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O. I n t r o d u c t i o n  

In their celebrated paper of 1963, HASHIN & SHTRIKMAN [1] addressed the 
problem of determining optimal bounds for the bulk and shear moduli of a 
statistically isotropic elastic composite material with arbitrary isotropic phase 
geometry. They derived a set of bounds for these moduli in the physically meaning- 
ful case of three-dimensional elasticity. 

In the case of a two phase composite, let K 1,/.1 and K 2,/*2 respectively denote 
the bulk and shear moduli for the first and the second phase, let K,/* denote their 
analogues for the composite and let 0 stand for the volume fraction of the first 
phase in the composite. Under the ordering restriction that both 

(0.1) K 1 < K 2 and /*t </*2,  

HASmN & SHTRIKMAN'S calculations lead to (cf. their equations (4.1)-(4.4)) 

(0.2) 

with 

K 1 = K ~ + 

(0.3) 

K t<= K<= K", #t ~ /*  ~ #u, 

1 - - 0  0 
K" = K 2 + 

1 30 ' 

K 2 _ K  1 + 3K 1 + 4/* 1 
1 3(1 - -  0)  ' 

KI _ K2 4 3K 2 + 4lz2 

/*l = / . 1  + 

/*u =/*2 + 

1 - - 0  
1 60(K 1 + 2/* 1) 

/*2 __/*l q- 5/.1 (3K 1 + 4/*x) 

0 
1 6(1 - -  0 ) ( K  2 + 2 # 2 )  . 

/.1 _/*'---'-"~ + 5/.2(3K2 + 4/*2) 
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According to HASmN himself, "the original derivation of the bounds included 
some mathematical liberties" (HASHIN [1], p. 486), and many authors then tried 
to improve it. Of course, a mathematical definition of the notion of effective 
properties of a mixture is a prerequisite for a rigorous derivation. In recent years, 
such an attempt was made e.g. by WILLIS [1], GOLDEN & PAPANICOLAOU [1]. 
Their approach is probabilistic, and effective properties are understood as ex- 
pectations. 

HASHIN & SHTRIKM_AN also examined the optimality of the bounds (0.3). 
With the help of coated spheres, they established the optimality of the bounds 
on the bulk modulus. The optimality of the bounds on the shear modulus was 
until recently an open problem (CrlRISTENSEN [1], p. 147, HASHIN [1], p. 486), 
but towards the end of 1984, several authors (e.g. MILTON [1], NORRtS [1]) pro- 
posed composites that attain the bounds on the shear modulus. Their procedure 
is incremental and it requires an infinite number of mixing processes. It does 
not specifically describe the underlying microscopic structure of the composite. 

In this work we reconsider the derivation of bounds on the bulk and shear 
moduli and their optimality in the context of homogenization. From our standpoint 
homogenization coincides with the mathematical notion of G-convergence intro- 
duced by SPAGNOLO [1] or with that of H-convergence introduced by MURAT and 
TARTAR (MURAT [1], TARTAR [2]). In the theory of H-convergence, sequences 
of composites with a heat conductivity tensor a ' satisfying for every ~e and almost 
every x 

0,1~12<a~(x)~i~j=</~l~l ~ ( 0 < ~ , < ~ <  + c o  fixed) 

are examined. The most basic fact is the existence of a subsequence a~J of a" 
and of a heat conductivity tensor a ~ such that the solution of any heat conduction 
problem for a~J converges to the solution of the corresponding problem for a ~ 
This result was first proved by SPAGNOLO [1], then reexamined by MURAT and 
TARTAR (cf. e.g. MURAT [1], TARTAR [2]). The theory was subsequently developed 
by many authors (cf. e.g. MURAT [1, 3], TARTAR [1-3]; cf. also BENSOUSSAN, 
LIONS • PAPANICOLAOU [1], SANCHEZ-PALENCIA [1] for other points of view and 
for general references). 

The question of characterizing all possible anisotropic tensors a ~ for the 
composites made by mixing two isotropic conducting components in prescribed 
volume fractions 0, l -- 0 was later investigated in the framework of homogeni- 
zation. The principle of the method was first described by TARTAR in 1977 (TARTAR 
[3]). It uses in an essential manner the theory of compensated compactness devel- 
oped in MURAT [3] and TARTAR [4]. In 1980 a set of bounds was obtained and 
their optimality was established whenever both components are isotropic; the 
results were later published in MURAT [2], TARTAR [5]. See also the independent 
work of LURII~ & CHERKAEV [1] in the two-dimensional case. For an isotropic 
mixture of two isotropic conducting components, the bounds coincide with 
HASHIN & SHTRIKMAN'S (equation (6.27), p. 497 in HASHIN [1]). 

We attempt in this work to obtain the same type of results in the realm of 
elasticity. Our mathematical definition of the effective properties of a mixture 
of elastic components is given in the context of homogenization. We then restrict 
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our attention to mixtures of two isotropic materials in prescribed volume fractions, 
and strive to characterize all possible macroscopically isotropic composites. Our 
analysis relies in a decisive manner on Luc  TARTArt'S ideas; it uses the techniques 
of H-convergence and compensated compactness. 

The first section of the paper is very short, and is entirely devoted to notation 
and basic definitions. In the second section the problem to be addressed is formu- 
lated in the mathematical framework of homogenization. After recalling a few 
results about compensated compactness, we proceed in the third section to con- 
struct and prove necessary bounds on the bulk and on the shear moduli. The 
bounds obtained on the bulk modulus coincide with those announced in HASmN 
& SHTRIKMAN [1]. They are not restricted to the case of well-ordered phases 
(i.e. satisfying (0.1)). We point out that the removal of restriction (0.1) was first 
studied by WALPOLE [1], when he improved HASHIN & SHTRIKMAN'S original 
derivation. Our bounds on the shear modulus, however, are not as tight as HASHIN 
& SHTRIKMAN'S, but they are better than the classical ones, sometimes referred 
to as PAUL'S bounds (PAUL [1]): 

(0.4) ~h ~ # ~_ #a, 

where 

1 0 1 - - 0  
(0.5) # ~ - ~ 1 4  #2 , ~ a = 0 ~ 1 + ( i _ 0 ) ~ 2 .  

In the fourth section, we address the question of optimality. Extending to the case 
of elasticity a formula devised by TARTAR, we prove that HASHIN & SHTRIKMAN'S 
bounds on the bulk and shear moduli can both be achieved and even simultaneously 
achieved by multiple layering. We thus give a positive answer to HASHIN'S con- 
jecture (HASHIN [1], p. 486): "it  has never been shown that [the bounds on the 
shear modulus] are also best possible in terms of volume fractions but they well 
may be". We produce a multi-layered composite (with afinite number of layering 
directions) independently of the phase ordering restriction (0.1). Its macroscopic 
behavior is isotropic and its macroscopic bulk and shear moduli are respectively 
K l and #t (or K u and/z u) defined in (0.3). This constrasts with the recent incremental 
procedures introduced in MILTON [1 ], or NORRIS [1 ], which require an uncountable 
infinity of layering directions. 

In our opinion, the interest of the techniques used in the present paper is 
threefold. The method developed for proving bounds differs from the variational 
approach of HASHIN & SHTRIKMAN and the analytical approach of BERGMAN 
& KANTOR. It includes a mathematical definition of the effective properties of a 
composite without any kind of periodicity or statistical assumptions. Finally the 
method for constructing the composite that attains the HASHIN & SHTRIKMAN 
bounds is an elementary calculation; as such it could have been done a long time 
ago, but apparently was not. 

Many questions concerning the macroscopic behavior of the mixture of two 
isotropic elastic materials have yet to be answered, even under the assumption 
of macroscopic isotropy. The first priority in our programme is to recover the 
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HASHIN d~ SHTRIKMAN bounds on the shear modulus in the mathematical context 
of homogenization. Then, one should strive to characterize the admissible region 
in a K,/~ plane, since MILTON'S computations (MmToN [2]) suggest a kind of lens- 
shaped domain. 

1. Notation and Basic Definitions 

Throughout the paper, Einstein's summation convention is used. 
Small greek letters denote vectors in R N, except for o~, fl (strictly positive real 

numbers ), e (a small strictly positive real number), 0 (the volume fraction, a 
real number between 0 and 1), 2,/z (the Lam6 constants of isotropic elasticity), 
Z (a characteristic function), and ~0, ~p (test functions in c~(RN)). Small latin letters 
denote second order tensors on R N, except for x (the position vector in R N) 
or when used as indices. Capital latin letters denote fourth-order tensors on R N, 
except for K (the bulk modulus), and N (the space dimension). 

The following definitions are designed to simplify reading the text: 

�9 ~ ' ,  is the space of all symmetric linear mappings from R s into itself; i is the 
identity element, tr the trace operator and pq the inner product, i.e. 

pq : tr (tp o q) : Pijqij, 

where Pij (respectively qii) is the matrix o fp  with respect to a given orthonormal 
basis on R N, 

�9 Aa(.~'s) is the space of all linear mappings from ~'s  into itself; ! is the identity 
element, Tr the trace operator, 

�9 Ae,(~'s) is the subspace of all symmetric elements of Ae(Jt's), 

�9 ~ '(~,f l)  is the set of all A in Zoo(RN;  ~s (d / [ s ) )  with 11-411L~----< ~ and such 
that, for almost every x in R N, A(x) >= o~I as an element of -W(dt's) ("positive- 
definiteness", KNOPS & PAYNE [1]), 

�9 if O is an arbitrary domain of R N, Lp(O) denotes Lp(f2; d/ls), 1 <: p <= + co, 
whereas Hq(O) (respectively Hgo r . . . .  ) denotes Hq(ff2; R N) (respectively Hgoc . . . .  ), 
qER.  

Juxtaposed tensorial quantities are to be either contracted, composed or 
"tensorialized". Contraction is automatically assumed unless otherwise indicated. 
Composition is denoted by o and "tensorialization" by | Thus, if ~, ~,, Po, 
Aiikh , Bijkh are the representatives (with respect to a given orthonormal basis of 
RN) of ~, ~, p, A, B, 

~ is a scalar with value ~i~i, 
p~ is a vector with coordinates (p~);----p~fij, 
Ap is a second order tensor with coefficients (Ap)ij = AijkhPkh, 
A o B is a fourth order tensor with coefficients (A o B)ijkh = AijpqBpqkh ' 

| ~e is a linear mapping with coefficients (( | ~)ij = (i~j, 
etc. 
The action of an element A of s ) on any symmetrized rank-one tensor 

�89 (~ | r / +  r / |  ~) is occasionally denoted by A(~ | ~7). 
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Finally V stands for the gradient of a vector field, div for the divergence of a 
second-order tensor field and t denotes the adjoint of a linear mapping, i.e. in 
components, 

(v~),j = ~ ,  

epu 
(div P)i = 

Oxj' 

('P)o = PJ~, ('A)~jkh = Akhij. 

A final word of  caution concerns the position of certain indices: to avoid 
notations such as eai, indices 0, 1, 2 and e are always used as superscripts; they 
should not be confused with powers, which are always used with parentheses, 
i.e. 22 reads as lambda index two, whereas (2) 2 reads as lambda squared. 

2. Setting of the Problem 

2.1. Preliminaries 

Let us consider two homogeneous and isotropic elastic materials respectively 
referred to as material 1 and material 2. The corresponding elasticity tensors 
A1 a ndA2  are 

A 1 = 2 1 i |  
(2.1) 

A 2 = )L2i (~ i + 2#21, 

where )1, #1 and 22, #2 are given constants. These tensors are assumed to belong 
to Jr162 The positive definiteness conditions which are part of the definition 
of  the set Jg(o~,/3) become 

(2.2) K" 3> 0, #i 3> 0, i = 1, 2, 

where the bulk moduli K i are defined as 

(2.3) N K  i = N 2  i -]- 2tz i, i = 1, 2. 

We assume with no loss o f  generality that izl ~ t22. 
An arbitrary mixture of material 1 and material 2 is characterized by the char- 

acteristic function Z(X) of material 1 in R, N. At any point x of R N the elasticity 
tensor of the mixture is 

(2.4) A(x)  = A1Z(x) + A2(I -- Z(X)). 

If  we are to investigate the macroscopic properties of  all such mixtures in 
the setting of homogenization theory; we have to consider a family of charac- 
teristic functions Z'(X) and the corresponding family of elastic tensors 

(2.5) A~(x) = A~Z~(x) + A2(1 --  Z~(X)). 
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Since bo th  A 1 and A 2 are in r fl), 

(2.6) A * belongs to va'(o~, fl). 

An  elastic material ,  with tensor  A ~ macroscopical ly  represents the mixture  
if  there is a sequence o f  A ~ such that,  on any domain  [2 o f  R N, the solution o f  
an arbi t rary  elastic boundary-va lue  p rob lem with A * as elasticity tensor  yields a 
strain tensor,  a stress tensor  and  an elastic energy which are close to the strain 
tensor,  stress tensor  and elastic energy associated with the solution of  the same 
elastic boundary-va lue  p rob lem with A ~ as elasticity tensor.  The  mathemat ica l  
t ranslat ion o f  these s ta tements  is :the not ion of  H-convergence  (MURAT [1], 
TARTAR [2]). 

The  following definition and theorem can be applied to an arbitrary sequence 
of  elasticity tensors A ~ in dr fl); e should be unders tood as a scaling pa rame te r  
which describes the size o f  the heterogeneities. 

Definition 2.1. A sequence A ~ o f  elements o f  Jg(o~,fl) H-converges to an element 
A ~ ofJ[(o~, fl) i f  and only i f  f o r  any bounded domain [2 o f R  N and for  any sequence 
(v*, o9 ~) o f  elements o f  H i ( Q ) •  ~-1($2) such that as e tends to zero, 

e ~ ~ e ~ weakly in L~2([2), 

~o~-+ o~ ~ strongly in ~ - 1 ( ~ ) ,  
(2.7) 

e ~ = �89 (W,~ + ,Vv~), e o = �89 (%,0 + tWO), 

div (A*e ~) + to ~ : O, 

where vo lies in Hi (Q) ,  then 

(2.8) A~e ~ --~ A~ ~ weakly in L~([2). 

Remark  2.1. The  following equivalent  definition o f  H-l imits  is the exact t rans-  
posi t ion to elasticity of  a result originally established in the case of  a second-order  
elliptic scalar equat ion (cf. e.g. MURAT [1]): A ~ H-converges  to A ~ if and only if  
for  any bounded  domain  12 of  R N and for  any ~o in H- l ( I2) ,  the unique solution 
r ~ H~(-q) of 

e ~ = �89 (V~ ~ + 'W,~), 

(2.9) 

satisfies 

(2.10) 

as e tends to zero, where 

(2.11) 

s ~ = A*e ~, 

div s ~ + o9 = 0, 

v ~--- v ~ weakly in H~(O), 

s ~ s o weakly in L~([2), 

v~ ~II~(O) is the unique solution o f  

e o = �89 (Vv ~ + 'V~~ 

s o = hOe o, 

div s o + o~ ----- 0.  
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Our preference is for Definition 2.1, because it stresses the local character of 
the notion of H-limit, and its independence from the boundary conditions. 

Remark 2.2. As a consequence of (2.7), (2.8), it can be proved that, as 8 tends 
to zero, 

(2.12) s'e ~ s~ ~ weak-* in ~'(s 

This convergence is a typical result of compensated compactness (cf. Theo- 
rem 3.1 in Section 3). 

Remark 2.3. The characterization of  Remark 2.1 is at the root of the proof  
of the existence of H-limits. The uniform positive-definiteness of  A ', which is 
part of the definition of J//(g, fl), suffices to ensure existence and uniqueness 
of v ~ together with the boundedness of  v ~ in Ittl10(g2) and of s * in L~(f2). 

In fact, the existence of  H-limits is guaranteed through the following result: 

Theorem 2.1. Consider a family A ~ o f  elements o f  r fl). There exists a 
subsequence of  A ~ which H-converges to an element A ~ o f  ~r 

The proof  of  the theorem is the exact transposition to the elastic case of the 
proof  given by TARTAR for the ease of  a second order elliptic equation (c f  e.g. 
MURAT [1], SIMON [I], ZHmOV, KOZLOV, OLEINIK & KnA T'EN N~OAN [1]). It 
will not be repeated here. 

This theorem asserts the existence of elastic materials which adequately re- 
present the macroscopic behavior of any kind of microscopically heterogeneous 
materials. 

Our goal in the present study is to obtain as much information as possible 
about A ~ provided some information is given about the A~'s, namely their weak-* 
limit, as e tends to zero. 

2.2. Statement o f  the Problem 

From now on the A"s under consideration are of  the form described at the 
beginning of subsection 2.1. In that context, the weak-* limit of  the A"'s is deter- 
mined as soon as the weak-* limit of the f f s ,  denoted by 0, is given. Theorem 2.1 
ensures the existence of an H-limit, at least for a subsequence of the A*'s. 

After repeated extractions of subsequences, we are led to the following set 
of  hypotheses, referred to as the (H) set: 

(2.13) 

where 

(2.14) 

(2.15) 

(2.16) 

A* = AI z  ~ + A2( I --  Z*), 

A 1, A 2 are homogeneous elasticity tensors in d / ( a  /3), 

Z * converges weak-* in Loo(R N) to an element 0 of Loo(RN), 

A ~ H-converges to an element A ~ of  Jt'(0~,/3). 
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If, as was assumed at the beginning of subsection 2.1, A 1 and `4 2 are isotropic 
(cf. (2.1), (2.2), (2.3)) the (H) set of  hypotheses is labelled the (HI) set. Note that 
the associated bulk and shear moduli do not have to satisfy (0.1). 

In the following sections, we mainly attempt to characterize all possible iso- 
tropic H-limits of a sequence of  A~'s satisfying (HI). Specifically we consider the 
case when .4 0 is isotropic, i.e. 

,4~ = 2~ i | i -t- 2/~~ I ,  

1 (2.17) K~ = "-N (U~'~ + 2#~ 

for almost every x in R N, and seek necessary and sufficient conditions on K ~ 
and /z  ~ for A ~ to be the H-limit of a sequence of A~'s satisfying (HI). 

3. Necessary Conditions 

The derivation of bounds on the elastic coefficients is performed with the help 
of  the theory of  compensated compactness. In Subsection 3.1 we adapt the method 
developed in MURAT [2] and TARTAR [4] to the setting of  linear elasticity. The 
results of Subsection 3.1 are used in Subsections 3.2 and 3.3 to obtain bounds on 
the bulk moduli and the shear moduli. 

3.1. Compensated Compactness and Linear Elasticity 

The theory of compensated compactness is concerned with necessary and suf- 
ficient conditions for weak lower semi-continuity of functionals. 

Definition 3.1. 

(3.1) A-----((e, s)C Jgs •162 I there exists a non-zero element ~ o f  1~ N 
and an element ~ o f  R N such that e = ~ | ~: -k ~ (~ 7, s~: ---- 0}. 

In the context of  quadratic forms, the following result holds: 

Theorem 3.1. Let  B(e, s) be a quadratic f o rm  on J/ls • ~r which is positive on A .  
Le t  .(2 be an arbitrary domain o f  R N, let s ~ be a sequence in L~2(g2) and~ ~ be a sequence 
in ~ll~oc(g2 ) such that 

(3.2) e" = x 2 (V~, ~ -k tV~)  is in L~(f2). 

,4ssume that, as e tends to zero, 

e ~ and s ~ converge weakly in L~2(f2) to e ~ and s o respectively, and that div s" 
(3.3) is in a compact set o f  ~lo~(O). 

Then B(e', s ~) is weakly lower semi-continuous in @'(g2), i.e., f o r  any q~ in cg~~ 
with qJ >= O, 

(3.4) lim,_+0 f q~B(e', s ~) dx  >= f q~B(e ~ s U) dx .  
�9 g2  t 2  
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Remark3.1. Theorem 3.1 can be generalized to the case of  an arbitrary 
sequence e" of  L~(f2) such that, for all i, k , / ,  m in (1 , . . . ,  N} 

~2eSmk ~2eTt a2e~kj ~2e~m . 
- -  in a compact set of Hlof($2). 

(3.5) Ox i Oxl -~ ON m ~X k ~X i OXrn OX k OX I lS 

Under some regularity assumptions, a tensor field e(x) in ~/t'~ is a linearized 
strain tensor, i.e. it is of the form 

(3.6) e = �89 (Vv + tV~,), 

for some vector field v(x), if and only if the following compatibility conditions 
hold true (cf. GERMAIN [1]): 

OZemk OZeil 02ekl 02eim 
(3.7) - -  + - -  - -  = 0. 

Oxi OXl OXm OXk OXi OX m OXk OXl 

The condition (3.5) can thus be interpreted as a control on the deviation of 
the fields e ~ from strain tensors. 

Remark 3.2. In the context of Remark 3.1, an equivalent definition for the set 
A can be given as 

(3.8) A = ((e, s) E ~/[, • ~'[, 1 there exists a non-zero element ~ of R N 

such that, for all i, k , / ,  m in {1, . . . ,  N}, 

Sij~ j = O, emk~i~l -3 I- eil~rn~ k - -  ekl~i~m - -  eim~l,~t = 0}.  

The result of  Theorem 3.1 can be obtained through application of the general 
result of  compensated compactness (TARTAR [4], Thorem 11). To this effect, the 
quadratic form B must be dissymmetrized and written as a quadratic form acting 
on V: ,  not on eq Its generalization in Remark 3.1 cannot however be obtained 
through direct application of that result which only considers the case of  linear 
relations involving first order derivatives of  weakly converging sequences, and is 
thus not concerned with relations of  the form (3.5). Nevertheless, the proof  of  the 
general result can be faithfully adapted to our setting, provided that the definition 
of  the set A given in TARTAR [4] is replaced by Definition 3.1. It will not be repro- 
duced in this study. 

Remark 3.3. In the context of Theorem 3.1, the quadratic form associated with 
the elastic energy, i.e. 

(3.9) E(e, s) = es, 

is weakly continuous (cf. Remark 2.2). 

Following the method devised in TARTAR [3] and developed in TARTAR 
[5], we seek a quadratic form which satisfies the hypothesis of  Theorem 3.1 in 
the hope that inequality (3.4) will yield the desired bounds. In a study of  heat 
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conductivity it was observed in TARTAR [5] that sequences of vector fields (the 
analogues of our s*'s and e*'s) only yielded elementary bounds and that sequences 
of second order tensors had to be used to derive better bounds. This remark 
applies equally here, at least as far as shear moduli are concerned. It results in 
the following extensions of Definition 3.1 and of Theorem 3.1: 

Definition 3.2. 

(3.10) A = ((P, Q)E Aa(JI,)•  I there exists a non-zero element ~ of  R N 
such that for any (~, ~) in R N •  N, there also exists an element z r 
in R N satisfying 

(Q(~ | rl) ) ~ = O, 

P(~ | 0 = ":' | r + ~ | z:"). 

Remark 3.4. In the light of Remark 3.2 an equivalent definition for A is 

(3.11) A-----{P, QE Aa(~C[,)• ] there exists a non-zero element 6: of R N 
such that for all i, k , / ,  m, p, q in (1 . . . . .  N}, 

aijpq$ j -~ O, 

emkpq~i~l -~  eilpq~m~k - -  eklpq~i~m - -  eimpq~k~l = 0}. 

Theorem 3.2. Let B(P, Q) be a quadratic form on LP(~s)• which is 
positive on A. Let Q be an arbitrary domain of  R N and P~, Q~ be two sequences of 
elements ofL2(s .s ) such that, as e tends to zero, 

(3.12) P~ andQ ~ converge weakly in L2(~2; Ao(J/~)) to pO and QO; 

for any (~,~) in R N •  N, P~(( | ~) is a linearized strain tensor, i.e. there exists 
r ~ in H~oe(~Q) such that P' ( (  | ~t) ---- �89 ( Vr + tV(~l~Je), div (Q'(( | ~/)) is in a 
compact set of  Hlo~(O). 

Then B(P', Q~) is weakly lower semi-continuous in ~'(,Q), i.e., for any ~o in 
c~(s with 9 :> O, 

(3.13) lirn,+ o f ~B(P ~, Q~) dx >_ f gB(P ~ QO) dx. 
O 

The proof of Theorem 3.2 is a mere repetition of the proof of Theorem 3.1 in 
the extended context of Definition 3.2. 

We are now in a position to prove the 

Theorem 3.3. Let B(P, Q) be a quadratic form on .s162215 which is 
positive on A and let L(P, Q) be any linear form on .~(Jls)•  .s Define, for 
any given elasticity tensor A, 

(3.14) f#(A) = s u p e ~ ( ~ )  [B(P, A o P) + L(P, A o P)]. 
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Let A ~ be a sequence o f  elements o f  ~r fl) which H-converges to an element 
A ~ o f  J[(o~, fl). Assume that f~(A ~) lies in L ~ ( R  N) and that 

(3.15) ~(A ~) converges weak-* in Loo(R N) to (~o. 

Then, for almost every x in R N, 

(3.16) ~(A~ <: g~ 

Remark 3.5. The elasticity tensors A g and A ~ considered in Theorem 3.3 do 
not have to satisfy (H) or (HI). 

Proof of Theorem 3.3. For  any positive ~0 in c~~ we define g2 ~ to be a 
bounded open set of  R u which contains the support of % and we take ~p to be 
an element of  cg~(g2~) with value 1 on the support of  ~0. 

If  po is an arbitrary element of s176 we define the displacement field pq~O 
a s  

0 (3.17) P%,~ : v 2 P,jpqxj. 

The strain tensor Pqe ~ associated with pq~,o satisfies the relation 

(3.18) pqeoij = pO.pq on supp ~0. 

Since A" H-converges to A ~ the solution "q~," of  

Pq'Pe E ~q]l( ~"~rp), 

pqe e = �89 (Vpq~)g _~ tVpq~e), 

(3.19) 
Pqs e ~ AePqee 

div "qs ~ = div (A ~ Pqe~ 

converges weakly in H~(s r) to pq~o (c f  Remark 2.1) as e tends to zero. Thus the 
fourth-order tensors E ~, S g defined by 

( 3 . 2 0 )  Ei~p : Pqe~.j, S~jpqe : pqsb : Ai jk  pe ge~ h , 

converge weakly in L[(s ~) to the fourth-order tensors E ~ and S ~ defined by 

(3.21) Ei~ Pqe~, Si~ l lo  pq~O : fJtijkh ~kh. 

In view of  (3.19), E" and S" satisfy the hypothesis (3.12) of Theorem 3.2 and 
the conclusion of that theorem applies to B(E ~, Sg). We obtain 

(3.22) f ~vB(E ~ A~ E ~ dx < lirn,~ o f qJB(E ~, A~ o E g) dx. 
.Qcp Dep 

Since linear forms are weakly continuous, 

(3.23) f ~pL(E ~ A ~ E ~ dx = lim,_.o f q~L(E', AS o E') dx. 
.Qcp .O~o 



318 

Thus, 
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f ~o(B(E ~ A ~ o E ~ + L(E ~ A ~ o E~ dx 
tW 

lira,_,, o f 9(B(E*, A*o E ~) + L(E*, A*o E*)) dx. 
D~ 

On the support of % E ~  po and supp ~o Q ~ ;  so that (3.24) reads 

(3.25) f ~0(B(eo, aOo eo) + L(po, AOo po)) dx 
RN 

lirn,~o f 9(B(E', A" o E ~) + L(E', A~ o E')) dx. 
RN 

By definition of N(A~), 

(3.26) B(E*, A'o E0  + L(E', A*o E') =< N(A*). 

We thus obtain 

(3.27) f q~(B(po, AO o po) + L(po, AO o po)) dx <= lirn,_.o f 9N(AO dx, 
B N  ]70 N 

and this holds for any po in L.e(~dC's). 
Since by hypothesis N(A0 converges weak-* in Loo(R N) to N ~ we deduce from 

(3.27) that for almost every x in B N, 

(3.28) B(po, AO(x) o po) + L(po, AO(x) o po) ~ NO(x). 

Taking the supremum of the left-hand side of (3.28) over all P~ in ~(~,/t's) 
yields the result. 

3.2. Necessary Conditions on the Bulk Modulus 

An H-converging sequence A ~ of elements of  J//(a, fl) is considered. Our 
goal is to devise suitable quadratic and linear forms on &o(~, ) •  ~(J/ /s)  and to 
apply Theorem 3.3 in the hope of deriving valuable bounds from inequality (3.16). 

Lemma 3.1. For any positive real numbers ~, fl, the quadratic forms 

(3.29) N'(P, Q) = -~[tr(t(pi) o Pi) - (tr Pi) 2] - tr (t(ai) o e i ) ,  

(3.30) 

IKu(P, Q) = [(N -- 1) tr (t(Qi) o Qi) - (tr Qi) 2] - ff(N -- 1) tr (t(ai) o Qi), 

are positive on A. 

Proof of Lemma 3.1. Let P, Q belong to A; ~ is the associated element of R N 
(cf. (3.11)) which has been normalized. 
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All mappings are written in an orthonormal basis of R N with ~ as first basis 
vector. For any p, q in {1 . . . . .  N}, 

Pijpq = O, 1 < i <= N, 1 < j ~ N, Plkpe = Pldpq ,  1 ~ k <-- N,  
(3.31) 

Qlipq : Q i lpq  = o ,  1 ~ i ~ N.  

The proof of the lemma reduces to a simple but lengthy computation of the 
quantities KI(P, Q) and N~(e, Q). The term tr g(Qi)o Pi) is found to be null 
on A; the remaining terms are seen to be positive on A by simple inspection 
for the bracket in (3.29) and by application of the Cauchy-Schwarz inequality for 
the bracket in (3.30). 

Lemma 3.2. For any elasticity tensor A, we define 

(3.32) f#t(A) = supe~ze(~,s) [K1(P, A o P) -[- 2 tr (Pi))], 

(3.33) ~"(A) = supe~so(~s) [Ku(e, A o P) + 2 tr (A(ei))]. 

I r A  is isotropic, with bulk modulus K and shear modulus i z (K > 0, # > 0), fgl(A) 

and f#"(A) are finite i f  and only i f  ~ <= 2tz <= ~ Furthermore 

N (~U(A) = N -- N(N  -- l) fi 
(3.34) f#t(A) = NK ~- (N -- 1) ~ '  N K  + (N -- 1) fi" 

Proof  of  Lemma 3.2. The proof is sketched for fq"(A); an analogous proof 
applies to fqt(A). 

Let P be an arbitrary element of Ae(J/,), represented by Pijkh in a given 
orthonormal basis of p N. We obtain 

(3.35) Ku(P, .4 o P) § 2 tr (A(Pi)) 

= [(N -- 1) (N2 ~ q- 42/,) -- (N~ q- 2/,) 2 --/~(N -- 1) 2] (Pt, kpp) z 

N 

q- 2 (N--  1)# (2 / , - /~ )  ~.  (Pijpp) = q- 2(N2 q- Z/z)(Pkkp~,). 
i , j= 1 

With the help of the positivity conditions on K and # the second-degree polyno- 

mial (3.35) is tediously seen to be bounded above if and only if 2# ~ ft. It reaches 
a maximal value at the point P such that 

(3.36) 

/~j~ = 0 ,  i=~j,  

N 1 
ijj, , ,  = N tr ( i i ) ,  y = a, . . . ,  N ,  + 

p ~ l  

tr (/5i) = N _ ,  

N K  + ( U -  1) fl 

t The summation convention is suppressed in this formula. 
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f~"(A) is the value of (3.35) at the point/3, 

(3.37) ~f"(A) = (N2 + 2/,) tr (rio = NZK = N -- N (N -- 1) 
N K  + ( N - -  1)fl N K  + ( N - -  1)/~" 

We are now in a position to apply Theorem 3.3 to a sequence A ~ satisfying 
(HI) (e l  Subsection 2.2), i.e. to a sequence A ~ describing the mixture in prescribed 
volume fractions of two isotropic homogeneous materials. Recall that / .1 =~/*2. 

Theorem 3.4. Let A ~ be a sequence o f  elasticity tensors satisfying (HI). Assume 
that A ~ H-converges to an isotropic, not necessarily homogeneous, elasticity tensor 
A ~ Set, for  almost every x in R N, 

(3.38) A~ = 2~ i | i + 2#~ I. 

The bulk modulus K ~ associated with A ~ satisfies 

(3.39) Kt(x) <= K~ <= KU(x), for  almost every x o f  R N, 

where, by definition, 

1 O(x) 1 - O(x) 

NKt(x)  + 2(N -- 1)# 1 = N K  1 + 2 ( N -  1)# 1 + N K  2 + 2(N -- 1)# 1' 
(3.40) 

1 O(x) 1 - -  O(x) 

NKU(x) + 2(N -- 1)# 2 = N K  1 + 2(N -- 1)/* 2 + N K  2 + 2(N -- 1)# 2, 

and where O(x) given in (2.15) is the local volume fraction o f  material 1. 

Remark 3.6. The bounds (3.39) on the bulk modulus hold true whether the 
moduli of the phases of the mixture satisfy (0.1) or not. They coincide with the 
bounds given by HASHIN & SHTRIKMAN [1] for the case N = 3 ( e l  (0.3)); this 
results from a simple algebraic manipulation of (3.40). The algebraic form of (3.40) 
renders obvious the following remark due to HILL (HAsmN & SHTRIKMAN [1], 
p. 135 or HILL [1], p. 369): if both materials have identical shear modulus, the 
bulk modulus of the mixture is uniquely determined. 

Proof of Theorem 3.4. Since the A*'s satisfy (HI), they satisfy the hypotheses 
of Lemma 3.2 whenever 

(3.41) 0 --~ ~ --~ 2/.1 ~ 2/*2 ~ /3 .  

We obtain, for almost every x in R N, 

(3.42) 
N ( z~(x) 1-z~(x) ) 

(9'(A*(x)) = NK~(x) + (N -- 1)~ = N ,NK 1 qS-(--ff _ 1)~ q- N K 2 ~  - iN~-- ' l)  -~ ' 

N ( N  -- 1)/~ 
~U(A~(x)) = U --  

NK'(x)  + (N -- 1)/~ 

( z~(x) - +  1 - z~(x) ) 
= N - - N ( N - -  1)/~ N K  l + ( u -  1) fl N K  2 + ( u -  1) fl " 
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The functions fffl(.4~(x)) and ff"(A*(x)) are bounded in Loo(R N) and their weak-* 
limits are explicitly computable; as e tends to zero, 

0 1 - - 0  ) 
fgt(A " ) ~  N N K  t + ( N - -  t ) ~  + N K  2 + ( N -  1)~ ' 

(3.43) [ 0 1 - -  0 
~(A*) N N ( N  I) 

 NK1 + (N -- 1) + + (N -- 1) fl' 
weak-* in L~o(RN). 

Theorem 3.3 is applicable in view of Lemma 3.1; it yields 

( 0 10)  
fft(A ~  )VKt + ( N _  1)~ q N K  2 + ( N -  I )~  ' 

(3.44) ( o 1 _ o )  
e"(A . )  < m - -  N ( N  - -  l )  ~ N K  ~ + (N - -  1) ~ + NK~ + (U - -  1) ~ " 

The right-hand side of inequalities (3.44) is finite almost everywhere, and thus 
f~l(A~ and f#~(A ~ are also finite almost everywhere. For future reference, it 
should be emphasized that the isotropic character of A ~ has not been used in 
establishing (3.44). 

If A ~ is isotropic, it is of the form (3.38). Lemma 3.2 implies that 

(3.45) 

and 
N 

(3.46) " : -  "~t(A~ = N K  ~ + (N  --  1) ~ '  

G 2#~ G if, for almost every x in R N, 

flU(A~ = N --  
N ( N  --  1) fl 

N K  ~ + ( N -  I)fl  

Replacing fgt(A ~ and ff"(A ~ by their expressions in (3.44) yields 

(3.47) K ~ ,  x) ~= K~ ~= K(fl, x) 

for almost every x in R N, where K(~, x) is defined as 

1 O(x) 
(3.48) NK(~, x) q- (N --  1) ~ ---- N K  ~ -}- (N  --  1) ~ q- 

1 - O(x) 

N K  2 + ( N -  1)~ '  

for any positive real number ~. 
The mapping 

(3.49) ~ ~ K(~, x) 

is monotonic increasing on R + for almost every x in R u. Thus, within the admis- 
sible range (3.41), the sharpest inequalities implied by (3.47) are obtained for 

---- 2/, 1 and fl = 2/, 2. Since KI (x )  = g(2# 1, x) and K"(x) = K(2p 2, x), inequa- 
lities (3.39) are proved. 



322 G.A. FRANCFORT & F. MURAT 

Remark 3.7. Since K(0, x) is the harmonic mean of K 1 and K 2 in proportions 
O(x), 1 - -  O(x), whereas limz,_>+ ~o K(~, x) is the arithmetic mean of K 1 and K 2 in 
the same proportions, the inequality (3.47) also yields PAUL'S bounds on the 
bulk modulus, i.e., 

(3.50) { O(x) - -  O(x)~ -1 < K~ < O(x) K 1 + (1 --  O(x)) K 2 
k K1 + K2 ] : - -  

for almost every x of R N. 
It was remarked in the proof of Theorem 3.4 that inequalities (3.44) hold true 

whether or not A ~ is isotropic. This observation is at the root of the following 

Corollary 3.1. Let  A" be a sequence o f  elasticity tensors satisfying (HI). Let  A ~ 
denote the H-limit o f  A t. Then necessarily 

tr (A ~ i) 
(3.51) Kt(x) <= [tr ((A~ -~ i)] -~ __ N2 ~ K~(x), 

for  almost every x o f  R N, where K l and K" are defined in (3.40). 

Proof of Corollary 3.1. The tensor field A~ is almost everywhere positive- 
definite. We denote by (A~ ~ its positive-definite square root in .s 
The Cauchy-Schwarz inequality yields 

(3.52) [ii] 2 = [((A~ ~ i) ((A~ -�89 i)] 2 

[((A~ ~ i) ((A~ ~ i)] [((A~ -~ i) ((A~ -~ i)] 

= [(A~ i) i] [((A~ - t  i) i] = tr (A~ i) tr ((A~ -~ i), 

which reads as 
tr (A~ i) 

(3.53) [tr ((A~ -1 i)] -1 =< N 2 

Inequalities (3.44) are now specialized to the case ~ = 2/, ~,/~ ---- 2# 2. By virtue 
of the definitions of ffl and of ~9~ and with (3.40), we obtain for almost every x 
in R N and for every P in s 

N 
(3.54) KI(P, A~ o P) + 2 tr (Pi)  - -  NKI(x)  + 2(N -- 1)/,1 ----< 0, 

2 N ( N  --  1)/z 2 
(3.55) K"(P,A~ o P) + 2tr (A~ --  N + mK"(x)  + 2(N -- 1)/z 2 ~ 0. 

Inequalities (3.51) result from a proper choice of P in (3.54) and (3.55). Speci- 

fically, we choose P to be of the form ~((A~ -x i) in (3.54) and ~i in (3.55), where 

is any real number. We obtain two polynomials of second degree in ~ which 
must remain negative for all s in R. The ensuing conditions on the discriminants 
yield the first and last inequalities of (3.51). 

Remark 3.8. If  specialized to an isotropic A ~ inequalities (3.51) reduce to 
the bounds (3.39) of Theorem 3.4 on the bulk modulus. In a recent paper KANTOR 
& BERGMAN [1] give the following bounds on the effective properties of the mixture 
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in prescribed volume fractions of  two isotropic phases: 

1 K u . (3.56) K t <= - ~  A~ <= 

Inequalities (3.56) are a mere rewriting of  relations (3.13) and (3.18) t of  KANTOR 
& BERGMAN [1] in our system of notation. The bound (3.51) givs the same upper 
bound as (3.56) but a better and more "symmetric" lower bound. 

3.3. Necessary Conditions on the Shear Modulus 

The A*'s under consideration are still assumed to satisfy (HI). The derivation 
of bounds on the shear modulus #o of the H-limit of  the A*'s requires the introduc- 
tion of  additional quadratic forms involving the trace operator Tr (cf. Section 1). 
The quadratic forms to be considered are 

Mr(p, Q) = ~[N Tr (tPo P) -- (Tr/7)2] _ Tr (tQo P), 

(3.57) 
M"(P, Q ) =  I N ( N - - 1 ) T r  ( tQoQ)_  (Tr 5)  2] NZ(N2--1):Tr ( '5~ P)  

where 

(3.58) e = e  Pi| ~ = Q  Q i |  
N ' N 

The associated linear forms are taken to be respectively 2 Tr P and 2 Tr L9 
The analogues of Lemmas 3.1 and 3.2 hold with 

(3.59) 0 ~ N~  ___ inf (NK, 2/~) <= sup (NK, 2/~) ~ N : ,  

and an analogue of Theorem 3.4 can be proved, namely 

Theorem 3.5. In the setting of  Theorem 3.4. the shear modulus ~o associated 
with A ~ satisfies 

(3.60) #t(x) ~ #~ <: ttU(x) for almost every x of  f~ N, 

with 

2ttl(x) + (N(N~ - 3) t - N - - 1 ) K  

O(x) 1 - O(x) 
( 3 . 6 0  = ~- 

1 O(x) 1 - O(x) 
N 2 _ N 2 _ "1- N 2 ' 

2#U(x) + - T K  2# 1 + ~ - K  2# 5 +-TK 

t Note that there are misprints in inequalities (3.18), (3.22) of KANTOR d~ BERGMAN 
[1], which give bounds on the "generalized" bulk and shear moduli. As regards the in- 
equalities (3.18) on the bulk modulus, the last ~o) should read x f2). 
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where, by definition, 

(3.62) N K = inf (NK ~, N K  2, 2#0, NK" = sup (NK ~, NK 2, 2/z2). 

Remark 3.9. The bounds (3.60), (3.61) do not coincide with the bounds given 
by HASmN & SI-ITmKMAN [1] (cf. (0.2), (0.3)) and the resulting admissible interval 
is larger and almost always strictly larger. It is however worth pointing out that 
our bounds are better bounds than the classical bounds obtained by PAUL (cf. 
(0.4), (0.5)). 

4. Sufficient Conditions 

The proof of the optimality of a set o f  bounds can be conveniently achieved 
through explicit computation. In this section we analyze the H-limits of sequences 
of "multilayered" elastic materials. In Subsection 4.1 we derive an explicit for- 
mula for the elastic material resulting from the multiple layering of any homo- 
geneous elastic material into another. Thus attention is not restricted to isotropic 
components. The computation is largely inspired by that performed by TARTAR 
for the case of heat conduction (cf. Propositions 3 and 4 of TARTAR [5]). Subsec- 
tion 4.2 is devoted to the determination of the possible isotropic H-limits obtained 
by "multilayers" of two isotropic phases, and to the computation of the associated 
bulk and she~fr moduli. 

4.1. Multiple Layering 

Let us consider two homogeneous but not necessarily isotropic elastic materials. 
We construct a mixture of these two materials by layering material 2 with material 1 
in a given direction. The elasticity tensor A ~ associated with the resulting material 
is explicitly computable. Specifically, the following theorem holds: 

Theorem 4.1. Let ~ be an arbitrary non zero vector in R u and z ~ be a sequence of  
characteristic step functions (defined on R) which converges to the constant 0 
weak-* in L~o(R), with 0 < 0 < 1 .  Let A s and A 2 be two elements of  ~g(o~, fl) 
associated with two homogeneous, not necessarily isotropic elastic materials. Then 
the sequence 

(4.1) A~(x) = A~x~(x~) + A2(1 -- Z~(x~)) 

H-converges to A t given by 

(4.2) ASh= A l h =  A2h for h in Ker(A 2 - A s ) ,  

(A t -- A1) -1 h = 
(A 2 -- A1)-lh 

1 - - 0  

0 
+ �89 ~ - - 0  {[q(~) ~ h o m(~)] + t[q(8) o h o m(~)]} 

for h in Ker(A 2 -  A1) • 
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where the second-order tensor q(~) is defined by 

and where 

(4.4) m(~:) = ~ | ~ . 

for  any (~', 7) in R N •  ~, 

Remark 4,1. For a given non zero ~ in R N, q(~) is a well defined element of 
sgs. Indeed, since A 1 lies in ~'(o~, fl), 

(4.5) ((q(~))-I ~)~  = (A1 (~ | ~ ) ) ( ~  | i - ~ ) ~  oc I ~12 for any ~ inRN~ 

thus (q(~)-l) is an invertible element of tit's. 

Let us postpone for now the proof of  Theorem 4.1 and specialize the result 
to the case of  an isotropic A1. We obtain the following 

Corollary 4.1. In the context o f  Theorem 4.1, i f  the material 1 is further assumed 
to be isotropie (cf. (2.1)), A ~ is given by 

(4.6) A~h : A lh  = A2h for h in Ker (A z --  A1), 

( A  2 - -  A 1)-1 h 
(A* -- A1) -1 h = 

1 - - 0  

+ (ho m(8) + m(~:) o h) -- #1(21 + 2#1) tr (tm(~) o h)m(~) 

for  h in Ker (A 2 -- A1) 1 . 

Proof of Corollary 4.1. The proof  is a simple computation of  q(~) when 
A 1 = 2  l i |  11. We obtain 

(4.7) (q(~))-i = #1 i + (21 + / z l )  m(~), 

and thus 
1 ) .1+ .I 

(4.8) q(~) = ~-~ i /zl(~- i ~_ ~I) m(~). 

Remark 4.2. If  both materials are isotropic, the tensor A z -- A t is invertible 
if and only if K 1 ~= K 2 and/,1 ~ /z2 .  Any element h of  Jgs can be decomposed 

tr h tr h 
into its hydrostatic part, -~ -  i, and its deviatoric part d = h ~-- i. 

I f  K 1 ---- K 2, Ker A 2 -- A 1 is the 1-dimensional subspace of ~ ' s  of  all hydro- 

statictensors whereas, i f# i  = # 2 ,  KerA 2 _ A  1 isthe ( N( - 2  _+ I) 1)-dimensio- 

nal subspace of  Jr' s of  all purely deviatoric tensors. 
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We now address the p r o o f  of  Theo rem 4.1. 

P roof  of  Theorem 4.1. Let  a t and a z be two arbi t rary  elements of  Jt 's  and 
set 

e *--z~a t + ( 1 - Z  *)a 2, 
(4.9) 

s ~ = A~e ~ : g * A l a  I + (1 - -  g ~) A 2 a  2.  

The tensor  field e ~ is a strain tensor  if  and only if it satisfies the compat ibi l i ty  con- 
dit ions (3.7), i ,e .  

(4.10) 

(a t - -  a 2 ) m k  e i ~ l  "q- (a  t - -  aS)u emek - -  (a  t - -  a2)kl eiem - -  (a I - -  ae)im ~ket : 0 

for  all i, k, l, m in {1 . . . . .  N}. 
Similarly the divergence of  the tensor  field s ~ lies in a compac t  set o f  Ht-d(R N) 

if and only if 

(4.11) ( A l a  ~ - -  A 2a2) e = 0. 

According to R e m a r k  3.2, (a I - -  a 2, A t a  1 - -  A 2 a  2)  belongs to A, which implies 
the existence o f  a vector  1: in R N such that  

(4.12) a 1 : a 2 + z" @ e + e | z'. 

Relat ion (4.11) becomes 

(4.13) (a~(z  | e + e | 1:)) e = ((A 2 - -  A 1) a 2) e .  

By virtue o f  (4.3), the left-hand side o f  (4.13) contracted with an arbi t rary  
vector  ~ o f  R N reads as 

(( (4.14) ( (A,(v |174 2 A t , |  ~| 

= 2 lel ~ ((q(e)) - t  v) B. 

I f  h is defined to be 

(4.15) 

the relation (4.13) reduces to 

(4.16) 2 lel  2 ((q(e)) - t  x) r / =  (he)r/ 

i .e.  

(4.17) �9 - -  

We obtain  

h = (A 2 - -  A 1) a z , 

for  any ~ i n R  N, 

1 e 
2 lel  ~ q(e)(he)  - -  �89 o h) le12. 

(4.18 z | e + e | v = �89 {q(e) o h o re(e) + t[q(e)o h o r n ( e ) ] } .  

In  view o f  (4.12), (4.15) and (4.17), the second-order  tensor a 1 and the vector  v 
are uniquely determined as functions of  a 2, and a 2 can be arbitrari ly chosen in ~ , .  
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Theorem 2.1 implies the existence o f  a H-converging subsequence o f  A ~. 
Let A ~ denote its H-limit. Under  the above choices o f  a ' and of  ~, the tensors e ~ 
and s" defined in (4.9) are such that, as e tends to zero, 

e ~ is a strain tensor, div s ~ =  0, 

(4.19) e ~ ~ e ~ = Oa 1 + (1 - -  0) a 2, 

s ~ ~ s o = O A l a  1 + (1 - -  0) "42a 2, 

where the convergences are to be unders tood as weak-* convergences in L~(RN). 
The properties (4.19) meet all the requirements o f  Definition 2.1 o f  H-limits. 

We obtain 

(4.20) s o = A~e ~  

or  equivalently, 

(4.21) ( A  t - -  A 1) (Oa t -I- (1 --  0) a 2) ---- (1 - -  0) (,42 - - / 1  t )  a z . 

Using (4.12), (4.15) and (4.18) in (4.21) yields 

[ 0 ] 
(4.22) ( '4t  - "4t) a2 + 7 {[q(~) ~ h o m(~)l  + t[q(~) o h o m(~)]} = (1 - -  0) h .  

The result is then obtained by decomposing a 2 along Ker  ( . 4 2 -  A t) and 
Ker  (.42 - -  At)  z in (4.22). I f  a 2 belongs to Ker  (.42 - -  .41), h is null and 

(4.23) (A t - -  A 1) a 2 = 0; 

the first assertion o f  (4.2) is proved.  Let a 2 belong to Ker ( , 4 2 -  .4t) L and 
(A 2 -  At)  -1 denote the inverse mapping  of  the restriction of  (A 2 -  A t) to 
Ker  (A 2 - -  At)  I. Then h defined by (4.15) belongs to Ker (A 2 - -  .4t) l and (4.22) 
reads as 

( A  ~" - -  A t ) S~h = h (4.24) 

where 

(4.25) S~ h = ! A  2 - -  A 1 )  -1  h 0 
1 --  0 - - k � 8 9  o m(~)] -}- t[q(~) o h o m(~)]}. 

In  view of  (4.4), the positivity o f  A 2 and (4.3) applied to 

(4.26) 

we obtain 

(4.27) (S~'h) ((.42 - -  . 4 , ) � 8 9  ( [q(~)o h o re(O]  + '[q(~) o h o m(~)]}) 

h ~ 
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If h belongs to Ker S t, (4.27) and the positive-definiteness (4.5) of  q(~) imply that 

(4.28) h~ ---- O; 

then 

(4.29) q(~) o h o m(~) = O, 

and (4.25) yields 

(4.30) h = 0. 

Thus S t is invertible on Ker (A 2 - -A~)  1, and the second assertion of  (4.2) is 
proved. 

Since (4.2) completely determines A ~, the H-limit is independent of  the H- 
converging subsequence and the sequence A ~ itself H-converges to A r 

In view of its specific form, formula (4.2) is very convenient when multiple 
layering occurs, which is to be contrasted with previous layering formulae (see 
e.g. BACKUS [1], CHRISTENSEN [1] and references therein). The multiple layer- 
ing process consists in a repeated application of Theorem 4.1. Specifically, 

Theorem 4.1 is applied to A 1 with volume fraction 6 ~ and A 2 with volume frac- 

tion 1 -- 0~, in the direction ~ .  Then Theorem4.1 is applied to A 1 with volume 

fraction ~2 and to A *~ with volume fraction 1 --  if2, in the direction ~2. The pro- 

cedure is repeated p times. The H-limit A sp is denoted by A ~ We obtain the fol- 
lowing 

Proposition 4.2. Let ~1, .. . ,  ~p be p non zero vectors in R N. Let 0 be the volume 
fraction of  material 1, 1 -- 0 the volume fraction of  material 2 (0 < 0 < 1). The 
following class ~P o f  elastic materials can be achieved through "'multiple layering" 
o f  material 2 into material 1 : 

8 p is the set o f  all A ~ in .Ws(~gls) such that there exist 01 . . . . .  0 p in (0, 1) 
p 

with ~ 0 i = 1, and such that 
i=1  

A~ = Alh  = A2h if h lies in Ker (.42 --  A1), 

(4.31) 

(A ~ - -  A 1 )  - 1  h = 

where 

p 

(4.32) 

(A z -- A1) -1 h 0 
1 - -  0 q- ~ Xh if h lies in Ker (A 2 -- A 1)L 

Xh = �89 ~ ,  Oi( [q(~ ' )  o h o m(~')] + '[q(~') o h o m(~")]}. 
i = l  

Proof of  Theorem 4.2. As has already been mentioned, the proof  consists in a 

repeated application of  Theorem 4.1. The volume fraction 0~ is chosen in the 
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following manner:  

(4.33) 

00~---0, 

o~ = (1 - go) . . .  0 - 6 i - 1 )  0 ~ 

0 

The 0-~'s are determined through an induction process once the 0i's are given. 

Remark 4.3. In the context of  Corollary 4.1 (i.e. if A ~ is isotropic), (4.32) reads 
as 

(4.34) 

Xh = ,=,~ O' { 2 7  (horn( , ' ) -k  m(,~) o h) 
(/~1 _~_ #1) 

#1(21 + 2# 1) 
tr(tm(~i)oh)m(~i)}. 

Remark 4.4. An intrinsic characterization of 8 p has yet to be found, even in 
the case when A ~ is isotropic. In this latter case however, all elements of  gP, 
p ~ 1, must satisfy 

(A 2 - -  AI)  - j  0 
(4.35) (A~ --  A1)-~ - -  1 - - 0  + ~ X, 

where X is an element of  ~s(.A's) such that 

(4.36) 

( N - -  1) 21 + 2 N #  1 
T r X  --  

2#1(21 + 2/~ 1) 

1 
tr  (Xi) = 2a + 21~. 

4.2. lsotropic Materials Resulting from the Multiple Layering 
o f  Two Isotropic Constituents 

Both materials are now assumed to be isotropic, and for the sake of simpli- 
city we also assume that K t is different from K 2 and #x from # 2  so that A 2 - -  A 1 
is invertible. We do not impose the ordering restriction (0.1). 

We examine the conditions under which the elastic tensor A ~ resulting from 
a "multiple layering" of  material 2 into material 1 (cf. Theorem 4.2) is isotropic. 
These conditions will be shown to uniquely determine such an A ~ 

Theorem 4.3. There is at most one isotropic A ~ that can be obtained through 
the multiple layering process defined in Theorem 4.2. 

Proof  of  Theorem 4.3. I f  A ~ is of  the form 

(4.37) A ~ = 2~ | i -1- 2#~ 
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the elasticity tensor X associated with A ~ through (4.31) has to be isotropic. We 
set 

1 -- 1 
(4.38) X - -  2 N ~ K  i | i q- ~-fi I, K = - ~  (N2 --k 2fi).  

The  constants  ;T, 5 , / ~  are uniquely determined by (4.36) at least if  the dimension 
N is greater  than  one. We obtain  

(4.39) 
F = 

(N(N + 1) - -  2) / t l (2x -b 2/t 1) 

2(N - -  1) (K ~ q- 2/t 1) 

~" = 21 + 2/t 1 �9 

We are now in a posit ion to determine A ~ f rom (4.31). The  constants  /to and 
1 

K ~  (N;t ~ + 2/t ~ are found to satisfy 

(4.40) 

1 - - 0  I 

2(/to _ / t a )  2(/t2 _ / t l )  

O ( N -  1) (K  1 -k 2/t 1) 

q- (N(N q-- 1) - -  2)/t1(21 -k 2/tl) ' 

1 - - 0  1 0 
K o _ K 1 K 2 _ K 1 -~ 21 + 2/t 1" 

The  resulting it o and K ~ are 

(4.41) K ~ = K 1 q- 
1 - - 0  

1 N O  ' 

K 2 -- K 1 q- N K  l q- 2(N - -  1)/ t l  

(4.42) /t0 - - / t l  _q_ 
1 - - 0  

1 
/t2 - -  /tl ql_ 

2N(N -- 1) O(K 1 + 2/t 1) 

(N(N-t-  1) - -  2 ) / t l  (NK 1 -b 2 ( N -  1) / t l )  

Remark 4.5. I f  we specialize the above  results to the dimension N = 3, we 
recover  the expressions for  the lower bounds  (0.3) in both bulk and shear modulus .  
Thus the only isotropic mater ial  that  can be achieved through the procedure  
described in Theo rem 4.2 has a K ~ and a #o that  coincide with the lower bounds  
(0.3) given by HASHIN • SHTRIKMAN. Of  course pe rmuta t ion  of  mater ia l  2 and 
mater ia l  1 would yield a mater ial  whose K ~ and #o coincide with the upper  bounds  
(0.3) given by HASHIN & SHTRIKMAN. 

It  remains to show that  such a mater ial  is in effect achieved through "mul t ip le  
layering".  This last step is pe r fo rmed  in dimension two or three. 

The  computa t ion  is outlined in the case of  dimension three. We place ourselves 
in ~6 defined in Theo rem 4.2 and choose ~1, . . - ,  ~6 on S 2, the unit  sphere in 
R 3. The  vector  21 is the direction vector  associated with the nor th  pole. The  vec- 
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tors ~2 . . . . .  ~6 are the direction vectors associated with 5 equidistributed points 
on the circle that results from the intersection of S 2 with a plane located at 

above the equatorial plane. Setting 

0~ = -~'-, /5 = �89 Arcos-~-,  

we obtain 

(4.43) 
sin 2/5 cos 40~ 

sin 2/5 sin 40~ , 

cos 2/5 

sin 2/51 sin 2fl cos 2o~ I 

co02/5 I ' s  , 8 3 =  sin2/5 s in20,[ ,  
cos 2/5 I 

sin 2/5 cos 6o~ sin 2/5 cos 80~ 

~5 = sin 2/5 sin 6o~ , ~6 = sin 2/5 sin 8o~ 

cos 2/5 cos 2/5 

Note that the six directions ~i are those of the northern hemisphere vertices of 
the regular icosahedron. 

The 0i's which appear in Theorem 4.2 are chosen to be 

(4.44) 01 . . . . .  06 = 1/6. 

We set ~1, ~2, ~3 to be a canonical orthonormal basis of R 3. The computation 
of X is addressed in the following orthonormal basis of ~//t', for the inner product 
on d l ,  (cf. Section 1): 

e I = ~1 (~ ~1, e 2 = ~2 (~ ~2, e 3 ~_~ (3 (~) ~3, 

~/~ 
(4.45) e 4 : _ ~  (~1 ( ~ ) z ,  ~2-t- ~2 (~ ~1), e 5 = _ ~ ( ~ 1  (~ ~3_~_ ~3 (~ ~1), 

e 6 = _ ~  (~2 Q ~3 _~_ ~3 (~) ~2). 

The computation is organized as follows: a composition table e i | e j is pro- 
duced; the components of the terms h o m(~ ei) + m(~ el) o h and tr (tm(~e~) o h) m(~ el) 
are calculated in the basis e 1, . . . ,  e 6. After a tedious computation, we obtain 

,~.1 .q_ ~1 3~1 _~ 8#1 
(4.46) X ---- -- 15#1(21 + 2#1) i | i Jr 15/z1(21 + 2/,1 ) I,  

which is precisely the X foreseen in (4.38), (4.39) in the three-dimensional case. 
The same method applies to the case N----- 2; three directions have to be 

used, namely, if ~1, r is a canonical orthonormal basis of R, 2, 

z~ 2z~ 2~ 
~1, ~I c o s y  + ~2 sin-~-, ~1 cos--~- + ~2 sin-~-- 
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We have proved the following 

Theorem 4.4. In the case N = 3, the HASHIN & SHTRIKMAN bounds (0.3) 
on the bulk and shear moduli are simultaneously achieved through a finite number 
of  layering processes. 

Remark 4.6. As was mentioned in the introduction, the attainability of  the 
bounds on the shear modulus given in HASHIN & SHTRIKMAN [1] has long been 
an open problem. This is established here with the help of Theorem 4.4 through 
explicit construction. Our multiple layering method differs from the incremental 
process used by MILTON [1], NORRIS [1] and LURI~ & CHERKAEV [2]. 

Remark 4.7. The HASHIN • SHTRIKMAN bounds (0.2), (0.3) were originally 
derived under the ordering restriction (0.1). A set of bounds was later derived 
by WALPOLE [1], p. 159, when (0.1) is not satisfied. WALPOLE'S bounds on the bulk 
modulus coincide with the expressions K t and K ~ given in (0.3), which agrees 
with the results proved in the present study (Theorem 3.4 and Remark 3.6). 
WALPOLE'S bounds on the shear modulus however allow for a larger interval of 
possible macroscopic shear moduli than the expressions/,l and #~ given in (0.3). 

In this context, the multilayered composite proposed here does not achieve 
WALPOLE'S bounds, at least as far as shear moduli are concerned. In any case, 
WALPOLE'S bounds on the shear modulus are not optimal (MILTON &PHAN THIEN 
[1], p. 325). 
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