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Abstract 

Existence problems for the Boltzmann equation constitute a main area of 
research within the kinetic theory of gases and transport theory. The present 
paper considers the spatially periodic case with L I initial data. The main result 
is that the Loeb subsolutions obtained in a preceding paper are shown to be 
true solutions. The proof  relies on the observation that monotone entropy and 
finite energy imply Loeb integrability of  non-standard approximate solutions, 
and uses estimates from the proof  of  the H-theorem. Two aspects of  the continuity 
of  the solutions are also considered. 

1. The Equation 

The non-linear Boltzmann equation describes among other things the ma- 
croscopic behaviour of rarefied gases, when the molecules interact by elastic 
collisions. The molecules move in a region of R 3 with some suitable conditions 
on the boundary. For  simplicity we take the region as R3/Z  3 and we adopt 
periodic boundary conditions. Let F be the density of the molecules in phase- 
space M :~ R3 /Z  3 • R a. The expected number of  molecules at time t in a region 
A of  M i s t h e n  

f F(x,  v, t) dx dv. 
A 

Given two molecules of initial velocities vl, v2, and initially separated in space, 
let v], v'2 ~ J(vl, v2, u) be the velocities of the molecules after collision, and 
with J a C~-mapping, to be further specified below. To describe the details of  the 
collision process we introduce a plane P orthogonal to v2 --  v~, and at rest with 
respect to the first molecule. In this plane the impact parameter u is the vector 
from the first molecule to the point of intersection with P of the straight line from 
the second molecule at time -- oo in the direction of  v2 -- v~. Let B C= P denote 
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the set of values of u for which one has collision. Any radial cut-off will do, but 
we shall for convenience use 

1 
B = {u C R2;I u[ _--< ~-~). 

Also hard potentials with an angular cut-off can be treated by the same methods. 
Set 

p : R 3 X R 3 ~ R 3, (v l ,  v2) --->" v l  -[- v2 ,  

T:R3•  R, (vi, v ) lv lZ + lvzV, 

Z 2 R 3 X R 3 ---> R 3 X R 3, (11,132) i_> (/-)2, 131). 

On physical grounds J is restricied by 

(1) P ~ Ju = P, T o J .  = T, S o J.  = J .  o Z', J o J = identity. 

Using a statistical hypothesis and retaining only binary collisions, BOLTZMANN 
expressed 8F/St through a balance between the density of the number of molecules 
entering a region of  collision and leaving it, as 

(2) ~F/St(x, vl, t) + vl �9 VxF(X, vl, t,) = QF(x, vl, t) (t > 0). 

Here V x is the gradient with respect to the position x E Ra/Z a, and Q is called 
the collision operator: 

(3) QF(x, v,) =_ f (F(x, v]) F(x, v'2) -- F(x, Vl) F(x, v2)) k(v,, 132, u) dv2 du, 
RaXB 

which we shall sometimes abbreviate to 

QF(x, v~) =- f (F | F' -- F |  F) k dr2 du. 

The non-negative, measurable function k is required to satisfy 

(4) ko 27 = k o J .  = k, 

together with 

(5) k(v~, 132) =< Ck(1 q- l v~ I z -}- 1132 ix) 

for some constant ;t with 0 g ;t < 2. For  a more complete discussion of (1)-(5) 
see [C] or [TM]. 

In the physical case with radial cut-off we take 

k(vl, v2, u ) = l v z - 1 3 1 1  for uEB,  k(v~,132, u ) = O  otherwise. 

In the discussion below we also consider a truncated version k', 

k'(vz, 132, u) = k(vl, Vz, u) for u E B and v~ + v~ _< n:, 

k"(va, v:, u) = 0 otherwise. 

The Boltzmann equation (2) is to be solved under an initial condition 

F(x, v, O) = Fo(x, v). 
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Computing formally in (2), we conclude that F ~ 0 if Fo _>--0, and that 

f Fodxdv= f Fdxdv, f v2Fodxdv= f v2Fdxdv 

for all t, so that mass and energy are conserved quantities. Also by formal com- 
putation, the H-quantity (an entropy function) is decreasing as t increases. Here 

HF(t) -~ f F log F dx dr. 

Thus a natural setting for the Boltzmann equation is in a space of functions F 
such that 

(6) F >: O, F, v2F, Flog  F ~  LX(M). 

2. A Truncated Version 

Before considering the full equation (2) with initial values satisfying (6), we 
shall first look at a simpler case of a truncated, integrated Boltzmann equation, 

t 

(7) F(x q- tvl, vl, t) = Fo(x, vl) q- f QnF(X q- svl, Vl, s) ds 
0 

with 

f ((F(x, v]) F(x, v~)> -- <F(x, vl) F(x, v2)) ) k"(vl, v2, u) dv2 du Q,(F(x, v 0 
Ra• 

and 

F |  [ F |  
( F  | F )  ~ 

n sign F | F otherwise. 

In this case the collision operator is Lipschitz-continuous and the solution is 
easy to obtain. 

Theorem 1. For any initial value Fo in L~, there exists a unique nonnegative solution 
of (7) in L ~ The solution conserves mass and energy, and the H-function is non- 
increasing. 

Proof. It is enough to consider Fo with support in 

n3/z3• IvI < n}. 
For any functions F, G 

I(F(x, vl) F(x, v2)) -- (G(x, vl) G(x, v2))[ 

< IF(x, v~)l" IF(x, v2) --  6(x, v2)] + [6(x, v2)I" IF(x, vO -- 6(x,  v3[. 

Since the integration in Qn is over bounded sets, it follows that 

[[Q.F-- Q.G[[~ ~ K(HF][~o q- liG[[~o). [IF--  GI]~ 
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for some constant K. Thus Qn is locally Lipschitz-continuous in L~, and so there 
exists a unique local solution F of (7). But 

and so 

II Q.Flloo ~ 8xn6Ck ~ K', 

IIF(t)ll~ -<= IIFolloo + tK'. 

Thus Fexists for all t > 0. To Complete the proof it remains to verify that F >-- 0. 
By usingoL 1-differentiation it is easy to show that F is the only solution of the 

equation 

(8) G(x + vlt, vl, t) : exp (--H(x,  vl, t)) Fo(x, vl) + 

t 

f exp (--H(x,  v~, t) + H(x, v~, s)) Q.G(x -t- v,s, va, s) ds ~ TtO_.G 
0 

where 
t 

0 

and 

+ F | F(x, v~, vD -- (F  | F) (x, v~, v~)} k'(v~, v2, u) dr2 du, 

We note that Q. has a structure similar to Q., but it is also order-preserving 
in the sense that 

Q_.,,GI>QnG2>=O if GI>=G2>=0.  

For small t, the solution G of (8) is the limit of the increasing sequence 

G 1 = O,  Gj = TtQnGj_I, j ~ 2. 

It follows that the solution of (8), hence of (7), satisfies F > 0 for small t. By a 
continuation argument we get F_> 0 for all t > 0. 

The conservation of mass and energy follow from integration of (7) and (7) 
multiplied by v 2. It can be shown from (7) by a straightforward calculation that 
the mapping 

F log  F: R+ -+ LI(M) 

is differentiable, if for some e > 0, Fo > e exp (--v 2) when I vl < n. From these 
statements the formal proof of the H-theorem can be made rigorous (cf. [Arl]). 
The solution F~ of(7) with initial value Fo + e exp (--v 2) satisfies lim F,(t) = F(t) 

e-+0 

in L~176 uniformly o ,  any interval 0 --< t --< T. We conclude that the mapping 

HF: t -+ HF(t) = f F(x, v, t) log F(x, v, t) dx dv 
M 

is non-increasing as a function of t: [ ]  
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3. Non-Standard Aspects 

One way to study the Boltzmann equation using non-standard methods is 
to start f rom the truncated case of  Theorem 1, but within an enlarged universe 
V(*R): That  approach has suggested a new concept of  solution, based on the Loeb 
integral, which in fact until now has yielded the only results on existence far from 
equilibrium. Before describing them we shall in this section give as a background 
a quick sketch of  some relevant facts- about  non-standard analysis. 

In non-standard analysis, proper ordered extensions *R of the field R of  real 
numbers are used. A simple example can be constructed by fixing a free ultrafilter 
A on the natural numbers N. Two sequences of  real numbers {ri} and {si} are equi- 
valent if ri = si for all i in an element U of A. The equivalence classes form the 
non-standard reals. An element aE *R is infinitesimal if lal < c for every 
0 < c E R. *R contains non-zero infinitesimal numbers, and we sometimes write 
a ~ 0 to denote that a is infinitesimal. The standard part  of  a E *R is 

c if a E * R ,  c E R ,  

s t a = ~  cx~ if a > n  ( n E N ) ,  

--cx~ if a < - - n  ( n E N ) .  

a - - c ~ O ,  

The near-standard part  of  *R is 

ns *R = {xE *R; ~ R}. 

The elements o fns  *R are said to be finite, and the other elements of  *R are called 
infinite. The superstructure on a set S = So is by definition 

v ( s )  = k /  s . ,  
n ~  OO 

where S,+ 1 is the set of  all subsets of 0 Sj (n E N). 
j=0 

Along with *R a map 

is given with 

* : V(R) ~ V(*R)  

*r = r (r E R), 

and satisfying the transfer principle. This states that if $1 . . . . .  S, E V(R), and 
if E is an elementary statement true of  $1 . . . . .  S, in V(R), then it is true of  
*$1 . . . . .  *S, in V(*R). (A statement is elementary if it is built up from e and = ,  
using the propositional connectives and bounded quantifiers V x E y, 3 x E y.) 
Standard sets in V(*R) are *-images of  sets in V(R). Internal sets in V(*R) are 
elements of  standard sets in V(*R). 

We next describe the relevant measure spaces, starting from a standard set X 
in a denumerably comprehensive superstructure V(*R). (In what follows, X will 
be taken as *M.) Denumerably comprehensive means that if S E V(R), A, E *S 
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(n E N), then the sequence {An; n E N} is the restriction to N of an internal function 
from *N into *S. 

Let ~ be an internal algebra of internal subsets of X (i.e. A, B E ~ ~ A UB, 
X -- A E ~) ,  and let ~ be an internal, finitely additive mapping from ~ i n t o  *R+ 
(i.e. ~(A k) B) = r(A) q- ~(B) if A F~ B = 0). Define L~,(A) : ~ (A E ~), 
and take a ~  as the smallest a-algebra (in the standard sense) of subsets of X with 
a ~  ) W. With 

Lv(B) = inf Lr(A), 
AE~ v, BCA 

we obtain a standard measure space (X, akv, Lv). The Loeb space (X, L 7  r, L~,) 
is by definition the completion of (X, a ~ ,  L~). 

We say that 

is S-integrable, if 

i) f is W-measurable, 

f :  X--~ *R 

ii) f (If[ --  IfI A w) d~ ~ 0 (w E * N  - -  N) ,  
X 

ii i )  f (Ifl A W - 1 )  dv ~ ,  0 ( w E  ~:N - -  N ) .  
x 

Below we use the following properties of this concept of integration. 

Proposition. Suppose f :  X--~ *R is S-integrable, g: X--~ *R is ~[l-measurable 
and Ig(x)l <= If(x)l for all xE X. The g is S-integrable. 

Proposition. Suppose f:  X---> *R is S-integrable. Then of is Lv-integrable and 

~  fay  = f ~ dLv 
A A 

for any A E ~.  

The reader is urged to consult [L] and [An] for a more complete discussion. 
Let us also point out that existence results often can be obtained in the denser 

Loeb context, even when there are no solutions in the standard setting. The follow- 
ing control problem is a simple example. 

Example. Minimize the cost function 

T 
J(u)-= f (ly(t)] 2 --[u(t)[  2) dt 

0 

under the constraint 

and with 

--1 ~ u(t) ~ 1, t E [0, T], 

t 

y(t) = f u(s) ds. 
0 



Loeb Solutions of the Boltzmann Equation 91 

Evidently 
T T 

J(u) ~ f -lul~dt ~ f --ldt------T. 
0 0 

Choosing 

1 if O ~ t ~ T / 2 n  
un(t)= _ 1  if T / 2 n ~  t < T/n, 

and extending it periodically, we obtain 

0 ~ Yn(t) ~ 1/2n, 

T 

- - T ~  J(un) ~ f ((T/2n) 2 -- 1)dt--~ - -T  
0 

On the other hand 
J(u) = - -T  

only if ]u I ---- 1, together with y ---- O, which implies that u = O. Hence the 
infimum is never attained. 

But the corresponding Loeb problem on *[0, 7"] has infinitely many solutions. 
Let L dt denote the Loeb measure obtained from *dr. For n E * N -  N let 
[t(t) = un(t) be defined as above. Then 

IY(/)' = [ /  u(t) L dt l = l ~  [~(t) 

and so 

*dr ] ~ ~ Z/2n [ = O, 

T T 

J(~) = f lPl 2 - l ~ 1 2 Z d t =  f 0 -- 1Ldt ~- --T. 
0 0 

[ ]  

This example has a standard interpretation ([Cul], [Cu2]] within the theory 
of relaxed controls (as measure-valued functions instead of point-valued ones). 
As for the Loeb solutions of (2) on ns *M discussed below, such an interpretation 
does not hold due to the product structure within the collision operator. It seems 
as if any condensed interpretation with respect to M would have to invoke 
further properties from the Boltzmann equation set-up. 

4. Spatially Dependent Loeb Solutions of the Boltzmann Equation 

We shall start from theorem 1 extended by transfer for n E * N -  N. Our 
aim is to substitute ( f |  in (7) by f |  *R 3 by ns *R 3, and change the *Le- 
besgue integrals into Loeb integrals. Let f be the solution of the non-standard 
cutoff Boltzmann equation (7) with initial condition 

f o ( x ,  v l )  - -  *Fo(X, v l )  ^ n + n -1 exp  (-vZ). 
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Here Fo lies in the positive cone of L~.(M) and has finite energy and entropy. 
A wider class of non-negative, *Lebesgue-measurable initial data with finite 
mass, energy, and entropy, together with a condition at infinity, can also be handled 
by the methods below. 

Theorem 2. Suppose 0 ~ 2 < 2 in (5). Then of is a solution of the Boltzmann 
equation in the following sense; for Loeb a.e. (x, vl) E ns *M 

(9) 
t 

+ f  f 
0 ns*Ra •  

~ -~ tva, vl, t) = F o o st (x,/)1) +- 

t 
~ + sol, Vl, S) ~ + SOl, 132, S) k o st (vl, v2, u) L do2 duds 

t 

- f f ~ + SO1, Vl,  S) ~  + SO1, V2, S)  k ~ s t  (v~, v2, u) L dvz duds. 
0 ns*Ra •  

This theorem is an immediate consequence of the following three lemmas. 

Lemma 3. For Loeb a.e. (x, Vl) E ns *M, the function 

(v2, u, s) --> f ( x  + sva, Vz, s) kn(va, Vz, u) 

is S-integrable, and 

t 

of ~ f(x + SOl, v~, s) k"(v,, o~, u) *dos duds = 
0 *R B 

t 

f f 
0 ns*R a •  

~ + svl, v2, s) k o st (vl, Vz, u) L dv2 duds. 

Sketch of proof. Essentially we only have to check the definition of S-integrability. 
But i) is immediate and ii) is a consequence of mass conservation and the 
finiteness of the H-function, Finally iii) is implied by the conservation of 
energy. [ ]  

For a complete proof see [Ar2]. 

Lemina 4. For Loeb a.e. (x, vl) E ns *M 

t 
(lO) of f 

0 *Ra• 
( f  | f ) (x + sol, vl, Vz, s) k"(vl, v2, u) *dr2 duds = 

t 

= f f ~ -[- SVl,  O1, S) ~  -[- SO1, 1)2, S) k ~ s t  (v,, v2, u) L dv2 du ds.  
0 ns*Ra • B 

Sketch of proof. By the first non-standard proposition of the previous section, 
the product of a bounded *Lebesgue-measurable function and an S-integrable 
one is S-integrable. From (8) it is easy to seethat the mapping s---~f(x + sol, vl, s) 
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is bounded on [0, t] for Loeb a.e. (x, vl) E ns *M. Using this fact and lemma 3 
we conclude that 

f (x  + svx, v,, s)f(x + svl, v2, s) k"(vl, v2, u) 

is S-integrable in (v2, u, s) for Loeb a.e. (x, v~)E ns *M. This also holds for 
< f |  since 

0 < ( f |  <=f |  

Hence essentially the lemma is a consequence of the second non-standard proposi- 
tion from the preceding section. [ ]  

For a complete proof see [Ar2]. 

Lemma 5. For Loeb a.e. (x, v~) E ns *M 

t 

(11) of f < f |  (x + sv,, v;, v'2, s) k"(v,, v 2, u) *dr 2 duds = 
0 *R~xB 

t 
t 

= f f ~ + SVl, v,, s) ~ + svl, v2, s)/co st (v,, v2, u) L dr2 du ds. 
0 ns*Ra• 

Proof. The following discussion holds for Loeb a.e. (x, vl) E ns *M. Let Z be 
the characteristic function of any set 

{(v,, v2); v~ 2 + v2 2 <: m 2} (m E N). 

Since the integrals 

f z f (x  + sv,, vj, s) *dx dr, dv 2 duds ( j  = l, 2) 

both are finite, it follows that 

z f (x  + svl, v~, s) and z f (x  + svl, v'2, s) 

are finite for Loeb a.e. (v2, u, s)C ns *R3•215 t]. Thus 

~ | f ) (x + SO1, V], /)2, S) = ~ + sv,, v], s) ~ + sv,, v'2, s) 

for Loeb a.e. (v2, u, s)C ns *Ra•215 [0, t]. 
We next cousider the S-integrability in (v2, u,s) of < f |  k "~. Since 

( f  | f>  k" is S-integrable, it is enough to prove for some finite j > 1 that 
the function ( f  | f'> k" is S-integrable on the set 

Dy = {(v2, u, s)E *Ra• B • [0, t ] ; ( f  |  > j<f  | 

But on g22 

0 <= < f |  kn<= 2 ( < f |  -- <f|  k n, 
T . 

and it suffices to consider the S-integrability of the right member on g22. We only 
have to check ii), iii). Now 

f | 1 7 4  
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on ~2j for j > 1, 

(12) O <  f ( < f |  
aj 

L.  ARKERYD 

and 

(logj) - t  f (< f@f '>  -- < f |  l o g ( f | 1 7 4  k ~ *dv2 duds 

< C/logy, 

with C finite. 
We can majorize a.e. by a finite C in the last member of (12) by following the 

usual proof of the H-theorem. Indeed, we use the fact the integrand is positive, 
and the inequality 

f ( ( f  @ f '>  -- <f  | f>)  k = log ( f  @ f ' / f  @ f )  *dx dvl dr2 duds 
A 

_--< ~ f (fo logfo + exp (__/)2) .A[_ v2fo)*dx dv~6ns *R+, 
t 2~ J 

when 
A = * ( M x R 3 x B x R + ) .  

To prove ii) we let w E * N -  N and set 

O = {(v2, u, s) E g22 ; <f  | f '> /C  > w}. 

It follows from (12) that 

f *dv2 du ds ~ O, 

and from fo > 0 together with (8), that 

f <f | f> k n *dr 2 duds > 0 if 

Then 

since < f @ f >  

f *dv2 duds > O. 

O < j o 2 ~ -  f <f @ f > k = *dv2 du ds ~ O, 

is S-integrable. Hence 

f < f |  k ~ *dv 2 duds ~ O. 
"Q-- 'QJo 

As for the remaining part of g2, 

f (<for'> - < f |  f>) k ~ *dr2 duds ~ 0 
aJo 

by (12). This proves ii). 
To prove iii) we let w E *N -- N. It follows from fo > 0, and the S-integrabil- 

ity of <f  @ f> k n, that 

O < j o  2--- f < f |  -1 *dv2duds~  O. 
~a 
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Hence 

f ( f |  -1 *dv2dudsmO.  
D a  - -  D jo  

As for the remaining part of f22, by (12) 

o<= f <f | f'> k" A w-' *dv~ du ds <= f <f | f'> k" *dv2 du ds < XC/logyo m o. 
% D/o 

This proves iii), and so the S-integrability. 
Finally to obtain (11) we shall also check that 

lim of  ( f  | f , )  kn*dv2 du ds ~- O, 

where 

A. = {(v2, u, s) ~ ~2 ;  I v~ I > ~}- 

Suppose the limit equals e > 0. By (12) we can choose jE N, such that 

| ' k" o f ( < f  f ) _ < f @ f ) )  *dv2duds<e /2 .  
aj 

This however, leads to a contradiction, since by lemma 4. 

lim of  ( f  | f , )  k ~ *dv2 duds = O. 
v -+ oo A v 

[] 

Proof  of  Theorem 2. As stated above, f is a non-standard solution of(7).  To  obtain 
(9), we now only have to apply the standard part mapping to (7) and use (10 
and (11). [ ]  

5. Comments 

It follows from the corresponding properties o f f  that of conserves mass and 
first moments. Also the energy and the H-function are bounded from above by 
their initial values. 

If F:  R+-+LI+(M) is a solution of the Boltzmann equation., then Fo st 
is a Loeb solution with respect to ns*M. Thus if uniqueness holds in the cor- 
responding Loeb problem (9), then the Loeb solution is an extension of the solution 
on M to the denser space *M. So far such Loeb uniqueness has only been obtained 
using ideas from classical proofs, as for the spatially homogeneous ease with finite 
fourth moments and for some spatially inhomogeneous cases with data close to 
equilibrium. 

As noted in [At2], the solution of of (9) is t-continuous in the sense of [TM] 
p. 343, i.e. for Loeb a.e. (x, v~)6 ns *M, given t > 0 and ~/E R+, there is a 

E R+, such that 

[ ~ + tv~, v, ,  t) - -  ~ + t'va, vx, t')] < ~ if [ t - -  t'l < O. 
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Moreover 

Theorem 3. The solution of of (9) is S-continuous as a mapping 

~ ns *R+ ---> Loeb Ll(ns *M), 

i.e. given t >= 0 and finite, and ~ E R+, there is a dE R+, such that 

(13) f [f(x q- tv~, vl, t) -- f ( x  -b t' Vl, vl, t')[ L dx dr1 < 
n s * M  

provided [t -- t ' [ <  ~. 

Proof. It follows from the conservation of energy that we have only to prove (13) 
when the integration is over an arbitrary bounded *Lebesgue-measurable subset 
of  ns *M. Given such a subset A, outside of a *Lebesgue-measurable subset 
E ( A  of arbitrarily small measure, the two integrands in (9) are each Loeb 
integrable with respect to all variables. It is a consequence of  the H-theorem 
that the part of the integral in (13) coming from E can be made arbitrarily small 
uniformly with respect to t and t '  by taking the measure of  E small enough. 

To integrate in (13) over A - - E  with say t - < t ' ,  we set 

G~ = {(x, v~, v2, u, s)q (A -- E)Xns  *Ra x B x  [t, t ' l ;  lv2l _~ ~}, 

G =  U G,, y E N .  

Now 

f of|  ~  s tLdxdvx  do2 duds = lim f of@ ~ s tLdxdv l  dr2 duds. 

Since the measure of G~ tends to zero when t' tends to t, 

f of| ~ stLdxdv~ dr2 duds 
G~ 

also tends to zero, when t' tends to t. 
An analogous discussion of convergence can be carried through for 

f of | Of, ko st L dx dv~ dr2 duds. 

This completes the proof  of  the theorem. [ ]  

Note added in proof. I thank P. Lomb for bringing to my attention a simplification 
used in the above proofs. 
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