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1. Introduction

The Navier-Stokes theory of incompressible fluids has undergone theoretical
studies unmatched in breadth and depth by any other single theory of liquids.
While it is easy to point to the successes of this theory in describing the behavior
of certain real fluids, it is equally easy to exhibit its failures in modeling the
responses of others. Thus, in the last quarter century many new theories have been
proposed and studied in an attempt to understand the phenomena loosely named
“non-Newtonian”. One such proposal that has gained support from both ex-
perimenters and theorists is the Rivlin-Ericksen theory of differential type. In
this model not only the stretching tensor but also certain other kinematic ten-
sors—the Rivlin-Ericksen tensors—are identified as important in characterizing
the stress response of a deforming fluid body.

A well-known special example of a Rivlin-Ericksen fluid is an incompressible
fluid of second grade, for which the stress T is given by

T=—pl+ud,+a, A, +a, A% (A)

Here, the spherical stress —p1 is due to incompressibility, 4, and A, are the
first two Rivlin-Ericksen tensors, and the viscosity u and the two normal stress
moduli «; and &, may depend on temperature. While this model has been applied
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in numerous articles to describe certain non-Newtonian behavior there has been
no apparent attempt to understand it fully as an exact model in its own right.*
This is, perhaps, due solely to the prejudice that «, is negative—a prejudice that
is supported by seemingly plausible arguments and which, if accepted, then
enables one to show that so natural a flow as simple shearing between parallel
plates not only lacks stability but, for certain plate separations, does not even
exist. On such grounds, (A) seems to have been almost completely rejected as an
exact model for any real fluid.

However, we are now convinced that the reasons for which (A) has been
discredited are insubstantial and that (A) has, therefore, been prematurely dis-
counted. Indeed, a somewhat surprising thermodynamic development in this
regard indicates that the modulus «, in (A) should be taken non-negative, and,
moreover, that if (A) is also compatible** with thermodynamics, then the second
grade fluid model has general and pleasant boundedness, stability, and exponential
decay properties well known within the classical Navier-Stokes theory. On the
other hand, if our thermodynamic basis for non-negative «; is set aside and «, is
taken negative, then we shall show that in quite arbitrary flows instability and
unboundedness are unavoidable.

In order to expose the nature of our results more fully we first briefly review
certain details in the history of (A):

It was eleven years ago that (A) was first applied, by LANGLoIs [1], to a specific
problem; namely, to study the slow motion of a “slightly” viscoelastic liquid.
While its use in this application was motivated mainly as an approximation within
the general class of Rivlin-Ericksen fluids, it also had the desirable feature of
avoiding both the ill-fated Weissenberg assertion and the too restrictive Reiner-
Rivlin relation. Three years before LANGLOIS* work was published COLEMAN &
NoLL [2] had already shown that by retarding the flow of any simple fluid with
fading memory the response was approximated by (A) to within second order in
the retardation parameter. At that time they also pointed out that for several
special but interesting problems the equations of motion for a fluid of second
grade are linear and solvable using standard mathematical analysis.

Subsequently, some of these problems were solved by TING [3] and COLEMAN
& MARrkovITZ [4, 5]. While TING gave mathematical motivation for basing his
work on the assumption that p and o, should be taken positive, COLEMAN &
MarkoviTZ quoted experimental evidence and gave a physical justification of
their own which argued for positive u and negative o, —at least when (A) arises
out of the time-scale expansion of finite second-order viscoelasticity theory.
Shortly thereafter, TRUESDELL [8] also gave an argument in support of negative
o, by directly relating it to the response time of a fluid of convected elasticity
and then observing that this time should be such that only the past, and not
future, configurations affect the present value of the stress. Almost coincidentally,
CoLeMAN, DUFFIN & MizeL [6] and CoLEMAN & MizeL [7] demonstrated the
instability, non-existence, and breakdown of pure shearing motions for second

* However, motivation for expecting (A) to model the general flow behavior of fluids with
sufficiently small natural time has been offered by TRUESDELL [40].
** See Section 3.
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grade fluids with «, <0, thereby casting grave doubts upon the appropriateness
of a second grade fluid as a model of any real fluid.

However, the issue concerning the sign of «, is not as straightforward as the
above very brief review might indicate. Specifically, the argument of TRUESDELL [8],
which uses purely mechanical concepts, is not compelling as a restriction on the
class of second grade fluids. Indeed, we shall show at the end -of Section 5 that
when fluids of convected elasticity are examined within the larger context of thermo-
dynamicsthey may experience only spherical states of stress — a situation that does not
provide adequate structure for relating the response time to a,, as his argument re-
quires. Moreover, while TRUESDELL proves that in viscometric flows a fluid of second
grade is indistinguishable from a particular fluid of convected elasticity with
response time #*= —2a,/u, we can find no basis for his subsequent interpretation
of this numerical equality as a statement of conceptual identity.* As a numerical
equality his work shows only that the viscometric response of a second grade
fluid with o; >0 cannot be mimed within the class of reasonable (i.e., t*>0)
fluids of convected elasticity. That an unreasonable (i.e., t* <0) fluid of convected
elasticity might nevertheless duplicate, in a very special class of flows, the response
of a second grade fluid with o, >0, argues neither for nor against a, > 0.

Further, the result of CoLEMAN & MAaRrRKoVITZ [4] to the effect that for a
retarded history the expansion of the stress functional appropriate to finite second
order viscoelasticity produces a term proportional to A, for which the constant
of proportionality is expected to be negative gives, clearly, no guidance at all for
the sign of «, in any real second grade fluid.

A similar confusion pervades the interpretation of much experimental data:
data purporting to find «, of (A) negative, when coupled with the results of [6],
[7], and, more generally, Section 7 of the present paper, only establishes that a
second grade fluid has not been entrapped within the experimenter’s devices.

It is these and related issues that we address and resolve here. After a brief
review in Section 2 of the basic equations of thermomechanics, we introduce in
Section 3 incompressible fluids of complexity 2, of which second grade fluids
are a special sub-class. In a way now standard, [10], [19], [21], we find
necessary and sufficient conditions that its constitutive assumptions be compatible
with the Clausius-Duhem inequality and material frame indifference. One of the
more interesting results obtained in Section 3 is that the Clausius-Duhem in-
equality requires the free energy to have a stationary point in equilibrium. The
character of this stationary point is, however, governed by the particular con-
stitutive choice one makes for the stress (cf. (3.12),). The crucial nature of this
equilibrium point begins to emerge in Section 4 where, by assuming the free
energy is a minimum in equilibrium and that the specific heat is positive, we are
able to apply some ideas of GURTIN [11], CoLEMAN & GREENBERG [12], and
CoLEMAN [13, 14] to obtain certain theorems of uniqueness and boundedness for
any fluid of complexity 2 which is both mechanically isolated and immersed in a
thermally passive environment.

* The condition *“#*= —2a,/u” does not assert that a second grade fluid possesses a past-
(or future-)oriented “response time’’; it does not even assert that a second grade fluid has any
response time at all in the sense of [8]. Indeed, by (A), only the present values of kinematic
variables affect the stress.

14*



194 J. E. DunN & R. L. Fospick

Our boundedness theorems are of the character that if one computes a certain
number, w(t’), at any instant ¢', then, for all later times, this number, and pos-
sibly the mass of the fluid, provide an upper bound for such quantities as the
kinetic energy, the averaged stretching, the departure from an equilibrium entropy,
efc., within the fluid.

Second grade fluids are special fluids of complexity 2. In Section 5 we begin
our study of them by further refining the thermodynamic analysis of Section 3 to
the specific constitutive assumption (A). In addition to the expected result 4 =0,
we find, and these are the keys to all subsequent analyses, that (i) o, = —a,, and
(ii) the free energy must be a quadratic function of A, (¢f. Theorem 6). An im-
mediate conclusion from (ii) is that the free energy of any second grade fluid will
be a minimum in equilibrium if and only if o, 0. In the remainder of Section 5
we show that when fluids of convected elasticity are examined within the context
of thermodynamics then the Clausius-Duhem inequality permits these fluids to
experience only spherical states of stress*—a result which we feel counteracts
TRUESDELL’S argument connecting ¢ * and «, and, a fortiori, his argument in favor
of ay <0.

In the remaining four sections of our work we set aside any thermodynamic
motivation for the sign of «;, and proceed to give a fairly detailed analysis of the
two complementary situations corresponding to a; =0 and «, <0 for the special
case when both o, and u are constant with u=0. This analysis begins in Section 6
for a; 0. Here we introduce a positive definite functional of the velocity field,
which corresponds, essentially, to the sum of the kinetic energy and the averaged
stretching in the fluid, and show that if the fluid body is mechanically isolated
after some initial instant then this functional is monotone decreasing in time and
bounded below by a decreasing exponential. We then show that for two very
general types of mechanical isolation this functional is also bounded above by a
decreasing exponential. In the special case of flow inside a fixed, rigid container
these results are then used to reach estimates on [|v||2(¢) and |gradv||?(¢) of the

form o< wP()<B, e,  ByeP<|gradv](H<Bye ",

for positive constants B;, B; (¢f. Corollary 2 of Theorem 9).

Section 6 continues with the derivation of a maximum principle for the energy
equation for a broad class of second grade fluids which are immersed in a thermally
passive environment. We then go on to demonstrate that for two very natural
types of immersion every L, norm, 1<p <0, of, essentially, the difference be-
tween the (constant) environmental temperature and the temperature field of the
body must approach zero exponentially in time. In none of these results do we
find it necessary to assume a linear relation for either the heat flux —temperature
gradient or the energy density — temperature.

In Section 7 we begin our study of the case «, <0. Here, we extend the results
obtained by CoLEMAN, DUFFIN & MizEL [6] for simple shearing flow to arbitrary
flows inside fixed, rigid containers. In particular, we show that unless the initial
data for the velocity field is severely restricted, any flow must evolve so as to have
its averaged stretching go exponentially to infinity. Moreover, for ““small”

* Within a broader context, it thus follows that thermodynamics undercuts the status of
this “convected” fluid model as an exemplar of a fluid with “intrinsic elasticity .
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canisters we show that this restriction on the initial data can never be satisfied
and, consequently, that within such a container every flow of a second grade
fluid having «, <0 eventually must generate an arbitrarily large averaged stretch-
ing. In contrast, we find that for *““‘large” containers decaying flows are possible,
though rare and atypical; for them we determine order estimates for the rate of
decay of both || v||?(+) and | grad v|*(-). The remainder of Section 7 contains
the formulation of an eigenvalue problem that serves not only to interpret these
results but also to suggest certain questions which are studied in the next section.

Section 8 begins with the derivation of a new and useful form of the equation
of motion for any second grade fluid with constant «,. Using this and the eigen-
value problem of Section 7 we obtain a functional-differential equation for the
projection of the velocity field on the appropriate eigenvectors (¢f. (8.5)). When
a; <0 this functional-differential equation implies that for each member of a
countable nested sequence of fixed containers no internal flow in which the fluid
adheres to the boundary of the container is possible unless the initial data meets
a stringent a priori orthogonality condition (¢f. Theorem 21). In addition, this
functional-differential equation yields the explicit solution to a certain special
class of initial value flow problems more general than those studied by TING [3]
and CoLEMAN, DUFFIN & MizEL [6]. A particular consequence of this result is
that, for second grade fluids having «, <0, the only decaying flows in this class
are those composed of a finite linear combination of the eigenvectors introduced
in Section 7. This considerably generalizes a similar result obtained for plane
shearing flows between fixed parallel walls in [6].

For our final results on second grade fluids we return, in Section 9, to the case
o, =0. Here, our main result is contained in Theorem 23 and generalizes to second
grade fluids (o, 20) the stability theorems, now classic, obtained by SERRIN [15]
for the Navier-Stokes theory (i.e., o, =0). In particular, we show that if the stretch-
ing and its diffusion are, for a given base flow, sufficiently small, or if the viscosity
is sufficiently large, then the base flow is asympototically stable relative to all
disturbances u that vanish on the boundary of the fluid domain. That is, we obtain
precise sufficient conditions for the estimate

04 —
IIMIIZ(t)+-pi lgradu)* (< B,

where f, and B, are positive constants. This estimate leads immediately to the
generalization of two other results of SERRIN [15] on the uniqueness of the initial-
boundary value problem and on the uniqueness of sufficiently mild steady flows.

Finally, in our Appendix, we present a very brief and elementary discussion
of the Poincaré and Korn inequalities, which are employed frequently from
Section 6 onwards.

The results of our study make it likely that the only second grade fluid to
be found in nature is one with o«,;=0. Thus it is relevant to the discovery of
such a fluid to note that it will (i) climb* up a rod which is rotating in an open
vat [16, 17] and (ii) sustain a depression ** rather than a bulge in its free surface
when flowing down an inclined open channel [18].

* Because for any simple fluid with normal stress viscometric functions (cf. [20]) o,(-) and
a,(+), climbing requires 307 (0)+ o’ (0)>0, and here o, (K)=x,k?= — 5, (k).

** Because a depression requires o7 (0)>0.
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Finally, we observe that since o, +«,=0 the constitutive assumption (A) is
of the same form as one proposed several years ago by OLDROYD [24] for the study
of colloidal suspensions, provided his stress relaxation time constant is set equal to
zero and a, is such that «, >0. However, in his work OLDROYD focused on the
effects of relaxation and therefore did not expressly consider the possibility of a
zero stress relaxation time constant.

2. Preliminary Notions

As is conventional, we identify the material particles of a continuous medium,
or body, B with the positions Xe E*® they occupy in a fixed reference configuration
Q< E>.* The motion of B may then be described by a relation of the form x =y (X, ¢)
where xeE* denotes the point occupied by the particle X at the time ¢. The
domain of g is, of course, 2 xR and if D is any subset of  we shall denote by D,
the image of D under . When convenient, we shall identify Q, with Q.**

The deformation gradient F (X, t) and the velocity gradient L(x, t) associated
with the motion y are defined, respectively, by ***

F=Vy, L=gradx. 2.1
1t is easily proven that

L=FF!, 2.2)

whenever F is non-singular —an assumption we make throughout.

For a given body B, the following collection of eight functions defined on
Q2 xR will be called a thermodynamic process if the balance laws of momentum
and energy and the Clausius-Duhem inequality are satisfied:

(1) The motion x=y(X, 1).

(2) The temperature §=0(X, t) which is assumed to be positive, §>0.
(3) The specific internal energy e=¢(X, t) per unit mass.

(4) The specific entropy n=n(X, t) per unit mass.

(5) The symmetric stress tensor T=T(X, t).

* For the most part we employ a standard notation. Thus, E3 denotes three dimensional
Euclidean point space while ¥V denotes its associated vector space. A linear transformation of V
into ¥ shall be called a rensor and the set of all tensors we denote by T. The subspaces of T which
are composed of all traceless tensors or all traceless, symmetric tensors we shall denote by T°
and Ty, respectively. With the exception of material particles of B in the reference configuration
£, boldface majiscules will denote tensors while the vectors of ¥ and the points of E? shall be
denoted by boldface miniscules. Inner products, whether among elements of ¥ or elements of T
will be denoted by a dot “-, e.g., @ b or, if “tr(-)” denotes the usual trace operator, then
A - B=tr(ABT). Vertical bars “||” denote the usual Euclidean norm, e.g., [4|=(4- A)*.
Lastly, we employ IR(R ") to denote the set of real (positive) numbers.

** For a function defined on either 2 X IR or 2, X IR we use, respectively, ¥ or grad to represent

a partial derivative with respect to the points of 2 or 2,,and ( ) or (), to indicate a partial
derivative with respect to the scalars in IR, The divergence operators related to I and grad are
denoted by V'« and div, respectively.

*** We assume x to be sufficiently smooth to make these definitions meaningful. We will,
in general, abstain from explicit statements concerning the smoothness of the various functions
introduced in this paper since the required smoothness will usually be clear from the context.
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(6) The heat flux g=q (X, t).
(7) The specific body force b="b(X, t) per unit mass.
(8) The radiant heating r=r(X, t) per unit mass.

While the symmetry of the stress tensor will guarantee the balance of angular
momentum, we record here for future reference the balance of linear momentum

4 (pidv= [ Tnda+ | pbds, (2.3)
dt p, 2D, Dy
the balance of energy

4 [p(e+33-%)dv= [ (Tn-%—q-n)da+ [p(b-2+r)dv, (2.4
dt p, 2D, D
and the Clausius-Duhem inequality

d q r
—_ > — —_ i
ltﬁ‘;pi]dl}_ if, ] nda+D{p 9 dv, (25)

t

all three of which are assumed to hold for every subdomain DS Q and for all
teR. The quantity p=p(X, t) denotes the local mass density which, by the con-
servation of mass, satisfies

po(X)

p(X,1) =m, (2.6)

where p, is a positive function given once and for all along with the body B.

When sufficient smoothness is assumed and (2.6) is taken into account it is
easily shown that (2.3)—(2.5) are equivalent to the local equations

pX¥=divT+pb, 2.7
pé=T-L—divg+pr, {2.8)
p(é-ﬁ@)-ﬂlﬁ%go, 2.9)

where we have set g =grad 0.
Finally, if we introduce the Helmholtz free energy Y =y (X, t) defined through
Yy=e—0n, (2.10)

we may write (2.9) in the alternate form
pGi+n6)-T-L+2 £ <0, @.11)

which we shall call the dissipation inequality.

3. Response Functions and Thermodynamic Compatibility N

Let Nxy< Q denote some neighborhood of the material particle X. An impor-
tant class of materials in continuum mechanics is afforded by those in which
knowledge of y(-,-) and 6(-,-), alone, on Ny x(— o0, #] suffices to determine
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the respective values e(X, #), n(X, ¢), T(X, t), and q (X, t) up to terms, if any, that
reflect any a priori constraints on either y or 0. A particular example of such a
material, and one which we study here, is provided by an incompressible, homo-
geneous fluid of complexity 2.* Tt is characterized by the existence of four functions,
¢, A, T, § such that

e=2(0, g, L, L),
n=(, gL, L),
T=-p1+7(6, g L, L),
4=4(6, ¢ L, L),

where we recall that g =grad 0(x, t). The four functions &, #, T, and § are called
response functions, have R* x V' x T° x T° as their common domain of definition,
and are assumed to be continuously differentiable. The fact that L and L must
lie in T is a consequence of incompressibility, which requires

(3.1)

detF=1 and trL=0. 3.2)

The scalar field p=p(x, t) appearing in (3.1), reflects the a priori constraint
of incompressibility and is not, in general, determined by @, g, L, and Lat (x, ?).

If we select an arbitrary isochoric motion ¥, an arbitrary temperature field 8,
and an arbitrary “pressure” p, then (3.1) uniquely determines the fields &, 7, T,
and §. Thus, entering these fields along with 7 and 8 into (2.7) and (2.8), we arrive
at definitions for F(+,+) and b(-,-).** The resulting 8-tuple, ¥, 0; &, 7, T, §, 7, b),
will be said to have been induced by 7, 0, and p. This 8-tuple will not generally
be a thermodynamic process: while the balance of momentum (2.7) and the
balance of energy (2.8) are trivially satisfied, the Clausius-Duhem inequality
(2.9) will generally fail to hold if the functions &, 4, T, and § are selected arbi-
trarily ***

Following CoLEMAN & NoLL [10], we seek restrictions on the response func-
tions &, 4, T, § such that every choice of an isochoric 7, a temperature field 8, and
a “pressure” field p will induce an 8-tuple that is also a thermodynamic process.
In this regard we make the following definition: The response functions (3.1) will
be said to be compatible with thermodynamics if and only if every choice of (an
isochoric) 7, 6 and p leads to an induced 8-tuple that is a thermodynamic process.
In applying this definition we observe that since tr L=0, p will not appear in
either of the equivalent inequalities (2.9) or (2.11), and thus (3.1) will be compatible
with thermodynamics if and only if for every choice of an isochoric 7 and a

* A material is said to be incompressible if the only motions it can undergo are isochoric,
i.e., det F(X, t)=1 for every motion. For a full explanation of homogeneous, for a justification
of the name of fluid for (3.1), and for an explanation of the term complexity 2 see Sections 27,
31, and 35, respectively, of [20]. For convenience we shall henceforth refer to these materials
simply as fluids of complexity 2.

** Since the material is incompressible and homogeneous, it is seen from (2.6) that p(= p,)
is just a fixed number. .
*** To see this, it is only necessary to take for example, £=const., n=const., T=0, and
g=grad 6.
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temperature field 8 the inequality

DI

£ <0 (3.3)

p(+70)~T-L+
is satisfied.* Here, by (2.10) and (3.1),  is the continuously differentiable function
given by
V(0. 8, L, L)=2(0, 8, L, L)~ 07(6, g, L, L),

and we note, by the chain rule, that for any sufficiently smooth y and 0 one has**
A -~ ~ . P '! -~ .
Y=yYo0+¥,-g+y-L+yj-L. (34

In order to find necessary and sufficient conditions that the response functions
be compatible with thermodynamics we first require the following

Lemma. Let a be an arbitrary positive number, and let a' be an arbitrary real
number. Let a and a' be arbitrary vectors. Let A, A’, A" be arbitrary tensors in
T°. Then there exists an isochoric motion y* and a positive temperature field 0*
such that if Y is any fixed particle in Q, then

F(Y,0)=4, L[*(Y,00=4', I*(¥,00=4";
0*(Y,0)=a, 0*(Y,0)=d’; (3.5)
grad 0*(Y,0)=a, grad0*(Y,0)=a’.

Proof. Defining L(7) by
L@x)=A+1d +371* A",

we know from the theory of ordinary differential equations that

—‘%—F*(t)=L(t)F*(t), F*(0)=1,

has a unique solution on IR and is such that det F*(1)=1 for all zeR. We thus

can define *(-,+) by
(X, )=Y+F*()[X-Y]

and easily verify that y* is isochoric and meets (3.5),.

* The symbolism f is equivalent to the value of f for the fields ¥ and 6.

** The subscripts here denote partial differentiation, Since i is defined on R x V'x T° x T°,
where T° is a linear manifold of T, we may regard T° as an inner product space in its own right
and define and compute the derivatives ; and ¥, in the usual way: Let ¢(-) map L— R where
L is any finite dimensional inner product space (here T°). Then ¢(+) is said to be differentiable
at uyeL if there exists an element ¢, (#,)€L such that

b (uo+h)=¢ (o) +Pu(uo) - h+o(ih]) VheL.

8, (w) is called the derivative of ¢(-) at u,.
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Having found F*(-), we then define 8*(-,-) by

0* (X t)= ae((a’t+[a+t(a’—a(a'/a))] «F*(t)[X—Y1)/a}
) »

and readily verify (3.5), and (3.5);. A
We now have the main result of the present section:

Theorem 1. The response functions (3.1) are compatible with thermodynamics
if and only if

(i) the free energy is independent of g and L,
y=y(,L), (3.6)
(ii) the ““entropy relation” holds,
n=—,(0, L), (3.7)

(iii) the response functions f(+,+) T(+,+,+,+) and §(, -, -, ) must be such that
the reduced dissipation inequality,

holds in every thermodynamic process.

Proof. Since, as previously remarked, the response functions (3.1) are compatible
with thermodynamics if and only if (3.3) is satisfied for every choice of an isochoric
7 and a temperature field 8, we may take x=yx* and 0=0* with y* and 6* as in
the lemma. Noting that these functions are class C* and that the chain rule
(3.4) applies, we see that at the particle Y and at the instant t=0 (3.3) becomes

p{F(D+AD) @' + P (1) - @' + P (1) - A’ +§i(I) - 4"}

_T(p).A_,_ﬂg_;)'_aéo, (3.9)
where I'=(a, a, A, A’). We observe that (3.9) must hold identically for all (a, a’,
a,a’, A, A’, A"") provided only that a>0and 4, A°, and A" be traceless. Moreover,
a', a’, and A" appear only linearly; hence (3.9) is equivalent to

oD +7(D))a' = () - a'=y;(I)- A" =0, (3.10)

Pl 4 ~F(n)- 4+ 442 < (3.1)
which must hold for all (a, &, a, a’, A, A’, A”') meeting a>0, and trd=trd’
=trA"” =0. Thus (3.6) and (3.7) necessarily follow from (3.10), and with the ad-
ditional aid of (3.11) we also reach (3.8). To see that these three conclusions are
also sufficient for thermodynamic compatibility requires only substitution. A

Theorem 1 has several immediate consequences the first two of which merit
the status of corollaries. To set the context for the first of these, we note that
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while ¥ (-,-) was only assumed to be class C! it is immeditate* that ¥,e(:, )
and Wy, (-,-) (and hence, also §,(:, <)) each exist and are continuous. Con-
cerning ¥/, (+, +), we have not been able to show quite so much; however, utilizing
the assumed C' smoothness of T, we can prove

Corollary 1. The free energy of a fluid of complexity 2 of necessity has a stationary
point at equilibrium.** Moreover, the character of this stationary point (i.e., mini-
mum, maximum, etc.) is completely determined by the function T(-,0,0, +). Speci-
fically, § (8, -) is twice differentiable*** at zero and

¥L(6,00=0, pJ,.(6,0)-(4® A)=T(6,0,0,4)- 4 (3.12)
Jor all traceless A.
Proof. In (3.11), take A=a=0 and recall (3.6) to reach
$1(6,0)- 4’0

for all traceless A’. Clearly, only equality can hold and, since ¢/, is traceless, we
have proven (3.12),. ~

To prove (3.12),**** we begin by showing that T(0,0,0,+) - 4 is linear. To
establish this, we return to (3.11), take a=0, and use (3.6) to find

pUL(0,4)- A'<T(,0,4,4')- A4
for all traceless A, A’. Applying this inequality three times and adding, we arrive at
7(6,0,4, B B, ~B,B,)- A+B, T(6,0,4,B,)- A+, T(6,0,4,B,)- 420

for all traceless 4 and B; and for all non-negative B;. Replacing A with x4, x>0,
and dividing by x, one finds, upon letting x — 0, an inequality linear in A4 ; it thus
must be an equality and so

7(6,0,0, —8,B,—B,B,)- A=—B,T(6,0,0,B,)-A—B,7(6,0,0,B,)- 4.

By considering different choices for B, it is straightforward to remove the restric-
tion that f; be non-negative and thereby establish the linearity of T(6, 0, 0, -) - 4.

* Apply (3.7) and the assumed C?! smoothness of 7.
** Our use of the term equilibrium here is delibrately vague. A more precise term (but one
less suggestive of a later usage (cf., Section 4)) would be Jocally at rest.
*** Let #(-) and L be as in footnote ** on page 199 and suppose ¢{+) to be differentiable at
ug€L. Then ¢(-) is said to be twice differentiable at u, if, in addition to ¢,(uy)EL, there exists
a symmetric element ¢, , (#)€LQ L such that

b (o + k)= (o) + By (o) - h+3 (o) - (h® B)+o([h|*) VheL.

By symmetric we mean @,,#p) - (hQ@ k)=4,,,(kg) - (k@ k) for all h, keL. We also remark that
&4a(p) may, equivalently, be viewed as a symmetric, bilinear form on L @ L (Harmos [39]) and
in this case we would write ¢, , (o) (h, k) for ¢,,(eg) - (R @ k) and call ¢, (up)(h, k) the quad-
ratic form associated with 4, (k;).

**** If one assumes @ (8, +) is twice differentiable in a neighborhood of zero, then (3.12), may
be very quickly established by replacing 4 with x4 and taking ¢=0 in (3.11) and then
noting that the resulting function of x is non-positive and vanishes at zero; thus its first derivative
there is zero and (3.12), results.
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Using (3.11) and (3.6) yet again, we easily see that

- s .
oY (8, 54) - A’g; T(0,0,54,84") - A
for all traceless 4 and A’, any number s, and any positive number &. Therefore,
—% T(6,0,54, —ed’)- A<py, (0, sA) - A’g% T(0,0,54,¢4') - A.
Taking A’ = A, we see that the middle term is p 7ds— ¥ (0, sA) and thus we come to
—-%jsi’(@, 0,54, —ed)- Ads<Zpy (6, A)—p¥ (@, O)gle glsT(o, 0,54,e4) - Ads.
Now, we know that %(T(B, 0,0,4) - A+ T@,0,0, A) - 4) is a symmetric

bilinear form in (4, A’). If we substract { of its associated quadratic form from
our last result, we find

1
—%js[f(o, 0,54, —ed)—T(0,0,0, —sA)]- Ads
]
<p¥ (6, 4)—pY(8,0)—37(6,0,0,4) - 4

1
g% [s[7(0,0,54,c4)-T(6,0,0,24)] - Ads,
0o

or, applying first the integral mean value theorem and then the differential mean
value theorem,

2
—2-1,(0,0,754, —cA)[4]- A<pY (0, )= p¥(6,0~17(6,0,0, 4) - 4

=2
<> 7,(0,0,754, cd)[A]- 4,

where 3, §, , and 7 all lie in (0, 1). Thus employing the Cauchy-Schwarz inequality
and the fact that the linear operator T, (6, 0, A, 4’) [-] is bounded, we come to

6, 4)—p i (6,0)—17(0,0,0,4)- A
|41

|7,(6,0,754, e4)],

~L12,0,0, 734, —ea) s 2

L

. &
and this is easily seen to imply

pU (O, )=p¥(6,0)+31T(6,0,0,4)- A+0(l4]),

that is, ¥/ (0, -) is twice differentiable at 0 and (3.12), holds. A

As we shall see in Section 5, the Clausius-Duhem inequality, alone, can
provide no more specific information on the nature of the stationary point at
(6, 0) than is indicated in (3.12),. In particular, it cannot be used to prove that ¥
has a local minimum at (8, 0). However, it will soon become apparent that the
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character of this stationary point is of signal import for the temporal evolution of
the fluid.

Let us now interpret the reduced dissipation inequality, (3.8). We see straight-
way that in contrast to a Navier-Stokes fluid the stress power in a fluid of complex-
ity 2 need not be positive even if locally the heat flux or temperature gradient
vanishes. Indeed, when this happens one can only assert that the stress power is
bounded below—never being more negative (nor less positive) than the projection
of p, on L. In particular, the interaction of deformation with the free energy
surface provides a possible mechanism for forcing, in certain flows, the stress
power to be large and positive —a mechanism not present in the fluid of Navier
and Stokes.

Corollary 2. The response functions T and § must satisfy the “mechanical dissi-
pation inequality” and the *‘ heat conduction inequality”, respectively. That is,

7(0,0, 4,0)- A=0,

3(0,a,0,4")-a<0, (3.13)

Jor all traceless tensors A and A’ and all vectors a.
Proof. It is immediate from (3.11) and (3.12);. A

By replacing A with x4 and e with xa in (3.13), then dividing by x and letting
x—0, it is easily seen that T(6, 0, 0, 0) can only be a multiple of the unit tensor
while § (0, 0, 0, A’) must vanish. Thus, at any point in the fluid where g=L=L=0
the stress system can only be hydrostatic while, if g=L=0, the heat flux must be
zero. This last is generalized through application of the principle of frame indiffer-
ence at the end of this section.

As a final direct consequence of Theorem 1 we note that not only must
and # depend solely on 8 and L, but also so must & To see this, enter (2.10) with
(3.6) and (3.7) to find

e=8(0, 8 L, L)=1 (6, L)~ 09,(0, L). (3.14)
We conclude this section by briefly considering the restrictions placed on the
response functions by the principle of frame indifference [20}]. It is well known that
under a change of frame defined by a time dependent orthogonal tensor Q the
scalars i, 1, €, and 0 are unaltered while T, ¢, g, L, and L transform according to
T-QTQ’,
4—Qq,
g—Qs,
L—QQ"+0QLQ",
L—0Q"+00"(QLQ")+(QLQ") 0Q" + QLQ".
The restrictions which frame indifference imposes on the response functions are
readily solvable by use of standard arguments. Thus with the aid of (3.6), (3.7), and
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(3.14) we obtain .
l/’ = l// (0’ A 1),

n=—",(0, 4,),

= (0, 4,)—0,(9, 4,), (3.15)
=—pl+T(0,g, A4,, 4,),

q9=4(0,8, 4, 4,),

where the symmetric tensors 4, and A4, represent the first two Rivlin-Ericksen
tensors and are defined by

A, =L+I7
1=EtL (3.16)

Ay=A,+A,L+74,.

In addition, the functions ¥, T, and g are defined in terms of ¢, T, and g, respec-
tively, and must be isotropic functions, i.e.,

¥(0,4,)=1(6, 04,07,
QT(0, g, 4,,4,)0T=T(6, Qg, 04, Q", 04, 0", (3.17)
Qa(e’ ga Al’ A2)=‘?(9, Qg’ QAI QT’ QAZ QT)

While general theorems exist for the specific representation of such isotropic
functions (see e.g. [20] or the review article of SPENCER [22]), we do not gain any
advantage by appealing to them in the present work. It is of interest, however, to
observe that by taking g=A4,;=4,=0 in (3.17), we reach QT (9, 0, 0, 0)Q"=
T@,0,0,0), while (3.17); yields, for Q= —1 and g=0, that §(9,0, 4,, 4,)=
—§(6,0, 4, A,). Thus T(8, 0, 0, 0) is isotropic while §(8, 0, 4,, A,) vanishes;

T(6,0,0,0)=11tr (8,0, 0, 0),

6(0’ 0)A15A2)=0' (318)

In conjunction with (3.15),, (3.18), shows that at a particle in local equilibrium

the stress system is hydrostatic. On the other hand, (3.18), shows that, regardless

of the temperature and the state of motion at a particle, if the temperature gradient
vanishes there then so does the heat flux.

4. Boundedness and Mild Uniqueness of Fluids of Complexity 2

We saw in the preceding section that the Clausius-Duhem inequality, while
forcing (8, 0) to be a stationary point for (-, +), gave no explicit guidance as to
its character. This is in marked contrast to results obtained by CoLEMAN [9], who
proved, for a broad class of simple fluids with a certain type of fading memory,
that the Clausius-Duhem inequality forces the free energy to have a minimum in
equilibrium.

While this minimal character of the free energy is trivially satisfied for perfect
fluids and the linearly viscous fluids of classical hydrodynamics, it has, more
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generally, long been a common belief in classical thermodynamics. A second
commonly accepted belief in thermodynamics is that the specific heat should be
positive. Thus, until further notice (¢f. Section 6) we make the following two major

Assumptions.
A1) The free energy of a fluid of complexity 2 is a minimum in equilibrium,

VO,0=F6,L) or ¥(6,0<¥(0,4,). (4.1)
A?2) The specific heat c=£&, is positive,
c=28(0,L)=8,(0,L)y=¢,(0,4,)=¢c(0,4,)>0. (4.2)

If equality holds in (4.1) only when L (or 4,) vanishes then the minimum will
be said to be strict. With regard to (4.2), we note that by (3.14),; and (3.15),, it is
equivalent to .

c=¢(0, 4,)=—011,,(0, 4,)>0. 4.3)

We shall say* that a body is mechanically isolated at the instant ¢ if

| %-Tnda+ [ px-bdv=0. 4.9
A

292,

In particular, (4.4) will be met if (i) b=0in @, and 8, is traction free and sta-
tionary over complementary subsets; or, if (i) b is conservative and 04, is at
rest. For simplicity, we shall often say that a process is mechanically isolated if
(4.4) holds throughout it.

We shall say* that a body is immersed in a thermally passive environment with
(constant) temperature 8° at time ¢ if

{0(x,)-0°1q(x,1) - n(x,N=Z0 VxedQ,
{0(x,)=0}r(x,)<0  VxeQ; (4.51

and we shall say™* that a process is consistent with a thermally passive environment
with (constant) temperature 0° if throughout it

1 1 1 1
— ——Ya. - - >

ag,(ff e)q nda ,',[p(0° 6,)rdv=0. 4.5),

Clearly, (4.5), is implied by (4.5),, whose physical content is evident: at time ¢
heat is neither being conducted (radiated) into B at surface (interior) points
having a temperature higher than 6°, nor is heat being conducted (radiated) out
of B at surface (interior) points having a temperature lower than 6°. If the radiant
heating vanishes, then (4.5), is satisfied trivially whenever one of the following
three conditions prevail: (i) the boundary of B is insulated (i.e., q - n=0), (ii) the
boundary of B is held at the constant temperature 6°, or (iii) the mixed condition
that (6—0°) and q - » are required to vanish over complementary subsets of 08,

* Cf. GURTIN [11] and CoLEMAN [13].
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Consider now the so-called canonical free energy function @(-) given by
o= | p(e—0°n+1x-X)dv. (4.6)
Q¢

From the balance of energy (2.4) it readily follows that @(-) satisfies

4 oty —0° ) Tondo+ | L™ da— [ L1
—E—(I)(t)— E){({pndu+arj}t 7 da d[ 5 dv}
+{ [ Tn-%da+ | pb-%dv} @7
2. P

1 1 11
{5 () o ndom fo{ ) v
{a,{, A ,{” o° o9)"%

in every process. In particular, we see that in any process that is mechanically
isolated and also consistent with a thermally passive environment at temperature
6° the Clausius-Duhem inequality (2.5) yields

d
— 9()=0. (4.8)

As noted by ERICKSEN [25] and GURTIN [11], the term £¢—60°% appearing in
(4.6) has the more convenient form

§(8, 4;,)—0°7(8, A) =¥ (0, A~ (0—0°)9,(6, A ;)

=Y (0°, A1) 3 ¥60(0%, 4)(0—6°),
where we have used (3.7), (~3.14), (3.15),, and Taylor’s formula. Here, 0*, which
depends on 0, 6°, 4,, and Y/(-, ), lies in the interval (6, 6°). Recalling (4.3), and
introducing K=K (6°, 8, 4,)=¢(0*, A,)/26* we thus obtain

e—0°n=y(0°, 4)+K(6°, 6, 4,)(0—6°), (4.9)
where, by (4.3),, _
K(©°,0,4,)>0. (4.10)
Hence, ¢(+) may be written in the equivalent form
&(0)= | p[¥(6°, AD+K(6° 6, 4,)(8—6°) +4% - i]dv. @.11)
2

We now have the following result concerning the uniqueness of the rest state:*

Theorem 2. Let a fluid of complexity 2 undergo a process both mechanically iso-
lated and consistent with a thermally passive environment at the constant temper-
ature 6°. Suppose further that

(X,00=0, 0(X,0)=6° 4.12)
for all Xe Q. Then

XX, =0, 0(X,H=06°

T(X, t)= _ﬁl9 q(X: t)=0

for all (X, t), where p=p(X, )=p(X, )—1 tr (6,0, 0, 0).

* See GURTIN [11] who also gives an argument that would suffice for the proof of Theorem 2
provided that (4.1) hold merely in a neighborhood of 0.

(4.13)
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Proof. By hypotheses (4.8) holds, so that
P(1) < ¢(0).
Equivalently, by use of (4.12), (4.11) yields

§P[K(O—0°)+45-%]dv< § p[Y(6°,0)— (6%, 4,)]dv=0, (4.14)
2, 20

where we have used the conservation of mass and the inequality (4.1). But, since
K>0, we immediately obtain (4.13), , which, when coupled with (2.1),, (3.16),
(3.17), and (3.18), gives (4.13);,4,. A

We next note that the hypotheses of this theorem are considerably less general
than they might seem. Specifically, we have the following

Corollary 1. The only processes compatible with both the hypotheses and conclusions
of Theorem 2 are those in which the radiant heating vanishes and the body force is
derivable from a potential, i.e.,

r(X,0)=0, pb(x,t)=gradp(x,?).

Proof. This follows by entering (4.13) into (2.7) and (2.8). A

In the remainder of this section we obtain certain boundedness theorems
concerning any process that is mechanically isolated and consistent with a thermal-
ly passive environment at a temperature 6°. As a first result of this type* we have
the following

Theorem 3. Suppose a fluid of complexity 2 is experiencing a thermodynamic
process which is both mechanically isolated and consistent with a thermally passive
environment at the constant temperature 0°. Let t' be any particular instant during
this process and consider the positive number w(t') given by

w()= [ p [(F(6°, A, (1) =¥ (6°, 0)+ K (") (O() - 6°) +4[%1*(1)]dv.  (4.15)
Then, for all t=t' one has
0sJ pLb(6°, 4, (1)) —¥/(6°, 0] dvsa(r),
o< | pK(D(0(1)—-0°) doso(), (4.16)

0< [3p 4P () dvo(r),

where K (t)=K(6°, 0(x, 1), 4, (x, 1)), and where explicit dependence on x has been
suppressed.

* See GURTIN [11] for a related theorem within a different context in which he emphasizes
the notion of stability.

15 Arch. Rat. Mech. Anal., Vol. 56
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Proof. Integration of (4.8) on [¢’, ¢], and use of (4.11), (4.15), and the conservation
of mass results in

JpLH(@ 4, @)-3@, 01dv+ | RO O(O-6°) do

+ [3pl22 () dv= (). (4.17)
0

Appealing to (4.1) and (4.10), we see that each of the three integrals on the left
is non-negative and (4.16) then follows. A

The bound (4.16), is empty for Navier-Stokes fluids and, indeed, for any fluid
that has (9, A)= ¥(8, 0) for all AeT2.* Moreover, even for those fluids of com-
plexity 2 for which the bound (4.16), is not empty its significance may not be
particularly transparent since its structure is dependent upon l//( -). Thus, a more
explicit bound than (4.16), would be desirable and, for some fluids of complexity
2, we shall now show that such an improvement is, indeed, possible.

Recall that by (4.1), we have t//Am(B 0)- (A®A)=0 for all AeTy. That is,
¥(0,-) is convex at 0. Let us now suppose that ¥(8, ) is, in fact, everywhere
convex, i.e.,

Va,a,0,4,) - (A® 4)20 (4.18)

for all A, and 4 in 77.** For this class of fluids of complexity 2 the following
more explicit form of (4.16), is available: ***

Corollary 1. Let the hypotheses of Theorem 3 hold, suppose 0 is a strict minimum
for ¥(8,+), and also assume (4.18). Define w(t'} as in (4.15). Then for any 6>0
there exists a positive number, N(8), depending only on 6 and the structure of ¥(-,),
such that for all t>1¢'

0§QIpIAll(t)dv§M5+N(5)w(t'),
0 Qj pK(1)(0(t)—0°) dv< (), (4.19)
0§ﬁHPIiI2(t)dv§w(t'),

where M Eﬁ[ pdv is the mass of the fluid.

Proof. It is clear from (4.16) that we need establish only that (4.16); implies
(4.19),. To do this, consider the function f(-) = =y (6°,-)—¥(6°, 0). By our hypo-
theses, f(+) is convex and has f(4)20 for all AeTy with equality holding only

* While we have not shown that this situation prevails for a Navier-Stokes fluid, it is an
easy consequence of (3.11) if 7 is assumed independent of L.
** We now assume {6, +} is twice continuously differentiable on all of 77.
*** The footnote on page 207 also applies here.
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if A=0. Therefore, by a result essentially due to CoLEMAN [13],* we have that
given any 8>0, there exists a p(-) such that

[ pldy1(x, oS 5+ [ o (4, (s 0)do,
(27 2,
7 ()
and replacing é with 2 M 8 and using (4.16), we achieve (4.19), with N(3) Ey—(I;ST**
A
We remark that while (4.19), is more explicit than (4.16), it may, for a partic-
ular fluid, be weaker than (4.16),. Fluids of second grade provide an example of
this as will be apparent from the form of ¥ (-, -) in Section 5.
We now obtain a boundedness theorem for the internal energy and entropy
functions based essentially on the conditions (4.3) and (4.18) which require,
respectively, that (-, A) be concave on R* for each AeT; and that (8, -) be

convex on T? for each feR™. First, however, applying (4.3) we observe that
(3.15), has a smooth solution 8§=6(1, A,). Thus,

'7+'7/o(é('l,A1), A1)=0 (4.20)
is an identity in (1, A,) and we may introduce the function £(-, -) given by
8(n, A)=E(0(n, 4,), 4,) =¥ (6(n, 4,), 4,)+8(n, A, 4.21)

where the last holds by (3.15), and (3.15);.
Theorem 4. Suppose (4.3) holds. Then the function &(-,+) defined in (4.21) is a
minimum in equilibrium,
é(”’ Al)gé(”! 0))
and the ‘“ temperature relation” holds,

é,' (", A 1) = 9.
In addition, if (4.18) holds, then &(-, -) is convex on R* x T ***

Proof. The conclusion that £ is a minimum in equilibrium is apparent from
entering (4.21), into (4.9) and using (4.1),:

&1, A)—&(1, 0)—(6°—0(n, 0)) n=4/(0°, 4,)— ¥ (8(n, 0), 0)+ K (9—6°)".

Thus by taking 6°=0(y, 0) and using (4.1) and (4.10), we obtain the desired
result.
To establish the temperature relation we need only differentiate (4.21)

8, =90, +0,+0=0,
where the last holds by (4.20).

* See CoLEMAN’s Lemmas A.1 and A.2. Either these lemmas may be modified so as to
apply to the present situation where f(+) is defined only on the subset T? of T, or the function
f(+) may be extended to all of 7 so as to preserve its positive definiteness and convexity, for
which the lemmas apply without modification.

** It can be shown that y(d)— 0 as d— 0, so that N(é)— 00 as 6 = 0.
*** We adopt the usual convention n>0.

15¢
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Finally, to show that (-, +) is convex, we first observe, using (4.20) and (4.21),
that

St SN 77N L 7V / VP

8'M= A 8'141 > €4, 44
'//00

l/JOB ll’oo

Thus, for any (¢, A)eR x T? the characteristic quadratic form, Q, for é is given by

Q=8 0 +208, 4,  A+54,4, - (A® A)

=(— L )(a2+2a$u,-A+J/“1 ®Woa, (A® A)+¥ars, (AR 4)

00
=(‘1/¢oe)(“+$941 : A)2+‘/~/A,A1 (4@ A),

and we see, by (4.3) and (4.18), that Q =0, which is both necessary and sufficient
for the convexity of £(-,-). A
If we now return to (4.9) and use (3.15), 3, (4.1), (4.10), and (4.21), we find

B, Ay —8°—0°(n—n°) =0 (6% A) — ¥ (6°,0)+ K(6°, 6, 4,) (6~ 0°)* =0, (4.23)

where we have defined 11°E—l/7,,(0°, 0) and £°=£(n", 0). Moreover, assuming
(6°,0) is a strict minimum for §(+,-) it is clear that equality holds in (4.23), if
and only if 4,=0, 8=0°, i.e., if and only if (1, 4,)=(3°, 0). Thus, if, for pur-
poses of normalization, we let y=6°(n—n°) and define

f(y’Al)Eé (FJ/;."""O’AI) —80_.}”

then it follows that f(y, 4,)>0 for all (y, 4,)e(—8°%°, ©)x Ty, and equality
holds only at (0, 0). Further, since f(-,+) and &(-,+) have essentially the same
characteristic quadratic form, then by Theorem 4, f(-,-) is convex. Finally, we
see that, in addition to (4.16),, (4.17) also implies

[ p1(6(x, 1, 4y (3, D) doS 0(¥) 424

for all t>¢'. Applying the results of COLEMAN mentioned earlier* we therefore
find that for any 6>0,

fold;|(x,)dv+6° [ pln—n°|(x,)dvSMI+N@) ().
Q. Q.

Here, as before, M is the mass of the fluid and N(J) is a number depending only
on d and the structure of & (and, hence, of ). Thus we have

Theorem 5.** Suppose a fluid of complexity 2 is experiencing a thermodynamic
process which is both mechanically isolated and consistent with a thermally passive
environment at the constant temperature 6°. Suppose also that &(-, ) is convex and

* See footnote * on page 209.
** This theorem is analogous to Theorem 3.2 of CoLeMAN [13].
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has a strict minimum in equilibrium. Finally, let t' be any particular instant during
this process and consider the positive number w(t') given by

w(t')EQI pLE(n(), A (1)=& —0°(n(t) —n°)+ 3| %> ()] dv,

where n° = —y(6°, 0) and €° =&(n°, 0). Then for all t= 1t and for any 6>0 one has
0< [ple(x, N—e’|dvSMI+(N(S)+1) (),
D

0=6° [ pin(x,)—n°|dv=Mo+N()w(t),
2

0< [ pld,|(x, ndvSMé+ NG w(r), (4.25)
2

0< [4pl2|*(x, Ndv= (1),
[

where M is the mass of the fluid and N () is a positive number depending only on §
and the structure of &(+,+).

Proof. We have already proven (4.25), ; 4. To prove (4.25),, we first observe that

e—&"=f(y, 4))+6°(n—n").
Thus by the triangle inequality and the fact that £ >0 we find
le—e’|Sf+0°In—n°|,

from which (4.25), is immediate upon using (4.24) and (4.25),. A

As was the case for the result (4.19), in Corollary 1 of Theorem 3, we note
that the proof of (4.25); does not apply to a fluid that has (0, A)=y (6, 0).
However, in this case the results (4.25), , , will still hold.

5. Fluids of Second Grade: Thermodynamic Compatibility

An incompressible fluid of second grade is a specific example of a fluid of
complexity 2. For it the response function T(-, ., -, ) of (3.15), is required to be
of the special form

T(6, 8, Ay, A;)=(0) A, +8;(6) 4, +&,(0) A}
=aO) L+ I+ O)(L+LT+ L+ [ +2I°L)
+&O)(P+L7+LL"+L7L)
=7, g L, L),

(5.1)

where (3.16) has been applied. Thus, with some rearrangement of terms, the
reduced dissipation inequality (3.8) requires

pUr(a, 4)- 4~ (@)[4'+AT]- A-j(@)[4+A47] - 4

q(a,a,4,4") - a 5.2)
a

—(@,(a)+ &, (@) [A>+ A>T +2447] - A+

<0
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for all (a, a, A, A’) such that a>0 and 4, A’eT°. Taking a=0, we reach an in-

equality that must hold identically for all traceless 4 and A’. However, since A’
appears linearly, the term involving it must vanish identically and we have

Vi(a, A) - A'=51753)— [4'+4' 7] A. (5.3)

Again, since the remaining inequality must hold identically for every traceless 4,
the terms cubic in A must vanish identically, and we obtain

(@1(@)+ &, (a))[4%+ A*" +244T] - A=0. (5.9
This leaves the residual inequality
p@[Ad+AT]-A=o0. (5.5)

Finally, since (5.3) and (5.4) are identities, it follows that (5.2) has the general form

a(as a, A’AI) -a

; —n(@)[4+A4"]-A=0. (5.6)

It is clear that (5.4) and (5.5) can hold for all traceless 4 if and only if
&y (a)+a,(a)=0 and u(a)=0, 5.7

respectively. It is equally clear by the definition of ¥, that (5.3) is equivalent to
d - —
—_d-—s— lp(as A +SA’) |s=0 =a1’# [A’ +AlT] . A

for all traceless A and A’. Taking, in particular, A=rA’ and setting Al=s+r,
we arrive at

d » l; _ &1 (a) ' 'T '
W‘I/(a’ )'A)l1=r_ P) [A +A ] 4 r,
which, when integrated over the interval (0, 1), gives

v(a, A)={(a, 0)+&—;(;)‘2 [4+47] 4, (5.8)

for all a>0 and all traceless 4’.
Thus, we have established

Theorem 6. The response functions l’/;, T, and g4 of a second grade fluid are compatible
with thermodynamics if and only if

(i) the viscosity is non-negative,
w6 =0, 5.9
(i) the normal stress coefficients are related by

%,(0)=—a,(0), (5.10)
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(iii) the free energy is quadratic in L and has the explicit form*

o‘1 (0)

Y0, L=y @)+ |L+ L)%, 3.11)

(iv) the response functions § and u must be such that the reduced dissipation
inequality,

a(, g,;‘, L)-g <pO(L+L)-L, (5.12)

holds in every thermodynamic process.

Proof. Necessity follows at once from (5.6), (5.7), and (5.8). Sufficiency is im-
mediate. A

In terms of (0, A,) we see that (5.11) and (5.12) are equivalent to

56, 4)=7 0+ 25 4,1,

(5.13)
90, g,Aop 42)-8 1 M(B)IAII
respectively. Moreover, by substituting (5.10) into (5.1) we obtain
70,8, A4y, A))=1(0) A; +3,(6)(4,— 43)
=1(0)(L+ ") +& (6) (L+ L7+ T L—LI") (5.14)

=70, ¢ L, L)

as the only possible response function for the stress in a second grade fluid.

We see from Theorem 6 that, beyond forcing &,(+)= —&,(+), the Clausius-
Duhem inequality imposes no restrictions at all on the sign of &,(+). However,
from (5.13), we easily obtain the following

Corollary 1. The free energy function ¥ (-, ) of a second grade fluid has a minimum
in equilibrium if and only if
& (@H=0. A (5.15)

Exempting the trivial case when &, (6)=0, we see that this minimum will be
strict, and that ¥ (8, ) is convex. Thus the results of Section 4 are all applicable.
Indeed, in Sections 6 and 9 we shall obtain decay theorems far stronger than the
boundedness results of Section 4 for the special case when &, (+)=constant=0.

On the other hand, if (5.15) does not hold, so that &, (6) <0, we are forced into
the position that ¥ (6, -) has a strict maximum (!) in equilibrium. In this circum-
stance not only do none of the results of Section 4 hold but, indeed, unbounded-
ness, non-uniqueness, and non-existence theorems can be demonstrated. Some of
these are reported in Sections 7 and 8 for the special case &, (-)=const. <0.

* Here we set (@) =w (6, 0).
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On the basis of the above remarks, and in anticipation of the theorems to be
presented in the remainder of this paper, it seems reasonable to assert, then, that
a second grade fluid must have &, =0, equality corresponding to the case of
Navier-Stokes fluids.

The concept of fluids of convected elasticity has been used by TRUESDELL (8] to support the
inequality &, <0. Inasmuch as this result is in disagreement with the above simple remarks, we
now briefly discuss the thermodynamics of these materials and, in particular, show that for all
non-spherical states of stress they are themselves in conflict with the Clausius-Duhem inequality.

While TRUESDELL does not consider thermal effects, we may account for them by including
in his stress response function a dependence on 0(¢) and g(¢), and by introducing similar con-
stitutive assumptions for v, », and ¢. Thus an incompressible material of convected elasticity is
c haracterized by the following constitutive assumptions:

U=P(F (), F(t—1*),0(2), 2()),
n=n(F(), F(t—1t%),0(1), g(1)),
T=—pl+T(F(5), F(t—t%), 0(2), g(9)),
g=q(F(1), F(t—1%),0(2), g(9),

where ¢ * is some fixed, positive constant.

Letting 7% denote that subset of T consisting in all tensors with positive determinant, and
defining T, as that subset of T* containing those tensors with unit determinant, we see from
(3.2), that the natural, common domain of ¥, #, T, and g is T; x T; X R™ x V. However, since
T, is not open in T we shall, for the purpose of partial differentiation, extend the domain of
definition of these response functions to Dx Dx R* x ¥, where D is an open subset of 7 such
that 7, DS T™. On this extended domain we assume that the response functions are con-
tinuously differentiable. Of course, since such an extension is not unique the values of v, #, T,
and § will be non-arbitrary only when evaluated on TyX ;X RYX VS DxDx RT X ¥;
likewise the only components of the partial derivatives of ¥, 7, T, and g that will have intrinsic
significance will be those that lie in the tangent manifold of 73 x Ty x R* X V.

Since (2.11) must be satisfied in any thermodynamic process, then for those of sufficient
smoothness we have

M

(PUe—TF'")- F4plipe - F*4pWo+ )0+l g4+5550, ()

where (2.2) has been used, and where a quantity with a superposed star denotes that quantity
evaluated at (¢—t*).

We now show that the stress system in a fluid of convected elasticity must be spherical. Once
this is established, the equations (5), (7) and (10) of TruUESDELL [8] are rendered powerless* as
a means of motivating o; <0.

Toward this end, let A and B be any two elements of T; and let A" and B’ be any two ele-
ments of T. Then, since t*=<0, we know that there exists a function G(-): R — Tt such that**

G(0)=4,G(0)=4"; G(—1*)=B,G(-1*)=B".
1t then follows that the function F*(-) R — T; given by
G(7)
(detG())?

* Of course, it is only within the larger context of thermodynamics that we have been able

to do this.
** fere we use the fact that T* is not only open but also arcwise connected; ¢f. DAy [38].

F*(7)=
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is well defined and thus x*(X, t)=Y+ F*(¢)[X— Y] is, for fixed ¥, an isochoric motion. Having
F*(+), we now construct a temperature field 6* (-, -) exactly as in the lemma of Section 3 for any
given a, a’, a, and a’ with a>0.

Thus, entering x* and 6* into (2) and evaluating at (X, ¢t)=(Y, 0), we find, as a necessary
condition for ¥, 7, T, and ¢ to be compatible with thermodynamics, that

{pUp(D)—T) A"} - {4 34" - A) A} +pYp(I) - {B'—3(B™'" - B') B}

K)-_a§0’

+p o) +i(D)a +ply(T) - @'+

for all (g,a’,a,a’, 4, A’, B, B) with a>0, and 4 and B in T,. Here I'={(q, a, 4, B). Now,
since 4’, B’, a’, and a’ appear only linearly, we conclude
P -TN) A"} {4 34717 4) 4} =0,
Ye(I)- {B'—4(B™'" - B') B} =0,
(WD) +i(D)a’' =0,
¥ (I) - a’' =0.

Thus from (3); and (3), it follows, respectively, that the entropy relation holds and that v is
independent of g. On the other hand, by removing 4’ from (3), we find

T(N)=pYs(N)AT=4 (Y- A—tr DL @

Hence the deviatoric part of T'(+) is determined by that component of wp(+) which lies in the
tangent plane at the point 4 of the surface T, T.
To study the consequences of (3), we first remove B’ and find that

Vse(4, B, a,a)=4[Vs.(4, B, a,a)- B]B™'". (5)
as(z)
dt

©)

Now if $(-) denotes any path on T, then S(z)717 -
function ¢(z)=w (4, S(), a, a) is seen to satisfy

=0 and, with the aid of (5), the

d¢ _~ as
71:—‘—‘//1.';(14, S(T), a, a) . F—O

That is, ¥ (4, S(z), a, a) is unchanged for all paths on T;, and we conclude that on T; v is in-
dependent of F(t— r*). Thus, noting (3),, we have

=y (F (1), 0()). (6)
Now, by (4) and (6), we see that (1); reduces to
T=—pl+py(F,0)F", )

where p is an indeterminate pressure.
If we now suppose that the material is a fluid in the sense of NoLL [36), then it follows that
w{(+, ©) must meet

¥ (F, )=y (FH, 0)

for all unimodular H. Thus, since FeT;, we take H=F ! and find y(F, 8)=y (1, 6). Hence,
w(-, 6) is constant on 7, and (7) becomes

T=—pl.

That is, the stress system in a fluid of convected elasticity is spherical, as was to be shown.
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6. Asymptotic Mechanical and Thermodynamical Stability

In the present and the following two sections we seek to describe the temporal
evolution of the velocity and temperature fields in a second grade fluid which,
having been shaken and heated in an arbitrary fashion during (— o0, 0], is sud-
denly at £=0 and forever after mechanically isolated and immersed in a thermally
passive environment with temperature °. While the boundedness results of
Section 4 provide a partial description of this evolution when &, (8)=0, we focus
here on certain time dependent estimates and asymptotic analyses.

In Corollary 1 of Theorem 6 the question of whether or not the free energy
of a second grade fluid has a minimum in equilibrium was observed to be governed
by the sign of &, (). In the remainder of this paper we shall drop the assumption
Al in Section 4 concerning the equilibrium minimal character of the free energy
and will record in the statement of all results an explicit assumption concerning
the sign of &, (6) whenever it is necessary to do so. Also, for the remainder of this
paper, we shall suppose that ju(-) and &, () are constants, p and o, respectively.
By (5.9), ¢ must be non-negative, while o may be of any sign. However, for ease
of proving theorems we shall usually have in mind the situation >0 and «+0.*

With the above conventions, we may use (3.15); 4, (5.13);, and (5.14) to obtain
the following expressions for the stress, the stress power, and the internal energy:

T=—pl+pd, +a(d, +A4,W—WA,),
T-L=3T-A;=3(u|4,*+3a|4; ), (6.1)
~ _ a
e=¢(0, A1)=8(9)+WIA112,
where

EO)=Y(0)—6¥,(0), W=3(L-L.

It follows from the assumption A2 of Section 4 concerning the positivity of the
specific heat, c=£,(6, 4,), that &(-) is a monotone increasing function, i.e.,

§(6)>0 6.2)
for all 6.
Entering (6.1),, ; into the balance of energy (2.8), we find
pe(0)=4uld, P —divi+pr, ©63)

where 4 is as in (3.15)5;. Thus except for a possible dependence of § on 4,, (6.3) is
of exactly the same form as the energy equation for a Navier-Stokes fluid. Here,
however, unless =0, §() is not the rate of change of internal energy, nor is
1u|A,|? the stress power.

Setting v=2x we re-record the balance of momentum (2.7) in the form

divT+pb=pv, 6.9
where Tis as in (6.1),.

* Nevertheless, since simple limiting forms of our conclusions will apply when « is zero we
shall often allow the value =0 in the statement of our theorems.
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Finally, to complete the system of field equations for incompressible fluids of
the second grade, we record the condition that all possible motions must be iso-

choric: divo=0, (6.5)

which is clearly equivalent to (3.2),.

We note that (6.3), (6.4), and (6.5), when coupled with the response function §
and the expression in (6.1); for T, form a set of 5 equations for the 5 unknowns
v, 0, and p once b and r are specified.

If f(+) and k(+) map @, into V, we shall find it helpful to use the notation

(f-k>EnIf-kdv, IFIZ=<Sf-£.

Likewise, if F and K map , into T, we shall write (F - K) and ||F||?, the meaning
here being clear.

We now have

Theorem 7. In any fluid of grade 2 which is mechanically isolated for t=0 one has
& ——
Ilvll (t)+ 44 (t)+— 401*(®=0. (6.6)

Proof. If we form the scalar product of (2.7) with v, integrate over Q,, use the
divergence theorem and the conservation of mass, we establish the familiar
power theorem

_Hrplvl dv+j'T Ldv= | v- Tnda+_[pv bdv.

o

By the definition (4.4) of mechanical isolation, (6.1), and the fact that p is
constant, we therefore find, for a second grade fluid,

d d
T j|u|2du+p {14, >dv +——j|A1|2dv=O,

2p dt g,
which is (6.6). A

For the remainder of this section we assume a=0. With this agreement, the
quantity E(-), given by

E(t)snvuz(t)+7°‘; 14,0129, 6.7)

will then be a positive definite functional of the velocity field v. We interpret E(¢)
as the sum of the averaged stretching and the kinetic energy in the fluid. In terms
of E(+), Theorem 7 has the following

Corollary 1. Let the hypotheses of Theorem 7 hold and, in addition, assume a2 0.
Then E(-), given by (6.7), is a non-increasing function of time,

E@®=0, (6.8)

and is bounded below according to
2p

E@©e * <E(1). (6.9)
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Proof. To prove (6.8), we need merely appeal to (6.6), use the definition of E(-),
and note that || +||>=0. The proof of (6.9) follows by addmg — IIvII2 to (6.6) to
obtain E + Z£ Z,u E= 2‘“ ZE ||v||* =0, which, by integration, yields (6 9. A

We note in passmg that the inequality (6.8) is strict if and only if B is deforming
(i.e., when A, (-, 1)=%0). The inequality (6.9) is strict if v(-, 0)=0.

The inequalities (6.8) and (6.9) can be considerably augmented if we specify
in finer detail the character of the mechanical isolation of B. Toward this end, we
first introduce the position x,(¢) of the center of mass of B,

x,(H)= ———jpz(X t)du——Mgpxdv. (6.10)
Then (2.3) and (2.6) give
Mio()= | Tndat [ pbdv, 6.11)
082

and with (2.7) and the symmetry of the stress tensor, we obtain
4 [p(x—xp)x (v—%)dv= [ (x—xo)xTnda+ | p(x—xo)xbdv. (6.12)
dt 2 00 £

This is, of course, the expression of the balance of angular momentum with respect
to the center of mass. The quantities appearing on the right hand side of (6.11)
and (6.12) are called, respectively, the net load and the net moment about x, which
act on B. The vector

ho(t)Eéfp(x—xo)x(v—io)dv (6.13)

is called the angular momentum relative to the center of mass.

1t is convenient to introduce the following particular decomposition of the
velocity field, (-, +), by defining a vector field d(-, +) according to

d(x,)=v(x, 1) — % () — o (1) x (x—xy), (6.19)

where w(¢) is the axial vector of the skew tensor
W()=—r j plgrad v—(grad v)"] dv. (6.15)

To interpret d (-, -) and to set down some of its properties for later use we have

the following
Lemma. The vector field d(+,+), defined by (6.14) and (6.15), satisfies

(i) grad d+(grad d)T=4,,
(i) A;(-,)=0if and only if d(-,t)=0,
(iiiy [pddo=0, (6.16)
2

(iv) | plgradd—(gradd)" Jdv=0.
2
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Proof. Use the definitions and the conservation of mass (2.6). A

In words, (6.16) implies that the body can be moving rigidly at time ¢ when and
only when d(-, ¢) vanishes. Moreover, if d is viewed as a velocity field, then (iii)
and (iv) of (6.16) state that both its averaged translation and its averaged rotation
vanish.

With the above prerequisites established, we have

Theorem 8. Let B be any second grade fluid with « >0, and suppose B is mechanically
isolated for t =0. Further, suppose that the net load, net moment about x,, and the
initial angular momentum relative to the center of mass are all zero. Then there
exists a positive domain dependent function x(t)=x(82,) such that, in addition to
(6.8) and (6.9), one has
t 2puds
pr(DEx(0) ~davore
a+pk(t) ¢

2

0= lo—%ol° ()=
A (6.17)

2p
2pEo(0) T 2p E(0) e‘J——a+px<s)
o

t
< 2n<

where
Eo(0)= o= %ol O+~ 4,1 ©).

Proof. By (6.14) and the fact that p is constant, we have

1412 = o= o1+ [0 X (s =) <20 | (1= 30)x (=) do,
=uv—xonz+uwx<x—xo)nz—%w(t)-hoa),

where we have also used (6.13). But since the net moment about x, is required to
vanish, then (6.12) yields hy ()= hy(0), which vanishes by hypothesis. Thus we
have

) = lo— %ol + @ x (x—x)I* Z llo— %o ||, (6.18)

Now since p=const. £0, (iii) and (iv) of (6.16) are sufficient for the validity
of both the Poincaré inequality* and the Korn inequality* for d, so we may
assert the existence of positive numbers ¢p(Q,) and ¢, (2,) such that

Id]|* S cpligrad d||* S cp ek 14,117, (6.19)
where we have also used (i) of (6.16). Combining (6.18) and (6.19) we readily reach
””—ioﬂzécl’ck "A1”2

and thus obtain

o x e il2< < a ) 2
(1+ 2pc,.c,<) llo— %ol -_—Eo(t)=(c,,c,(+—2p A% (6.20)
where

Eo(t)su»—xon‘*(t)+%nAln’(t).

* See (A.5), (A.6) and (A.7) of the Appendix.
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Next, we observe from (6.10) that o —%,]|2= llvllz—% | %012, and, since the

net load is, by hypothesis, zero, we see from (6.11) that £,=0 so that [|v—.x0|[2 =

||—1;]|—2. Thus upon entering into (6.6), using the definition of E,(-), and using the
estimate (6.20),, we obtain

2u 2u 2# Pcplx
os— =Eo+——Ey S
= "v xO” 0+ o="_" o a+2pCPCK

Integrating each of these two differential inequalities, we find

_ 2n ' _ 2uds
0 a+px(s)

Eo(@e * <E,(H<E,(0)e , (6.21)

where we have set k(s5)=2cp(2,)ck(Q,). But (6.21), (6.20), and the fact that
% I14,12SEo(t) yields (6.17). A

Corollary 1. Under the hypotheses of Theorem 8 the ““angular velocity tensor”
W(t) of (6.15) meets

t 2upds
— 2 “d T
o<W )W - 105D gy *T, 6.22)
while its axial vector o(t) satisfies
IHo@®= | pdx(x—x,)dv. (6.23)
2

Here, J is Euler’s tensor and I is the inertia tensor, i.e.,

J(= [ p(x—x)@(x—x0)dv; I(O=1p|x—x,|>dv-J().
2 2¢
Proof. By (6.18),, (6.19), and the definition of x(z) we have

o (x~xl*< D 14,12,

which is clearly equivalent to
wTw.J<EZ “Alll

Thus using (6.17), we obtain (6.22).

To prove (6.23) we recall that hy(2)=0, and by (6.13) and (6.14) observe that
this is equivalent to
{ p(x—x0) X (0 x (x—x) +d)dv=0,
2

which is (6.23). A

Corollary 2. Under the hypotheses of Theorem 8, if A, (-, 0) vanishes then E,(0)=0
and the velocity field is a pure translation for all future times, i.e. v(x, t)=xX,(t)
Jor all (x, t)eQ,x [0, ).
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Proof. By (6.20), we see that ||4,[|%(0)=0 forces E4(0)=0, and this, with (6.17),
gives the result. A

Considering now a rather different way in which B could be mechanically
isolated, we have

Theorem 9. Let B be any second grade fluid with o =0, and suppose B is mechan-
ically isolated for t=0. Further, suppose there exists a subsurface S=0Q of non-
zero area measure such that XeS=v(X, 1)=0V =0, i.e., S;,=S, and v(x, t)=0V
(x,)eS;x [0, c0). Then, there exist two positive domain dependent functions
k() =x,(2,), i=1 or 2, such that, in addition to (6.8) and (6.9), one has

_ ¢ 2uds
ognvlﬁ(t)g%E(O)e S (6.24)
2pE0) -2%, 2 2 2
Oéme 4 I°()S4igrado]|“ () 4k, ()| 4,17 () 625
¢t 2uds "
< 8px, () E(0) e*o‘m

= b

o
where

a
E(0)=IIvII2(0)+§; 14112 (0).
Proof. Since v(-, ¢) vanishes on §,=S,, we may use both the Poincaré and the
Korn inequalities* to write
Ioll® < cpligrad ol|* <cpeg 14,112 (6.26)
Thus, in view of the definition (6.7) of E(z),

— % Vo)t <E(n< ( _."_‘_) 2
(14552 11 SEOS (erext ) 1A (6.21)
Turning to (6.6) and using (6.27), we have
s B 2o 2u
==l A S~y o E,
which, upon integration, leads to
_t 2pds
E(1)<E(0)e ° *T70¢, (6.28)

where x, (s) =2cp(Q,) cx (2,).
Now (6.28), (6.27), and (6.9) give (6.24), and (6.25),. In addition, recalling
that one always has |4, > <4 | grad v]| and using (6.26), , we reach (6.25); 4, where

1, (s) = ¢ (2,). Finally, (6.25), follows from (6.28) and the fact that -21[; 14,12 < EQ).
A

Corollary 1. Under the hypotheses of Theorem 9, if A, (-, O) vanishes, then v(-,t)
vanishes for all t 2 0.

* See (A.5) and (A.6) of the Appendix.
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Proof. Since 4, (-, 0)=0 implies that v(-, 0) must be instantaneously rigid, and
since v(+,0) vanishes on S;, then v(-,0)=0. But this in turn yields E(0)=0,
and we now apply (6.24) to complete the proof.* A

Corollary 2. Any flow of a second grade fluid having a2 0 which takes place in a
stationary rigid container under a conservative body force field meets the estimates

_ 2pt
< 2 n< PK atpx
0ol (S A E@e 77T, o
2n 2ut .
pE(O) _Tt< 2 < P _a+pk
Tore - Sleadv’(OSLEQe T,

2 %
for a fixed number k which does not exceed (%) (i) V(Qo)}, where V(Q,)

is the volume of the container Q. 4n

Proof. Here we assume the classical adherence condition: v(x, )=0 on 0Q,=30Q,.
Therefore, since the body force field is conservative and dive=0, we see that B is
mechanically isolated and that Theorem 9 holds with S=0Q. We now observe
that since v=0 on ¢Q, and divev=0, then

lgrad o]l * =44,

which implies that Korn’s constant ¢, of (6.26), may be taken to be 1. We also
note that the Poincaré inequality of (6.26); may be written with a time independent
constant, ¢cp=cp(Q,)=cp(Q,). Turning now to (6.24) and (6.25) and setting
K=k,=2¢p - 1=cp, K,=1%, we may explicitly evaluate the integrals in the ex-
ponential terms and (6.29) then follows. The fact that we have

k=cp(Qo)= (—71;) 2 (%)i V(Q0)?,

follows from (A.2) of the Appendix. A

We remark that Theorems 8 and 9 have in common the result that no initial
disturbance in any second grade fluid having >0 can ever decay away in a finite
time. That is, 4,(+, 0)30 implies A, (-, #)+0 for all later time. This result has
been shown (using entirely different methods) for Navier-Stokes fluids (x=0) by
OGAwA [23] and DYER & EDMUNDS [26], both of whom give lower bound for
llo|?(¢) but only under special regularity assumptions on the flow.** In our

* Tt is interesting to note that the argument used here can be applied to (6.9) to prove that
A, (+,05£0=>A4,(+, 1)F0 V £ >0 if v is merely required to vanish at three non-collinear points.
For if 4,(+, 1)=0 for some ¢ >0, then v(+, t) would be instantaneously rigid, and being required
to vanish at three points, it then must vanish everywhere. By (6.9) we would then have E(0)=0,
contradicting 4, (-, 0)==0. Thus, any second grade fluid with «>>0 which is initially deforming
and mechanically isolated will, if it has at least three fixed non-collinear points, never cease
deforming in finite time. Of course, this simple argument does not yield the estimates of (6.24)
and (6.25), though it is consistent with them.

** OGAWA requires that sup|»(x, t)]€L, [0, c0) while Dyer & EDMUNDS require that either

xefdy
sup| #,(x, 1)| €L, [0,00) or sup|grad v,(x, 1)|€L, [0, c0) for some pell, 0). For both, 2,=%,
x€8 x e
and (;:(-, t) vanishes on 09, ’
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work such materials are specifically excluded and, in fact, the estimates (6.9),
(6.17),, (6.22), (6.25) and (6.29) are rendered either empty or trivial when ¢=0.
However, it is worth noting that one role possessed by viscosity in a Navier-Stokes
fluid is also preserved in the theory of second grade fluids: The presence of vis-
cosity (i.e., u=+0) is mandatory if disturbances are ever to subside. Indeed, from
(6.6), we see that u=0 forces E(t)=E(0) for all ¢ no matter what « may be.

Turning now to the behavior of the temperature field, we may expect that
the sharpness and, indeed, the very possibility of decay theorems for the tempera-
ture field similar to those just obtained for v(-,-) will be closely connected to the
specific properties of §(-,-,+,-), the response function for the heat flux vector.
From (5.13), we recall that § must be such as at least to satisfy the reduced
dissipation inequality

q(e,g,Al,Az)-g<i 2
0 =2”|A1|7

in order to be compatible with thermodynamics.
With these remarks in mind we make the following two

Definitions. (i) The heat flux vector is strictly compatible with thermodynamics if
d(a,a,4,4")-a=0, (6.30)
Jorall a>0, acV, and A, A'€T;.

(ii) The heat flux vector is strongly conductive if there exists a number 1>0
such that

G(a,a,A,A) . aL—la-a, (6.31)
foralla>0, aeV, and A, A'eT;.

It is obvious that strongly conductive =>strict compatibility with thermodynamics
= satisfaction of the reduced dissipation inequality (since p=0).

We now have

Theorem 10. Let B be any second grade fluid whose heat flux vector is strictly
compatible with thermodynamics. Further, suppose that, for t=0, B is immersed
in a thermally passive environment with constant temperature 6°. Then for any
t'20 and any t=t' the following maximum principle holds:

t
max |5(0(X, 1) —&°| Smax |&(8(X, 1) —&°| + - [max|d; 2(X, 1)dx, (6.32)
Xe Xe® 2p i xeq

where £° =£(6°).

Proof. We begin by deriving an important inequality which is valid for any second
grade fluid immersed in a thermally passive environment. To achieve it, let p be
any positive integer and define

Ip(t)Eﬁf_p(é(()(X, 1)—e°Y do.

16 Arch. Rat. Mech. Anal., Vol. 56
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Using conservation of mass, the energy equation (6.3), and the divergence theorem
we obtain

12"(t)=2n{g— fE@)—)" 42 do

2

+@2n—1) [ (E(@)—&)*" 2 5(0)§ - gdv (6.33)
(o
~ [ @O~ §-nda+ | p((@)—&) "} rdv},
0 Q¢

for positive integer n. Now since, by (4.5),, immersion in a thermally passive
environment means (6—6°)§ - =0 and (6—6°)r=0, and since, by (6.2), £(+) is
monotone increasing, then we have

(E@)—)""1§-n20, (E(6)—¢ P r<0

for positive integer n. Therefore, by (6.33), we find

iz,,(t)§2n{—g— fE@)—)Y" 4,2 dv
£ (6.34)
+@2n=1) [ (€@ —¢)*""22(0)§ - gdv}
2

whenever any second grade fluid is immersed in a thermally passive environment
with constant temperature 6°.
Now &(+)>0, 2n—2 is even, and, by hypothesis § - g <0, so we obtain
i n z o\2n—
La()=™E [ pE@)—e7" " 14 do,
P g,
which, upon applying Holder’s inequality, implies

. 1
LS Ly 7T O 14" de) . (635

Let '=>0 and =t be given. In addition, we may suppose ¢t>t' and I, ,(t) %0,
for otherwise there is nothing to prove. Let (¢,, 1,) be the largest interval containing
t and on which I, ,,(-) does not vanish. By continuity, this interval is not null, and

i
on it we may use the chain rule to compute I 2 (). We then find, using (6.35),
that .
i

2n 1 . 21n -1 U 4n 21n
12;: (t)= IZn(t)IZn (t)é (j p‘AI‘ dv) >
2n 2p 5,

and so, for any te(t,, 1),

L A u ol 1
DI OSI O+ [(] pldi]*"do)™ de.
t A
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Writing this last as an integral over Q and letting n — o0 we find *
t
max |£(0(X, £))—&°| Smax |§(0(X, D) —&°| + - [ max |4, [*(X, ) dz. (6.36)
XeQ Xeq 2p 7 Xen

Now, if t'e(t,, t,), we merely take =¢' in (6.36) and the proof is completed.
If ¢ is not in the interval (¢, ¢,), then since I,,(t;) must vanish, we have
(X, t,)=0°V Xe Q. If we now let > ¢, in (6.36), then by continuity,

t
max |e(0(X, 1)) —&°| S-— [ max [4, |*(X, D) d,
Xe 2p ¢, xea

and, since we are supposing ?'<t,, the right hand side here is certainly smaller
than the right hand side of (6.32). A

Corollary 1. Let the hypothesis of Theorem 10 hold and, in addition, suppose that
the monotone increasing function £(+) of (6.1); is such that

é(p)» o as p- . (6.37)
Then the temperature at any particle Y and time t is bounded according to
t
oY, <e ! (max [8(0(X, ) —e°|+]e° |+ jsz(t)dr), 6.38)
XeQ t
where t’ is any given instant preceding t, and where
s(t)=max |4,|(X, 7). 6.39)
XeQ

In particular, if the motion is such that s(+) is square integrable on [t’, ) then
0(-,+) is bounded on Q x [t’', 0).

Proof. Writing £(0(Y, t))=(e(6(Y, 1)) —&°)+¢°, using the triangle inequality and
the definition (6.39), and applying Theorem 10, we find
50X, D)<IE(0(Y, ) —e°[+]¢°]
<max|E(0(X, 1))—e°| +]¢°|
Xe

t
<max |8(0(X, )| +|e°| + L~ [ () d.
Xe 2p ¢

Since (6.2) assures the existence of £~ !(+), and since (6.37) implies that the term
on the right hand side above is in its domain, we readily obtain (6.38). A
Recalling that 4, is twice the stretching tensor, we give (6.38) the following
physical interpretation: The temperature field in any second grade fluid can, at an
* Here we use the fact that if #(-) is any continuous function defined on 2 then
.
max | h(X)|= lim( | h(X)*")*".
Xe n—+ow Q

A proof may be found in [35].
16*
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instant ¢, be no larger than a number determined, jointly, by the temperature
field at any prior instant ¢’ and the maximum local stretching that took place
during [¢', £].

For a rigid heat conductor, 4; =0 and Theorem 10 implies that if a state of
uniform temperature 6° is ever attained, then the conductor must remain in that
state for all subsequent times. For a moving fluid the presence of 4, in (6.32) as
well as in the energy balance (6.3) serves to illustrate a ‘“generative’” mechanism
which often rules out the possibility that the constant uniform temperature 6°
could ever be maintained after a finite time. For example, suppose we assume
the conditions of either Theorem 8 or Theorem 9, and, in addition, neglect all
radiant heating effects (i.e., r =0). Then at any instant # of uniform temperature 0°
we have g=grad0°=0 so that (3.18), yields =0 in Q,. Thus the energy balance
(6.3) reduces to p&,(0°)8=p|A,|*2 in ,, where, since |A4,]? is bounded away
from zero at any finite time, we may conclude that the right hand side does not
vanish at some point in Q,. At that point, since &(-)>0, we obtain §>0 which
implies that the local temperature 6° would not be maintained.

For, say, steady motions we observe that s(-) is not square integrable and,
therefore, the bounds of (6.32) and (6.39) become increasingly poor as time goes
on. However, if we require a bit more of the heat flux vector we then have

Theorem 11. Let B be any second grade fluid whose heat flux vector is strongly con-
ductive, and suppose that B is immersed in a thermally passive environment with
temperature 0° for t>0. Further, let there exist a subsurface SS0Q of non-zero
area measure such that XeS=0(X,t)=0°V1>0, ie., 0(x,1)=0°V (x, t)eS,; x
[0, 00). Then there exists a domain dependent function k (t)=x(Q,) such that

;ij(t)+—f———~'1(2"_1) ZF OS2 ([ pld, ") (6.40)
2n n pm(t)lc(t) 2n =2p Q‘P 1 ’ .

for positive integer n and where m(t) is a mean value of £,(6(-, t)).

Proof. Recalling the fundamental inequality (6.34), using the definition (6.31)
of strongly conductive, and observing that &(-)>0 and 2n—2 is even, we may
write

iz"(ogn{g [ (E©) 2" 14, P do

2 (6.412)
~42n—1) [ &(0)(E(0)—e)*" g - gdv},
2,

where A is a fixed number. Now,

[ 2(0)(E@) )" 2 g- gdv=—nlf- j'—él— [grad (8(@)—e°)" > dv
0, Q. ©0

X (6.41b)
=72m—(t)g§, {grad (£(6)—&°)"|* dv,

for some mean value m(#) of £(6(-,t)). But since, by hypothesis, the function
(8(6(-, t))—¢°)" vanishes on a subsurface S, of 02,, we may apply the Poincaré
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inequality * to find
1
=z = a0 2n—2 2n
!5[80(0)(8(0) 8) gdv m!(&(e) 8) dv= T—-— 2"()

where x(t)=cp(Q,).
Applying this estimate to the second term on the right of (6.41a) and using,
again, Hoélder’s inequality to estimate the first term on the right of (6.41a), we find

. 1-5 u — A(2n-—1
IZn(t)gzn{zilu 0 ([ plds 1 o)™ ~ 28 Lo,
p 2, n-pm
which gives (6.40) whenever Iz,,(t)=|=0 If 12,,(2)=0 for some %, then (6.40) is trivial-
1 1

ly satisfied; i.e., I,,(1)=0=>1; (t) 0=17" (=0 since I, (+) has a minimum
ati. A

Before stating our next theorem, we first define a deformation as being sub-
stantially decadent if there exist two positive numbers, B, and B,, such that

41 )? ()< By e, (6.42)
Thus, by Corollary 2 of Theorem 9, every deformation of a second grade fluid
having o> 0 that takes place in a fixed, rigid container will be substantially deca-
dent. Moreover, since we expect that many of the flows contained in the hypo-
thesis of Theorems 8 and 9 will be such as to have bounded Korn and Poincaré
coefficients, they too will correspond to substantially decadent deformations.
For any such motion we have

Theorem 12. Let B be any second grade fluid having o> 0 and possessing a strongly
conductive heat flux vector. Suppose, for t>0, B is undergoing a substantially
decadent deformation and is immersed in a thermally passive environment with
temperature 0°. In addition, let (X, )=0° for all (X, t)eSx [0, o©) for some
subsurface of non-zero area measure S<0Q. Finally, suppose that the Poincaré
coefficient x(-) of (6.40) is bounded** and that either

(i) the temperature field is bounded,
or

(ii) the function &(+) is such that

for some M>0. &(p<M Vp>0,

Then, there exist positive constants my, i=1,2,3, such that for every positive

integer n*** _mi(2n-1)
1&(0(., 1))—¢° |2,,_|s(9( 0)—elye ™
‘"(:) (e-%,_e mErl, ) (6.43)
2n—1 my ’
™R T T

* See (A.1) of the Appendix.
** This is always the case if S=0%. See (A.2) of the Appendix.
my(2n— 1) my

n? n

*** Here, we have assumed . If this fails, then (6.43) is replaced by an

obvious limit formula which we do not record.
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where £° =£(0°), where |- 1, denotes the L, norm on Q relative to the mass measure,
and where
S(f)= max s(7). (6.44)

tef0,1]

Proof. Either (i) or (ii) of the hypotheses tell us that &(8(x, ))<c; for some
¢,>0. Thus, m(t) of (6.40) meets m(t)<c,, while, by hypothesis, x(¢) of (6.40)
satisfies k (¢f) <c, for some c¢,. Thus, we may replace (6.40) by

I 1
l(2n 1) N T
In nzpCC IZn_2 (jp|A1|4 dU)2

L
é—(IPM |2 4n— Zdv)Zn

lIA

B2

p
B2y 2, N
s "(t A |"dv)""

2-L L B,
358 OB ¢,

=

where we have used (6.39) and (6.42). Upon integration, we therefore obtain

1 1
L 1 _M2a-y iy Zn B, _i2-n
uS  "()(pB,) -2t
2n < 2Zn, n2pcica n o __ n2pcyca
(t) 12n (O)e + ().(2"'—1) B BZ) (e )’

P npceic, n

(6.45)
. A2n-1) .
where we have used definition (6.44) and assumed —Tpc—c#— Finally,
1 1%2

noting that I27 ()=18(0(-,t))—¢°l,,, we see that (6.45) is equivalent to
(643). A

Corollary 1. Let the hypothesis of Theorem 12 hold and suppose S(-) of (6.44) is
such that S(t)=o0(e*") for every §>0. Then

e(0(-,0)—e°l,-0 as t— o,

Jor every finite p>1. If S(+) is bounded, the convergence is exponential.

Proof. Since Q is bounded, an easy application of Holder’s inequality gives
-, sM(@)'/P=127].], for p<2n. If we now use (6.43), the corollary is
proven. A

When the boundary is insulated, i.e., g - n=0 on 0Q,, the situation is more
complicated, principally because we require only that §(-,+,,+) be strongly
conductive. We begin by generalizing Theorem 11.

Theorem 13. Let B be any second grade fluid whose heat flux vector is strongly
conductive, and suppose that B is immersed in a thermally passive environment
with temperature 0° for t<0. Then there exists a domain dependent function
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k(t)=x(8,) such that
2n-1) { 21
p nm@®x() 24

2:2n-1) | 2
+{Mnm(t)x(t)}l"(t)’

I+ }IZn(t)< ,“A [“"dv

(6.46)

where r= Tii—l’ §=2n, m(t) is a mean value of £,(0(+, 1)), >0 is arbitrary, and n

is a positive integer.

Proof. We begin, as in the proof of Theorem 11, by noting that (6.41a, b) also
apply here. In the present case, however, we do not know the boundary behavior
of £(8(-, £))—¢°, and, thus, may only apply the Poincaré inequality to (6.41b)
in the form (A.1), Case (2),* to find

j's,,(f))(s(e) - 2g.gdv2 W{j(&(@) —&°)?"do
L (1 . (6.47)
—W(ﬁf (5(9)—8°)"d”)2} —z——{ 1.(0)— Iz(t)}

n"mk

where we have set «(#) =cp(£2,) and used the earlier definition of I,

To estimate the first term on the right in (6.41a), we use Young’s inequality in

the form AB< (—;—) (%) + (%) (Bo)® for all non-negative 4, B, and ¢, and for

. 1 1 c . .
all r and s meeting r>1, <= 1 -5 Thus, for positive integer » we may write

_f(é(@)—?f)z"—l |4, [*dv= } |8(8)—¢e°|*" 1|4, |*dv
2, 2,

2n—-1
g( n—1) I(E(G)—e°)2”dv+ij|A1|4"dv, (6.48)
2no’ 2n
2
<O L5 [,
2np
2n . .
where rEo T s=2n, and o is arbitrary.
Finally, entering (6.47) and (6.48) into (6.41a) we reach
. (2n-1) { 2
L0+ It
2Ot Gamorm 20"' a
2i(2n—-1)

lw's 4n
éT,{ (4] dv+m)* I,

which is equivalent to (6.46). A

* In order to meet the condition (A.3) of the Appendix we take w(-) to be the function

(é(())—e")"—%gt) JICORy D
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Before stating our next theorem we first introduce the following definition:
Given a constant vector ¢, a deformation is substantially decadent with terminal
velocity c if, in addition to (6.42), there exists a positive constant B; such that

0= lo—el* ()< Bs 1 4,11(0). (6.49)

Again, we remark that many of the flows covered by the hypothesis of Theo-
rems 8 and 9 may be expected to be substantially decadent with the terminal
velocity ¢(=%, for Theorem 8* and =0 for Theorem 9). In any case, Corollary 2
of Theorem 9 provides many such motions corresponding to the choice ¢=0.

Now suppose that a body, isolated against any energy gain or loss, reaches
a terminal velocity ¢ having undergone a substantially decadent deformation.
In this case the number

} [ plofC, 0o+ [ pE(O, 0, 4,(, 0)dv—1M e]’

would correspond to the amount of energy that would go toward heating the body,
and, indeed, balance of energy (2.4) yields

S pE(C, ),0)dv= [ pE(8(C,0), As (-, 0))dv

+%Q§ plo]2(,0)dv—3M|c|? (6.50),

assuming both mechanical isolation and 4 - n=r=0. Thus, if the body reaches a
uniform temperature at 7= 00, we expect it to be the number

gt (L [ p&(6(-, ), O)dv), (6.50),
M 90‘7
since (0, 0)=&(0).
The above remarks should serve to motivate

Theorem 14. Let B be any second grade fluid with a>0 which possesses a strongly
conductive heat flux vector, and which satisfies

é(p)=> o as p—oo. (6.51)

Suppose, in addition, that for t=20 B is (1) mechanically isolated, (2) undergoing
a substantially decadent deformation with a terminal velocity ¢ which is either zero,
or equal to X, if % is known to be constant, and (3), satisfies q - n=00n 8Q, x [0, ©)
and r=0 in Q,x[0, o). Finally, suppose there exist constants c,, ¢, Such that
0<c, Em)x(t) <L c, with m(t)x(t) as in (6.46).** Then, if S(-) of (6.44) is such that
S(t)=o0(e") for every >0, one has

|.§(0(-,t))—e"‘ lp—>0 as t— oo, (6.52)
* The hypothesis of zero net load in Theorem 8 is equivalent to x,=const.

** These hypotheses on m(-) and x(+) are slightly stronger than those required in the state-
ment of Theorem 12.
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Jor every finite p2 1. If S(+) is bounded, then the convergence is exponential and,
in particular, if p=2,

12.0(,0)—e BE<1E(0(-,0)—¢° |2_;'l"t‘|'+m2S(t)]e_'”"—e"""l 653

~2m3t

+myle e

where m;, i=1,2,3,4, are positive constants. Here £=&(0°) and 0° is the
number of (6.50),.

Proof. We shall establish (6.53), which then gives (6.52) when p=2. The general
case for arbitrary p will then follow by induction and by use of an estimate equi-
valent to that used in the proof of Corollary 1 to Theorem 12.

The hypotheses here are sufficient to guarantee the validity of Theorem 13.
Thus using the fact that m(¢f)x(t) in (6.46) satisfies 0<c, m(t)x(t) < c,, we may,
taking n=1, replace (6.46) by

24 po’ 21
<
L®+— {cz ——2—20 }Iz(t) j’|A1| dv+M

where >0 is an arbitrary number. So as to insure that the coefficient of I, (¢)

13 (),

is positive, we take asl/
we may write

217

Iz(t)+

I 2(D= 2 s*(1) I (o). (6.54)

We now estimate I1 (-). To do this we note that, since q - n=0 on 02, and r=0
in Q,, the fluid is, trivially, immersed in a thermally passive environment with
constant temperature 8° for any number 6°. That is, (6.54) remains true independent
of the value of 6°. We shall select this number so as to have I?(-) bounded above
by a decreasing exponential. Toward this end, we turn to the energy equation
(2.4) and observe that since B is mechanically isolated and q - n=r=0, then use
of (6.1); yields

Ip(s(e)+ 1A, | +—1v|2)dv

={p ((9( 0))+ |A1|( 0)+—Iv|( 0))
0

Thus it follows that

o {é(O(- 0)=[57 L (s0C.0)
2.
4 AP CL O+ 3 [0l 0) v—%lclz]}dv
(6.55)

4
-_P 2400 % 2 1 2
= {!{lvl dv+ 2P35[|A1| dv}+2M|c|
P e et2(ne 1412

5 {uv @+ 144 (z)}

for either e=%, or ¢=0.
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Now, by (6.50), and (6.51) the number { given by
(=3 1 (306, 00+ 14, PC.O+ 5 101 C.L0) do—Fle (656)
M g, ’ 4p TN 2 ’ 2 A
is in the domain of £~ !(-), and so the number

ge=5"1(0) (6.56),

is well defined and allows us to write (6.55) as
. o o
1, (0= | p(E(OC, D) —e(87)dv= ——‘2’—{nv—cu2+2— uAluz}.
o p

However, by hypothesis the deformation is substantially decadent with terminal
velocity %, or zero (i.e., c=const.), and thus, with the aid of (6.42) and (6.49),
we reach

2o=(£ ’ o—el|? +—— [ 4, "B, o m 6.57
1 - 2 c 2p 1" = 4e ’ ( )

for some B, >0. This is the desired estimate for I7(-).
Entering (6.57) into (6.54) and again using the estimate (6.42), we find

i 4 #202 2 —Bar, 24 - 2Bt
—— <4 2 = 2
IZ(t)+(pc2>12(t)=( ) )s ()B, e + Me, B,e ,

and, upon integration,
A

2 2 |
-t pca B 2 —Bat - ¢

< pea —p PC2
Iz(t)=12(0)e + 4/1(2,-[)(:2B2) S (t){e € }

2/134p02 {e—Zth
Mc,(A—2pc;By)

(6.58)

i
—e—”—c;t},

where we have used (6.44), and have assumed without loss of generality that
pcy B, +A+2pc, B,. This establishes (6.53).

Finally, to reach (6.52), we need only note that (6.46) is a family of differential
inequalities which provides a bound on I, in terms of I,, for positive integer n
and, with (6.53), we have started the induction. The function S(-), being monotone
can always be brought out of any finite time integrals and thus only powers of it
will multiply differences of exponentials. A

It is worth noting that while the hypotheses of Theorems 12 and 14 included
a>0, such an assumption was at no time used in their proofs. Thus, these two
theorems apply to any second grade fluid provided the remaining hypotheses are
satisfied. In particular, they apply to a Navier-Stokes fluid if we know that the
flows are substantially decadent (with terminal velocity %, or 0). However, we
emphasize that in the present work we have only been able to prove that sub-
stantially decadent flows can occur in those second grade fluids having «>0.
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7. Unboundedness and Instability: « <0

In this section we give an analysis of the velocity fields that arise out of (6.4)
and (6.5) when a<0. Although we shall deal first with quite general flows, our
most concrete results will concern flows that take place in a fixed, rigid container
and meet the usual adherence condition, i.e., Q,=Q,=Q and v(-, {)=0 on 0Q;
for the sake of brevity we call this canister flow. Thus, if we suppose B to be me-
chanically isolated*, we shall be concerned with velocity fields ©(-,-) that, by
Theorem 7, satisfy

W(t)+%IIA1IIZ(t)—%IIAxIIZ(t)=0, (7.1),

where we have written —|a| for a. In the following analysis it is convenient to
introduce the number N(¢) defined according to

N (t)Eng' 14 41* @)~ ol (), (7.2)

and having the interpretation of the excess of the averaged stretching over the
kinetic energy in the fluid.

In the special case of canister flow the equations (7.1), and (7.2), have the
equivalent forms**

TIE()+2- L Jgrad sl () L p' Terad o7 (H=0 .1,
and
N@s%?hmuwm—MWm. (7.2),

The striking difference between fluids for which « <0 and those for which
a20 can begin to be seen from

Theorem 15. Let v(-,-) be a velocity field satisfying (1.1), and let N(-) be as in
(7.2),. Then N(-) is a non-decreasing function of time,

N(9Z0, (7.3)
bounded below according to
2p ¢
N@®OZN(©Oe™ . (7.4)
Proof. Using the definition (7.2),, we may write (7.1), as
N2 144 ()=0, (7.5)

and so establish (7.3). If we now add lz—ﬂl lo]|? to (7.5) and again use (7.2),, we find

(t)——N(t)—

o] Lol zo, (7.6)
which establishes (7.4). A

* As observed earlier, if the fluid occupies a fixed, rigid container to the walls of which it
adheres, then it will always be mechanically isolated if the body force is conservative.

** To see this it suffices to note that 2{|grad v||2=}| 4, |2, which follows from the divergence
theorem, the condition div =0, and the fact that »(+, ¢) vanishes on 8.
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Corollary 1. If N(0)>0 or, indeed, if N(t')>0 for any t', then both N(t) and the
averaged stretching, |A,||*(t) must grow exponentially as t— co. In particular,
for N(0)>0, one has

2n 2p

l_z%l l4:12 ()2 o))+ N(©)e ™ 2N ()™ " 77

Proof. The only item not a direct consequence of (7.4), (7.2),, and the hypothesis
is the observation concerning N(¢’); this follows by integrating (7.6) from ¢’
tot. A

Actually, Corollary 1 can be strengthened slightly:

Corollary 2. If N(0)=0 and v(-,0)F0 or, indeed, if N(t')=0 and v(-, t')==0,
then both N(t) and the averaged stretching |A,||*(t) grow exponentially as t — .
In particular, for N(0)=0 and v(- 0)£0 one has that for any 8>0 there exists

an N;>0 such that
2p
N@HzN e Vise. (1.8)

Proof. It suffices to prove (7.8). Thus, let §>0 be given and observe that since
v(+, 0)&=0 and N(0)=0 we have ||4,]>(0)>0 and so, by (7.5), N(0)> 0. Therefore,

there exists a 9&(0, 8) such that N(8)>0. If we now integrate (7.6) from 3 to ¢ we
_2n5
have (7.8) with N;=N(@®)e . A
In words, Theorem 15 and its corollaries state that both the averaged stretching
and its excess over the kinetic energy will increase without bound if either (i)
the averaged stretching exceeds, by any amount whatsoever, the kinetic energy

at an instant or, (ii) the averaged stretching merely equals the kinetic energy at an
instant when there is any internal motion.

Since the “unpleasant™ conclusions of Theorem 15 and its corollaries require
that N(0)=0, it might be hoped that one could show that N (0) must be negative.
However, this is not generally true and, indeed, for certain canister flows it can
never be true. In this regard, we have

Theorem 16. Let v(-,-) be a velocity field satisfying (7.1), inside a fixed rigid
container Q, let N(+) be as in (1.2),, and let Q@ be any container whose Poincaré

coefficient, k(Q) =cp(Q) satisfies* k= l—%l—. Then,
(i) N(0)=0 for every field v(-, 0).

Moreover, if Q is such that k(Q)< l%l, then

(i) v(-,0)%£0=>N(0)>0.

2 3
* Since cp()= (?) (%) V()% (see (A.2) of the Appendix) where V() is the

volume of 2, the condition ¥<|«|/p will always be satisfied for “small enough” containers
(which may be quite large!).
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Proof. The Poincaré inequality asserts that x| gradw||?>—||w||?>>0 for all smooth
vector fields w(:) on Q that vanish on 09Q. Thus, for any >0, we have

fal
p
=(%—x) lerad o]2(1) + x [ grad o] *())— o] (1) 20,

N(ty="—llgrad o|* () - ||ol|* (1),

(7.9)

since x§%. Moreover, if x<'%, it is clear that equality can hold only if

v(+, t)=0. The proof is complete. A

We remark that it is possible to generalize Theorem 16 so as to apply to general
flows occurring under conditions of isolation but not necessarily in a fixed, rigid
container. To do this we must restrict the initial size and shape of the fluid mass
and subtract out the rigid motion which would now be permitted of the fluid.
We omit carrying out the details of this generalization but observe that they are
similar to those encountered in Theorems 8 and 9.

We now consider another method of insuring that N(0) is non-negative, and
so obtain an instability theorem relative to the rest state for any canister flow.

Theorem 17. For any £>0 there exists vy(+): Q— V with |vy(x)| e for all xeQ
and such that any velocity field v(-,+), possessing v,(+) as initial data and satis-
fying (1.1), inside the fixed, rigid container Q, has N(t) and ||grad v||?(¢) growing
exponentially as t — 00 *

Proof**. Theorem 15 and its corollaries tell us that we need onmly exhibit a
vo(-) satisfying both | vy(x)| <& and

forl

N(O)ET lgrad vo1* ~ lvo]|* 2O0.

|

Since TI >0, it is easy to find a smooth w(-) which vanishes on 8 and which

is such that*** o
lIw]i® Jo

lgradw|> P
Thus for given £¢>0, we define vy(+) through

o
ew(x
vo(x)= ——(04

max | w|(x)
xef
* We assume the existence of v(-, ») corresponding to the initial data vy(-). That such
solutions do exist, at least in the special case of flow between parallel plates, is exhibited in the
work of CoLEMAN, DUFFIN & MizeL [6]. See also our Theorem 21.
o]

**  Of course, for canisters whose Poincaré coefficient meets xk(2)< ——, we have already
established the far stronger result of Theorem 16. p

*** See equation (7.17) and the two paragraphs following it as to how this could be done.
In the notation used there, we could in fact select for % (-) any function in S, where # is such that

o
LIy
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and observe that | v,(x)| <¢, and that

Iool® L]
l|grad ool
Therefore, N(0) = L:—I llgrad vgl|2 — | v5))> >0 and the theorem is proven. A

We have shown in Theorems 15 and 16 that in a ““small enough” canister
(z e., k(@)= | l)every flow of a second grade fluid having <0 will be such

that both its averaged stretching and the excess of its averaged stretching over its
kinetic energy grow unbounded, at least exponentially, with time. The fact that
this growth can be at most exponential is the content of

Theorem 18. Let v(-,+) be a velocity field satisfying (7.1), inside a fixed, rigid
container Q. Let N(-) be as in (1.2),, and let Q be such that the Poincaré coefficient

K(Q) =cp(Q) satisfies k(Q)< —k:—l . Then

0<N(0)e ‘<N@HEN(@©0)e] aiz—” (7.10)
2
og_"i-N(O)eTl‘r < llgrad o] (t)_ﬁ——N(O)eMz'”’”‘ (7.11)

ol
where equality holds in (7.10), and (7.11), only if s(., 0)=0.

Proof. By the Poincaré inequality we have

(|a|-px)uvu’§px(' 2L\ grad o] - o] )
|

and since k< —lp— this yields

lol? (t)_Tﬂ———N(t)
Thus (7.6) yields

No-2E NS LN,

or, equivalently,

N@)- v |2 N(®)<0,
which, by integration, establishes (7.10);. To establish (7.11);, we need merely
note that, by (7.9),

p
ad v ——-N
lgrad o} s F

Finally, since for canister flow 2 ||grad v]|?=14,||?, we see that (7.10),,, and
(7.11), , are direct consequences of Theorem 15, its corollaries, and Theorem 16.

A
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As a result of the above work we know that when a <0, canister flows that

decay in time are to be found only in those canisters having x(Q)> — and, in

such canisters, only among those flows that have initial data satisfymg N(0)<O0.
Indeed, by Corollary 1 of Theorem 15, we know a little more: any flows in these
canisters that decay must not only have N(0)<O0 but also N(¢)<0 for all ¢ with
N(t')=0 only for those times ¢’ when v(-, ¢')=0.

o

However, it might appear that the flow need not decay even when x> —
and N(-)<0; that this is impossible is established in P

Theorem 19. Let v(-,:) be a velocity field satisfying (1.1) inside a fixed, rigid
container Q. Let N(+) be as in (7.2),, and let Q be such that its Poincaré coefficient

satisfies k(€)> I—ZI—. Then, N(-) is bounded below according to

_—2m

N@HZN(@Q)e 1o (7.12)
Proof. It is similar to Theorem 18. A

Of course, Theorem 19 is superfluous if N(0)=0 since then Theorem 15 gives

a far stronger result. If N(0)<0, however, Theorem 19 implies that any such

solution must either (i) decay (i.e., inf |N(#)|=0=Ilim N(¢), N(-)<0), or (ii)
t={0, ) 12

become positive at some time and, as we know, then grow unbounded. When
decaying solutions exist, their rate of decay is described by

Theorem 20. Let v(-,+) be a velocity field for which N(-) as given in (7.2), decays.
Then

__2m .
[ol2()=o(e" 7 F"),

2 . (7.13)
|Igradv[|2(t)=o(e(6 PK“,‘|a| ) )’
2u
Jor any de (0, 77_;—!_‘”)
Proof. From (7.6) we have
_2
N(te K N(0)+ j e it lol|2(s)ds. (7.14)

Recalling from (7.3) that N(+) is monotone, and using the assumption that N(+)
decays, we may take the limit as £ — oo to find

2 @ _ 2:l s
N©@=—2E [ T o2 (s)ds.
lal o
Thus (7.14) may be rewritten as

© 2p 2ut
N(= —l"_ fe et “Iol*(s)dszN(©@)e P*FT,
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where the inequality follows from (7.12). Consequently,

2u ? -
mfe el ol (s)ds
t

0= — =N@©ye™?,

_2B —2p
e |ee te(é px—]al)t

—2”——-) It is seen that
pr—|al

not only must the above quotient have the limit zero as ¢ — oo, but also both its
numerator and denominator must take on zero in this limit. Thus, L’'Hospital’s
rule yields

where we restrict § to be any number in the domain (0,

___—__||v||2(t) -0 ast—-w
(kD) ’
e

which proves (7.13),. To obtain (7.13),, we recall that

fo
N@OHO£L0=>—
H= )

and then apply (7.13),. A

lgrad vli* () < [0l (1),

The last two theorems gave some of the properties which decaying velocity
fields for canister flows will possess, provided they exist. In the work of COLEMAN,
DurriN & MizgeL [6, §4] the complete structure of such a decaying velocity field
is exhibited explicitly for the case of simple shearing flow between two fixed
parallel plates.* The structure of their solution also serves to indicate that the
results of (7.13) for arbitrary containers cannot, in general, be improved. In
particular, one cannot set =0 in (7.13).

We have seen that the initial condition N(0)=0 is critical for flows of those
second grade fluids which have «<0. In the remainder of this section we give an
interpretation of this condition using methods that will be essential in the analysis
of Section 8.

From (A.1) and (A.5) of the Appendix we know that x(Q)(=cp(2)) may be

defined by 2
k(Q)= sup [ ,
weSq ” grad w "

where Sy, is the set of all smooth vector fields w(+): Q — ¥, vanishing on 4%, not
identically zero in 2, and having divw=0 throughout Q. Using standard methods
from the calculus of variations we obtain the following eigenvalue problem
associated with (7.15):

(7.15)

K, Aw'+w!=gradA' in Q, (7.16)

where we have written x, for x(Q), and where w'(-)e S, the solution of (7.16),
maximizes the ratio appearing in (7.15) in the sense that

2 12
wl® —_ lwi ™
1 "2 =Kj.

su =
P Teradwl” ~ Jgrad w

* In our Theorem 22, we obtain the complete and explicit structure of decaying solutions
for a problem class of sufficient generality to include the work of CoLeMAN, DUFFIN & MIZzEL.
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We assume, without loss of generality, that w' is normalized according to ||w!|=1.
The scalar field A1(-) is introduced by the divergence constraint, and 4 is the
spatial Laplacian operator.

Having so defined the pair (x,, w'), we may analogously and inductively
define for every integer n the pair (x,, w") according to

R U G L
" wes, leradwl® gradw'|?’
K, Aw'+w'=gradl” in Q, w"eS,,

S,={w(-)[w(-)eSq; {(w-w)H=0 for i=1,2,...n—1},

(7.17)

where w" is assumed to be normalized by ||w"|| = 1. We note that S, =.S,.

It is well known and easily seen from (7.17), ; that ,,; <x,. Further, by use
of the min-max characterization [27] for «x,, it follows that x,(Q')<«,(Q") for
any two canisters (i.e., domains) Q' and Q" which satisfy Q' <Q".*

Finally, we remark that the sequence {x,} can be shown to converge to zero as
n— oo, and that the set of functions w!, w?... is complete and orthonormal on
Sg; i.e., for any we S, one has

i (w-wh (7.18)

Turning to the interpretation of the sign of N (0), we let v, ()& Sy, be the initial
data for a canister flow (-, +) and write
N

vo=). W +p,
i1

where peSy.,, ¢;={W - v,), and where N is some, as yet arbitrary, positive
integer. Thus, using (7.17) and the orthogonality of the set {w', p}, we obtain

N =L ferad ol ~ ool
N
;(I Ic ugradw'nz—cf!lw"|¢2)+lg'—ugradpnl_upuz (7.19)

N
ja] 1 )2 jo] 2 w2
= — 1 ¢ +— rad — .
Z ( > X, ’ ligrad plI* — i pi

But peSy. 1, so by (7.17); we have

Vo2 3 (o) e (W ) 020

i=1 KN+

k]

Now, if we assume that x,; < E thenx; < Ipl for all j, and we see from (7.20)

daf I

that N(0) <0, a result also obtained earlier in Theorem 16. Next, suppose «, >

i

since k,—0 as n— co, and since —;—>0 it is clear that there exists an mteger

* See also [16, §3] for a proof of this.
17 Arch. Rat. Mech. Anal., Vol. 56
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N=1 such that xy, < L‘;—l <ky. In this case the summation on the right of (7.20)

will be non-positive while the term involving || p|?> will be non-negative. Thus
we have N(0)=0 provided the projection p of the initial data v, on Sy, is large
in comparison to the projection of v, on S, @S, ®:-- P Sy. In particular, if
v,(0) has no projection on any of the first N eigenvectors, i.e., if vo=p(%0),
then N(0)=0, and, as we concluded earlier, both N(-) and |gradv||?(-) will

grow unbounded in time. Moreover, in this case, N(0)=0 only if xy,,= —I—?;—l

and p=w"*1,
We now observe that since any canister flow v(-, +) may be written as

N Y
v=) ¢,W+p,
i=1

where p(+, t)eSy,, for all time, and c;(-)=(w'- v)(-), then, analogously to
(7.19), it follows that

s T L (12) o+ 12 jgraapi o

i=1

. o4 . ..- . .
Thus if x1>-|7)|—, then the sum is always non-positive provided N is such that

Ja
KN+1<T<KN9

and we may conclude from Theorem 19 that if there exists a flow whose projection
on S;®S,® - @Sy is, for all time, large in comparison to the gradient of its
projection on Sy.,, then that flow must decay. A related, but far stronger,
result was established for simple shearing flow between fixed parallel plates by

CoLEMAN, DUFFIN & MizeL [6]. For x> —IZ—I and for N determined as above,
they proved that bounded simple shearing velocity fields were possible only if the
initial data was a linear combination of the eigenfunctions w!, w?,...w". More-
over, they showed that such initial data led to decaying solution fields that re-
mained a (time-dependent) linear combination of the eigenfunctions w', w?,...w",
In other words, bounded solutions <> p(-, 0) =0=>decaying solutions and p(-, ?)
=0. In Theorem 22 of the present work we shall derive such a result within a
more general context— here we only note that these remarks concerning the sign
of N(t) point toward such a possibility.

8. Non-Existence and Projection Results

In this section we develop a functional-differential equation for the projection
{v-w(+), of the velocity field »(-,+) in canister flow onto the eigenvectors
w!(+) of (7.17). Using this result, we then show that (i) for «<0 and for a certain
set of fluid domains the initial data v,(-)=wv(+, 0) must necessarily satisfy an
a priori orthogonality condition if any flow (bounded or unbounded) is to exist;
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and that (ii) regardless of the sign of «, for all other canisters and for certain
types of flow problems the projections {v - w')(+) satisfy explicit growth or decay
formulae.

Toward these ends, we first obtain a reduced and particularly convenient
form of the equation of motion (6.4) and (6.1),. Indeed, by (6.1), (6.5) and the
observations

A.1=(A1):+(gl'adA1)v, diVAl=Av’
we find
div T= —grad p+udv+adv,+adiv{(grad 4,)v+ 4, W—-WA,}. (8.1)

But it follows by routine manipulation that
div{(grad A,)v+A, W—WA,} =2(AW)v+grad (v- 4v)+4 grad (|4, |?),
=doxv+grad((v- 4v)+1[4,1),

where @ denotes curl v, the vorticity vector, that is, twice the axial vector of W.
Whence (8.1) may be written as

div T= —grad p+udv+a(dv,+ Ao xv)+agrad(v- dv+1]4, ),
and by taking into account the well known representation
v=v,+oxv+4grad|v|?
we may write the equation of motion (6.4) as

pdv+(adv—po),+(ado—pw)xv=grad P, 8.2)
where
P=p—a(v-dvo+}|4,))+3plo/*+p¢. (8.3)

Here, we have assumed that b is conservative, that is, b= —grad ¢ for some
scalar field ¢(-,-)

Now let (x,, w") be an eigenvalue—eigenvector pair as defined in (7.17),
and suppose that v(-,-) is a canister flow field inside Q; i.e., Q is a fixed, rigid
container in which o(.,.) satisfies (8.2), (8.3), (6.5), and vanishes on Q. We
write these last two conditions:

dive(-,)=0 in 2, o(-,1)=0 on 8. (8.4)

By forming the scalar product of (8.2) with w", making use of (7.17), 3, and ap-
plying (8.4), we find

(m%) @ W O+E W O="2 w @ho-p@) x> @, (53)

which is the desired functional-differential equation for <{v - w*>(+).

While in this work we do not analyze (8.5) in complete detail, we do note some
of its simpler consequences which have particular bearing on questions raised earl-
ier. The first such consequence is

17¢
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Theorem 21. Let B be a second grade fluid with o< 0 undergoing canister flow in Q,
and let v(-,+) be its velocity field with initial data v(+, 0)=v,(+). Further, assume

. . a X . . .
that the container Q is such that x ;(Q)= ra for some integer j. Then if v(-,+) is to
exist, it must satisfy

o}

ulo- W">(3)=—f;—<w"-(aAw—Pw)Xva)

for all £=0, and, in particular, the initial data must meet*

<wi. (ﬂvo+|“| (l—g—l—Aw0+wo) xv0)>=0. (8.6)

Proof. The proof is an immediate consequence of (8.5) and the hypotheses. A
This theorem has no analog for the case 220, for then, since x,>0, it is
impossible to have (K,,-I-%—) =0 for any ».
Even when o <0, this theorem is empty for canisters that are ‘“small enough™
to have x, (Q)< I_al_ since we know that x,, ; <k, for all i. Of course, it is exactly

these canisters for which Theorems 16 and 15 guarantee the unbounded growth
of every solution v(-,-). Indeed, by those theorems, even if x ()= I-‘;l—we will
have unbounded growth of (-, ) provided v,(-}=£=0. Moreover, v(-,-) will not
even exist unless (8.6) is met for j=1.

Further, since the eigenvalues are an increasing function of the domain size,
and since, for any one canister, the eigenvalues form a decreasing sequence with
limit zero, it is clear that there is an infinite set of canisters {Q,} with Q,=Q, .,
such that «,(Q,)= |—Z—|~, n=1, 2.... For each member Q, of this set Theorem 21
will apply and the orthogonality condition (8.6) for j=n will be necessary for the
existence of a canister flow in Q,. Nevertheless, any solution will grow unbounded
in time if the initial data is such that N(0)=0.

We now return to (8.5) and specialize it in yet another way by supposing the
flow v(-,-) and/or the flow domain (container)  is such that

{w" - (a4 0 —pw)xv) (=0 8.7)
for all t>0 and for all eigenvectors w"(+). Since {w"} is complete in Sy, this con-
dition requires (x4 w—pw) x v to lie in the orthogonal complement of S, and
while stringent, it nevertheless can be satisfied in at least one of the following

three ways: (i) v(-, -) is irrotational (i.e., @ =curl v=0), (ii) the fluid is Newtonian

* Here my(+)=curl 4(+) denotes the initial vorticity vector.
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and v(-,-) is a Beltrami field (i.e., =0 and @ x v=0), and (i) w'(:) x v(+,+)=0
for all integers i=1, 2, 3... .*

Now, by assuming (8.7), we reduce (8.5) to an ordinary differential equation
for the projections which yields

oW () =Cvo- W'y e P g (8.8)

where v,(+) is the initial data »(-, 0), and where we have assumed x, 3+ ——Z—.

It is clear from earlier remarks that this inequality is always true if «=0, and, in
fact, can be violated for only one value of n if <0, in which case Theorem 21
applies.

When a2>0, the exponent appearing in (8.8) is negative for all n, and so the
projection of v(+, -) on every w"(-) must decay, a result that is contained in Corol-
lary 2 of Theorem 9. Moreover, since the orthonormal set {w'} is complete on
So**, and since v(-, -)eS, for all time, we have, under the strong assumption (8.7),
the exact results

v(x, t)= ‘;1<vo . wi> wi(x) e—ﬂxi+a‘t’

2p

[0l ()= 3 [<oo - W P& 77, 89

0 i\ 12 2p
VoW - t
”gradvllz(t)= Z I( OK >I e pxita .
i=1 i

We observe that (8.9) is also valid for Newtonian fluids where o.=0.

Now suppose a <0 and rewrite (8.8) for «,+ l—:Tl with a= —|a]:

-—t

WS () =Cvg - W'y e P (8.10)

* Condition (iii) is frequently satisfied in applications; e.g., simple shearing flow between
parallel plates, Poiseuille flow down an infinite pipe, and Couette flow between two infinite
concentric cylinders. Although the flow domain in these flows is infinite one may take for 2 an
appropriately selected finite subdomain and, by exploiting the assumed periodicity of the motion,
obtain null ner effect from boundary integrals—thus making all our analysis applicable. Of
course, we suppose that any physical boundaries are brought to rest at r=0 and held fixed for
all future time. In addition, we assume that whatever driving force was present on (— o0, 0] is
removed on [0,00), for otherwise {w" - grad P)>=0. Under these conditions a usual argument
for wi(:)x v(-, -)=0 is as follows: One assumes v(+, -) to have a given direction in terms
of the geometry of the flow domain, i.e., v(x, t)="v,(x,, x5, t)e; for some fixed e; in both the
simple shearing and the Poiseuille flow problems, or v(x, t)=uv4(r, t)e, for the Couette flow
problem. Once this is done, it is then recognized that the analysis from Section 6 onward does
not require the Poincaré inequality for all functions defined on £2, but only the analogous special
inequality which is appropriate to those fields that are parallel (pointwise) to the assumed direc-
tion of »(-, -). That is to say, the eigenvalue problem (7.17) need be solved for (x;, w’) only on
that submanifold of S, which is composed of fields that are parallel to the assumed direction
of v(-, -), thus yielding wix v=0.

** Depending upon how (8.7) is in fact satisfied, we note that the set {w{} may be complete
only on that submanifold of S, described in the previous footnote. TING [3] has recorded
several explicit solutions of the form (8.9) for which (8.7) is satisfied according to the condition (ii).
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Thus, since k; <k, for all i, we see once again* that x, (Q)< _l_o;_l permits no bound-
ed solutions for the special flows of (8.7): the exponent in (8.10) is positive for
every k,, and the projection of v(-, ) on every eigenvector w'(+) that vy(-) had a
projection upon will grow unbounded exponentially. The exact results of (8.9)
also apply here with « replaced by — | «|. On the other hand if x, > l—zl— and k;+ ]—O;—I
for any i, we have the following generalization of the Theorem 4.1 of COLEMAN,
DurrFIN & MizeL [6]:

Theorem 22. Let v(-,-) be a velocity field satisfying (8.5) and (8.7) with <0 and

o] Ld
’

with k> icj=1=—p— for any integer j. Then, except for a finite-dimensional

Jfamily of the form
N —t o
v(x, )= (vy-w)e o (=55 w (%), (8.11)
i=1

o
where N is such that xky, < '—pl— <ky, every solution field v(+,+) is unbounded of
exactly exponential order as t — 0.

Proof. The proof follows by use of the exact results (8.9) with « replaced by —|«|.

A
Theorem 22 takes care of the situation « <0 completely unless it happens that

K;(Q)= % for some j. However, if this occurs, then Theorem 21, specialized by
assumption (8.7), implies that {w’ - v)(¢#) =0 for this particular j. Thus, to ensure
the existence of v(-,-), neither it nor its initial data may have any projection on
wi(+). In addition, the result (8.11) of Theorem 22 again applies with N now equal
to the largest integer less than the particular j.

We conclude that for o <0 the formula (8.11) gives the most general bounded
solution for canister flow that meets the condition (8.7). In particular, bounded
solutions will decay and can occur only if the initial data is a finite linear combi-
nation of eigenvectors w'(+). In contrast, if the initial data differs by even the
slightest amount from a finite linear combination of eigenvectors, the solution
will experience unbounded growth in time.

9. The Asymptotic Stability of a Base Flow: =0

In the previous three sections of this paper we have been concerned almost
exclusively with the temporal behavior of a single solution of the field equations
(6.3), (6.4), and (6.5) subject to the constitutive equations (6.1); and (3.15)s. Though
most of our results may be interpreted as statements about the asymptotic stability
of the rest state with uniform temperature, we have not generally emphasized
such an interpretation. However, as in the theory of Navier-Stokes fluids, it is
of fundamental interest to know when a given base motion is stable with respect

* Recall Theorem 16.
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to arbitrary disturbances. Thus, it becomes necessary to study the temporal
evolution of the difference v'— v, between a given base motion v and a second
motion v’

To carry out the details of such a study, let (p, v) denote the pressure-velocity
pair associated with the supposed given base flow, the stability of which we wish
to examine, and let (p’, v') denote another pressure-velocity pair with different
initial data. It is convenient to introduce the difference field u (-, -) defined by

u(x, )=v'(x, 1)—v(x, ). 9.1),

The domain of definition of u(-, ¢) is necessarily the intersection, 2, n Q;, of the
respective domains in which v(-, #) and v'(-, ¢) are defined. We study the situa-
tion here where Q,=Q;, or, equivalently, v=1v" on Q so that 2, n ; =Q,=Q; and

u(.,0)=0 on 09, 9.1,
Further, since v and v’ are both divergence-free, then
divu=0 in Q,. (9.1),

We now develop the main field equation for u. To do this we note that since
both (p, v) and (p’, v') must satisfy the linear momentum balance (8.2), we obtain
by subtraction

udu+(edu—pu),+(@do—po)xv+(ed o’ —po’)xu=grad(P’'—P), 9.2)

where P and P’ are as in (8.3) for v and v’, respectively,* and where we have
introduced @ =curl u and o’'=curl v'.
If we now form the scalar product of (9.2) with u and use (9.1),, 5 we find

plu-Auy+alu-Aduy—p<u-uy=—u-(@do—-po)xv),

and, after integrating by parts and once again using (9.1),, we obtain
o ——7
ulU|? +5 IUIP+5- L Tuf? IlulI =(u-(@do—pw)xv), (9.3

where U =gradu. Now, since @ is twice the axial vector of the skew part of U,
we may write the right-hand side of (9.3) as

(- (@AU-UT)=p(U~UT))s),

which, after integrating by parts, using (9.1), ;, and symmetrizing, may be
written as

—§<u : A1u>+-;—{<u AA wY —(UUT-A>+UTU - A)—2KUU - 4D},

* While (8.2) was derived for conservative body force fields, the result (9.2) holds for any &
as long as we assume b= 5" and remove ¢ from the definition (8.3).



246 J. E. DunN & R. L. Fospick

where A, is the first Rivlin-Ericksen tensor for the base flow v. Thus, (9.3) may
be rewritten as

|[u|| ‘FZ"_ﬁIT2 A ||U|lz—(u-A1u>+%{(u-AA1u>

—(UUT-A1>+<UTU cA,>—2{UU - A}
2 . (9.4)
= _T ”U”2—<u . A1u>+—p—{(u . AAI ll>

+2{UTU - A= (U +UT? - 4,5}

The fact that 4, and 44, are both symmetric allows us to introduce their
respective (real) proper numbers A;and A,, which we order according to 4, <4,< 4,4
and A,<A,ZA4;. Since 4; and AA are also traceless (v being divergence-free),
we have 11+12+/13=A1+A2+A3=0, which, in particular, implies

1,0, 2,20, A;S2|4|<44,.

Thus, when |4,| (or ;) is small, then A; (or |4,|) is small, and likewise, so is
j4,1- If we now let 4, ,(¢) and 4;,,(?) denote the respective minimum and maximum
of 1;(-, ) over Q,, and similarly define A;,,(#) and A;,,(¢), then the following
estimates are immediate:
_<u " Al”)é _An'lm “ullz,
(u- A4 u)y S Azylul?,
UTU - 4> S 43U,
—(UAUY - ADZ =4 WU+ U2 = =224, 11U,

where the last equality holds by virtue of (9.1), 3. Thus, when 2 >0, these estimates
along with (9.4) yield

. o 2
W+%W§;(auw+ulm|)—u)nUu2+(%Awmml) Il ©.5)

where we have written —|4,,,| for i, , since i, is non-positive. Recall that
A3p and Ay, are both non-negative.

We now have

Theorem 23. Let (p, v) and (p’, v') denote two pressure-velocity pairs satisfying
the equations of motion for an incompressible second grade fluid having 20 (i.e.,
(p, v) and (p’, v') satisfy (6.4) and (6.5) subject to (6.1),). Let —m and M denote,
respectively, the minimum and maximum of the proper numbers of the tensor A,
of the base flow v on Qx [0, T"), T< o0, and let N denote the maximum of the proper
numbers of A4, on @x[0, T).* Then,

)+ 0] (t)<(||un @+ 1] ) ¢ 9.6)

* The numbers m, M, and N are necessarily non-negative.
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for all te[0, T), where u=v' —v, U=gradu, and where d is the number

_p {ﬂ(M+m)+rc( N+m) 2“},
prk+a (P p

if a (%N+m) 2 2(a(M + m)—p);

p |2a g 2

S
1

9.7)

x 2

if a (%N+m)<2(a(M+m)——u).

Here, x is any upper bound for the Poincaré coefficient cp(Q,) on [0, T).*

Proof. Since «=>0 we may apply the definitions of —m, M, and N to (9.5) and
obtain

ﬂu_uf(t)+ W(t)<—(a(M+m) WU (r)+(ij+m) lal2()

for all te[0, T).
If we now suppose o (%N +m) =2(e(M+m)—y) and use the Poincaré

inequality and the definition of x, it follows that
2
;(a(M+m)—u)nUuZ+(p N+m) lu? <3 (nun + 2 1y )

where & is as in (9.7),. When the resulting differential inequality is integrated,
we arrive at (9.6) for this case.

Next we note that by direct application of the Poincaré inequality we may al-
ways write

2 2 o4 2 jod ' 2
2 M-+ m)- )0 +(;N+m) Jul*s% 610

with § as in (9.7),. Moreover, if o (%N +m) <2(a(M+m)—p),** then this

choice of  is positive and we need only note that

1012 < (n 1+ uvn)
to reach (9.6). A

The exponential estimate in (9.6) is of a decaying type only when 6 <0. While
this is possible only when the inequality (9.7), is satisfied, even then we must

1\2 [ 3\*
* By (A.2) of the Appendix we may choose the value (?) (H) V()2 for %.

** When a=0 this inequality cannot be satisfied, but then (9.7), will apply.
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satisfy the additional requirement that

2 2 _

—”—>~i(M+m)+x(iN+m), 9.8)

p- P P

on the interval [0, T), T< oo. Thus, if the viscosity p is ““large enough”, or if the
stretching and its diffusion in the base flow are both sufficiently small (i.e. the
proper numbers of A, and 44, are small), the flow will be asymptotically stable*
relative to all disturbances, u, that vanish on the boundary of Q,.

Theorem 23 also yields the following two corollaries concerning uniqueness:

Corollary 1. Let B be a second grade fluid having 020 with Q a fixed reference
configuration. Then any two flows of B, agreeing on 0% for all t and having the same
velocity distribution at t=0, are identical.

Proof. If we denote the two flows by v and o', then the estimate (9.6) applies
with u as defined in (9.1),. However, since u(+, 0)=0 and « >0, then (9.6) implies
that Jlu|2(¢)=|U|*(t)=0for allz. A

Corollary 2. Let B be a second grade fluid having a 20 with Q a fixed reference
configuration. Let v and v' be any two steady flows of B having the same steady
velocity distribution on 8Q. Let —m, M, and N be as in Theorem 23 and suppose
v meets (9.8). Then, the two flows are identical.

Proof. We follow SERRIN [15] and observe that since both v and v’ must be steady,
then so too will be their difference u. But then, |u)|2(+) and |U|*(-) must be
independent of time, while (9.6) requires their sum to be bounded above by a
decaying exponential. Therefore, we conclude that ul{?(:)=|u[|*(0)=0. A

Appendix

We collect here some known results concerning the inequalities of POINCARE
and KORN. While no formal proofs of the results quoted here will be presented,
we, instead, offer an appropriate list of references or give a brief sketch of how
a proof may be constructed. For simplicity, we shall assume that the region of
space under investigation, R E3, is the closure of a bounded open set and homeo-
morphic to a ball. Usually, however, such smoothness and connectedness are not,
in fact, essential.

Let T(R) denote a subset (to be defined in various ways below) of the set of
all non-constant smooth, scalar-valued functions defined on R. The Poincaré
inequality is the assertion that there exists a constant cp(R, T)e(0, <o) such that

fw?dv
R
sup {2 t=cp(R, T), Al
b I!lgradwl av |~ ® D) (A1)
and therefore
fwrdv<cpf|gradwl*dv Vw(-)eT. (A1),
R R

In the following we record three main choices of 7'(R) for which (A.1) holds.
* Taking T'=00.
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Case (1). Let T(R) be the set of all smooth, scalar valued functions defined on R,
vanishing on OR, and not identically zero. The existence of ¢, in this case is well
known [28]; in fact, an elementary upper bound for it is given by d?, where d is
the width of any 3-dimensional strip containing R (see, for example, Section 1.1
of [28]). A refinement of this bound is provided by the Faber-Krahn inequality

cp< (i)z (i)l V(R)} (A.2)

F=\r 4n ’ :
which is particularly well suited for our purposes since the volume of an incompres-
sible fluid is an invariant under any of its motions while d is not. We caution,
however, that while equality actually holds in (A.2) if R is a ball, the estimate
may be highly inaccurate if R departs severely from the general shape of ball;
indeed, for some domains d may actually be a better bound for cp. For a proof
of (A.2) we refer to [27].

Case (2). Let T(R) be the set of all smooth, not identically zero scalar-
valued functions on R that vanish in mean,

fwdv=0. (A3)

Here we see from PAYNE & WEINBERGER [29] that if R is convex, then

cp<D*?, (A49)

where D is the diameter of R.
Case (3). Let T(R) be the set of all smooth not identically zero scalar-
valued functions on R that vanish on a portion S of 0R having positive area measure.
In both Cases (2) and (3) the fact that cp exists satisfying (A.1), can be shown
by first proving the result for a ball and then mapping R onto this ball. Thus in
Case (2) we may pick the ball to be of the same volume as R and then use a map-
ping that has a unit Jacobian everywhere in order to preserve the condition (A.3).
The result for a ball may be obtained in a way similar to that employed by FRIED-
MaN in [30). For Case (3), the result may be shown by utilizing a coordinate
transformation that sends R to a ball Ry while ““stretching” S sufficiently to cover
a hemisphere Sy of Rp. Then, the method of proof which we referenced above
for establishing the Poincaré inequality for Case (1) will again apply to this ball.
Finally, we note that since the conditions defining Cases (1), (2), and (3) are
linear, we may, for any smooth vector-valued function w(-) defined on R, write

Iglwlzdvgcp(R, T)Iglgradwlzdv (A.5)

for all w(-)eT?*(R)=T(R)x T(R)x T(R). Here, cp(R,T) is as in our above
discussion, and the direct product set T>(R) is structured from the set T(R)
appropriate to each of the cases.

Now let w(-)eT?(R) with T(R) as in either Case (1) or Case (3). Then the
Korn inequality asserts that there exists a constant ¢x (R, T)e(0, o) such that

{lgradw|*dv
R

su =¢ R, T 3 A6
w(-)fn “gfadw+(gradw)T]2dU x( ) (A.6),
R
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and therefore

flgradw)*dv<cg[|grad w+(gradw) [Pdv  Vw(-)eT>. (A.6),
R R

While in Case (1) the proof that ¢, exists is trivial (see e.g. [37, p. 38)), Case (3)
presents a far more difficult task [31]. In the applications in the body of this
paper w(-) is divergence-free, which implies that for Case (1) equality always
holds in (A.6), with cx=1. On the other hand, in Case (3) nothing beyond the
existence of ¢, seems to be known.

One other important case in which the Korn inequality, (A.6), is known
to hold may be described by letting 7°(R) now denote the set of all smooth
vector-valued functions on R that meet the normalization*

}j; [grad w—(grad w) ] dv=0. (A.7)

For this set, a proof of (A.6) may be found in either [31] or [32]. Indeed, in [32],
PaYNE & WEINBERGER are able to show that for a ball ¢, =14/13. It is also worth
noting that in the present case BERNSTEIN & TOUPIN [33] have shown that ¢y
may be made arbitrarily large by taking for R a sufficiently long and thin circular
cylinder. In addition, for this case DAFERMOs [34] has shown that if R; and R,
are two sets in E3 with intersection of positive volume measure, and if the Korn
inequality holds for each of these domains with constants ¢y, and c,, respectively,
then the Korn inequality holds for R, U R, with

min (V(R,), V(R
V(RiNR,)

cx(RyUR)Scy, +eg, + ) (]/a(:+]/—c;)2.

Similar “chaining” formulas are well known for c¢,.
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