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§ 1. Introduction

In the quantum theory of the scattering of elementary particles by a potential,
the wave packets describing scattered particles are asymptotically equal, for large
time, to corresponding wave packets describing free particles. The correspondence
is given by the wave operator of MoLLER [I19, 20]. In this paper analogous
concepts are developed for wave propagation problems of classical physics.
It is shown that waves propagating in an inhomogeneous medium are asymptotic-
ally equal, for large time, to corresponding waves propagating in a homogeneous
medium. The correspondence is given by an analogue of the Mgller wave operator.
Since wave propagation problems for homogeneous media can be solved ex-
plicitly, the results provide asymptotic solutions of wave propagation problems
for inhomogeneous media.

The wave propagation phenomena dealt with in this paper include electro-
magnetic waves, acoustic waves, seismic waves, electric waves on transmission
lines, and other wave propagation phenomena of classical physics. A unified
discussion of these phenomena is possible because they are all governed by
systems of partial differential equations which can be written in the matrix form

ou & ; Ou
(11) E(X) _6t__jZ‘1A 73;.
Here x=(x,, X5, ..., X,)ER" (space), teR' (time), u=u(x,t) is a real mx1
(column) matrix which describes the state of the medium at position x and time ¢,
and E(x), A', A%, ..., A" are mxm matrices with the following properties:

(1.2) E(x) is real, symmetric, and positive definite,
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and
(1.3) A, A%, ..., A" are real, symmetric, and constant.

Some of the wave equations of classical physics are exhibited in the matrix form
(1.1) in the Appendix.
The matrix E(x) defines the quadratic form*

(1.4) n=u*E(x)u

which is interpreted as an energy density (energy per unit volume) in the applica-
tions. The matrices A/ define the quadratic forms

1.5) I=—u*Au

which are interpreted as the components of a Poynting vector describing the
flow of energy (energy per unit area per unit time). Solutions of (1.1) satisfy
a conservation of energy law which in differential form is

on o 0X;
(1.6) —0t—+j; 3%, =0.
Integration of (1.6) over xeR", 0<¢<T gives the conservation law in integral
form:
() fu*(x, TYE(X)u(x, T)dx= | u*(x,0) E(x)u(x,0)dx.
Rn Rn

It is well known that solutions of (1.1) are uniquely determined by their

initial values

(1.8) u(x,0)=¢(), xeR".

The solution u(x, ¢) of the initial value problem (1.1), (1.8) describes the propaga-
tion of waves in a medium whose states are governed by (1.1) and whose initial
state is described by ¢(x). Hence, in what follows the initial value problem
(1.1), (1.8) is called the propagation problem for (1.1).

The matrices 4’ are assumed to be constant. If E(x)=E® is also constant,
the medium governed by (1.1) is homogeneous. In this case the solution of the
propagation problem can be constructed by the Fourier transform method,
the method of plane waves and other methods. Such solutions have been studied
by many authors; see [6] for a bibliography.

If E(x) is not constant, the medium governed by (1.1) is inhomogeneous.
There is a large literature concerning the existence, uniqueness, and regularity
of solutions of initial value problems which is applicable to this case; see [6]
for a bibliography. However, explicit methods for constructing the solution,
comparable to the Fourier transform method for homogeneous media, are not
available for inhomogeneous media.

This paper is concerned with the propagation problem for an inhomogeneous
medium which is “homogeneous at co’ in the sense that

(1.9) lim E(x)=E°

|x}— o0

* If M is a matrix, M * denotes the transpose of M.
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exists. If the initial state ¢(x) has finite energy, then physical intuition suggests
that the energy will propagate out to « as t— oo (or t — —0). Hence, if (1.9)
holds, then for large ¢ most of the wave will be in a region |x|> R where E(x)
is nearly constant. This suggests that u(x, t) may tend asymptotically, as ¢ — oo,
to a wave propagating in the homogeneous medium characterized by E°; i.e.,

(1.10) u(x,)~u’(x,t), t-o,
where u°(x, t) solves
ou® & ou®
0 — J
(1.11) B =LA G

A wave u°(x, t) with these properties is called an asymptotic solution of the
propagation problem for (1.1). The reasoning leading to (1.10) is, of course,
heuristic. It is the purpose of this paper to make precise the meaning of the
asymptotic equality (1.10) and to give conditions on E(x) and 4’ (j=1,2, ..., n)
which guarantee this behavior.

Of course, solutions of (1.11) also are uniquely determined by their initial
values

(1.12) u®(x,0)=¢%x), xeR"

Thus if (1.10) holds, it follows that ¢° uniquely determines u(x, ¢), and hence
u(x, 0)=0¢(x);
(1.13) p=Q0°.

Moreover, Q is a linear operator since (1.10) is linear and u(x, ¢) and u°(x, t)
are linear functions of ¢ and ¢° respectively. Q is an analog of the Mgller wave
operators of quantum mechanics. It is called the wave operator for (1.1) in
what follows. If Q is known, then the asymptotic solution #°(x, t) of the propaga-
tion problem (1.1), (1.8) can be constructed from ¢°=Q7'¢ by the methods
available for homogeneous media.

The energy form (1.4) defines a norm for the initial values ¢ (x),
(1.14) lol*= | ¢*(x) E(x) p(x) dx,
Rn

and the linear space & of initial values with finite energy is a Hilbert space
with respect to this norm. The correspondence ¢ —u(-, ¢) defines a linear trans-
formation U(t) on # which is an isometry (with respect to the norm (1.14))
by the conservation of energy law (1.7). In fact, as is shown below, U(¢) defines
a one-parameter group of unitary transformation on #. The propagation problem
has been studied from this point of view by PHiLLIPS [/5].

The constant energy form based on E° also defines a norm
(1.15) lo° ||<2>=Rf @°*(x) E° ¢°(x) dx

which, in general, is different from (1.14). The space %, of initial values ¢°
with finite energy is a Hilbert space 5, with respect to the norm (1.15).

In this paper the energy forms based on E(x) and E° are assumed to be
equivalent; i.e.,

(1.16) CEECESEE(X)ELIPE¥EYE,  forall xeR" and £eR™,
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where ¢ and ¢’ are positive constants. Under this hypothesis the norms (1.14)
and (1.15) are equivalent; i.e.,

(1.17) clolozlel=clelo.

Hence & and %, are the same linear space of initial values and are Hilbert spaces
with respect to two different, but equivalent, norms.

If u(x,t) and «°(x, t) are solutions with finite energy of (1.1) and (1.11)
respectively, then u(x, t)—u°(x, t) is in # (and also ;) by (1.17). It is shown
below that this difference tends to zero in # (and, equivalently, in 5£;) when
t— 0,

(1.18) lim || u(+, )=u’(+, )] =0,

t—
provided the initial values ¢ and ¢° are related by an appropriate wave operator.
The asymptotic equality (1.10) is interpreted in this sense in what follows.

The purpose of the preceding heuristic discussion is to motivate the work
presented below. The remainder of the paper is organized as follows. In §2 a
precise formulation of the propagation problem is given in terms of self-adjoint
operators on a Hilbert space, the existence of a solution is demonstrated, and
some properties of the solutions that are needed later are derived. In § 3 asymptotic
solutions and wave operators for the propagation problems are defined and a
criterion for their existence is derived. § 4 describes a class of media, the uniformly
propagative media, for which the asymptotic behavior for large time of waves
can be estimated. A number of properties of such media which are needed later
are derived in this section. In § 5 the Riemann matrix for a homogeneous medium
is studied and used to obtain estimates for waves propagating in uniformly
propagative media. In § 6 these estimates are used, together with the criterion
of § 3, to obtain sufficient conditions for the existence of wave operators, and
asymptotic solutions, for inhomogeneous media which are perturbations of
uniformly propagative homogeneous media. Two such conditions are given. The
first is applicable to perturbations of any uniformly propagative system. The
second is applicable only to perturbations of systems of Maxwell type, a class
of systems which includes MAXWELL’s equations and the equations of acoustics.

This paper opens a new area of research on the wave propagation problems
of classical physics, and the results presented here raise many more questions
than they answer. Some unsolved problems and directions for future research
are discussed briefly in § 7.

§ 2. A Hilbert Space Formulation of the Wave Propagation Problem

In this section a precise formulation of the propagation problem

du & 5 Ou "
(21) E(X)-a—t-"—.’;IA axj . xeR", t>0,
(2.2) u(x,)=¢(x), xeR"

is given, and the existence and functional properties of the solution are discussed.



Wave Operators and Asymptotic Solutions 41

From the physical point of view all initial values ¢(x) with finite energy
are admissible as initial states of a medium. Hence it is desirable to formulate
the propagation problem in a way that admits all these initial states. Such a
formulation, based directly on the conservation of energy law (1.7), was given
by PHILLiPS in 1959 [15]. In this work PHILLIPS regards a solution of the propa-
gation problem as a one-parameter group of unitary operators U(¢) on the
Hilbert space s of initial values,

o—>u(-,=U@) o,

and proves the existence of such a solution for a large class of coefficient matrices
E and A4’. A second formulation, more directly connected with the partial dif-
ferential equation (2.1), was given by the author in 1962 [17, 18]. In this work
a class of solutions wFE (=with finite energy) of (2.1), (2.2) was introduced,
and the existence and uniqueness of such solutions was proved for all initial
states @(x) with finite energy. It is not difficult to show the identity of these
two formulations of the problem, but the proof will not be given here. Instead,
PuILLIPS’ viewpoint is adopted and a simple direct construction of the solution
operator U(¢) is given. The construction makes use of a number of well-known
definitions and theorems concerning self-adjoint and unitary operators on a
Hilbert space. These may be found in RiESzZ-NAGY [16].

If U(¢) defines a continuous one-parameter group of unitary operators on 52,
then by STONE’s theorem [16]

(2.3) U()y=e """

where H is a self-adjoint operator on #. Conversely, every self-adjoint operator
H on s generates a continuous one-parameter group of unitary operators on #
defined by (2.3). If (2.3) defines a solution operator for (2.1), (2.2), then formally H
is the operator
2.4) EW' Y /-
Ao 0x;

In this paper the solution of the propagation problem is defined by constructing
a self-adjoint extension H of the differential operator (2.4) and then defining
the solution operator by (2.3). The construction is given first for the case of a
homogeneous medium (E(x)=E° constant).

The system of partial differential equations (1.11) describing a homogeneous
medium may be written

ou® " ou
Q@5 —=(E97'Y 4/ =—iHyu
) at ) jzl axj 0
where
(2.6) Ho=i(E®) ™'Y 4/ —‘—3—.
A0x;

The factor i =1/—_1 has been introduced to make H, formally self-adjoint on .
Because of its presence it is convenient to work with complex-valued initial
values #°(x, 0)=¢%(x) and solutions u°(x, t). Of course, these solutions include
all the real solutions which correspond to real initial values, because E° and
the 47 are real.
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The matrix E° was assumed to be real and symmetric (hence Hermitian)
and positive definite. It follows that
2.7 PYNLIPSCELSA?Y (L] forallgeC™,
a=1 a=1

where
Cm= {{z(CIa CZ LR Cm): Ca Complcx} ’

=, ¢,, ..., L) denotes the complex conjugate vector and A and 4’ are positive
constants, the smallest and largest eigenvalues of E° respectively. (2.7) implies
that

@9 2] 1.0 dx< [ ' W E G dxsi? | T lo,0) dx

for each Lebesgue-measurable complex vector ¢(x)=¢'(x)+i@?(x). If the
energy, for homogeneous media, of such vectors is defined by

an <p*(x)E°<5(x)dx=R£ ¢‘*(x)E°¢‘(x)dx+R§n P**(x) E° 9*(x) dx,

then (2.8) implies that ¢ (x) has finite energy if and only if, for eacha=1, 2, ..., m,
¢.EL, (R")=the Lebesgue space of complex-valued measurable,
square-integrable functions on R".

Hence the direct sum
Lo=L,(RNOL,(RYD---®L,(R"), m summands

is the appropriate linear space of initial values with finite energy for (2.5). It is
easy to verify that %, is a Hilbert space 5, with respect to the energy inner product

29 (o, !//)0=R,[ 0" (x) E* Y (x) dx.

It is shown next that the differential operator (2.6) has an extension which
is a self-adjoint operator with respect to the inner product (2.9) on . The con-
struction makes use of the Plancherel theory of the Fourier transform. The basic
theorems may be stated as follows [2]. If f(x)eL,(R"), then

f(p)=1im. [ 67 f(x)dx

koo 27" 142R
exists in L, (R") and

f(x)=l.i.m.—1n/2— } e > 2 f(p)dp.

Roo (27" |pzR

Here p=(p1, P2, > P)ER", p- X=p X, +py X3+---+p, X,, and Lim. signifies
convergence in L, (R"). Moreover, functions f and g in L, (R") satisfy PARSEVAL’S
formula

(2.10) Jr0e@dx=[ FDE@ dp.
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It follows that the Fourier transform defines a unitary transformation of L,(R")
onto itself. The Fourier transform of a function @e#, is defined by

o(P)=(0:(p), ¢2(P); ..., Pu(D))*.
It follows easily from this definition and (2.10) that

Q1) (0 ¥)o= ] 0" E P dx= | 6*() EV(p) dp=(, Do

for all ¢, ye%,. Hence the Fourier transform also defines a unitary transfor-
mation of 5, onto itself.

If f(x) and —— f( ) are in L, (R"), it follows that

( f)(p) —ip, 7 (0.

are in J, for j=1, 2, ..., n, then

0¢(x)

Hence, if ¢(x) and %

i
n .9
—i(FN"-1 i o9
H,0=i(E% j;lA 5%,
is in #; and has the Fourier transform

P o .
(Ho 9)(p)=(E>~* (;AJ P,-) ¢(p).

This suggests the following theorem.
Theorem 2.1. The operator H, on 3, with domain

D(Ho)={(/’3 @(p) and ZlA" p; ¢(p) are in Jfo}
j=
and range defined by

(2.12) (Hy ) (x)=Li.m. 1

L, I THR(E®)T! ZA’p,qJ(p)dp

=1
is a self-adjoint operator with respect to the energy inner product (2.9).

Proof. The Plancherel theory implies that (2.12) defines a vector H, pe#,
for each peD(H,). Moreover, it is easy to show that D(H,) is dense in .
Hence the adjoint operator H* is well defined. The proof of the theorem is
completed by showing that Hyc Hy (Hg is an extension of H,) and H¥ < H,,
whence H,=H{.

To prove Hy< H, let ¢, e D(H,). Then by (2.11)

(Ho 0.9)= (o 9. D)o= [ (Ho 9)" (0) E° ¥ (1) dp.

Moreover

(H, 9)* (P)=<(E°)'1 ( YA p,-) é(p)) =4*(p) (ZA p,-) (9!
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because (E®)*=E°, (49)*=4’ and ((E®)~*)*=((E®)*)" . Thus

(Ho 0,9)= Iné*(p)E°(E°)"‘<ZA’p,> y(p)dp= (¢,Ho¢o) (@, Ho ¥)s .

“
This proves that if YyeD(H,), then yeD(HF) and Hf y=Hy y; i.e., Hyc H*.
To prove HY < H,, let yeD(HY); i.e., yeH, and

(2.13) (H, @, Y)=(¢, I) for some vector $es#, and all peD(H,).
The vector $=H¢ y, by definition. Equations (2.11) and (2.13) imply

(Ho 0, '/’)":Rjn é*(p)i élA" p,-) l/7(p)dp=RI" $* () E° 3(p) dp=(9, 9o

for all pe D(H,). But D(H,) is dense in #;, whence

) ( 34 p,-) VD=5 e ;.
Thus e D(H,) and ’

(Ho ) () =Lim. —— | "'*'P(E°>-1glAfp,.n/}<p)dp=s(x) in .

@ )"’2

This proves that if ye D(HE), then yeD(H,) and Hy Yy =3=H¥ {; i.e., Hf c H.
The propagation problem for an inhomogeneous medium governed by (2.1)
is discussed next. System (2.1) may be written

ou Ju

o - J =i
(2.14) e E(x) ZIA 7%, iHu
where
(2.15) H=iE(x)"'Y 4’ 9 .
1 0%

It is easy to verify that H is a formally self-adjoint operator with respect to the
energy inner product

(2.16) (¢ l//)=RIn ¢*(x) EG) ¥ (x) dx.

Now, the energy forms based on E(x) and E°® were assumed to be equivalent;
see (1.16) which implies

AELS*EX) <SP E®L, forall xeR"and {eC™.
Combining this with (2.7) gives
217) WY LIPS E®{sw?Y |GI%  forall xeR" and {eC™,
a=1 a=1

where p=Ac and p'=A"c’. It is assumed that the components E,z(x) of E(x)
are Lebesgue-measurable functions in R". It follows from (2.17) that

(218) 4§ Zlcoa(x)l dx< I(p (x)E(x)¢(x)dx<#'ZI erpa(x)lzdx

R” a=1
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for each measurable complex vector ¢ (x). Thus if the energy, for inhomogeneous
media, of such vectors is defined by

lol*= 5¢*(X)E(X)<P(x)dx

then (2.18) implies that ¢(x) has finite energy if and only if, as before, each
@,L(R"), a=1,2,...,m. Hence %, is also the appropriate linear space of
initial values with finite energy for (2.14). It is easy to verify that %, is a Hilbert
space # with respect to the energy inner product (2.16).

It is shown next that the differential operator (2.15) has an extension which
is a self-adjoint operator with respect to the inner product (2.16) on . Notice
that formally

H=iE(x)"*E°(E9)"'Y} I
= 0x

J

=E(x)"*E°H,.

This suggests the following generalization of Theorem 2.1.
Theorem 2.2. The operator H on # with domain D(H)=D(H,) and range
defined by
(2.19) (H 9)(x)=E~"(x) E°(H, 0) (x)
is a self-adjoint operator with respect to the energy inner product (2.16).
The proof makes use of the following lemma which is also needed in § 6 below.

Lemma 2.1. If E(x) is a real symmetric positive definite matrix which satisfies
(2.17) with positive constants y, p', then

2200 VLS EE Vs z L%, for all xeR" and LeC™.
H “a=1 a=1
Proof. (2.17) is equivalent to the statement that the (real, positive) eigen-
values of E(x) liec between u and y'. (2.20) follows immediately since the eigen-
values of E~!(x) are the reciprocals of the eigenvalues of E(x).

Proof of Theorem 2.2, To see that (2.19) defines a mapping from D(H,)
into s, note that for each peD(H,), Hy, pe# (by Theorem 2.1) and hence
Y=E°(H, p)e #. Now Lemma 2.1 with

(=y(x), ET'){=E"'(x)y)=%x)

implies

7 L P S9 ( E) S5 3. a(P
whence
(2.21) 9*(x) E(x) 8(x)e L(R™),

since e . (2.21) and (2.18) with ¢ replaced by & implies that
8(x)=E"'(x)y(x)=E~'(x) E°(H, 9)(x)e ¥ ;
i.e., H maps D(H)=D(H,) into .
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The proof of Theorem 2.2 is completed by showing that H=H* and H*c H,
whence H=H*, First note that if ¢ and  are in J#,

(o, !//)=RI" <P*(X)E(X)¢—(35dx=RI" 9™ () E"(E") ™ E(x) Y (x)dx

=((P, (EO)_ ! E lnb)O .
In particular, if peD(H), Yy € s, then (2.22) implies

(2.22)

(2.23) (Ho, )=, Ho)=(¢,(EY) " EH @)o=(V, Ho 0)o=(Ho @, ¥)o -
To prove Hc H*, let ¢, yeD(H)=D(H®). Then, by (2.23) and the self-
adjointness of H,,
(H o, ¥)=(Ho @, ¥)o=(0, Ho¥)o=(Ho ¥, 9o
=(Hy, p)=(o,HY).
Thus yeD(H*)and H* Yy=H; i.e., HcH*.
To prove H*< H, let ye D(H*); i.e., ye # and
2.249) (H o, ¥)=(p, ) for some e # and all pcD(H). The vector I=H* ),
by definition. Equations (2.22) and (2.23), applied to (2.24), give
(Ho @, ¥)o=(,(E®)'ES), forall peD(H)=D(H").
Since H, is self-adjoint, this implies that e D(H¥)=D(H,)=D(H) and

Hyy=HoYy=(E°) ' ES=(E") 'EH" Y.
Thus
H*y=E"'E°(HoY)=HY;
ie., H*cH.
The Spectral Theorem [/6] implies that the self-adjoint operators Hy and H
have spectral resolutions

Hy= | AdE,(3), H= | AdE(A)

where E,(1) and E(A) are resolutions of the identity for s and 2, respectively.
The solution operators for the propagation problems are defined by

(2.25) Upy()=e"""Ho= [ e " *dEy(1)
for homogeneous media, and by

(2.26) U(®)=e "= f e " rdE()

for inhomogeneous media. Thus

u® (x, )=(Up (1) 9°)(x)
and

u(x, )=(U () p)(x)
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are interpreted as the solutions of the propagation problems for homogeneous
and inhomogeneous media, respectively. The following properties of the solu-
tions follow directly from (2.25), (2.26) and the Spectral Theorem: see [/9, p.614]
for the proofs.

Corollary 2.1.

(@) Uy(t) and U(t) define one-parameter groups of unitary operators on
and #, respectively. In particular, the following conservation of energy laws hold:

1u®C, Dllo=1¢"llo and lu(-.Di=lell for all teR".
(b) ¥°(-, 1)eC(— 0, 0; H#y) and u(-, t)e C(— o, 00; H#); i.e., for each te R*

lim | (-, t4+7)—u’(-,D)]lo=0 and lim{u(-,t+17)—u(-, )| =0.
=0 =0
©) If 0°cD(H®), then u°(-, t)e D(H®) for every teR'. Moreover, u°(-, t)e
Cl(- o0, w0; #), and

0
?—'f—a(t—’2=—iHou°(-,t) for each teR'.

The corresponding statements hold for u(-, t).

§ 3. Wave Operators and the Existence of Asymptotic Solutions

This section deals with the abstract propagation problems formulated in § 2.
The asymptotic equality as ¢t — oo of the solutions of two such problems is shown
to depend on the existence of a wave operator, and a criterion for the existence
of the wave operator is derived. The results presented in this section closely
parallel analogous results for the quantum mechanical scattering problem due
to Cook [5] and Kuropa [/2].

The following notations and hypotheses, suggested by the discussion in § 2,
are adopted in this section.

(3.1) %, is a linear space over the complex number field.

(3.2) (@, ¥)o and (o, ¥) are two inner products on %, such that %, becomes
a Hilbert space #; with respect to (¢, {), and a Hilbert space s# with
respect to (¢, ¥). (#; and # are assumed to be separable.)

(3.3) The norms associated with the two inner products are equivalent; i.e.,
there exist positive constants ¢ and ¢’ such that

cloloslol=c el
for all pe%,.

(3.4) H and H, are linear operators on .%,, self-adjoint with respect to (@, ¥)
and (¢, ¥), respectively, and

D(H)=D(H,).
In §2
u(®=e Mo and u’(f)=e "o
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represent solutions of the propagation problems for inhomogeneous and homo-
geneous media respectively. Conditions on the initial states ¢ and ¢° are sought
which guarantee the asymptotic equality of u(¢) and u°(¢t) as ¢t — oo in the sense
that

(3.5) lim [|u(—u’ @) ||=lim e Fp—e~"*Ho 00| =0,

t~+ o0 t— o0

By (3.3) this is equivalent to the condition

lim || u(f)—u°(®) [l,=0.
1=

Now
e Hp—e i gl | = p—e'He ' Hop?
because e'*H is a unitary operator on . Thus (3.5) is equivalent to the condition
(3.6) lim || &' He i o % — | =0.
t— o0
Since J# is complete with respect to the norm |||, (3.6) holds if and only if
3.7 Qe°=lim e'* ¥ e Ho 0 exists

t— o

in # for each ¢°eH,. Thus each solution #°(z) is asymptotically equal to a
solution u(¢) if and only if (3.7) holds for each ¢°cJ#,; i.e., if and only if the
wave operator Q: 3, — s defined by

(3.8) Q=Q(H, Hy)=s-lim ¢''# ¢~ Ho

1=
exists (s-lim signifies strong limit). If Q exists, then (3.5) holds with
p=00¢°

A number of properties of the wave operator Q follow directly from its exist-
ence. These are summarized in the following theorem (¢f. KuroDA [12], pp.438
—442).

Theorem 3.1. If the wave operator Q=Q(H, H,) exists, then
(a) Q is one-to-one and bounded. In fact
(3.9) clelosliQellsc lolle  forall pests,

where ¢ and ¢’ are the positive constants defined in (3.3);

(b) Q satisfies the following operator identities:

(3.10) e HHQ=QeTitH _p<i<ow,
G.11) E()Q=0E,(), —w<i<o,
(.12) HQ=0H,.

(c) QHy=;i.e., the range of Q is the whole space # , if and only if Q(H,, H)
also exists. In this case Q(H, H,) has an inverse and

(3.13) Q(H,Hy) '=Q(H,, H).
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Proof. Write _
Q)=€'"e M 50 Q=s-limQ(1).

t—*

Then since e'*# and e~ **Ho are unitary with respect to the norms || ¢ and | @],
respectively, (3.3) implies

clolo=clle™™olslle™ P pl=l2@elsc e ™olo=clol,.

Making ¢t — oo and using the continuity of the norm [ ¢| gives (3.9).
Notice that

e—ltHQ(S)=e—thelsHe—lsHoethoe-itHo=Q(s__t)e-tho.

Making s — oo in this identity gives (3.10). It is known that (3.10) implies (3.11);
see, e.g., RIesz & Sz.-NAGY [16], pp.383—384. Moreover, (3.11) implies

M M
(3.14) _jNAd(QEO(A) <p)=_jN/1d(E(/1)Q¢), pey.

The left-hand side of this equation tends to a limit (=Q H, ¢) in # when
M, N> oo if and only if peD(H,)=D(Q H,). Similarly, the right-hand side
tends to a limit (=H Q ¢) if and only if peD(H Q). Thus (3.14) implies (3.12).
If both Q(H, H,) and
Q(H,, H)=s-lim ¢ *Hoe™1*H

t—

exist, then the identity

(e“He_“H°)(e“H°e—“H)(p=q), (pe,}f,
implies the identity
(3.15) Q(H,Hy)Q(H,, H)=1I

where I is the identity operator on 5. (3.15) implies that Q 5%, =Q(H, H,) #y=H#.
Conversely, Q= implies that for each pes# there is a YyeH#; such that
(3.16) e=Qy=lime He itHoy

t—

Now (3.3) implies that
cletfee T Ho—ylo=cle” T p—e oy,
e Ho—e oy = p—etFeTH Hoy .

Thus (3.16) implies that Q(H,, H) ¢ =y exists for each gpe#; i.e. Q(H,, H)
exists.

The following theorem gives a simple sufficient condition for the existence
of the wave operator Q=Q(H, H,). It is an analogue of a condition for the
existence of quantum mechanical wave operators due to Cook [5] (see also
Kuropa [12, p.443]).

Theorem 3.2. Let %,, | ¢llo, |@ll, Ho and H satisfy hypotheses (3.1), (3.2),
(3.3), and (3.4). Let D be a subset of £, which satisfies

(3.17) the linear manifold determined by & is dense in J,,
4 Arch. Rational Mech. Anal., Vol. 22
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and
(3.18) P<D(Hy)=D(H).

Then a sufficient condition for the existence of the wave operator Q=Q(H, H,) is
(3.19) [I(H—=Hge "Hop| dt<oo
T

for each o2 and some finite T (T may depend on ¢).
Proof. If ¢(t)=e''" e~ *#o ¢ defines a Cauchy sequence in # for ¢ — oo, then

Qo=lim ¢(?)
= w0
exists. It will be shown that (3.19) implies that ¢(¢) defines a Cauchy sequence
for each pei.
First, let pe2. Then, by Corollary 2.1, ¢(t)eD(H,)=D(H) for every t.
Moreover, ¢(t)eC'(— o, 00; #) and

(3.20) dzgt) —iH e itHo g gt B(_ g o i Ho gyt H(H _F)e i Ho g

since H commutes with e**¥. Thus
t
p(N—o@)=i[ e " (H-Hy)e *Hodr,
s
and it follows that

" (P(t)—(P(S) ” = I ei’H(H_HO) e_it_Ho dt

S [IH~Hpe "Mool dz

because e'*¥ is unitary with respect to || ¢ ||. Thus (3.19) implies that ¢ (z) defines
a Cauchy sequence for t— o if pe2. If ¢'eH#, is an arbitrary vector, then

itH —itHo

e o —e o'l
Sle—e@) |+l e Ho(p' ~ )|+ T e o (o' — @) |
Sle@®—e@)+2c o -0l

by (3.3) and the unitary properties of e’ and e~ ‘*Ho, This inequality and (3.17)
imply that e€'*H ¢~i*Ho oy’ defines a Cauchy sequence when t—oo for every
Q'eHy,.

isHe—isHo

§ 4. Uniformly Propagative Homogeneous Media

This section describes a class of homogeneous media, the uniformly propaga-
tive media, for which the asymptotic behavior for large time of waves can be
estimated. The definition of this class depends on the concepts of normal speed
surface, slowness surface and wave cone for a system

ou® cou®
. E° =3 A4 .
1) ot le ox

j
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These concepts are defined, the uniformly propagative media are introduced,
and a number of their properties are derived in this section.

The system (4.1) has plane wave solutions; i.e., solutions of the form
(4.2) u(x, )=f(st—n-x)c
where f(7) is a real-valued function of reR', while seRY, n=(n;, 115, ..., #,)ER"

and c¢=(cy, ¢3, ..., C,)ER™ are constants. If f'(t)£0, then (4.2) solves (4.1) if
and only if

4.3) <E°s+ ZAjnj>c=0.
j=1
If ¢=+0, then (4.3) implies
(4.4) det (E°s+ YA ,,j)=o,
j=1

i.e., the hyperplanes s t—#n - x =constant are characteristic hyperplanes for the
system (4.1). The plane wave (4.2) propagates in the direction of the vector 5
with the speed s/|n|, where |n|>=#%+n3+---+n2. Hence, the possible “normal
speeds™ of plane waves (4.2) for system (4.1) are given by the roots s of (4.4)
corresponding to unit vectors #.

It is well known that there is a non-singular m x m matrix 7T such that

4.5) T*E°T=1I.
Thus
det T* det (Eo s+ ZlAj nj) det T=det <Is— .ZlBj r,j)
Jj= Jj=
where
(4.6) B'=-T*A'T

is a real symmetric matrix. It follows that the roots s of (4.4) are all real if #
is a real vector. Thus system (4.1) has m normal speeds (not necessarily distinct)
for each direction #.

The function
“.7 P(n, s)=det (Is— lej nj)
i<

is a homogeneous polynomial of degree m in the variable (4, #,, ..., n,, ).
Hence the roots s of (4.7) are algebraic functions of n=(1,, ..., ). If the roots s
are functions of |n| only, the medium governed by (4.1) is called isotropic (the
normal speeds are independent of the direction of propagation). If the roots
vary with the direction of propagation, the medium is called anisotropic. The
anisotropy of a medium can be visualized by means of the normal speed surface
whose points are the terminal points of the normal velocity vectors, defined by

U=(vl’ R U”)=S(111, (AR 1’],.)

where s is a root of (4.7) and |n|=1. Since s*=|v|>=v?+-.. + 02, the normal
speed surface has the equation

(4.8) P(v,|v|*)=det (Ilvlz— iijj)=0
j=1

4+
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(multiply (4.7) by s™ where s is a normal speed). Hence the normal speed surface
is an algebraic surface of degree 2m.

The anisotropy of a medium can also be visualized by means of its slowness
surface S, which may be defined as the image of the normal speed surface (4.8)
under the transformation

v p
49 = , v= ;
(49) PETP ]

i.e., inversion in the unit sphere. Since points p on S satisfy |p| |v| =1, the distances
from the origin of the point of S are the reciprocals of the normal speeds, i.e.,
the “slownesses™ for the system (4.1). An equation for § is

(4.10) P(p,1)=det (I— Y. B pj)=0,
i=1

i=
by (4.8) and (4.9). Hence S is an algebraic surface of degree not exceeding m.
The polynomial P(n, s) has a factorization

(4.11) P(n,$)=07'(n,5) Q2*(n, 5) ... Q1" (n, 5)

where the factors Q;(s, s) are distinct homogeneous polynomials in (7, s), ir-
reducible over the real number field. The factors Q;(y, s) are unique, apart from
their order and constant factors. P(z, s) is of order m in s and the coefficient
of s" in P(n, s) is 1. Hence the factors Q;(n, 5) may be defined uniquely by re-
quiring that the coefficient of the highest power of s in each Q;(n, 5) be 1. Let

(4.12) Q(n,9)=0,(n,5) Q2(n,9) ... A(n, 5)

denote the corresponding polynomial with simple irreducible factors. Then it is
clear from (4.10), (4.11) that S may be described as the locus

(4.13) 2@, )=04(p,1) C;(p, 1) ... Qu(p, 1)=0.

The geometrical properties of the slowness surface S play a decisive part
in determining the structure and properties of waves governed by the system (4.1).
A class of systems (4.1) for which the asymptotic behavior for large time can be
estimated is described by the following definition.

Definition. A system (4.1) (and the medium governed by it) is said to be
uniformly propagative if

(4.14) the slowness surface S is bounded,

and

(4.15) p'VQ(p,1)=p1£Q—(3(If—’ll+---+p,f%(l)ﬁg¢o when peS.
1 n

Many of the wave propagation phenomena of classical physics are governed
by uniformly propagative systems. A number of examples from physics are
discussed in the Appendix. The name ‘‘uniformly propagative” is motivated by
the observation that the normal speeds of such systems have constant multipli-
city and constant algebraic sign, independent of the direction of propagation #
(Corollary 4.7, below).
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Let #° be a fixed unit vector, and let s(n°) be a corresponding normal speed;
i.e., a root of

(4.16) Qn° $)=5"+0,(n")s" 1+ 40, (1°) s+, (n°)=0.

Lemma 4.1. For uniformly propagative media, if s(n°)+0, then 8Q(n°, s(n°))/ds
+0. Hence, the non-zero roots of (4.16) are simple.

Proof. Q(n, s) is homogeneous of degree r in (7, s). Hence by EULER’S theorem

a0(n, s
n-vom, S)+sQ—g;l=rQ(n, s).
Putting n=1°, s=5(3°) in this equation gives
0Q(f1 S(n %)

(4.17) n°-7Q(n°, s()+s°) =rQ(n° s(n°)=0,

by the definition of s(n°). Now if p°=s(11°)'1n°, then

Q(°, )=5(n")""Q(n°, s(n*)=0;
i.e., p°eS. Multiplying (4.17) by s(#°)" and using the homogeneity of the deri-
vatives of Q gives

0
2°-va(p’, 1)+£(aps’ﬁ=o.

Thus

2Q(n°, s(n”)

. Oyr—
as —S(ﬂ )

0
L RPD iyt 70, 140

by (4.15).

Lemma 4.2. For uniformly propagative media, one of the following two alter-
natives holds. Either

Case 1. There is a unit vector n° such that the roots 53,53, ..., s° of Q(n°, s5)
are all different from zero (and therefore simple, by Lemma 4.1), or

Case 2. s(n°) =0 is a root for every #°, so that Q,(n°)=0, and there is a unit
vector n° such that the r—1 roots of s 1Q(n°, s) are all different from zero (and
therefore simple).

In particular, there is a unit vector n° such that Q(n°, s) has r simple roots
in both cases.

Proof. If Casel does not hold, then Q,(n)=0. If O,_,(n)=0 also, then
O, s)=s* Q'(n, s) has a repeated irreducible factor contrary to the definition
of Q(n,s). Thus Q,_,(n°)*0 for some unit vector #° and the r—1 roots of
s71Q(n, s) are all different from zero for n=4°. This proves Lemma 4.2.

Now fix a unit vector #° as in Lemma 4.2, and let 5, 59, ..., s° be the cor-
responding set of roots of Q(1°, s). They are distinct simple roots by Lemma 4.2.
If 5220, then since

o _0
2(n°% s)=0, —@%—sﬁ 0,



54 CALvVIN H. WiLcox:

the equation Q(#, s)=0 has a unique analytic solution s=s,(s) defined in a
neighborhood of #=4° and satisfying s,(n°)=sy (Implicit Function Theorem
for Analytic Functions [/, p.39]). If sp =0, then zero is a root of Q(y, s) for every
n and s,(n) is defined to be identically zero. Note that in both cases

(4.18) ssum=p s, (m), u>0,

by the homogeneity of Q(1, s) and the uniqueness of the function s, ().
If 5, () =+0, then
Q(se(m ™" n, )=5.(n)~" Q(n, s (m)=0;

whence
p=s(m""nes.
It follows that |p|=]s,(7)|~! and hence, by (4.18),

(4.19) Isi(P)I=[pl[se(m)]=1.

Thus (4.19) is an equation for a portion of S. These facts lead to the following
theorem.

Theorem 4.1. For uniformly propagative media, the r roots si(n), s,(n), ...,
s,(n) of Q(n, 5)=0 defined above are analytic functions of n for all real n=0.

Proof. Each function s,(n), k=1,2, ..., r, is defined by the implicit function
theorem near # =5° and then extended by analytic continuation. The only obstacle
to the analytic continuation would be the occurrence of a branch point. Branch
points ' +0 with a non-zero root s, (') do not occur, by Lemma 4.1. If 5, (') =0,
then s,(n) =0. For if 5,(n°)%0 and s, () -0 when n —»*, then, by (4.19), |p| - c©
when #—»75' and S is unbounded, contrary to hypothesis. This same argument
also proves

Corollary 4.1. Each root s, (n), k=1,2, ...,r, is of constant algebraic sign.
In particular, a root can vanish only if it is identically zero.

The occurrence of a root s,(n)=0 is associated with the existence of static
solutions with finite energy of the system (4.1); i.e., solutions u°® =u°(x) such that

n .
AJ
,-;1

uO
Ox;
Indeed, it can be shown by the Fourier transform method (see § 2) that such
solutions exist for uniformly propagative systems if and only if a root s,()=0
exists. Thus Case 2 (Lemma 4.2) is applicable to uniformly propagative systems
which have static solutions. It is important to include this case in the discussion
because many of the systems of wave equations from classical physics have static
solutions. Examples include MAXWELL’s equations and the equations for acoustic
and seismic waves (see the Appendix).

=0 and [u®*(x)E°u’(x)dx<c.
R"

Corollary 4.2. If the roots s? (k=1,2, ...,r) are enumerated so that

§9> 59> >0,
then
4.2) sim)>s,()>-->5,.()  for all real n+0.
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Proof. (4.20) holds for n=n° by hypothesis. If any of these inequalities fail
for some 140, then, by continuity, there will be an ' <0 such that s;(n") =s,(4")
with 1</, k<r and j*k. If s j(n1)=|=0, then it is a double root, contradicting
Lemma 4.1. Suppose that s;(n')=0. Since the functions s;(n) and s5,(n) are
distinct, one of them is not identically zero and vanishes for =4, contradicting
Corollary 4.1. Thus (4.20) holds.

Henceforth it is assumed that the roots s,(s) are numbered as in (4.20). A
polynomial Q(n, s) is said to be strictly hyperbolic (with respect to the vector
1, )=, ..., 0,1) if for each fixed real vector 740, the roots s of O(n, 5)=0
are real, distinct and different from zero [/0, p.137]). Thus Theorem 4.1 implies

Corollary 4.3. For uniformly propagative media, either Q(n, s) is strictly hyper-
bolic (Case 1) or s~ Q(n, s) is strictly hyperbolic (Case 2).

Corollary 4.4. For uniformly propagative media, the r distinct roots s(n), ...,
5, (n) satisfy
(4.21) s{=m=—s,_,:(m) fork=12,...,randally.

Proof. Since OQ(~#n, —s)=(—1)" Q(#, s), the numbers —s,(n), ..., —s,(n) are
the roots corresponding to the vector —z. Also, by assumption

=M< —s;(N) << —5.(n).
Thus it follows that —s,(n) =s,(—n), —s,(n) =s,_1(—1n), ..., i.e., (4.21) holds.

Corollary 4.5. For uniformly propagative media, one of the following two
alternatives holds. Either

Case 1. r=2p is even and the roots s,(n) satisfy

(4.22) s> >5,(0)>0>5, ()= —s,(=m) > >5;,(M)=—5,(—1),
or

Case 2. r=2p+1 is odd and the roots s;(n) satisfy

s3>+ >5,(1)>5,4 1 (N=0>5,4,(1)
= _Sp(_ﬂ)>'“>52p+1('1)= —s(—n).

Proof. (4.21) implies that for every positive root s,(n) there is a negative
root s,_;.(n), because the roots have constant sign (Corollary 4.1). Because
of convention (4.20), s,(n)=—s,(—n)>0. Similarly s,(#)=—s,_(—n)>0, etc.
If r=2p (Case 1), then k=p implies r—k+1=p+1. Thus 5,(n)=—5,,,(—n)>0.
Indeed, s,(n)<0 would imply s,.,(n)>0>s,(n), by (4.21), contrary to (4.20),
while s,(n)=0 would imply s,,,(n)=0, contrary to the fact that the roots are
simple. If r=2p+1 (Case2), then k=p implies r—k+1=p+2 and k=p+1
implies r—k+1=p+1. Thus s,(n)=—s,.,(—n)>0, by the argument given in
Case 1, and s,,,(1)=—s5,4+(—n)=0, because s, () does not change sign.

The properties of the roots proved above imply the following theorem.

(4.23)

Theorem 4.2. For uniformly propagative media, the slowness surface S consists
of p =[r/2] disjoint bounded sheets which are analytic surfaces. Equations for them are

(4.24) sp)=1, k=1,2,...,p.
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Proof. (4.24) follows from (4.19) and the fact that s,()>0 for k=1, 2, ..., p.
The sheets of S are disjoint because the roots s,(n) are distinct. The analyticity
of the sheets follows from Theorem 4.1.

Another equation for the sheet corresponding to s,(1) is, by (4.18),
Ipls(m=1, In|=1.
This implies

Corollary 4.6. The p sheets of S are non-intersecting closed surfaces, enclosing
the origin. |p| s,(n) =1 defines the innermost sheet, |p| s,(n)=1 defines the next,
etc., and |p| s,(n) =1 defines the outermost sheet.

The discussion above shows that the roots s,(n), ..., s,(n) are just the distinct
roots of

(4.25) det <E°s+ YA n,.>=o.
j=1

The latter can be interpreted as the possible normal speeds for plane waves
propagating in the direction of the unit vector n. Thus Corollaries 4.1 and 4.2
above imply

Corollary 4.7. For uniformly propagative systems the m normal speeds s,(n),
a=1,2, ..., m, defined by (4.25) have constant multiplicity and constant algebraic
sign, independent of 1.

It is these properties that motivate the term “‘uniformly propagative” system.
Another important property of the system is described by

Theorem 4.3. The matrix

n

B(n)= ;lBj n;

(see (4.6)) satisfies the identity
(4.26)  Q(m, B())=BY +Q1(n) B) ™" + -+ +Q,—1(n) B())+Q, () I=0
for every n. Hence Q(n, s) is the minimal polynomial for B(n).
Proof. The polynomial

P(n, s)=det(I s—Bm)=01"(n,5) ... Q" (n, 5)

is the characteristic polynomial of B(n). Thus
P(n, B(n)=0
by the Hamilton-Cayley theorem. Now
0, 5)=01(n,5) Q2(n,5) ... Qu(n, s)

by definition. Thus if m; =m,=---=m;=1, this result is the same as (4.26).
If P(n, s) has a repeated irreducible factor, say m,>1, then

P(n,s)=03(n, ) R(n, ).

To derive (4.26) in this case, let u(n), v() be m-component vectors whose com-
ponents depend on n and write

(u (), vD)=u1(n) 01(1) + -+t (1) V() -
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Then
0=(P(n, B(m) u(m), v(m)=(Q% (n, B()) R(n, B(n)) u(n), v(m))

=(Q4(n, B(n)) R(n, B(m) u(n), Q:(n, B(m) v(n)).

The last step follows from the symmetry of B(y). Taking u(n)=¢£, a constant,
and v()=R(n, B(m)¢ gives

1 Qi(n, B()) R(m, Bm) ¢ 11°=0  forali &,
which implies

Q4(n, B(m)) R(n, B())=07~'(n, B()) @3>(n, B()) ... Q7" (n, B())=0.

If m;=2,m,=1, ..., m=1, this result is the same as (4.26). If m,>2, etc., the
argument may be repeated until each exponent m; is reduced to 1 which proves
(4.26).

Q(n, s) is the minimal polynomial for B(zn), by (4.26), because each root of
P(n, s) is a root of the minimal polynomial, and the roots of Q(n, s) are simple
and are the distinct roots of P(y, s).

The wave cone is considered next.

Definition. The wave cone W for a system (4.1) is the envelope of the set of
characteristic hyperplanes for (4.1) which pass through (x, ¢)=(0, 0).

Each such hyperplane has an equation

(427) (P(x, t n)Esk(n)t—r]x=0

where s, (n) is one of the normal speeds for (4.1). Thus there is a family of such
planes for each of the analytic functions s,(17). The envelope of such a family
is determined by (4.27) and the equations ¥, ¢(x, ¢, 1) =0, or

(4.28) x=tV,s.(n).

This is obviously a cone in space-time. There is a sheet of the wave cone W for
each of the distinct roots s, (). Note that in Case 2, s,.(n)=0, W also includes
the r-axis, x=0.

If W,={x:(x, t)eW}, then (4.28) implies that the locus W, is the “polar
reciprocal” or “dual” of the slowness surface S. This property could be used to
define W. It is also clear from (4.28) that W is just the set of all bicharacteristics
for the system (4.1) passing through (x, t)=(0, 0).

The following property of uniformly propagative systems is needed in § 5.

Theorem 4.4. For uniformly propagative systems, in Case 1 W contains a cone
|x|<vy¢t with y>0. In Case 2, W—{(x, t): x=0} contains a cone |x|<yt with
>0,

Proof. W is the envelope of the planes (4.27). For ¢>0 fixed, (4.27) defines
a plane in space whose distance for the origin is s,(n) ¢ if |#|=1. Thus for points
(x, t) on W, | x|/t is not less than

y= inf [s:(n)].
2 o r

=1,2,..
Inl=1
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In Case 1, Corollary 4.5 implies that
4.29) y= inf s,(n),

Inl=1
which is positive because s,(n) is continuous and never vanishes for [#|=1. In
Case 2 y=0, but if the t-axis (corresponding to the root s, () =0) is removed
from W, then for the remaining points (x, t) on W, | x|/t is not less than the y(>0)
defined by (4.29).

§ 5. The Riemann Matrix and the Asymptotic Behavior of Waves
in Homogeneous Media

In this section the Riemann matrix R(x, ¢) for a homogeneous medium is
defined and several of its properties are described. Then asymptotic estimates
for large time are derived, using R(x, t), for waves in uniformly propagative
media. Stronger estimates are derived for a special class of uniformly propagative
systems, the systems of Maxwell type, which include MAXWELL’S equations and
the equations of acoustics. Concepts from SCHWARTZ’s theory of distributions
are used in this section. A concise discussion of the relevant concepts may be
found in [0, Ch.1].

The class #, of initial values ¢° with finite energy includes the class CZ(R")
of testing functions of distribution theory; i.e., functions ¢°(x) =(p?(x), @2 (x),
.o» ®2(x)) whose components ¢ (x) have continuous derivatives of all orders and
vanish outside a bounded set. The solution formulas for the propagation prob-
lem provided by the Fourier transform method imply that

u’(x, )=(e""" ") (x)eC*(R"*Y)  for ¢°eCF (RY,

and, moreover, for each fixed (x, 1)eR"*! the number u?(x, t) are continuous
linear functionals of ®eCZ(R") in the sense of distribution theory; i.e., u2(x, t)
is a distribution on R" for each (x, t). Moreover, examination of the solution
formulas reveals that this distribution has the form of a convolution* of ¢°
with a one-parameter family of distributions R(x, t) on R" [7, 10]:

5.1) w0 (x, ) =(R(+, D)% %) (x).

Thus the solution operator e~ **#o is characterized by an (m x m matrix-valued)
distribution R(x, ¢) on R". R(x,t) is itself characterized as the (unique) distri-
bution solution of the initial value problem

éR
0x;

(5.2) EO‘Z—I:=‘2A" . R(x,0)=6(0)1

j=1 J

* If F=F(x) is a locally integrable function on R" and (p(x)eC(‘)’0 (R™), the convolution
Fx* ¢ is defined by
(F* w)(x)=Rf F(y) p(x—p) dy.
If F is a distribution on R", this definition is extended by defining
(Fx* e)(x)=Fy(o(x—5))

where F,, indicates that F is applied to ¢(x— y) as a function of y with x fixed; see [0].
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where d(x) is the n-dimensional Dirac delta function and 7 is the m xm unit
matrix. R(x, ¢) has been studied from this point of view by LupwiG [13] and
Durr [8] who called it the Riemann matrix for the system

(5.3) E°

The representation (5.1) is used below to obtain estimates for large ¢ of
u°(x, t) and its derivatives. To see how this can be done, note that §(x) is a homo-
geneous distribution of degree —n; i.e.,

okx)=k™"5(x), k>0.
It follows that R(x, t) is homogeneous of degree —n in x and ¢ together;
5.9 R(kx,kt)=k™ R(x, 1), k>0,

a fact that has been noted by DUFF [8] and other authors. Indeed, the distribu-
tion v(x, t)=k" R(kx, kt) satisfies conditions (5.2), so that identity (5.4) follows
from the uniqueness theorem for (5.2). Identity (5.4) implies that

R(x, t)=t—"R<—)ti,1>, t>0.

This identity yields an estimate for R(x, t) when combined with the well-known
fact that R(x, r) is an analytic function in the interior of its wave cone W
[6, p. 733; 3].

If W contains a solid cone |x|<yt(y>0), it follows that the components
R, 5(x, t) satisfy

(5.5) IR,(e, DISKL™  for |x|Syt, 150, f<m,

where K is a suitable constant. Combining (5.5) with (5.1) gives a similar estimate
for u®(x, t). The same technique also yields estimates for the derivatives of
u®(x, t).

If (5.3) is a uniformly propagative system with no static solutions (i.e., no
normal speeds which are zero), then its wave cone W does contain a cone | x| < yt,
by Theorem 4.4 (Case 1). Moreover, 0 R(x, t)/0t is homogeneous of degree
—n—1, and the same argument implies that

aRa ﬁ(x’ t)
ot

(5.6) <K 17"t for [x]Zyt, 1Sa,p<m,

where K, is another constant.

If (5.3) has static solutions (Case 2), then W contains the t-axis and (5.5)
fails. However, it will be shown that (5.6) still is valid. To this end, consider
the Riemann matrix R’(x, ) defined by

n . aRl
o _ J
6.7 ot Z‘ B ox

and R'(x,0)=d(x)I,
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where

(5.8) T*E°T=1, T*A'T=-B' and detT=+0.
Lemma 5.1. R(x, t) and R'(x, t) are related by

(5.9) R(x,t)=TR (x,t) T 1.

Proof. If R(x,t) is defined by (5.7) and (5.9), then direct computation,
using (5.8), gives

3R oR' R " , OR’
0 0 1_ *~1 * 1npj -1
=BT T =T g T = LT BT
n aR!
x4 ZA’

.I
and

R(x,00=Téx)IT '=5(x)1.
Thus R(x,t), given by (5.7) and (5.9), coincides with the (unique) Riemann
matrix for (5.3).
Next, notice that Theorem 4.3 implies

Theorem 5.1. Let D;=0/0x; and D=(Dy, ..., D,). Then the matrix differential
operator

(5.10) B(D)=) B'D,
i=1
satisfies the identity

(5.11) Q(D,B(D))=B(DY+Q,(D)B(D) '+ .- +Q,_,(D)B(D)+Q,(D)I=0.

Proof. Q(n, B(n)) is an mxm matrix whose entries are polynomials in
Ni> N2 ---» M- By Theorem 4.3 these polynomials are identically zero; i.e.
all their coefficients are zero. Hence, replacing n by D in (4.26) gives (5.11)

By (5.7) the Riemann matrix R'(x, t) satisfies

aR’ ,
—--=-BD)R

where B(D) is defined by (5.10). Hence
&R

(5.12) B(DY R =(-1Y =T

Combining (5.11) and (5.12) gives
ar 6r—-1 RI

_Ql( ) alr—l

Note that this is a scalar equation; i.e., 8/t and Q,(D), Q,(D), ... are scalar

partial differential operators. In Case 1, r=2p and R’ solves

62 R' o*P IR dR’ ,
(5.19) -0Qi(D) ——5>—5 atzp T "'—Q2p—1(D)—at—+sz(D)R =0.

Jj=0,1,2,....

(5.13) (-0 0) R 1y )R =
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In Case 2, r=2p+1, Q,(D)=0 and (5.13) becomes

62p+1Rl aZpRI aZRI aRr

(5.15) TGN 1() —Qz,- 1(D)—T+Q2p( ) >~ 2 =0.

Differentiating (5.14) with respect to ¢ gives (5.15). This proves
Theorem 5.2. For uniformly propagative systems the matrix

(5.16) Sex, =28 &0 %0
always satisfies the scalar equation
a“’s *r's |
(517) QI(D) Zp 1 Q2p I(D) +Q2p(D)S =0.

Equation (5.17) is used below to construct S. The construction is based on
Lemma 5.2. For uniformly propagative systems

a\_ o g2o 2
L<D,73—t)5-6—tz—;"Q1( )6t2" T "'—sz—1(D)a—t+Q2p(D)

is a strictly hyperbolic operator.

Proof. By definition L(D, 8/0t) is strictly hyperbolic if its characteristic
polynomial L(n, s) is a strictly hyperbolic polynomial. But

L(n,9)=s*"—Q,(ms** " + v =Q,-1Ms+Q;,(m),

whence L(1, s)=Q(n, —s) in Casel and Ly, $)=~-s""'Q(n, —s) in Case 2.
Thus Lemma 5.2 follows from Corollary 4.3.

Theorem 5.2 and Lemma 5.2 imply that the components S,z(x, ¢) of the
matrix S(x, ¢) solve the scalar hyperbolic equation L(D, 8/0t) S,;=0. It follows
that S(x, ¢) is uniquely determined by the initial values of its time derivatives
of orders 0,1, ...,2p—1. These may be obtained from (5.12) which implies

&'s
or

Corollary 5.1. S(x, t)=(S,s(x, 1)) is uniquely determined by (5.17) and the
initial conditions

=(—-1Y*"*B(DY*'R, j=0,1,2,....

S(x,0)= —B(D)S(X) 1, a_S%’i)=B(D)25(X)1,...
(5.18) .
& 1S(’"O)=B(D)“’<S(X)1.

v TTaEeT

This result makes it possible to express S(x, t) in terms of the scalar Riemann
function R%(x, t) for the operator L(D, 8/dt) which is defined by

8**R° a** 'R dR°
at Ql( ) 2,, 1 + - Q2p- (D) a +Q2p(D)R 0

.19
(5.19) aR°(x, 0)

P2 R(x,0) o 3T Rx,0)
a1

R°(x,0)=0, G =0 =1

=0, ..., =5(x).
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To derive a relation between S and R, write

(5.20) S(x, t)=2§1 Oy pmy-1(x, 1)

j=0 or

where uy, ty, ..., U, ,_, are defined by

62"u ok 1u
Ql( ) atzp 1 Q2p I(D) +Q2p(D)u -
(5.21)
du;(x,0) 62"'2u-(x,0) 3 tu,(x,0)
uj(x; 0)=03 4‘0—}——;.0, sets atzPJ_Z =0, 6t2pj_1 =fl(x)

and fy, fi, ..., f2,-1 are to be determined. (5.20) and (5.21) imply

s(x0 &0 6"+"u2‘,_.1_,,(x,0)'
ot* ji=2p—1-k otk

This, with (5.18) and (5.21), gives

P u(x,0) & o ’S(x 0)

) =—sps =Y (=1 QD)
j=0

k

Z( D BDY T 0,(D) 6 ()1

Comparison of (5.19) and (5.21) with this expression for f,(x) shows that

u(x, )= Z( D BDY T Q;(D)R(x, 1,

ji=0

and substitution in (5.20) gives

Theorem 5.3.
2p—-12p—-1-k k0
(5.22) S(x, [):: kgo Zo ( l)kB(D)Z p—k~-j Ql (D) i, R (x t)

The correctness of this formula may also be verified directly.

Theorem 5.4. For uniformly propagative systems, the wave cone W° for the
scalar Riemann function R°(x, t) always contains a cone |x| <yt with y>0.

Proof. By the proof of Lemma 5.2, the characteristic polynomial for the oper-
ator L(D, 8/0t) which defines R°(x, t) is Q(n, —s) in Case 1 and —s~'Q(#,—s)
in Case 2. Thus in both cases its roots s(n) are precisely the non-zero roots
of Q(n, —s). The proof that W° contains a cone |x|<y¢ is therefore identical
with the proof of Theorem 4.4, Case 1.

Corollary 5.2. For uniformly propagative systems, there are positive constants y
and K such that the components S,z(x, t) satisfy

(5.23) IS p(x, DISK "™ for |x]=yt, 1S, fSm.
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Proof. Theorem 5.4 implies that R%(x, ¢) is analytic in | x| <yt Hence S(x, t)
is analytic there, by Theorem 5.3. Since S(x, t) OR'(x, t)/0t is homogeneous
of degree —n—1, (5.23) follows.

Lemma 5.1 implies that

0R(x,1)

- -1
S =TS(x, )T

where T is a constant matrix. Hence Corollary 5.2 implies

Theorem 5.5. For uniformly propagative systems, there are positive constants y
and K’ such that

OR, p(x, t)

(5.24) 5

<K't for |x|Zyt, 120, f<m.

Finally, combining this result with the convolution formula (5.1) gives

Theorem 5.6. Let u°(x, t) solve the propagation problem for a uniformly
propagative system (5.3), with initial values u®(x, 0)=¢°(x)e C&(R"). Moreover,
assume that

°(x)=0  for |x|2a.
Then there are constants y and K such that

oul(x, 1)
ot

(5.25) SKot™! Jor |x|ZLyt—a, 1Zasm.

Proof. u°(x, t) is given by (5.1), where R(x, t) denotes the Riemann matrix
for (5.3). It follows that

oul .
uaa(::s t) =(6Ra(t, t) *(p0> ()C)

This may be written as an ordinary convolution, i.e.,

ul(x,1) R, ;(x—x', 1)

(5.26) e -

(pfg’(x’)dx'

provided (x, t) is chosen so that |x'|<a is contained in a set on which
OR(x—x', t)/0t is analytic. Now

[x|Syt—a and [|x'|Zae imply [x—x'|Zyt,

and 0 R(x—x")/0t is analytic on |x—x"| <yt if y is the constant in Theorem 5.5.
Thus (5.26) is valid for |x|<y¢—a. Taking absolute values in (5.26) and using
(5.24) gives (5.25) with

Ko=K' | (103G)[+ - +lon(x)])dx".

|x|=a

Stronger estimates than (5.25) may hold for special classes of uniformly
propagative systems. An important example of such a class is described by the
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Definition. A uniformly propagative system (5.3) is said to be of Maxwell
type if its minimal polynomial has the form

Q(,s)=s>=c*In{’s
where ¢ is a positive constant,

In the Appendix it is shown that this class includes MAXWELL’S equations
for a homogeneous, isotropic medium and the equations of acoustics. By Theo-
rem 5.1 the operator B(D) for a system of Maxwell type satisfies the identity

(5.27) B(D)*—c*4B(D)=0
where

A=|D|*=D+ .- +D?
is the Laplace operator. This implies

Lemma 5.3. Let u°(x, t) be a solution of a system (5.3) of Maxwell type.
Then the time derivatives

_ oul(x, )
Ya(xs t)—T

solve the wave equation:

(5.28) ——%—c? 4y,=0.

Proof. Put v(x, )=T""u%(x, t) where T is the constant matrix defined by
(5.8). Then substituting u° =Tv in (5.3) gives

dv
W——B(D)v

Combining this with (5.27) gives

Pv 5, , 00
—-—s—at —C A'éT—O,

ov,
dt
Ya(x, 1)

where the T,z are constant.
Lemma 5.3 implies the following estimate.

i.e., the component:

6u (x D& 60,,(x 1)

=Xl

Theorem 5.7. Let u°(x, t) solve the propagation problem for a system (5.3)
of Maxwell type with n=3, and let the initial values u°(x, 0)=¢°(x)eC§ (R3).
Moreover, assume that ¢°(x)=0 for |x|=a. Then

0
aLa(-t)i’—QE for |x|Zct+a and |x|Zct—a,
and
dug(x, 1)

o <Kt™'  for ct—aZ|x|Sct+a, 1Zasm,
0

where K is a constant which depends on @° only.
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Proof. Lemma 5.3 implies that
ou(x, 1)
Y(x, )= T
solves the following initial value problem for the wave equation:
*y 3
Fram AYy=0 for xeR’, —ww<t<o,
3

3 2
b, 0=((E 3 40} 0°(), & £40,) o'

ji=1
for xeR>.
Thus each component ,(x,?) solves an initial value problem for the wave

equation with three space dimension and initial values in C®(R®) which vanish
for | x|z a. Hence, Theorem 5.7 follows directly from

Lemma 5.4. Let w(x, t) solve the initial value problem

w
’(372——0241“’:0 for xeR?, —o<t<w,

w(x, 0)=f(x), 6_wg,_0)=g(x) for xeR3,

where f and g are in C§°(R?) and vanish for | x| 2 a. Then for ct>2a

(5.29) w(x, )=0 for |[x|Zct+a and |x|Zct—a,
and
(5.30) w(x,D|<Kt™'  for ct—aZ|x|Lct+a,

where K depends on f and g only.

Proof. w(x, t) may be expressed in terms of its initial values by the classical
Poisson formula

(531) W 0=t My o [g] 42 (0 M, o [£])

where M, ,[f] denotes the spherical mean of f over the surface of the sphere
S(x, r) with center x and radius r. Thus if dS denotes the element of area on
S(x, r), o denotes a unit vector, 2 denotes the unit sphere and dQ the element
of area on Q,

1 1
Mx,r[f]=ms(£r)f(x')ds=4—n!_£f(x+ra))dQ.

Property (5.29) follows immediately from (5.31), since S(x, ct) does not intersect
the set |x|<a in this case. For ¢¢>2a it follows from ct—a<|x|<ct+a that x
lies outside |{x|<a, and

1 C
M, , = x)]dS< s
| M, o.[e]|=7- S(xj’mlg( NdSs 3 s<x,c:)jn|x'|§a

5a  Arch. Rational Mech. Anal., Vol. 22
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where C is a bound for g. It follows that #* M, ,[g] is bounded, since the area
of the portion of S(x, c?) lying inside | x| <a is obviously bounded, also

2
tM, c,[f]+c—t—j Vf(x+ctw) wdQ
' 47

t%(t Mx,c,[f])‘=
cC1

das

S(x.ct)n |x|Za

§|th,c,[f]|+%s(I PFGN1dS St My, e [F] ]+

where C, is a bound for |Vf|. This completes the proof of (5.30), since each
of the last two terms is bounded.

§ 6. The Existence of Wave Operators for Wave Propagation Problems
of Classical Physics

In this section the results of the preceding sections are used to derive criteria
for the existence of wave operators, and therefore asymptotic solutions, for
propagation problems involving inhomogeneous media which are perturbations
of uniformly propagative homogeneous media. Two criteria are given. The first
is applicable to perturbations of any uniformly propagative medium. The second
is applicable to perturbations of media of Maxwell type. Both criteria require
that E(x)—E°, the difference between the energy forms for the two media,
be “small at 00 in a certain sense. The perturbation may be arbitrarily large
on bounded sets of points. Finally, the wave operator Q: 5 — J is shown to
be isometric if the homogeneous medium has no static solutions (Case 1), and
a generalization of this result is proved for Case 2.

The criteria for the existence of wave operators are derived from Theorem 3.2.
The spaces %,, #;, and # and operators H, and H are defined as in § 2, and
the set C§(R") (cf. § 5) is selected as the subset D of Theorem 3.2. With these
choices conditions (3.17) and (3.18) of the theorem are satisfied and there remains
the problem of finding criteria which ensure the convergence of the integral
(3.19). To see how this can be done, consider the integrand

(6.1) I=|(H-Hg)e "™ ojl, ¢eCF(RY.
The operators H and Hy, have the same domain and satisfy the identity
H—Hy=E 'E°H,—H,=(E"'E°-DH,.

Moreover, u°(x, f)=e '*Ho p(x) represents the solution of the propagation
problem for the homogeneous medium and satisfies

Hou’(x, )= ﬁi‘%‘_)
Thus
0
I0=1E" B =D Hyu® (-, = (B E°- ) 2D

Applying the definition of the energy norm gives

16y = J’((E tpo— 2C ") @ B -n 20 gy
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Using the symmetry of the matrices E and E°, we may rewrite this as follows:
g

1()? = j(aL:(t"_t))*(E"E‘ _DEE-E 1) 2% (t 1)
2

= j(M) (E°-E)E~Y(E°- E)de
R»

©62) ot ot
j((EO E) ou’ ( )) ~1(E°— E)ﬁy—%dx
Rn
= | v*(x, t)E_l(x)v(x, Hdx
where
(6.3) o(x, ) =(E()~ EO)M.

Now there is a constant u such that
ETES_r£'E for xeR" LeR",

by Lemma 2.1. Thus (6.2) implies

I(t)2§—ﬂ12—Rj; v*(x, D) v(x, ) dx=712—,{!. i:: {Z (E, 5(x)— E2) 6up(x t)}

Applying CAUCHY’s inequality to the f-summation in the last integral gives the
estimate

m m i p 2
60 105w ({F B Eaw-myH{F (2520 )] o

This estimate is used below to prove the integrability of I(t) on T<t< oo for
every ¢°(x)=u’(x, 0)eCP(R"), and thus demonstrate the existence of wave
operators. The principal result is

Theorem 6.1. Let the matrices E(x), E® and A’ (j=1, ..., n) have the following
properties.

ou’ ,.au"

o OU c
©5 E ot _JZ:IA 0x

is a uniformly propagative system.
i

(6.6) E(x) is Lebesgue-measurable, bounded, and uniformly positive definite;
i.e., there are positive constants u and p' such that

PPERESEXE(X)ESWPERE  for every xeR" and EeR™.

(6.7) There are constants K>0, R>0 and p>1 such that
|Ep()—Egel <K |x|™"  for |x|ZR and 150,f<m.

Then the wave operator Q(H, H,) exists for the operators H and H, defined in

§2 by E,E® and A’ (j=1, ..., n).
5b Arch. Rational Mech. Anal., Vol. 22
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Proof. The estimate (6.4) is used to show that I(7), defined by (6.1), is inte-
grable on T<t<oo. The result then follows from Theorem 3.2. To estimate
the right-hand side of (6.4), the integral is split into two parts, corresponding to
the domains of integration |[x|<y¢—a and | x| t=yf—a, and these are estimated
separately. If a is chosen so that ¢°(x)=u°(x, 0) =0 for | x| Z @, then Theorem 5.6
is applicable and implies the estimate

L= | {z 3. (Euy (- Ef,’,,)z} { ) (ﬁ‘%(:‘ﬁ) }dx

(6.8) |x]Syt—a (a=1
S D T e AR

L3

[x|Syt—aa=18

Now (6.6) implies that the components E,z(x) are bounded. Indeed, {* E(x) n
is an inner product, for each fixed xeR", and Schwarz’s inequality gives

|E* E()n| S(E*EX) Y (n* EmEsp' 2 (€ O (* .
Taking &,=46,,, 1,=05, (x and p fixed) gives

|E,s(x)|Su'?,  xeR"
Thus
| (E,,,(x)—Egﬂ)zdx=( | + § )(E,,,(x)—E°)2dx

|x|Syt—a x|SR Rglx|Syt-a

<K,+K? § |x|"Pdx

Rs|x|syt—a

yt—a

=K, +K*w, | r7 """ 1dr
R

=K,;+K?w,{(yt—a)" 2P —R""2P} <K, " 2P

where K, and K, are constants and «, is the area of the unit sphere in n-dimensional
space. Combining this with (6.8) gives an estimate

(6.9) L(OSKym7 272
where K; is a constant. Next

aug (x,0) \?

g {5 B} 5 (2
é( wp § FEa-E) | F (2500 Vax,

|x|Zyt—a a=1 = [x|Zzyt—a =1

(6.10)

Now, by (6.7)
sup (Ep(x)—ES)*<K*(yt—a) *P<K, 1727

|x|2yt—a

where K, is a constant. Thus

(6.11) sup ‘Z i (E,p(x)—E2)*<m?> K, t™%P

|xjzyt—a a=1 =1
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Moreover

= [ dug(x,t)\? 1 aul(x, ) \* o 0u’(x, 1) ,
(6.12) MJ”ﬂzl(—a.t_ dx_g-P—R" 5 E’ — 2~ dx=K;

by the conservation of energy law for u°(x, t). Here A is the smallest eigenvalue
of E° and K is a constant. Combining (6.10), (6.11) and (6.12) gives

(6.13) L()SKgt™ 2P
Combining (6.4), (6.9) and (6.13) gives

1 1 1 — 1
IO’ S—1,(D+—5,()S— K, 17" 2P7 24
® 7{'1() ?—z()_-’-‘—r 3 e

K¢t 2P<K2%t72?

where K, is a constant. Thus
I(=I(H-Hop)e "™ o|<K,t7%  p>1,

which proves that I(r) is integrable and completes the proof of Theorem 6.1.
For perturbations of systems of Maxwell type, Theorem 6.1 can be strengthened
as follows.

Theorem 6.2. Let the matrices E(x), E® and A’ (j=1, ..., n) have the follow-
ing properties.

(6.14) 5= Z A’ is a system of Maxwell type.

(6.15) E(x) is Lebesgue-measurable, bounded and uniformly positive definite;
PREXESERE(X)ESW T EYE  for every xeR" and E€R™.
(6.16) There are constants t, and >0 such that

1 1
—< } (Eaﬂ(x)-—ESﬂ)zdx>
tSx|<t+d

T
is integrable on 0<ty<t< 00 for 1Za, fEm.
Then the wave operator Q(H, H,) exists for the operators H and H, defined in § 2
by E, E® and A’ (j=1, ..., n).
Proof. It suffices to show that I(z) is integrable on T<t< 0. By (6.4) and
Theorem 5.7, if ¢°(x)=u’(x,0)=0 for |x|=a, then

2 m m
617  I0Ps _T_’ifz 5 [ (Eep()—ES,) dx.

a=1 p=1 ct—ag|x{Sctta

But (6.16) implies that

%
%( i (& ,,(x)—ES,,)zdx)
=81 S|x|St+62

is integrable on 0< 1, £7< o for any d;, 8, and 7, =1,(8,). Thus (6.17) implies
that I(¢) is integrable on 7(a)< <00, which completes the proof.
Sc Arch, Rational Mech. Anal., Vol. 22
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Corollary 6.1. Under hypotheses (6.14) and (6.15) a sufficient condition for
the wave operator Q=Q(H, H,) to exist is

(6.18) § (Eap(x)—E2p) dx<Kg1™", 127,>0, 1=a, f<m,

t<|x| St
where 8, Ky, ¢ and 1, are positive constants.

This is immediate because (6.18) implies (6.16).
The wave operator Q=Q(H, H,), when it exists, is a bounded operator
from H, to H. In fact, it was shown in § 3, Theorem 3.1, that if

CEECESE*E(X)ESCPE¥EYE  forall xeR" and £eR™,
then
cloloslQel=cllolly, forall pest.

It will be shown that under the hypotheses of Theorem 6.1 this result can be
strengthened. The following lemma is needed for the proof.

Lemma 6.1. Under the hypotheses of Theorem 6.1, if u°(x, t)=(e™"*#0) ¢°(x)
where °eC§(R") and ¢°(x)=0 for |x|=a, then the Sfollowing statements hold.

(6.19)  @®(x)=limu°(x, t) exists for each x, uniformly on bounded sets in R".

t— o0

(6.20) There is a constant K, such that
luz(x, D— 02 () |SKot™  for |x|Syt—a, 1Sa<m.

(6.21) @=(x) is a (weak) static solution; i.e.,

- i 097 (x)
J _—
34150,

Proof. Note that since ¢°eC&(R"), u°(x, t)eC*(R"*1) and

6u°(x,

(6.22) ul(x,)—u’(x, )= j' ) dt' forall x,¢ and =.

Moreover, by Theorem 5.6,

oul(x,t)

(6.23) o

SKot' "' for |x|<yt'—a, 1Sa<m.

(6.22) and (6.23) imply (6.19). Also, making 7 —co in (6.22) and using (6.23)
gives (6.20). Finally, since u°(x, t) solves

(6.24) E° a“ = .Z A’

J= .I

it follows immediately from (6.19) and (6.23) that ¢® is a weak (distribution)
solution of (6.24) which proves (6.21).
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Theorem 6.3*. Under the hypotheses of Theorem 6.1, if

¢°eCP(R") and o®(x)=lim u(x, {)=1lim (e~** %) °(x),
t—> 0 t=> o0

then
(6.25) IQ¢°1*=]¢° !I§+R_[ ¢°*(x)(E(x)—~E%) 9™ (x)dx.

In particular, in Case 1 where there are no static solutions, Q: #, — #is an isometry:

(6.26) 126°I=1¢°l,-
In Case 2, if ®e# (and therefore 0¥ H#,), then

(6.27) I 1Z=lle®1*=1e°I3—1e 3.
Proof. Note that
(6.28) 1Q¢°1*=lim || " " ™" Ho o° |2 =lim [|u®(-, £) |2
t—> oo | aude o]

where u°(x, £) =(e”*H#0) ¢°(x). Moreover,
1 C, D17 = [ u®*(x, DE(x)u’(x, ) dx
R’l

(6.29) = U DB G, Ddx+ u*0x, ) (EG)—E)u’ (v, ) dx

=lu(, DIF+I@O=lle "o |3+ (1)
=]’ I5+J ().

(6.28) and (6.29) imply that
lim J(¢)

t— o

exists. To prove (6.25), it must be shown that the value of the limit is

limJ ()= | ¢* *(x)(E(x)—E%) 9™ (x)dx.

t— o

Now
J(t)=( f + )uo*(x,t)(E(x)—Eo)uo(x,t)dx
|x]<yt—-a |x|Zyt—a
=Ji () +J,(1).
Moreover,
Jl(t)=l [Sjt— o* *()(E(x)—E%) 9= (x)dx +
+2I I §ou®*x 0(E®) - EO)(u(x, ) — 9= (x))dx+
+I I<Ir— (1°Cx, ) — 0™ (0))* (E(x)~ E°) (u°(x, ) — 9 (x)) d x.

* This result was suggested by Professor DALE THOE.
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The last two integrals above tend to zero when ¢ — co. This follows by a simple
argument using the energy law for «°(x, t), (6.7) for E(x)—E®°, and (6.20) for
u®(x, t)— @ (x). Next.

BOS | 18001 T 10~ E 1ujs 0] dx

Ix|zyt—aa=1

m m % m +
< 5 Zeeon{ £ @a-erl | e opf ax

|x|Zyt—aa=1

IIA

|y {i 5 (E,,;(x)—E;’,,)ZFdx

|x|2yt—aa=1 a=1f=1

by two applications of CAUCHY’s inequality. Thus

m m + m
J, (t)g{ sup Y ¥ (Eap(x)—ES,,)z} Rj; ;l(uf(x, ) dx

|x|Zyt—aa=1 =1

<{m? Kﬁ‘”}*% ful*(x, DE°u®(x, ) dx<Kyot™"
Rn

where
Kio=m}/K4i™" |u°(-, 1)} =constant.
In particular
lim J,()=0.

t—> o0

Combining the estimate for J,(¢) and J,(t) gives

limJ(f)=lim | @ **(X)(E(x)—E°)o™(x)dx

t—=> o t-w |x|Syt—-a

=Rj" o™ *(x)(E(x)—E°) p® (x)dx.

In particular, the last integral exists. This proves equation (6.25) of Theorem 6.3.
Equations (6.26) and (6.27) follow immediately from (6.25).

§ 7. Concluding Remarks

The existence of the wave operator Q(H, H,) implies the existence of asymp-
totic solutions u°(x, t) which approximate true solutions u(x, ) in the energy
norm (or mean square) sense when #— oo. It is also desirable to find conditions
which guarantee that u°(x, ¢) approximates u(x, t) point-wise. This can be done
by showing that the partial derivatives up to a prescribed order of u°(x, t)
approximate those of u(x, ¢) in the mean square sense, provided that E(x) and
@ (x)=u(x, 0) have a suitable number of derivatives. Point-wise estimates for
u(x, t)—u’(x, t) can then be obtained from Sobolev’s lemma. This program
has been carried out by the author for the classical non-relativistic Schrodinger
equation [/9] and an extension of the results to the problems studied in this
paper is planned.

It was shown in § 6 that under certain conditions Q: 5, — S is an isometry;
ie., |Q¢° = ¢°l,. It is of considerable interest to find additional conditions
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which ensure that Q is unitary, i.e., the range of Q equals 5. In this case (Theo-
rem 3.1) Q=Q(H, H,) has an inverse, Q(H,, H) exists and is unitary and

Q(H, Ho)‘1=Q(Ho, H)-

In studying the same question for the classical Schrédinger equation, IKEBE [/1]
has shown that the unitarity of Q is closely related to the completeness of the
generalized eigenfunction expansions associated with H and H,. Moreover,
he has given an explicit construction for 2 in terms of these expansions. It is of
considerable interest to develop analogous results for the wave propagation
problems of classical physics. In a special case, the transmission line equations,
this has been done by BROWN [4].

Media governed by systems of the form

y Ox;

are non-dispersive; i.e., their phase and group velocities coincide, whereas
systems of the form

au® & . ou°
0 = J
(7.1) E 5 Y4 P

j=1

+Bu°, B0,

J

are dispersive. It is of interest to develop a theory of wave operators and asymp-
totic solutions for perturbations of dispersive systems such as (7.1). In this
connection, LUDWIG [/4] has shown that the Riemann matrix of such a
system may decrease much more slowly than 77" when ¢—o00. In fact he has
given examples with n=2 and n=3 where R(x, t) decreases no faster than ¢ %,
The existence of wave operators for such systems can be proved by the techniques
of this paper, provided the rate of decrease of E(x)— E°(for |x|— o) is raised
to compensate for the slow decrease of R(x, 7).

Appendix. Some Wave Equations of Classical Physics in Matrix Form

Many of the wave equations of classical physics can be written as systems of
first order linear partial differential equations of the form

ou_ & du
(A1) M°(x)—67=j§1M x) o3,

+NXyu+f(x,1)

where u(x, t)=(u(x, t), ..., un(x, t))* and f are mx1 (column) matrices and
M°®, M*, ..., M" are m x m matrices. The wave equations are distinguished among
the general first order systems by possessing a quadratic energy density and
corresponding energy conservation law in the sense of the following definition
[cf. 9].

Definition. Let E(x) represent a symmetric, positive definite 7 x m matrix.
System (A.1) is said to admit the energy density n=u* Eu if and only if there
exist symmetric matrices P(x), ..., P"(x) and Q(x) and a matrix R(x) such that

on_« 0
=2

/=1 0%;

(A.2) W* PPu)y+u*Qu+u*Rf
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for all ueC?, where by definition

f=M° ’3“ - 2 M2 N,
S 0%
Note that if (A.1) admits an energy density, then solutions of the homogeneous
equation (f=0) satisfy the energy conservation law

611 "

* pj *
¥ 121 Tx W*P’u)+u™Qu.

J
It is assumed here that the matrix M°(x) is non-singular. (Otherwise, the
process described by (A.1) is indeterminate.) Hence (A.1) can be rewritten as

(A3) E() 5 ‘7 ﬁAJ )

where
AI=EM%"*M/, B=EM° !N and g=EM°~'f.

(A.3) is called the canonical form of (A.l), relative to the energy density n=
u* Eu. It is not difficult to verify the following theorem.

Theorem. A4 system (A.l) admits the energy density n=u* Eu if and only
if, when it is written in canonical form (A.3) relative to n, the matrices A’ (j=
1,2, ..., n) are symmetric. If (A.1) admits the energy density y, then the matrices
PJ, Q and R of (A.2) are
T . w04’
P'=4’ (j=1,2,...,n), Q=B+B*-3 T3

J

=

R=2EM%~1,

The purpose of this Appendix is to exhibit a number of wave equations
of classical physics in the canonical form (A.3).

In the examples, the physics provides both the basic equations (A.1) and
an appropriate energy density. In each case it will be seen that the equations
for inhomogeneous media can be written in the form (1.1) of this paper; i.e.,
when they are written in canonical form the matrices 4’ are constant and B
is zero, so that the inhomogeneity is described entirely by E(x). Of course, the
equations can be written in the form (A.3) in a number of different ways, cor-
responding to different choices of dependent and independent variables. In
most cases they will assume the special form (1.1) only after a judicious choice
of variables.

The Transmission Line Equations. In a conventional notation these equations
are

0i JOe
" L()6t+a =0,
) de 0i
C(x) 6t+ =0

where I and e are the current and voltage in the line and L and C are the inductance
and capacitance per unit length. They can be written as a 2 x 2 matrix equation
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for u=(u;, u;)*=(i, e)*. The appropriate energy density is n=Li*+ Ce®. Hence,
(A.4) can be put into canonical form with

_ L(x) 0 AL -1
E(x)“( 0 C(x)>’ 4 ’<—1 0)'

Maxwell’s Equations. The equations for an inhomogeneous, anisotropic di-
electric medium can be written

VxH)J Z alk(x)

(VX E);+ Z u,k(x)—at—"=0.
j=1

Here E and H are the electric and magnetic field vectors, & ;x and p;, are the
dielectric and magnetic permeability tensors and the subscripts denote components
in a rectangular coordinate system. They can be written as a 6 x 6 matrix equation
for u=(E, E,, Ey, H,, H,, H;)*. The energy density is (apart from a constant
factor)

n= Z (e E;E;+up; H;H)).

i, j=1

Hence, MAXWELL’s equations can be put into canonical form with

£11(x) &12(x) &3(%) 0 0 0

£21(x) &,(x) &3(x) 0 0 0

E(x)= e31(%) &3,(x) e33(x) 0 0 0
0 0 0 (%) py2(x) pya(x)
0 0 0 B21(X)  p22(x) pa3(x)
0 0 0 B31 (%) p32(x)  p3s(x)

and

, 0 0 0 0 -D; D,
0 0 0 D, 0 -D,
0 0 0 -D, D, 0
0 D, -D, 0 0 0

-D, 0 D, 0 0 0
D, -D, 0 0 0 0

The Equations of Acoustics. The equation for acoustic waves in an inhomo-
geneous fluid at rest can be written

2
(A.5) 7}7)9“7 p(x)¥ ( p(lx) Vp)-

Here p represents the difference between the instantaneous pressure and the
equilibrium pressure, p(x) is the equilibrium density and c(x) is the local speed
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of sound. This can be rewritten as a 4 x 4 matrix system for

_(1 dp 1 dp 1 op 6p)*

p(x) 9x;” p(x) 9x;” p(x) 0x3° 0t

Then energy density is
(V )2 1 0 )4 2
= (x) Prree o

and the equations have the canonical form with

p(x) O 0 0

0 0 0 D,
. 0 p(x O 0 iAjD o 0 0 D,
X)= N )
0 0 pd 0 A7 Vo o o b,
1

The Equations of Elasticity. Elastic waves in an inhomogeneous anisotropic
medium satisfy equations of the form
>, i=1,2,3.

62 w; 3 0 ( (x)

ErT
ot =1 0x;

Here w; is the i™ component of the displacement vector and c/, is the tensor

which relates the stress and strain tensors in the medium. The tensor c;/, has the

symmetries

e =clt =clt =cj

and hence has 21 independent components. The energy density is

3 3 ow,, Ow;
U m i
‘§< ) ,,,,mz,, 1""‘ ox, 0x;’

Define the velocity vector

and the stress tensor
Y ow,,

Zu mn ax

(symmetric in i, j), and put
Uu=(211,222,233,212,223, 231 01,03, vs)*-

Moreover, define a symmetric positive definite 6 x 6 matrix I'(x) by

11 11 11 11 11 11

€11 €22 €33 €12 €3 C3;

22 22 22 22 22 22

) '= 0%1 €22 €33 C12 €33 (33
31 31 31

cll c22 ----------- 631



Wave Operators and Asymptotic Solutions 77

Then the elasticity equations can be written in the canonical form with

I11(x) Ti,(x) ... 1e(x) 0 0 0
1-'21(36) L(x) .. Te(x) 0 00

E=| T1® L) .. Lis)

000

0 0 .. 0 100

0 0 .. 0 010

0 0 .. 0 001

and

00000 O0D, 0O

000 0O0O0OD,O

0 00000 0 0D,

\ 0 00 00 0D,D, 0
;lAjDJ: 0 000 0 0 0 D;D,
! 000 00 0D, 0D,

D, 0 0D, 0D, 0 0 0
0D, 0D, D, 0 0 0 0
0 0Dy 0D,D, 0 0 0

Each of the four examples from classical physics given above has the form
(1.1). Moreover, for homogeneous media (E(x)=E° constant) each example
is uniformly propagative except for certain special values of the parameters.
For example, in crystal optics the sheets of the slowness surface may intersect
for certain values of the dielectric constants ¢;; but this behavior disappears
if the values of the ¢;; are changed slightly (see also [7]). Finally, the equations
of acoustics and MAXWELL’S equations for an isotropic medium (g;=¢, d;;,
Bij=Ho 6;;) are systems of Maxwell type. This is easy to verify by finding the
polynomial

det <E°s+ Y Ajnj>.
j=1

The work reported here was performed under the auspices of the United States Atomic
Energy Commission.
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