number of their properties are derived in this section. 

The system (4.1) has plane wave solutions; i.e., solutions of the form 

(4.2) u~ t ) = f ( s  t - q .  x) c 

where f (z)  is a real-valued function of r e R  1, while s e R  ~, tl =(ql,  r/2 . . . . .  r/,)~Rn 
and c=(e~, c2 . . . .  , c,,)ER m are constants. If f ' ( 0 ~ 0 ,  then (4.2) solves (4.1) if 
and only if 

(4.3) 

If c4:0, then (4.3) implies 

(4.4) 

( ")  E ~  ~AJt l#  c=O. 
\ j=l 

det E ~  = 0 ,  
\ j=l / 

i.e., the hyperplanes s t - q .  x =constant are characteristic hyperplanes for the 
system (4.1). The plane wave (4.2) propagates in the direction of the vector q 
with the speed s/I r/l, where It/12 =~/~ + q~ + . . .  + q2. Hence, the possible "normal 
speeds" of plane waves (4.2) for system (4.1) are given by the roots s of (4.4) 
corresponding to unit vectors ~/. 

It is well known that there is a non-singular m x m matrix T such that 

T* E ~ T= I .  (4.5) 
Thus 

det T* det o s + A j qj det T =  det I s -  ~ B j ~/j 
\ j=i  / 

where 
(4.6) B J = - T* A j T 

is a real symmetric matrix. It follows that the roots s of (4.4) are all real if q 
is a real vector. Thus system (4.1) has m normal speeds (not necessarily distinct) 
for each direction q. 

The function 
( " ) (4.7) P(tl, s )=det  I s -  ~, BJ~j 
\ j=l / 

is a homogeneous polynomial of degree m in the variable (q~, q2,- . . ,  ~/,, s). 
Hence the roots s of (4.7) are algebraic functions of 1/=(ql . . . .  , r/,). If the roots s 
are functions of [q] only, the medium governed by (4.1) is called isotropic (the 
normal speeds are independent of the direction of propagation). If the roots 
vary with the direction of propagation, the medium is called anisotropic. The 
anisotropy of a medium can be visualized by means of the normal speed surface 
whose points are the terminal points of the normal velocity vectors, defined by 

v=(vl  . . . .  , v ,)=s(rh . . . . .  q,) 

where s is a root of (4.7) and [q [= l .  Since s2=[v[2=v~+.. .+v2, ,  the normal 
speed surface has the equation 

(, . ) (4.8) P(v, Iv[2)=det [v[ 2 -  2 B~vJ =0  
\ j=l / 

4* 
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(multiply (4.7) by s" where s is a normal speed). Hence the normal speed surface 
is an algebraic surface of degree 2m. 

The anisotropy of a medium can also be visualized by means of its slowness 
surface S, which may be defined as the image of the normal speed surface (4.8) 
under the transformation 

P 
(4.9) P=  Iv-~l ' v = ~ - ~ ;  

i. e., inversion in the unit sphere. Since points p on S satisfy [p I [ v I = 1, the distances 
from the origin of the point of S are the reciprocals of the normal speeds, i.e., 
the "slownesses" for the system (4.1). An equation for S is 

(4.10) P(p, 1)=det  1 -  B jp j  = 0 ,  

by (4.8) and (4.9). Hence S is an algebraic surface of degree not exceeding m. 
The polynomial P(t/, s) has a factorization 

(4.11) P(r/, s)= Q~"(t/, s) O~'2 (t/, s) ... QT"(r/, s) 

where the factors Qs(r/, s) are distinct homogeneous polynomials in (t/, s), ir- 
reducible over the real number field. The factors Qj(t/, s) are unique, apart from 
their order and constant factors. P(t/, s) is of order m in s and the coefficient 
of s m in P(t/, s) is 1. Hence the factors Qj(t/, s) may be defined uniquely by re- 
quiring that the coefficient of the highest power of s in each Qj(t/, s) be 1. Let 

(4.12) Q(t/, s)= Ql(t/, s) Q2(t/, s) ... Qt(t/, s) 

denote the corresponding polynomial with simple irreducible factors. Then it is 
clear from (4.10), (4.11) that S may be described as the locus 

(4.13) Q(p, 1)= QI(p, l) Q2(P, l) ... Qt(P, 1)=0.  

The geometrical properties of the slowness surface S play a decisive part 
in determining the structure and properties of waves governed by the system (4.1). 
A class of systems (4.1) for which the asymptotic behavior for large time can be 
estimated is described by the following definition. 

Definition. A system (4.1) (and the medium governed by it) is said to be 
uniformly propagative if 

the slowness surface S is bounded, (4.14) 
and 

~Q(p, 1) (4.15) p. VQ(p, 1)=pl aQ(p, 1) I--.-+p, 4:0 when peS.  apl Op, 

Many of the wave propagation phenomena of classical physics are governed 
by uniformly propagative systems. A number of examples from physics are 
discussed in the Appendix. The name "uniformly propagative" is motivated by 
the observation that the normal speeds of such systems have constant multipli- 
city and constant algebraic sign, independent of the direction of propagation t/ 
(Corollary 4.7, below). 
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Let r/~ be a fixed unit vector, and let s(t/~ be a corresponding normal speed; 
i.e., a root of 

(4.16) Q(rl~ +Ql(rl~ +. . .+Q,_1(rl~176 

Lemma 4.1. For uniformly propagative media, if s(r/~ 4=0, then OQ (rl ~ sOl~ O s 
4=0. Hence, the non-zero roots of (4.16) are simple. 

Proof. Q(r/, s) is homogeneous of degree r in 01, s). Hence by EULER'S theorem 

~1" VQ(rl, s )+s  3QO1, s) O ~  = r Q O1, s)  . 

Putting ~/=t/~ s =s(t/~ in this equation gives 

(4.17) ~l ~  VQQ1 ~ s(t/~ + s(r/~ dQ(t/~ sO/~ Os = r QQ1 ~ s0/~ 

by the definition of s(~/~ Now if p~176176 then 

Q(pO, 1)= s0/O)-, QQ/o, s0/O)) =0;  

i.e., p~  Multiplying (4.17) by s(r/~ - '  and using the homogeneity of the deri- 
vatives of Q gives 

OQ(p ~ 1) =0 .  pO. VQ(pO, 1)4 Os 

Thus 
OQ(tl o, s(~/o)) ~Q(pO, 1) 

Os =s0/~ Os = -SQl~  P~ VQ(P~ 1)4=0 

by (4.15). 

Lemma 4.2. For uniformly propagative media, one of the following two alter- 
natives holds. Either 

0 Case I. There is a unit vector tl ~ such that the roots s ~ s o . . . .  , s, of  Q(~O, s) 
are all different f rom zero (and therefore simple, by Lemma 4.1), or 

Case 2. s(~/~ is a root for  every ~/o, so that Q,(t/~ and there is a unit 
vector ~l ~ such that the r - 1  roots of s - l  QO1 ~ s) are all different from zero (and 
therefore simple). 

In particular, there is a unit vector tl ~ such that Q(~/o, s) has r simple roots 
in both cases. 

Proof. If Case 1 does not hold, then Q,01)-0.  If Q , -10 / ) -0  also, then 
Q0/, s) =s2 Q'(~l, s) has a repeated irreducible factor contrary to the definition 
of QOl, s). Thus Q~_1(~/~ for some unit vector ~/o, and the r - 1  roots of 
s -1Q 0/, s) are all different from zero for ff =~/o. This proves Lemma 4.2. 

Now fix a unit vector ~/o as in Lemma 4.2, and let o o o be the cor- S l ,  S2 ,  . . . ,  Sr 

responding set of roots of Q0/~ s). They are distinct simple roots by Lemma 4.2. 
If s ~ 4: 0, then since 

Q(rl ~ S k ) = 0  , OQOl~ so) O s 4=0, 
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the equation Q(r/, s )=0  has a unique analytic solution S=Sk(l~) defined in a 
neighborhood of ~/=~/o and satisfying Sk(rl~ ~ (Implicit Function Theorem 
for Analytic Functions [1, p. 39]). If s ~ =0, then zero is a root of Q(t/, s) for every 
~/and Sk(~) is defined to be identically zero. Note that in both cases 

(4.18) Sk(IZ t/) = bt Sk(tl), p > 0 ,  

by the homogeneity of Q(r/, s) and the uniqueness of the function Sk(tl). 
If Sk(tl)4=O , then 

Q(Sk(tl) -* ~l, 1)= sk(~l)-" Q(tl, sk(~))=0; 
whence 

p = Sk(r/) -1 r /eS.  

It follows that [Pl =lSk(~)1-1 and hence, by (4.18), 

(4.19) ISk(P) l = [el I sk(~)l = 1. 

Thus (4.19) is an equation for a portion of S. These facts lead to the following 
theorem. 

Theorem4.1. For uniformly propagative media, the r roots SlQl), s2(r/), ..., 
sr(~) of  Q(~I, s )=0  defined above are analytic functions of  ~l for  all real tl4=O. 

Proof. Each function SkO1), k - -1 ,  2, ..., r, is defined by the implicit function 
theorem near r/=r/~ and then extended by analytic continuation. The only obstacle 
to the analytic continuation would be the occurrence of a branch point. Branch 
points ~/14= 0 with a non-zero root SkO1 ~) do not occur, by Lemma 4.1. If Sk(~ 1) =0, 
then skQ1)--O. For if SkOl~ and SkO1) ~ 0  when r/-~r/1, then, by (4.19), IPl ~ 
when r/~r/~ and S is unbounded, contrary to hypothesis. This same argument 
also proves 

Corollary 4.1. Each root SkOl), k = l ,  2 . . . .  , r, is of  constant algebraic sign. 
In particular, a root can vanish only if  it is identically zero. 

The occurrence of a root Sk(rl)-'-O is associated with the existence of static 
solutions with finite energy of the system (4.1); i.e., solutions u ~ =u~ such that 

n 0 
AJ ~U~=o and S u~176  u~ d x < ~ 1 7 6  

j = t 0 X j  R" 

Indeed, it can be shown by the Fourier transform method (see w 2) that such 
solutions exist for uniformly propagative systems if and only if a root Sk(tl)--O 
exists. Thus Case 2 (Lemma 4.2) is applicable to uniformly propagative systems 
which have static solutions. It is important to include this case in the discussion 
because many of the systems of wave equations from classical physics have static 
solutions. Examples include MAXWELL'S equations and the equations for acoustic 
and seismic waves (see the Appendix). 

Corollary 4.2. I f  the roots s o (k = 1, 2 . . . .  , r) are enumerated so that 

s ~ 1 7 6  ~ 
then 
( 4 . 2 )  S l ( ~ ) >  s 2 0 " l ) > ' " > ' S r ( t l )  for  all real rl4=O. 
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Proof. (4.20) holds for r/=~/o by hypothesis. If any of these inequalities fail 
for some ~/=t=0, then, by continuity, there will be an ~/1 ~=0 such that sj(r/1) =Sk(~f) 
with 1 <j,  k < r  and j~ek. If sj0/1)4:0, then it is a double root, contradicting 
Lemma4.1. Suppose that sj(r/1)=0. Since the functions sj(~/) and Sk(rl) are 
distinct, one of them is not identically zero and vanishes for ~/=r/1, contradicting 
Corollary 4.1. Thus (4.20) holds. 

Henceforth it is assumed that the roots s~(r/) are numbered as in (4.20). A 
polynomial Q(~/, s) is said to be strictly hyperbolic (with respect to the vector 
(~/, s)=(0, ..., 0, 1) if for each fixed real vector r/~=0, the roots s of Q0/, s )=0  
are real, distinct and different from zero [10, p. 137]). Thus Theorem 4.1 implies 

Corollary 4.3. For uniformly propagative media, either Q(r/, s) is strictly hyper- 
bolic (Case 1) or s - lQ(~ ,  s) is strictly hyperbolic (Case 2). 

Corollary 4.4. For uniformly propagative media, the r distinct roots sl(~) . . . . .  
s, Q1) satisfy 

(4.21) Sk(--t/) = --St-k+ 1(~/) for k=  1, 2 . . . . .  r and all ~l. 

Proof. Since Q(- r / ,  - s ) = ( - 1 ) '  Q(~/, s), the numbers -Sl(~/), ..., -st(r/) are 
the roots corresponding to the vector -r / .  Also, by assumption 

- s l ( ~ )  < - s 2 ( ~ ) <  . . - <  - s ~ ( ~ ) .  

Thus it follows that - s 1 (~/) = s, ( - r/), - s2 (~/) = s,_ 1 ( - ~/), ..-, i.e., (4.21) holds. 

Corollary 4.5. For uniformly propagative media, one of the following two 
alternatives holds. Either 

Case 1. r = 2 p  is even and the roots sk(~l) satisfy 

(4.22) sl(rl)>'">sp(~l)>O>Sp+l(tl)= - s p ( - r l ) > ' " > s 2 p ( ~ l ) = - s l ( - t l ) ,  
or 

Case 2. r = 2 p +  1 is odd and the roots Sk(tl) satisfy 

s~(~)  > . . .  >sp(~)>Sp+~O1)-O>s~+2(~) 
(4.23) = - sp ( - r / )> - - -  > s2p+ l(r/) = - s l ( -  r/) . 

Proof. (4.21) implies that for every positive root Sk0/) there is a negative 
root S,_k+l(r/), because the roots have constant sign (Corollary 4.1). Because 
of convention (4.20), s l(r/) = - s ,  ( -  r/) > 0. Similarly s2 (r/) = - s,_ 1(-  r/) > 0, etc. 
If r = 2 p  (Case 1), then k = p  implies r - k +  1 = p +  1. Thus sp(~/) = -Sp+ l ( - r / )>0 .  
Indeed, sp(r/)<0 would imply Sp+l(r/)>0>sp(r/), by (4.21), contrary to (4.20), 
while sp(r/)=0 would imply sp+l(r/)=0, contrary to the fact that the roots are 
simple. If r = 2 p + l  (Case2), then k = p  implies r - k + l = p + 2  and k = p + l  
implies r - k + l  = p + l .  Thus sp( r / )=-sp+2( - r / )>0 ,  by the argument given in 
Case 1, and sp+l ( r / )=-Sp+l ( - r / )=0 ,  because sp+10/) does not change sign. 

The properties of the roots proved above imply the following theorem. 

Theorem 4.2. For uniformly propagative media, the slowness surface S consists 
of p = [r/2] disjoint bounded sheets which are analytic surfaces. Equations for  them are 

(4.24) Sk(p) = 1, k=  1, 2 . . . . .  p .  
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Proof. (4.24) follows from (4.19) and the fact that Sk(7)>0 for k = l ,  2 . . . . .  p. 
The sheets of S are disjoint because the roots Sk(7) are distinct. The analyticity 
of the sheets follows from Theorem 4.1. 

Another equation for the sheet corresponding to sk(7) is, by (4.18), 

IPls~(7)=l,  171=1. 
This implies 

Coronary 4.a. The p sheets of S are non-intersecting closed surfaces, enclosing 
the origin. [Pl s1(7) =1 defines the innermost sheet, IP[ Se(7) =1 defines the next, 
etc., and IPl sp(7)= 1 defines the outermost sheet. 

The discussion above shows that the roots s1(7), ..., s,(7) are just the distinct 
roots of 

The latter can be interpreted as the possible normal speeds for plane waves 
propagating in the direction of the unit vector 7. Thus Corollaries 4.1 and 4.2 
above imply 

Corollary 4.7. For uniformly propagative systems the m normal speeds s~(7), 
~ = 1, 2 . . . .  , m, defined by (4.25) have constant multiplicity and constant algebraic 
sign, independent of 7. 

It is these properties that motivate the term "uniformly propagative" system. 
Another important property of the system is described by 

Theorem 4.3. The matrix 

B(t/)= ~ B j 7j 
j = l  

(see (4.6)) satisfies the identity 

(4.26) Q(7, B(7)) = B(7)" + Q1(7) B(7) ' -  1 +.. .  + Q,_ 1(7) B(7) + Q,(7) I =0 

for  every 7. Hence Q(7, s) is the minimal polynomial for  B(7). 

Proof. The polynomial 

P(7, s)=det(I  s - B ( 7 ) ) =  Q~"(7, s)... Q7"(7, s) 

is the characteristic polynomial of B(7). Thus 

P(7, 8(7))=0 

by the Hamilton-Cayley theorem. Now 

9.(,7, s)=Q1(7, s) Q (7, s) ... 0,(7,  s) 

by definition. Thus if ml =m2 . . . . .  mr=l,  this result is the same as (4.26). 
If P(7, s) has a repeated irreducible factor, say ml > 1, then 

P(7, s)= t2 (7, s) R(7, s). 
To derive (4.26) in this case, let u(7), v(7) be m-component vectors whose com- 
ponents depend on 7 and write 

(U (7) ,  V (7) )  = U 1(7) Dl(n)  "[- " "" "q- Um (7) I)m (7)" 
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Then 
0 = (P (q, B (q)) u (r/), o (q))= (Q2 (r/, B (q)) R (q, B (q)) u (q), v (q)) 

B(O) u QI( , v(O). 

The last step follows from the symmetry of B(q). Taking u(r/)=~, a constant, 
and v(~/)=R(~, B(r/))~ gives 

II Q l(r/, B(r/)) R (q, B (~/)) ~ II 2 = 0 for all ~, 
which implies 

Qi(n, B(q)) R(t/, B(q)) = Q~'-1(r/, B0/)) Q~,2 (q, B(q)) ... Q':"(q, B(q)) = O. 

If mi=2, m2=I .... , m,=l, this result is the same as (4.26). If m,>2, etc., the 
argument may be repeated until each exponent mj is reduced to I which proves 
(4.26). 

Q(~, s) is the minimal polynomial for B(r/), by (4.26), because each root of 
P(q, s) is a root of the minimal polynomial, and the roots of Q(q, s) are simple 
and are the distinct roots of P(r/, s). 

The wave cone is considered next. 
Definition. The wave cone W for a system (4.1) is the envelope of the set of 

characteristic hyperplanes for (4.1) which pass through (x, t )=(0 ,  0). 
Each such hyperplane has an equation 

(4.27) tp(x, t, tl)-- Sk(q) t - -q  . x = 0  

where Sk(q ) is one of the normal speeds for (4.1). Thus there is a family of such 
planes for each of the analytic functions Sk(rl). The envelope of such a family 
is determined by (4.27) and the equations V~ ~p(x, t, q)=0,  or 

(4.28) x = t V~ Sk(q). 

This is obviously a cone in space-time. There is a sheet of the wave cone W for 
each of the distinct roots Sk(~). Note that in Case 2, sp+ ~(r/)-0, W also includes 
the t-axis, x = 0 .  

If Wt={x: (x, t ) e W } ,  then (4.28) implies that the locus W 1 is the "polar 
reciprocal" or "dual" of the slowness surface S. This property could be used to 
define W. It is also clear from (4.28) that W is just the set of all bicharacteristics 
for the system (4.1) passing through (x, t )=(0 ,  0). 

The following property of uniformly propagative systems is needed in w 5. 

Theorem 4.4. For uniformly propagative systems, in Case 1 W contains a cone 
[ x [ < y t with y>0.  In Case2, W -  { ( x, t ) : x = 0 }  contains a cone [ x [ <__ y t with 
~,>0. 

Proof. W is the envelope of the planes (4.27). For t > 0  fixed, (4.27) defines 
a plane in space whose distance for the origin is sk(~/)t if ]q[= 1. Thus for points 
(x, t) on W, Ix[/t is not less than 

= inf [ Sk (q) [. 
k= I ,  2 , . . . , r  

I~1=1 
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In Case 1, Corollary 4.5 implies that 

(4.29) V= inf sp(r/), 
I~1=1 

which is positive because so(r l) is continuous and never vanishes for I~1 = 1. In 
Case 2 V =0,  but if the t-axis (corresponding to the root so+ l(r/)=0) is removed 
from W, then for the remaining points (x, t) on W, Ixl/t is not less than the V(>0) 
defined by (4.29). 

w 5. The Riemann Matrix and the Asymptotic Behavior of Waves 
in Homogeneous Media 

In this section the Riemann matrix R(x,  t) for a homogeneous medium is 
defined and several of its properties are described. Then asymptotic estimates 
for large time are derived, using R(x,  t), for waves in uniformly propagative 
media. Stronger estimates are derived for a special class of uniformly propagative 
systems, the systems of Maxwell type, which include MAXWELL'S equations and 
the equations of acoustics. Concepts from SCHWARTZ'S theory of distributions 
are used in this section. A concise discussion of the relevant concepts may be 
found in [10, Ch. 1]. 

The class ~f~o of initial values ~pO with finite energy includes the class C~(R n) 
of testing functions of distribution theory; i.e., functions tp ~ (x) = (~po (x), ~pO (x), 
. . . .  tp~ whose components ~po (x) have continuous derivatives of all orders and 
vanish outside a bounded set. The solution formulas for the propagation prob- 
lem provided by the Fourier transform method imply that 

U0(X, t)=(e itlt~ q~~176176 for tp~ 

and, moreover, for each fixed (x, t )ER n+l the number u~ t) are continuous 
linear functionals of tp~ C~ (R") in the sense of distribution theory; i.e., u~ t) 
is a distribution on R" for each (x, t). Moreover, examination of the solution 
formulas reveals that this distribution has the form of a convolution* of q~o 
with a one-parameter family of distributions R(x, t) on R n [7, 10]: 

(5.1) u~ t) =(R( . ,  t) * ~pO) (x). 

Thus the solution operator e - i tn~ is characterized by an (m x m matrix-valued) 
distribution R(x,  t) on R'. R(x,  t) is itself characterized as the (unique) distri- 
bution solution of the initial value problem 

EO aR " aR R(x,  0)=6(x)  I (5.2) "-~-- = j.~l Aj Oxj '  

�9 If F= F(x) is a locally integrable function on R n and ~p(x)~C~ (Rn), the convolution 
F* ~ is defined by 

(F* r f F(y) ~(x--y) dy. 
R n 

If F is a distribution on R n, this definition is extended by defining 

(F * ~)(x)= Sy( ~(x-- y)) 

where Fy indicates that F is applied to q~(x--y) as a function of y with x fixed; see [10]. 
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where tS(x) is the n-dimensional Dirac delta function and I is the m x m unit 
matrix. R(x, t) has been studied from this point of view by LUDWIG [13] and 
DUFF [8] who called it the Riemann matrix for the system 

E o au ~ _j~tA duO (5.3) 
dt .= dxj " 

The representation (5.1) is used below to obtain estimates for large t of 
u~ t) and its derivatives. To see how this can be done, note that tS(x)is a homo- 
geneous distribution of degree - n; i.e., 

6(kx)=k-" J(x), k > 0 .  

It follows that R(x, t) is homogeneous of degree - n  in x and t together; 

(5.4) R(kx, kt)=k-"R(x, t ) ,  k > 0 ,  

a fact that has been noted by DUFF [8] and other authors. Indeed, the distribu- 
tion v(x, t)=k ~ R(kx, kt) satisfies conditions (5.2), so that identity (5.4) follows 
from the uniqueness theorem for (5.2). Identity (5.4) implies that 

This identity yields an estimate for R(x, t) when combined with the well-known 
fact that R(x, t) is an analytic function in the interior of its wave cone IV 
[6, p. 733; 3]. 

If IV contains a solid cone Ix I=< ? t (? > 0), it follows that the components 
R,p(x, t) satisfy 

(5.5) ]R,p(x,t)[<gt-" for Ixl<~,t, l<~t, fl<m, 

where K is a suitable constant. Combining (5.5) with (5.1) gives a similar estimate 
for u~ t). The same technique also yields estimates for the derivatives of 
u~ t). 

If (5.3) is a uniformly propagative system with no static solutions (i.e., no 
normal speeds which are zero), then its wave cone IV does contain a cone Ix I_-< ~ t, 
by Theorem4.4 (Case 1). Moreover, dR(x, t)/dt is homogeneous of degree 
- n -  1, and the same argument implies that 

(5.6) [ dR~p(x,t) < t_~_ 1 dt K1 for Ixl<~, t ,  l<ot, fl<m, 

where K1 is another constant. 
If (5.3) has static solutions (Case 2), then W contains the t-axis and (5.5) 

fails. However, it will be shown that (5.6) still is valid. To this end, consider 
the Riemann matrix R'(x, t) defined by 

(5.7) dR' _ ~ Bj dR' and R'(x,O)=t~(x)I, 
T i  = j=l dx j  
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where 
(5.8) T* E~ T = I  , T* AJ T= - B  j and d e t T # 0 .  

L e m m a  5.1. R(x, t) and R'(x, t) are related by 

(5.9) R(x, t )=TR'(x,  t) T -1. 

Proof. If R(x, t) is defined by (5.7) and (5.9), then direct computation, 
using (5.8), gives 

EO OR EO ~R' T -  1 = T* - 10R___~' --~--= T ~  dt ' T - l = -  ~ T*- IBJ  aR' T_ 1 
j =  1 dXj 

tl n 

.= Oxj .= Oxj 
and 

R (x, 0) = T 6 (x) I T-  1 = 6 (x) I .  

Thus R(x, t), given by (5.7) and (5.9), coincides with the (unique) Riemann 
matrix for (5.3). 

Next, notice that Theorem 4.3 implies 

Theorem 5.1. Let D j=~/a x j and D =(D 1, ..., D,). Then the matrix differential 
operator 

(5.10) B(D)-  ~ BJDi 
j = l  

satisfies the identity 

(5.11) Q(D,B(D))=-B(Df +Qt(D)B(Df -1+ ... +Q,_t(D)B(D)+Q,(D)I=-O. 

Proof. Q(tl, BQ1)) is an m x m  matrix whose entries are polynomials in 
t/i,t/2 . . . . .  %. By Theorem4.3 these polynomials are identically zero; i.e. 
all their coefficients are zero. Hence, replacing !/ by D in (4.26) gives (5.11) 

By (5.7) the Riemann matrix R'(x, t) satisfies 

~R' 
~t - - B ( D ) R '  

where B(D) is defined by (5.10). Hence 

(5.12) B(D)JR,=(_I)j  ~JR' j = 0 ,  1,2, 
f ~ t J  ' . . . .  

Combining (5.11) and (5.12) gives 

~" R' ~,- 1 R' 
(5.13) dr" QI(D) at,_ 1 t- + ( - 1 )  "-I ~R , . . . . . .  Q,_I(D) ~ + ( -  1) Q,(D)R'=O. 

Note that this is a scalar equation; i.e., a/~t and QI(D), Q2(D), ... are scalar 
partial differential operators. In Case 1, r=2p and R' solves 

t92 p -  l R '  tg R' + _ 
(5.14) d2pR'~t2p QI(D) t~t2p_ 1 --I- . . . .  Q2p_l(O) ~ Qzp(D)R'=O. 
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In Case 2, r = 2 p + 1, Qr (D) = 0 and (5.13) becomes 

92 p + 1 R' ~2 p R '  92 R' O R' = 0 
(5.15) at  2v+1 Q I ( D ) ~  + . . . .  Q 2 P - I ( D ) - ~  ~+Q2p(D) 8t " 

Differentiating (5.14) with respect to t gives (5.15). This proves 

Theorem 5.2. For uniformly propagative systems the matrix 

c~ R' (x, t) 
(5.16) S(x, t )= ~t 

always satisfies the scalar equation 

~2p S a2p-I S ~ t  
(5.17) ~t2p QI(D) ~t2p_~ ~- . . . .  Q2p-I(D) +Q2p(D)S=O. 

Equation (5.17) is used below to construct S. The construction is based on 

Lemma 5.2. For uniformly propagative systems 

02P -QI(D) + . . . .  Q2o-I(D) +Q2p(D) 
L D, ------ t~t 2p t3t 2p-1 t 

is a strictly hyperbolic operator. 

Proof. By definition L(D, a/gt) is strictly hyperbolic if its characteristic 
polynomial L(~/, s) is a strictly hyperbolic polynomial. But 

L(~/, s) = s 2 p -  Q l(r/) s 2 p- 1 + . . . .  Q2 p- 1(~/) s + Q2 p(r/), 

whence LQI, s)=Q(rl , -s)  in Case 1 and LOl, s ) = - s  -1 QQI, -s )  in Case2. 
Thus Lemma 5.2 follows from Corollary 4.3. 

Theorem 5.2 and Lemma 5.2 imply that the components S~p(x, t) of the 
matrix S(x, t) solve the scalar hyperbolic equation L(D, g/gt) S,p=0.  It follows 
that S(x, t) is uniquely determined by the initial values of its time derivatives 
of orders 0, 1 . . . .  , 2 p - 1 .  These may be obtained from (5.12) which implies 

aSS 
at ~ =(-1)J+IB(D)/+tR',  j = 0 ,  1,2 . . . . .  

Corollary 5.1. S(x, t)=(S~a(x, t)) is uniquely determined by (5.17) and the 
initial conditions 

S(x, O) = - B (O) ~ (X) t, a S(x, O) _ B (O)2 ~ (X) t, 
at "'" 

(5.18) 
a zp-t  S(x, O) _n(D)2p6(X)i" 

. . . .  t3t2P-1 

This result makes it possible to express S(x, t) in terms of the scalar Riemann 
function R~ t) for the operator L(D, a/at) which is defined by 

t32PR 0 a 2 p - l R O  a R  0 _ p ( D ) R O = 0  
8t2P Q1 (D) at2p-1 ~- . . . .  Q2p_ l (D) - -~+ td2  

(5.19) 
t32 P-2 R ~  ) a2p-lR~ 

R~ 0)=0 '  a R~ 0) = 0 ' a t  . . . .  a t2p_ 2 =0, a t2p_ 1 =f i (x) .  
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To derive a relation between S and R, write 

2p--1 OJU2p_j_I(X, t) 
(5.20) S(x, t)= ~, 

j=o 8t j 

where Uo, ul, ..., U2p--1 are defined by 

(5.21) 

~2PUj 
Ot 2p QI(D) - -  

02p-l uj 
0tzp_ 1 + . . . .  Qzp_I(D) ~ t  J+Qzp(D)uJ 0 

d2p--2Uj(x,O) 02 P-- X Uj(X, O) 
Uj(X, 0)=0, dUj(X, O) =0, =0, - f j ( x )  

Ot ""' dt 20-2 c~t 2p-1 

and fo ,  f l  . . . . .  f2 o- x are to be determined. (5.20) and (5.21) imply 

dkS(x,O) 2o-I Oj+~u2 ~_k(x,O) 
- -  2 P-- 

~ t  k j=20-l-k dt j+k 

This, with (5.18) and (5.21), gives 

= k d k- ~ S (x, 0) dZa-1 uk(x' 0) ~ (-1)JQj(D) atk-~ 
fk (X) = 0 t2p-1 j=O 

k 
= ~ ( _  1)k+ 1 B(D)R-j+ a Qj(O) 6(x) I .  

j=O 

Comparison of (5.19) and (5.21) with this expression for fk(X) shows that 

k 
Uk(X, t) = ~ (-- 1) k+ 1B(O)k-j+ z Oj(O) R~ t) I ,  

j=O 

and substitution in (5.20) gives 

Theorem 5.3. 
2p-1  2p-l-k 

(5.22) S(x, t)= ~ ~ (--1)kB(D)2p-k-JQj(D) OkR~ I 
k=O j=O ~t k " 

The correctness of this formula may also be verified directly. 

Theorem 5.4. For uniformly propagative systems, the wave cone W ~ for the 
scalar Riemann function R ~ (x, t) always contains a cone I x l < ~ t with y > O. 

Proof. By the proof of Lemma 5.2, the characteristic polynomial for the oper- 
ator L(D, d/at) which defines R~ t) is Q0/, - s )  in Case 1 and - s - l Q ( q , - s )  
in Case 2. Thus in both cases its roots s(q) are precisely the non-zero roots 
of Q01, - s ) .  The proof that W ~ contains a cone Ix I__< y t is therefore identical 
with the proof of Theorem 4.4, Case 1. 

Corollary 5.2. For uniformly propagative systems, there are positive constants 
and K such that the components S~#(x, t) satisfy 

(5.23) IS, a(x,t)l<=Kt -"-I  for Ixl<=~t, l<~ , f l<m.  
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Proof. Theorem 5.4 implies that R~ t) is analytic in Ix[ <Tt. Hence S(x, t) 
is analytic there, by Theorem 5.3. Since S(x, t)=aR'(x, Q/at is homogeneous 
of degree - n -  1, (5.23) follows. 

Lemma 5.1 implies that 

O R(x,t) = TS(x, t) T -1 
at 

where T is a constant matrix. Hence Corollary 5.2 implies 

Theorem 5.5. For uniformly propagative systems, there are positive constants 
and K' such that 

(5.24) IlaR, p(x,t)at <K' t -" - I  for Ixl~yt,  l<_~,fl<m. 

Finally, combining this result with the convolution formula (5.1) gives 

Theorem 5.6. Let u ~ (x, t) solve the propagation problem for a uniformly 
propagative system (5.3), with initial values u~ (x, O) =to ~ (x)~ C~ ( R"). Moreover, 
assume that 

to~ = 0  for [xl>a. 

Then there are constants 7 and K such that 

[ au~ for Ix l<Tt-a ,  (5.25) at <K~ l<~t<m_ _ . 

Proof. u~ t) is given by (5.1), where R(x, t) denotes the Riemann matrix 
for (5.3). It follows that 

du~ (OR(. , t )  ) 
at = \ ~  *too (x). 

This may be written as an ordinary convolution, i.e., 

_ aR~p(x-x',  t) t) 
(5.26) at tx'l_-__a at 

provided (x, t) is chosen so that Ix'[<a is contained in a set on which 
aR(x--x', O/at is analytic. Now 

[x l<v t -a  and Ix'l<a imply [x -x ' l<~t ,  

and OR(x-x')/a t is analytic on I x - x ' l  < ~ t if ~ is the constant in Theorem 5.5. 
Thus (5.26) is valid for [xl<?t-a.  Taking absolute values in (5.26) and using 
(5.24) gives (5.25) with 

Ko=K' S ([to~176 
Ix'l<_a 

Stronger estimates than (5.25) may hold for special classes of uniformly 
propagative systems. An important example of such a class is described by the 
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Definition. A uniformly propagative system (5.3) is said to be of Maxwell 
type if its minimal polynomial has the form 

Q(n, s) =s3-c2 I n f f s  

where c is a positive constant. 
In the Appendix it is shown that this class includes MAXWELL'S equations 

for a homogeneous, isotropic medium and the equations of acoustics. By Theo- 
rem 5.1 the operator B(D) for a system of Maxwell type satisfies the identity 

(5.27) B (D) 3 - c 2 A B ( D ) -  0 

where 
A=IDI2=D2+ ... + 0  2 

is the Laplace operator. This implies 

Lemma 5.3. Let u~ t) be a solution of a system (5.3) of Maxwell type. 
Then the time derivatives 

I/,~(x, t )= du~ t) 
c~t 

solve the wave equation: 
~2 ,1, 

(5.28) va- ~ -  c 2 A ~k~ = 0. 

Proof. Put v(x, t ) = T  -1 u~ t) where T is the constant matrix defined by 
(5.8). Then substituting u ~ =Tv in (5.3) gives 

av 
- B ( D ) v .  

~t 

Combining this with (5.27) gives 

~3v 2 ~v -~- -c  a -~-=0; 
d v~ 

i.e., the components ~ satisfy the wave equation. This implies (5.28), since 

~ ( x ,  t )= du~ t) _ ~ T~# ~v#(x, t) 
~t ~t #=l  

where the T~# are constant. 
Lemma 5.3 implies the following estimate. 

Theorem 5.7. Let u~ t) solve the propagation problem for a system (5.3) 
of Maxwell type with n = 3, and let the initial values u ~ (x, 0) = ~o ~ (x) e C~ ~ (R3). 
Moreover, assume that ~o~ for Ixl>=a. Then 

d u ~  for I x l > c t + a  and [ x l < c t - a ,  
dt 

and 
a u ~  < K t  -1 for c t - a < l x l < c t + a ,  l < c t < m ,  

at = 

where K is a constant which depends on q~O only. 
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ProoL Lemma 5.3 implies that 

~(x, t)= Ou~ t) 
Ot 

solves the following initial value problem for the wave equation: 

00~t~-c2A~=0 for x ~ R  3, - - o O < t < o 0 ,  

r  0 ) =  (E~  ~'~ AJDj  tpO(x), 0~(X, 0)_____ (EO) E A j D  j q~O(x) 
j=l / Ot \ j=~ / 

for x E R  3. 

Thus each component ~,~(x, t) solves an initial value problem for the wave 
equation with three space dimension and initial values in C~ (R a) which vanish 
for [ x l > a. Hence, Theorem 5.7 follows directly from 

Lemma 5.4. Let w(x, t) solve the initial value problem 

~2 W 2 " 
-O--tT--c dw=O for x 6 R  3, - -O0<t<o0 ,  

w(x, 0)= f(x) ,  O w(x, O) Ot =g(x)  for x e R  3, 

where f and g are in C g ( R 3) and vanish for [ x [ > a. Then for e t > 2 a 

(5.29) w(x, t ) -O for I x l>c t+a  and [ x l < c t - a ,  
and 

(5.30) [w(x , t ) l<Kt  -1 for c t - a < l x l < c t + a ,  

where K depends on f and g only. 

Proof. w(x, t) may be expressed in terms of its initial values by the classical 
Poisson formula 

(5.31) w(x, t)-- t Mx, c,[g] + O  (tMx, c, [f]) 

where Mx,, If] denotes the spherical mean of f over the surface of the sphere 
S(x, r) with center x and radius r. Thus if dS denotes the element of area on 
S(x, r), r denotes a unit vector, f2 denotes the unit sphere and dO the element 
of area on O, 

1 
M x , , [ f ] = ~  S f ( x ' ) d s = . l  I f (x+ro~)  dr2. 

S(x,r) ~I~ fl 

Property (5.29) follows immediately from (5.31), since S(x, et) does not intersect 
the set Ixl<a in this ease. For et>2a it follows from e t - a < l x l < c t + a  that x 
lies outside [ x I < a, and 

It=M= =,[g]l= 4- 1 $ c $ dS 
S(x, ct) = a R c  S(x, cOolx,l<=a 

5a Arch. Rational Mech. Anal.. Vol. 22 
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where C is a bound for g. It follows that t 2 Mx, et [g] is bounded, since the area 
of the portion of S(x, c t) lying inside Ix I__< a is obviously bounded, also 

(t Mx .c , [ f ] )  = 
c t 2 

t M ~ , . [ f ]  +~--~ Vf (x+c  t w). o~ t dQ 

IVf(x')ldS<ltMx-Ef]l gcc l  I dS 
cO ' 4rr s(x.ct)n Ixl~_a 

where C 1 is a bound for I Vfl .  This completes the proof of (5.30), since each 
of the last two terms is bounded. 

w 6. The Existence of Wave Operators for Wave Propagation Problems 
of Classical Physics 

In this section the results of the preceding sections are used to derive criteria 
for the existence of wave operators, and therefore asymptotic solutions, for 
propagation problems involving inhomogeneous media which are perturbations 
of uniformly propagative homogeneous media. Two criteria are given. The first 
is applicable to perturbations of any uniformly propagative medium. The second 
is applicable to perturbations of media of Maxwell type. Both criteria require 
that E ( x ) - E  ~ the difference between the energy forms for the two media, 
be "small at ~ "  in a certain sense. The perturbation may be arbitrarily large 
on bounded sets of points. Finally, the wave operator f2: ~o--+ ~r is shown to 
be isometric if the homogeneous medium has no static solutions (Case 1), and 
a generalization of this result is proved for Case 2. 

The criteria for the existence of wave operators are derived from Theorem 3.2. 
The spaces s ~0 and ~ and operators Ho and H are defined as in w 2, and 
the set C~(R") (cf. w 5) is selected as the subset D of Theorem 3.2. With these 
choices conditions (3.17) and (3.18) of the theorem are satisfied and there remains 
the problem of finding criteria which ensure the convergence of the integral 
(3.19). To see how this can be done, consider the integrand 

(6.1) I ( t )=  II ( H - n o )  e -~tu~ q~ ii, q~eC~(R") �9 

The operators H and H o have the same domain and satisfy the identity 

H - H o = E -  1 E o Ho - Ho = (E-  t E o _ I) H o . 

Moreover, u~176 represents the solution of the propagation 
problem for the homogeneous medium and satisfies 

au~ t) 
H o u~ (x, t) = i a t 

Thus 

I(t)= ]1 (E-1E~ no u~ �9 , t)II = (E -x E ~  

Applying the definition of the energy norm gives 

l ( t ) 2=~  ( ( E - 1 E ~  au~  t) ) 

du~ t )  . 

duO(., t) dx .  
- I )  at 
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1(0 2= 
Rn 

--I 
Rn (6.2) 

=I 
R n 

=I 
Rn 

where 

Using the symmetry of the matrices E and E ~ we may rewrite this as follows: 

( a u ~  * at ( E ~ 1 7 6  au~ at dx 

( )" au~ t) (EO_E) E_t(EO_E ) au~ t) at at dx 

( )  (E~ 0u~ t) E - I (E~  au~ t) dx 

v*(x, t) E-~(x) v(x, t) dx 

(6.3) v(x, t )=(E(x)-E ~ au~ t) 
at 

Now there is a constant # such that 

r E-l(x) s l---r- r 

by Lemma 2.1. Thus (6.2) implies 

for x ~ R ~, ~ E R m, 

I(t)2 < v*(x, t) v(x, t) dx= ~=1(E~p(x)-E~ dx.  

Applying CAUCHY'S inequality to the fl-summation in the last integral gives the 
estimate 

(6.4) 1(02__<-~-~ {~--~1 B~=I (E~p(x)-E~ {,=~ (au~(; ,  t))2} dx.  

This estimate is used below to prove the integrability of I(t) on T<t<oo for 
every tp~176 and thus demonstrate the existence of wave 
operators. The principal result is 

Theorem 6.1. Let the matrices E(x), E ~ and A i ( j=  1, ..., n) have the following 
properties. 

(6.5) E ~ d u ~  j 
au o 

at j=l ax i is a uniformly propagative system. 

(6.6) E(x) is Lebesgue-measurable, bounded, and uniformly positive definite; 
i.e., there are positive constants It and #' such that 

p2r162 forevery xeR" and ~ R  m. 

(6.7) There are constants K>0, R>0 and p> 1 such that 

IE~Ax)-E~ -p for Ix l>g and l<a, fl<=m. 

Then the wave operator f2(H, Ha) exists for the operators H and H o defined in 
w by E, E ~ and A J (j'= 1, ..., n). 
5b Arch.  Ra t iona l  Mech.  Anal . ,  Vol. 22 
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Proof. The estimate (6.4) is used to show that I(t), defined by (6.1), is inte- 
grable on T<t<oo.  The result then follows from Theorem3.2. To estimate 
the right-hand side of (6.4), the integral is split into two parts, corresponding to 
the domains of integration I x i < Y t -  a and [ x I t__> y t -  a, and these are estimated 
separately. If a is chosen so that tp ~ (x) = u ~ (x, 0) = 0 for I x I => a, then Theorem 5.6 
is applicable and implies the estimate 

ixj_~,-, t ,=,  = b = ,  \ ~ -} J dx 
(6.8) 

__< t~,+--- r ~ (E,p(x)-E~ 2 d~.  

Now (6.6) implies that the components E~p(x) are bounded. Indeed, r E(x)11 
is an inner product, for each fixed x~R',  and Schwarz's inequality gives 

14" E(x) n l < (4" E (x) ~)~ (n* E(x) n)~< ~'~ (4* ~)~ (7* n) ~. 

Taking ~v=6,~, r/~=~p~ (a and fl fixed) gives 

I E~a(x)l </~ '2 , x~R' .  
Thus 

s ,,!,, r 
Ixl~_v~-a - - 

<=KI+K 2 ~ Ixl-Pdx 
R ~ l x l ~ r t - a  

? t - a  
= K l + K 2 c o ,  ~ r -2p+ ' - ld r  

R 

= g ~  + g  2 co, {(~ t - a ) ' - 2 p - R  "-2p} ~_K2 t ~-2~ 

where K~ and K2 are constants and COn is the area of the unit sphere in n-dimensional 
space. Combining this with (6.8) gives an estimate 

(6.9) Ii(t) <= ga t - ' -  2 p- 2 

where Ka is a constant. Next 

dx 
,6,0, . ( ) 

< (  sup s ~,(E,,(x)-E.,)z'~ S ~, r~u~(x't) 2 
\1~1-~ ~-~ ~=~ a=~ /Ixl---~t-~ ~ =~ 61 t dx. 

Now, by (6.7) 
sup (E~(x)-E~ t - a ) - Z ~ < K ,  t - ~  

I x l ~ t - a  

where K~ is a constant. Thus 

(6.11) sup s s (E,,(x)--E~ ~ K,  t -2". 
[ x i ~ ' t - a  ~=1 ,ff=l 
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Moreover 

(6.12) S --  d x < - - f f - ~  Ot d x = K ,  
Ixl~_~t_a#= t Ot Ot 

by the conservation of energy law for u~ t). Here 2 is the smallest eigenvalue 
of E ~ and K s is a constant. Combining (6.10), (6.11) and (6.12) gives 

(6.13) I2(t)=<K6 t -2v. 

Combining (6.4), (6.9) and (6.13) gives 

< 1 1 1 1 K6 t_2V<=K2 t_2p l( t )2=--~II( t)W--~-Iz( t)<='-~-uK3 t -n-zP-z+ #2 

where K7 is a constant. Thus 

l ( t )= l l (H-Ho)e -~ ' I~~  ll<K7 t -p, p > l ,  

which proves that I ( t )  is integrable and completes the proof of Theorem 6.1. 
For perturbations of systems of Maxwell type, Theorem 6.1 can be strengthened 

as follows. 

Theorem 6.2. Let the matrices E(x), E ~ and A J ( j  = 1, ..., n) have the follow- 
ing properties. 

tl 
(6.14) E ~ 0 u = z  Aj duo Ot i=I dxj  is a system o f  Maxwell  type. 

(6.15) E(x) is Lebesgue-measurable, bounded and uniformly positive definite; 

#2~*~<~*E(x)~<# '2~*~ forevery  x~R"  and ~ R  m. 

(6.16) There are constants T O and 6>0 such that 

1 I (E,p(x)-E~ dx 
~" ~-<JxJ<~+~ 

is integrable on 0 < Zo < T < oo for  1 < ~, fl < m. 

Then the wave operator ~ (/-/, /-/o) exists for  the operators H and H o defined in w 2 
by E, E ~ and A j ( j  = 1 . . . .  , n). 

Proof. It suffices to show that I ( t )  is integrable on T<=t<oo. By (6.4) and 
Theorem 5.7, if r176176 for Ixl>a,  then 

m 2 K 2 m 
(6.17) /(t)z __<--#-z---~-__~ ~ j ( E ~ , ( x ) - E ~  

- p = l  c t - a < l x l < = c t + a  

But (6.16) implies that 

: (,_~,=,xl<_~+o2(E'o(x)-E~ d x )  ' --  < I  

is integrable on 0< Tx __< ~< oo for any 61, 62 and ~1 =T1(61)- Thus (6.17) implies 
that I ( t )  is integrable on "~(a)== ~< o% which completes the proof. 
5c Arch. Rat ional  Mech. Anal.,  Vol. 22 
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Corollary 6.1. Under hypotheses (6.14) and (6.15) a sufficient condition for 
the wave operator f2 =[2(H, Ha) to exist is 

(6.18) S (E,a(x)-E~a)Zdx<=Ks z-8, 

where 6, Ks, e and T o are positive constants. 

Z>Zo>0, l < a ,  f l<m,  

This is immediate because (6.18) implies (6.16). 
The wave operator f2=f2(H, Ha), when it exists, is a bounded operator 

from Ha to H. In fact, it was shown in w 3, Theorem 3.1, that if 

then 
c2 ~* E~ ~ <~* E(x)~<c'2 ~*E~ ~ 

c II ~o I{o~ II a~{I  ~ c '  {Icp {{o 

for all x ~ R" and ~ e R", 

for all q~ e ~fo. 

It will be shown that under the hypotheses of Theorem 6.1 this result can be 
strengthened. The following lemma is needed for the proof. 

Lemma 6.1. Under the hypotheses of Theorem 6.1, /f u~ t)=(e -ftH~ q~~ 
where 9~ n) and cp~ for Ix[ >a, then the following statements hold. 

(6.19) 

(6.2O) 

(6.21) 

~o~~ u~ t) exists for each x, uniformly on bounded sets in R". 
t "*  oo 

There is a constant Ka such that 

[u~ t-" for [ x [<v t -a ,  l<~<<_m. 

q~~176 is a (weak) static solution; i.e., 

Aj a tp~176 (x) 
j=l ax i =0.  

Proof. Note that since tp~ u~ t)~CO~ "+l) and 

(6.22) u~ t ) -u~ z)= i au~ t') dt' , at '  for all x, t and z. 

Moreover, by Theorem 5.6, 

(6.23) [Ou~ t') < K o t ' - , - 1  t' at' for [xl=<~ - a ,  1-<~_<m. 

(6.22) and (6.23) imply (6.19). Also, making z-~oo in (6.22) and using (6.23) 
gives (6.20). Finally, since u~ t) solves 

(6.24) E ~ auO j~flA j auO 
at .= axj 

it follows immediately from (6.19) and (6.23) that 9 ~~ is a weak (distribution) 
solution of (6.24) which proves (6.21). 
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Theorem 6.3*.  Under the hypotheses of Theorem 6.1, if 

~o ~ e C~ (R n) and ~poo (x) = lim u ~ (x,  t) = lim (e-~ t no) cpo (x),  

then 
(6.25) II f~ ~ o~ II 2 = II ~o 11o2+ j ~o~ , ( x ) ( E ( x ) _ E  o) goOO(x) dx .  

Rn 

ln particular, in Case I where there are no static solutions, f2: ~o ~ ,,~is an isometry: 

( 6 . 2 6 )  II f2 ~o ~ tl = II ~o ~ 11 o .  

In Case 2, if r (and therefore cp~176 ~o),  then 

(6.27) II ~ 0  ii 2_  II C ~ 112= II ~0 ~ I102- II ~0 ~ It~. 
Proof.  Note  that 

(6.28) II f2cP ~ 112=lim II ei 'ne- i tn~ o~ 112 = l im II u~ ", t)II 2 
t-~oo t-'* o0 

where u ~ (x, t ) = (e-  i t no) cp o (x). Moreover ,  

1[ u~ ", t)II z =  ~ u ~ *(x, t )E(x)u~ t )dx 
Rn 

= I u~ *(x, t )E~176 t ) d x +  I u~ *(x, t ) (E(x ) -E~176  t )dx  
(6.29) R- a~ 

= II u(. ,  t)11o2 + J ( t ) =  I[ e-~ '"~ q '~ 11o2 + J(t)  

= [I cP ~ Iro2 + J ( t ) .  

(6.28) and (6.29) imply that  
lim J ( t ) 
t'-* oO 

exists. To prove (6.25), it must  be shown that the value of the limit is 

lira J (t) = S q~ ~o, (x) (E (x) - E ~ q~ oo (x) d x .  
t-* oo R n 

N o w  
J(t) = ( ~ + I U o 

\ lx l_<r  t - a  

=Jl(t)+J2(t) .  
Moreover,  

s~(t)= .f ~ O , ( x ) ( e ( ~ ) _ E o ) ~ ( x ) d ~ +  
I x l < ~ , t - a  

+ 2  I u ~ *(x, t ) (E(x) -E~176 t)- tp~ 
1~16~t-. 

+ ~ (u~ t)-cp~176176176 t)-cp~176 
Ixl<-~,t-a 

* T h i s  r e s u l t  w a s  s u g g e s t e d  b y  P r o f e s s o r  D A L E  THOE.  
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The last two integrals above tend to zero when t-~ or. This follows by a simple 
argument using the energy law for u~ t), (6.7) for E(x) -E  ~ and (6.20) for 
u~ t)-cp~176 Next. 

J2(t)=< S ~[u~176 
Ixl>=~t-a ~t=l #=1 

< j lu~ t)l E~,(x)-E~ 2 (u~(x, 0) 2 dx 
[xl>Yt-a~=l fl # I m { } 

~ __~ t)) 2 ~ ~ ( g ~ f l ( x ) - - E ~  2 ~ 
[xl>yt-a = a=l #=1 

by two applications of CAUCHY'S inequality. Thus 

$ E ( u . ( x , t ) )  2 d x  J2 ( t )~  sup E --E~#) ) a-~=l  = I(E~#(x ) 0 2 o 

<{m2 K4t-2p} ~-~ ~. uO*(x, t) E~ uO(x, t)dx< Klo t-p 

where 

In particular 
K1 o = m VK-44 2 - 1  II u~ (~ t) [I o 2 = c o n s t a n t .  

lim Jz(t)=O. 
t--* oo 

Combining the estimate for Jl(t) and Jz(t) gives 

l imJ( t )= l im S q~| *(x)(E(x)-E~176176 dx 
r-*oo t-*oo Ixl~_~,t-a 

= 

R n 

In particular, the last integral exists. This proves equation (6.25) of Theorem 6.3. 
Equations (6.26) and (6.27) follow immediately from (6.25). 

w 7. Concluding Remarks 

The existence of the wave operator O (H, Ho) implies the existence of asymp- 
totic solutions u~ t) which approximate true solutions u(x, t) in the energy 
norm (or mean square) sense when t ~ oo. It is also desirable to find conditions 
which guarantee that u ~ (x, t) approximates u(x, t) point-wise. This can be done 
by showing that the partial derivatives up to a prescribed order of u~ t) 
approximate those of u(x, t) in the mean square sense, provided that E(x) and 
~o(x) =u(x, O) have a suitable number of derivatives. Point-wise estimates for 
u(x, t)-u~ t) can then be obtained from Sobolev's lemma. This program 
has been carried out by the author for the classical non-relativistic SchrSdinger 
equation [19] and an extension of the results to the problems studied in this 
paper is planned. 

It was shown in w 6 that under certain conditions O: ~o -* 3r is an isometry; 
i.e., I[ O~ 0~ [] =1[ ~ o~ 11o. It is of considerable interest to find additional conditions 
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which ensure that t2 is unitary, i.e., the range of t2 equals ~". In this case (Theo- 
rem 3.1) t2=f2(H, Ho) has an inverse, f2(Ho, H)  exists and is unitary and 

f2(H, Ho) -1 =I2(H o , H). 

In studying the same question for the classical Schrrdinger equation, IKEBE [11] 
has shown that the unitarity of I2 is closely related to the completeness of the 
generalized eigenfunction expansions associated with H and H o. Moreover, 
he has given an explicit construction for f2 in terms of these expansions. It is of 
considerable interest to develop analogous results for the wave propagation 
problems of classical physics. In a special case, the transmission line equations, 
this has been done by BROWN [4]. 

Media governed by systems of the form 

n du o 
EO c~ u ~ = S = tA j dt ~" dx s 

are non-dispersive; i.e., their phase and group velocities coincide, whereas 
systems of the form 

(7.1) E ~ d u O -  ~ A ~ 
du o 

St i=~ -~xj+Bu~ B4=O, 

are dispersive. It is of interest to develop a theory of wave operators and asymp- 
totic solutions for perturbations of dispersive systems such as (7.1). In this 
connection, LUDWIG [14] has shown that the Riemann matrix of such a 
system may decrease much more slowly than t -n  when t ~ oo. In fact he has 
given examples with n =2  and n = 3  where R(x, t) decreases no faster than t - L  
The existence of wave operators for such systems can be proved by the techniques 
of this paper, provided the rate of decrease of E(x)-E~ Ixl--,oo) is raised 
to compensate for the slow decrease of R(x, t). 

Appendix. Some Wave Equations of Classical Physics in Matrix Form 

Many of the wave equations of classical physics can be written as systems of 
first order linear partial differential equations of the form 

Ou n J c~u 
(A.1) M~ --~-f=j~=tM (x) -~xj-I-N(x)u +f(x,  t) 

where u(x, t) =(ul(x,  t) . . . .  , urn(x, t))* and f are m x 1 (column) matrices and 
M ~ M j, . . . ,  M n are m x m matrices. The wave equations are distinguished among 
the general first order systems by possessing a quadratic energy density and 
corresponding energy conservation law in the sense of the following definition 
[cf. 9]. 

Definition. Let E(x) represent a symmetric, positive definite m x m matrix. 
System (A.1) is said to admit the energy density rl=u*Eu if and only if there 
exist symmetric matrices Pl(x) . . . . .  P"(x) and Q(x) and a matrix R(x) such that 

(A.2) Or/ n d =-E--~__ (U* PSU)+U* Qu+u* R f  dt F t  vxs 
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for all u e C  1, where by definition 

~u ~ t ~u f = M ~  .---~ - - -  ) '  M ~ - N u .  
dt t=l f)x t 

Note that if (A.1) admits an energy density, then solutions of the homogeneous 
equation ( f = 0 )  satisfy the energy conservation law 

dt =t~= l --~-~xjxj (u * VJ u) + u * Q u . 

It is assumed here that the matrix M ~  is non-singular. (Otherwise, the 
process described by (A.1) is indeterminate.) Hence (A.1) ean be rewritten as 

c~u_ " i tgu 
(g.3) E(x) --ff-i--j~=t A (x) --ff-~j + B(x )u  + g(x, t) 

where 
A t = E ( M ~  j, B = E ( M ~  and g = E ( M ~  

(A.3) is called the canonical form of (A.1), relative to the energy density ~/= 
u* Eu. It is not difficult to verify the following theorem. 

Theorem. A system (A.1) admits the energy density r/=u* Eu if and only 
if, when it is written in canonical form (A.3) relative to rl, the matrices A j ( j=  
1, 2 . . . .  , n) are symmetric. I f  (A.1) admits the energy density 11, then the matrices 
p t ,  Q and R of (A.2) are 

PJ=AJ ( j = l , 2 ,  . . . ,  n), Q = B + B * -  OA j 
j=l-~x j , R = 2 E ( M ~  -1. 

The purpose of this Appendix is to exhibit a number of wave equations 
of classical physics in the canonical form (A.3). 

In the examples, the physics provides both the basic equations (A.1) and 
an appropriate energy density. In each case it will be seen that the equations 
for inhomogeneous media can be written in the form (1.1) of this paper; i.e., 
when they are written in canonical form the matrices A t are constant and B 
is zero, so that the inhomogeneity is described entirely by E(x). Of course, the 
equations can be written in the form (A.3) in a number of different ways, cor- 
responding to different choices of dependent and independent variables. In 
most cases they will assume the special form (1.1) only after a judicious choice 
of variables. 

The Transmission Line Equations. In a conventional notation these equations 
are 

L(x) ~i ~e ^ - ~ + - ~ x  =o,  
(A.4) 

~e Oi ^ c(x) -H +-~-  = o 

where ! and e are the current and voltage in the line and L and C are the inductance 
and capacitance per unit length. They can be written as a 2 x 2 matrix equation 
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for u =(ut, u2)* =(i, e)*. The appropriate energy density is t /=Li2+ Ce 2. Hence, 
(A.4) can be put into canonical form with 

0 1 0 

Maxwell's Equations. The equations for an inhomogeneous, anisotropic di- 
electric medium can be written 

k = l  

(Vx g) j+ ~ OHk J= ~j,(x) -N---0. 

Here / i  and/-t are the electric and magnetic field vectors, ej k and p~k are the 
dielectric and magnetic permeability tensors and the subscripts denote components 
in a rectangular coordinate system. They can be written as a 6 x 6 matrix equation 
for u=(E1, E2, E3, H1,112,/-/3)*. The energy density is (apart from a constant 
factor) 

a 
r/= ~ (eij Ei Ej +/aij H i Hi). 

i, j f l  

Hence, MAXWELL'S equations can be put into canonical form with 

and 

~ll(x) ~12(x) ei3(x) 0 0 0 \ 

t~ , (x)  ~2~(x) ~23(x) o o o ) 0 E(x)= ~31(x) ~32(x) ~33(x) 0 0 
0 0 0 #i l(x)  #12(x) #,3(x) 

0 0 0 #21 (x) #2 2(x) #2 3 ( x ) /  

0 0 0 #31 (x) #3 2 (x) #3 3 (x ) - -  000--O3Oi) 
0 0 D3 0 - D r  

3 . 0 0 0 - D  2 D 1 
j~= l AI Dj = 0 D 3 - D  2 0 0 

--D 0 D t 0 0 

D 2 --D 1 0 0 0 0 / 

The Equations of Acoustics. The equation for acoustic waves in an inhomo- 
geneous fluid at rest can be written 

01)  1 (A.5) ~ -gir=p(x) V. p--~ Vp . 

Here p represents the difference between the instantaneous pressure and the 
equilibrium pressure, p(x) is the equilibrium density and c(x) is the local speed 
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of sound. This can be rewritten as a 4 x 4 matrix system for 

u =(-1- JJ!_ _1_ JJ!_ _1_ JJ!_ ~)* 
p(x) oxl ' p(x) ox2' p(x) ox3' ot . 

Then energy density is 

1 { 17 2 1 ( a P ) 2
} 11 = p(x) ( p) + e2(x) Tt 

and the equations have the canonical form with 

p(x) 0 0 0 
0 0 0 Dl 

0 p(x) 0 0 
3 0 0 0 D2 

E(x)= 0 0 p(x) 0 l;AjDj= 
0 0 0 D3 j= 1 

0 0 0 
1 

Dl D2 D3 0 
p(x)e2(x) 

The Equations of Elasticity. Elastic waves in an inhomogeneous anisotropic 
medium satisfy equations of the form 

o2 w;_ ~ o (ij()OWm) ---;:r- t..., -- e X --
ot j,m,n=l oxj mn OXn ' 

i= 1, 2, 3. 

Here W; is the i 1h component of the displacement vector and e:ln is the tensor 
which relates the stress and strain tensors in the medium. The tensor e:ln has the 
symmetries 

and hence has 21 independent components. The energy density is 

~ (OW;)2 ~ ij OWm OW; 11= £.., -- + £.., emn ----. 
i=l ot i,j,m,n=l OXn oxj 

Define the velocity vector 
OW; 

V·=--
1 at 

and the stress tensor 

(symmetric in i,j), and put 

Moreover, define a symmetric positive definite 6 x 6 matrix r(x) by 

c 
ell ell ell ell 

'") 11 22 33 12 23 31 

22 e22 e22 e22 e22 e22 
r(x)-1= e~l 22 33 12 23 3 1 • 

e31 d~. 3 1 
11 ...... • · e31 
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Then the elasticity equations can be written in the canonical form with 

and 

e ( x )  = 

/fit 1 (X) ffl 2 (X) ... /"1 6 (X) 0 0 0 

/"2 ~.(x) r2 2 (x) .../"2 6 (x) o o 0 

0 /"6 1 (X) /"6 2(X) ... ~6 6(X) 0 0 

0 0 ... 0 1 0 0 

0 0 ... 0 0 1 

0 0 ... 0 0 0 

3 
A j Dj = 

j = l  

0 0 0 0 0 0 D 1 0 0 \  

0 0 0 0 0 0 0 D2 0 

0 0 0 0 0 0 0 0 D 3 

0 0 0 0 0 0 D z D 1 0 

0 0 0 0 0 0 0 D 3 D 2 

0 0 0 0 0 0 D a 0 D1 

D 1 0 0 D 2 0 D a 0 0 0 , 

0 Dz 0 D1 D3 0 0 0 0 0 /  

0 0 D a 0 D 2 D 1 0 0 

Each of the four examples from classical physics given above has the form 
(1.1). Moreover, for homogeneous media ( E ( x ) = E  ~ constant) eaeh example 
is uniformly propagative except for certain special values of the parameters. 
For example, in crystal optics the sheets of the slowness surface may intersect 
for certain values of the dielectric constants e o. but this behavior disappears 
if the values of the ~j are changed slightly (see also [7]). Finally, the equations 
of acoustics and MAXWELL'S equations for an isotropic medium (~j=eo 6~j, 
#ij =/a o 6~j) are systems of Maxwell type. This is easy to verify by finding the 
polynomial 

es ) det + J t/j . 
j=  

The work reported here was performed under the auspices of the United States Atomic 
Energy Commission. 
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