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w 1. Introduction 

The phenomenon of melt fracture occuring in the process of polymer ex- 
trusion (see TORDELLA, 1963) has attracted the attention of research workers 
in the past two decades. In order to understand the mechanisms which might 
give rise to this phenomenon, the behaviour of perturbations of plane Couette 
flow of viscoelastic fluids with fading memory has been studied by various authors. 
Among them are COLEMAN & GURTIN (1968) who proposed and studied the 
formation of shear shocks and DUNWOODY (1970), who took a similar view, but 
incorporated heating effects. SLEMROO (1978, 1979) also considered the physical 
conditions necessary to produce the existence of non-smooth solutions to the 
perturbation problem, and proposed a further mechanism for instability based 
on the proposition that the shear stress in the basic flow is not a convex function 
of the shear rate (see J. L. ERICKSEN (1975)). 

The most recent studies of this stability problem have been by AKBAY, BECKER, 
KROZER & SPONAGEL (1980) and AKBAV & SPONAGEL (1982), both based on an 
approximate constitutive theory for slow flows of fluids with short memory 
proposed by AKBAY & BECI<ER (1979) and BECKER (1980). In both cases it is 
assumed that stability can be studied by linear theory using standard spectral 
analysis of an eigenvalue problem and other approximations. Here we adopt 
the same approach, except that we have derived linear stability equations for 
infinitesimal perturbations of the history of a simple shear flow of a viscoelastic 
fluid with fading memory without further approximations. Simplifying assumptions 
with regard to material response are only introduced in order to draw conclusions 
from our exact analysis of stability in the final section 7. We show that periodic 
disturbances of long wave length in the flow direction may lead to instability 
when the modified Weissenberg number function (of u) 

,7,j' 



66 J. DUNWOODY • D.  D. JOSEPH 

where ~ is the shear rate, ~/(~) is the shear viscosity function and N~(~) is the first 
normal  stress difference, is sufficiently large and the memory  of  the fluid is 
short  in the sense of  AKBAY & BECKER (1979). 

w 2. Kinematics 

The path lines in past time r of  particles x of  a fluid filling a region 12 of  E s 
at present time t are given by 

(2.1) X = X(x, r), X(x, t) = x, -- c~ < r < t, 

where X and the (solenoidal) velocity V(., r)  are related by 

d X  
(2.2) ~ = V(X, r), X(x, t) : x. 

Here d/dr is the material time derivative at past t ime r, following the particle x. 
The  path lines and velocity of  steady simple shear flows are related by 

(2.3) V(X, r) = N(u) X, N 2 = 0, 

:] 0 ~ 0 

[ N ] =  0 0 

0 0 

where u = U/h is the constant  shear rate, h is the depth of  the channel and 
Uxz/h, 0 ~ x2 ~ h, is the velocity of  the simple shear flow. Let  V(X) satisfy 
(2.3) and let v(X, r) be a (solenoidal) per turbat ion of  V(X). Then 

dX  
(2.4) ~ = V(X) + v(X,  r), X(x, t) = x, 

where v(., z) = eu(., r), 0 :< e < 1, is O(e) and V(.), u(., r)  are solenoidal over 
all o f  E 3. 

Solutions of  (2.4) cont inuous in e exist and are conveniently expressed in terms 
of  the lapse time 

s = t - -  r, O = < s < o o ;  

(2.5) X = Zo + Z; 
def 

go = [1 --  sN(u)] x; 

Z : g(x, ~:, e), Z(x, t, e) = Z(x, r, 0) ~ 0. 

Hence 

(2.6) 

where 

d 
(:to + z) = V(zo) + N(u) Z + V(Zo, ~) § O(e~), 

N(u) = OV(Zo)/~Zo. 
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Putting 

(2.7) 

and 

(2.8) 

X =  Zo in (2.2), we find that (2.6) may be reduced to 

ax 
= N(,0 x + V(Xo, T) + o(~ 2) 

dnz 
-d-~- = No(z~ 0 + o ( ~ ) .  

The following identities are used in w 3 to express the perturbed extra stress in 
terms of  the velocity v alone: 

(2.9) 

d 
dJs 7X(x' t -- s) + 7 ( N  x + v) = O(~2), 

d ( N r V z )  + N r  V ( N z  + v)  O(e2), 
ds  

d 
VNZ + V(Nv) = O(,2), 

where V oer O/~x and V = V(Xo(X , s), t -- s) is evaluated on the path of  the shear 
flow. 

The history of  the relative deformation gradient of  a perturbed simple shear 
flow can be computed from (2.5). 

Thus 

F ( x ,  t - -  s, e) = V X ( x ,  t - -  s, e) = 7 Xo(X , s)  + V X ( x  , t - -  s )  + O(e2)  , 

where F is the relative deformation tensor usually denoted by F t. The relative 
Cauchy strain history is given by 

G(x,  t - -  s, e) def F r ( x  ' t - -  s, e) F (x ,  t - -  s,  e) - -  1 

= Go(~ts ) + g(x ,  t - -  s)  + O(e2), 
(2.I0) 

C.o(~S) = F~Fo -- 1, Fo(~S) ---- 7Xo(X, s), 

g(x ,  t - -  s) = f ( x ,  t - -  s)  + f r ( x ,  t - -  s ) ,  

where from (2.5) 

(2. I 1) [Go(m)] = 

0 --s~ ~] 

- - S ~  - - $ 2 ~  2 

0 0 

(2.12) f(x, t -- s) = VZ(x, t - -  s)  - -  s N r V x ( x ,  t - -  s ) .  

In the linearized theory we neglect all terms of O(e2). 
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w 3. Constitutive Equation for Stress 

We follow GREEN • RIVLIN (1957) and COLEMAN & NOEL (1961) in expressing 
the perturbation stresses by integrals, and confine our attention to the linear case. 
The integral representations may be broadly interpreted as representing all the 
possible forms of the linearized stresses associated with many fading memory 
topologies. The linearized stresses are tensor-valued functionals on the space of 
Cauchy strain histories and hence they lie in the topological dual of this space. 
This dual space consists of functionals expressible by integrals against fading 
memory kernels. The theory of COLEMAN ~; NOEL (1961) is set in the largest domain 
space consistent with kinematics and it has the smallest topological dual. In 
particular the kernels appearing in the theory of COLEMAN & NOEL (1961) must 
be quadratically integrable. By restricting the domain space the topological dual 
is enlarged and a different material response results (see SAUT & JOSEPH 0982)). 
In the sequel we adopt kernels consistent with theories such as that proposed by 
C O L E M A N  ~;  N O E L .  

Suppose now that Go(uS ) is a viscometric strain history at a particle x. 
Let the extra stress be expressed generally as 

(3.1) s = ,~ I t (x ,  t - s)] = ~ [Co(,,s) + g(x, t - s)] 
s=O s = 0  

o o  oo 

= ~ [Go] + a:, [Go l g] + a;2 [ G o [ g , g ]  + . . . .  

s=O s=O s=O 

where ~,t[Go I g . . . . .  g] is the lth Fr6chet derivative at Go, and 

(3.2) S ~  ~ [Go(u,s)]= T ~ 1 8 9  ~ 
s = 0  

is the extra stress in viscometric flow if T O is the stress. 

(3.3) 

2N1 + N2 3~ 0 ] 

[S ~ = �89 3v - -Nt  + N2 0 

0 0 --2N2 -- N1 

and [N1, N2] = [ T l l -  T22, T 2 2 -  T3a] are first and second normal stress 
differences and ~" = 7'12 is the shear stress. We are assuming one of  those theories 
of fading memory in which $1 may be expressed as an integral. Thus 

(3.4) 

~] [Go(~S ) ]g(x, t - -  s)l ~-- IK (Go(uS), s) g(x, t - -  s) ds 
5 = 0  0 

= ~ K(u, s) [7X(x, t -- s) -- sNr(u) VZ(x, t -- s) + transpose] ds, 
0 
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where K(x, s) is a fourth order tensor. From isotropy of material it follows that 

~o oo 

(3.5) O ~t [Qrzo(US) O [ Qrg(x, t - s) Q] Q r =  ~l [Go(us) l g(x, t -- s)], 
s = O  s = O  

or equivalently that 

(3.6) Qi,ngmntk(QTGoQ, s) QjnQptgmQqk -~- I(Tkt(Go, s)gkt 

for all orthogonal Q and all symmetric g. Hence, from consideration of "visco- 

metric" symmetries the symmetries of / (  and therefore K may be found as has 
been indicated by PIPKIN & OWEN (1967). 

We can express the extra stress in terms ofv(Xo(X, s), t -- s) alone. To eliminate 
Z(X, t -- s) from (3.4) we use the identities (2.9) and integrate by parts, using 
Z(x, t) = 0 and K(~t, c~) ---- 0, to obtain (3.4) in the form 

i 

- -  j~ (M(,,, s) IV,, + W,q + P(,~, ~) ~N ~ V,, + (V,,)" NJ 
0 

(3.7) + ~ ( . ,  s) [V(Nv) + (V(Nv))q 

+ F(,~, ~) IN ~ V(Nv) + (V(N0) ~ N]} ds, 

where 
7 v  = eV(Zo(X, s), t - s)/ex 

and 

M(u, s) = f K(u, rl) d~l, 
o o  

(3.8) 
�9 7 ( . ,  s )  - -  fM(.,n)an, 

oo 

P(. ,  s) = - f 7" K ( . ,  7) a~ = - -sM(~,  s) + ~t ( . ,  s),  
o o  

/ 
oo 

These four kernels have the same symmetries as K. For example since Kokt is 

symmetric in (i, j )  and (k,/), the components of M, M, P and P have the same 
symmetry. We shall assume that the kernels vanish for large times. 

We shall say that K(u, ~1) is a kernel of the Maxwell type with relaxation time 2 
if all integrals and moments of K(u, zl) satisfy estimates of the same order as if 

K(~, ~) 2-I  e ak(~); �9 
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that is 
m(x, s) = O(1), 

~(~ ,  s) = o(,~), 

(3.9) P(~, s) = O(2), 

F(~, s) = o(;t~). 

A fluid has a short memory for disturbances if  ;t is small. For some fluids a 
short memory is possible only if the Weissenberg number is also small. The 
short memory assumption of AKBAY, et al., which we use in w 1, is not useful in 
such cases. 

w 4. Consistency Relat ions 

PIPKIN • OWEN (1967) have shown that symmetry and isotropy reduce the 
number of independent components of the kernels K(~, s) to thirteen. Moreover 
these independent components of Kqkl(U, s), hence Mqkt and Pqkt as well, 
can be related to the three viscometric functions Nl(u), N2(u) and z(u). They note 
that 

(i) The symmetry of the stress implies that 

(4.1) K~ m : Kyikt, 

(ii) Since tr S = 0, 

(4.2) K.kl = 0. 

(iii) Since g ---- gr  in (3.4), there is no loss of generality in putting 

(4.3) Kijkl : gijlk. 

(iv) The symmetry of the basic simple shear is such that all the components 
in which the subscript 3 appears once or thrice vanish. For by (3.6), on setting 

O = L ~ !] 1 

0 - -  

we f i n d  QGo(uS ) Q r =  Go(~S) and then, for example 

(4.4) QimgmnlkajnQqkgpq = gtjklgkl. 

t t  follows from (4.4) that all Kqk l with subscript 3 appearing once or thrice, 
vanish. 

Since we consider only two dimensional perturbations in the plane, all other 
components of K containing the index 3 may be neglected here. Hence a knowledge 
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of  the nine quantities K~aro, where the indices range over 1 and 2, is all that is 
required. 

Now we derive the consistency relations by our own version of  the method 
of  PIPKIN & OWEN (1967). First, in an obvious notation, we write 

(4.5) 21 = 7 Kr~(n, s) g~n(x, t -- s) ds, 
0 

where Kvn is a two-dimensional second order tensor for each pair of  indices 
(7, 6). We then write (i), (ii), and (iii) in the forms 

(4.6) Kr, = Kr q,  Kr~ = Ko~, tr Kr~ ---- 0. 

Less obvious restrictions follow from the fact that 2~[Go(n, s) ] .] is evaluated 
on a viscometric history given by (2.11). Since 2 is an isotropic functional 

(4.7) Q S Q  r = ~, [QG(x,  s) O r] 
s = 0  

for all orthogonal Q and all histories G. Hence, no matter what the form of 2 

(4.8) S~ ~ [Go(n, s)] 
s = 0  

is given in terms of  the functions N~(n), N2(n) and z(g) as in (3.3) (2  determines 
the form of these functions) and 

(4.9) Q(2) S~ Qr(2) = ,~ [Q(2) Go(~ , s) Qr(2)] 
s = 0  

is also the constitutive equation for a viscometric flow identically for all values 
of  2 and n. Indeed we may interpret the relation of  (4.9) to (4.8) in the following 
way: the stress in a simple fluid at a particle x, due to a motion obtained from a 
given motion by a rotation at the present instant centered at x, is exactly that 
given by transforming the stress by the rotation tensor relating the particle paths 
in the second motion to the first. 

Since (4.9) holds identically in 2 and n, we have for rotations in the plane of  
flow 

(4.10) 

s~  + Os ~ = z [ao I aoO T + OCol = {aoO + Oao} de 
0 

and for changing shear rate 

dS~ [ -~u JOG~ = ~ s) ~OG~ (4.11) = 2, Go ] j K(n, as, 
0 

where Go is given by (2.8), q(0) = 1 and 0 = dq(2)/d2 at 2 = 0. The relations 
(4.10) and (4.11) contain all the consistency relations. 
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From , (4.11) we obtain 

(4.12) 

rd [2N1 + N2 3'r 

"~ \ 3z N 2 - -  N 1 ] 

: 6 f f  [us 2 K22 -- sKI2] ds : 6 f f  [M12 + ~,P22] as 
0 0 

after integration by parts using (3.8). Since (~ is a skew tensor, we find that 

[0] = o , 

0 

and this leads us to 

(4.13) 

(--2~ Nt) 
Ni 2z = 2~ o f Is(K1 t - -  K 2 2 )  - -  u S 2 K l 2 ]  6/3' 

= 2~ f f  [ M 2 2  - -  Mll  - -  u P 1 2 ]  ds. 

The stress (4.5) in two dimensions may be expanded as 

(4.14) ~'1 = f f  {K11g11 + K 2 2 g 2 2  -~ 2K12g12} ds, 
0 

where KI~, K 2 2  , K 1 2  have components which may be represented by 2 X 2 matrices. 
The consistency conditions we require are from (4.12) 

2N~ + N2 = 6 f f  [Ml112 + uPon22] ds, 
0 

(4.15) N 2 -- N~ = 6 f f  [M2212 -q- ~r ds, 
0 

z ' =  2 ? [M1212 -}- uP1222 ] ds, 
0 

and (4.13) 

0 

(4.16) ~ ? [M2222 - -  M2211 - -  uP2212 ] d s ,  
o 

N1/u = 2 f f  [M1222 -- M~2tt -- uP12~2] ds. 
0 
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To simplify our equations it is useful to introduce kernels which are suggested 
by the consistency conditions. Thus 

G de__f 2 ( M 2  2 _ Mll  - -  ~ P 1 2 ) ,  

(4.17) 
F de f 2(M12 § uPon), 

2 N ; §  N~ 33' ] oo 
: 3 of _ F(~, s)ds 3r N; N~J 

(4.18) 

and 

(4.19) 

(4.20) 

] -, 
N1 27: = z H(~, s) ds 

0 

N;(n) = ~ (F1, -- F22) ds, 
0 

oo 

~'(~) = f Fx2 ds, 
0 

N l ~ )  = u~H12ds, 
0 

0 0 

w 5. Equations of Perturbed Motion 

We linearize the equations of  motion for perturbations v : eu of  plane 
Couette flow V = (ux2, 0), 0 =< x2 <= h, uh = U. Hence neglecting terms 
O(e ~) 

[ Oul 8u, ] ap 8S1, 8Sa 2 
~L-~-+~x~-~ +~'~j - a~+-~-7~ + a~--T' 

e t st + ~x~ ex, j - ax-Z + ~ + ax--?" 

The perturbation is solenoidal with respect to X, i.e. 8ui/SXi ---- 0, and hence is 
derivable from a stream function W(X, t -- s) ---- W(;to, t -- s) § O(e). There- 
fore, we may write 

( 5 . 2 )  U ( Z o ,  "~) = " , = ( - - ~ , 2  - -  x s  ~ 1, ~ ' / ,1)  
axo2 

where ~,t ---= 8}P/axt, l = 1, 2. In terms of  this stream function, the equations 
of  motion (5.1) may be reduced to 

(5.3) q 7[  + ux2 V2~ = "ax~ S12 § 8xl 8x2 
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Expressions for the extra stress may be found from (4.14) with the kernels 
expressed as in (3.7). To facilitate the computation we write 

(5.4) 

S =  

where 

7 { M l i A l l  + 2Mt2A12 ~- M22A22 -~- PHBII + 2P12B12 -~ P22B22 
0 

+ ,MHCI~ + 2M,2C~2 + ]~22C22 + P11D~t + 2P,2D,2 + P22D22} ds 

[ A ] = [ V u +  V u  T] = [  2uL1 /'/1'2 -~ U2'I] 

LUl,2 + u2,1 2//2,2 J 

[-2~,2 %, - ~.=I_ ,,~ [2~.1, ~,I 

In] = [N~Vu + Vu~N] = ~[ o u~,q 
t ul,t 2ul,2J 

___~[~. ~,~ ~,i 0 ~ ]  
21//,22 J L~.,~ 2~,12 

~ ~ ~u~ + ~: ~ ..~>' o~]: ~ P ~,,~ :~,~ ?] 
fo., l [o ~..~ [D] = [ N  r V ( N u )  + V ( N u )  T N] = x 2 = z z . 

u2,, 2U2,zJ gt,,, 2~,,zJ 

After collecting the coefficients of different derivatives of ~(x l ,  x2) in (5.4), we 
find that 

(5.5) 

where 

(5.6) 

S = T [P(~r S) ~,12 -~ Q(~, S) Yt,1 ! -]- R(~, s) ~,22] ds, 
0 

P = 2(--MH + M22 - -  ~r -~- h~2F22), 

Q = 2(M12 + ~Ptl  -I- ~2P12 - -  x2sP12), 

R = --2(Mr2 + ~ P 2 2 ) .  



(5.7) 

(5.8) 

where, for any A(s), 
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We now use (4.12) and (4.13) and definitions of the type (4.17)-(4.20) to write 
(5.6) as 

P = H q- xib, 

R = - - F  

d 
7s a(s) = aCs), 

X(s) = ,i(s) + s,l (s). 

Using (3.8), we eliminate P22 from (5.6)3 to get 

2 M 1 2  = - - R  - -  2;~P22 = - - R  - -  2N/~22 , 

and we eliminate M12 from (5.6)2 and use M = P to get 

= - R  + 2~(--M22 + MI~ + ~P~2) 

o r  

(5.9) Q -- F -- ~t-/. 

Expressions (5.7), (5.8) and (5.9) show that the kernels in the expression (5.5) 
for the extra stress are expressible in terms of  kernels involved in the definitions 
of  viscometric functions. 

For  the study of stability in two dimensions we form the components S~2 
and S22 - -  a l l  of the extra stress: 

where 

S12 = f [P121/~,12 ~- Q121//,ll -]- R12~~ ds, 
0 

P12 = H12 -It- ~'P12, 

P'~12 ~ - - F 1 2 ,  

Q12 - -  F12 - -  ~J~12, 

$22 - -  a l l  = f [(P22 - -  ml l )  ~ '12  -[- (622 - -  611) ~,11 -~- (R22 - -  RI1)  ~d',22] (Is. 
0 

where 

e22  - -  P l l  = H22 - -  n i l  - -  ~r - -  /~11), 

~ 2 2  - -  ~[~11 ~" E l l  - -  F22 ,  

~22  - -  ~11 = F22 - -  F l l  - -  ~(/122 - -  /-I11). 
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w 6. The Spectral Problem of Linearized Theory 

We are going to assume that stability can be determined from the linearized 
theory associated with a spectral problem derived from (5.3). We note that the 
stream function ~ under the integrals in (5.10) and (5.11) are of the form 

(6.1) 

where 

7t = ~(Zol, x2, t -- s), 

Zo = (Zo .  Z o 9  = ( x l  - xsx~,  x2 ) .  

We look for T in the class of functions which are periodic in Zol with period 
2z~/0~. Then 

(6.2) 5 rj = e i~'z~ ~(x2, t -- s). 

The spectral problem governing stability may then be obtained formally by using 
the well-known method of the exponential time factor, following procedures 
used by CRAm (1968) and JOSEPH (1976) to study the stability of the rest state. 
Thus 

(6.3) ~(x2, t -- s) = e"te-%p(x2).  

The stability of plane Couette flow is judged by eigenvalues tr associated with the 
spectral problem (6.11). This problem arises from (5.3) for disturbances of the form 
(6.2) and (6.3) or, alternatively, by the method of Laplace transforms (see DlXlT, 
NARAIN & JOSEPH (1982)). We may write (6.2) and (6.3) as 

where 

(6.4) 

T = e*f(x2) = e*'e-~*~o(x2), 

de1 = at + io~xl, ~b2 = a + io~9"dX 2 . 

Using (6.4), we find that 

(6.5) 

where, for any J(s), 

(6.6) 

and 

S = e r St', 

= o,~w~(a) + ic, v,'~(b) + W"~(c), 

j(j,) der ~ e_,~Sf(s ) ds 
0 

a(s) = nsP(~r s) -- Q(~., s) - n2sZR(n, s), 

(6.7) b(s)  = P(~., s)  - -  2 " m ( . ,  s ) ,  

c(s)  = R (~ ,  s) .  
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W e  nex t  no t e  t h a t  i f  f(s)  is i n d e p e n d e n t  o f  x2, then  

(6.8) ~x--'~2 $(I)  = --iobuJ(sf) .  

H e n c e  

(6.9) 5e '  = -- iobzu~](sa) + Ob2~'~( a -~_ usb ' )  + iob~p"$(b - -  csu) + ~ ' " $ ( c ) ,  

(6.10) 6 r  + Ob26r : Ob4~o][(1 - -  u2s 2) a]  + iob3~'$[(1 - -  u2s 2) b - -  2usa] 

-[- Ob2~0"$[(1 - -  US 2) C -~ 2~sb -}- a] -{- iob~p'"$[b - -  2usc] + ~ff $(c).  

Final ly ,  c o m b i n i n g  (6.5), (6.3), (6.9) and (6.10) with (5.3) we get  

(6.11) O4~z0P" - -  O62~o) = --(5e~2 + Ob2 ~9o2) + iob(~22 - -  5t'~,) 

�9 3 t 
: Ob4~C 0 - ~  10b ~0 C 1 --]- O b 2 ~ " C  2 - ~  !ob~ '"C 3 -~- ~iv C4 ' 

v:(o) = v,'(0) = v,(h) = V,'(h) = 0 ,  (6.12) 

w h e r e  

a n d  

c , ,  = ~ ( i . ) ,  

lo = - - [ (1  - -  ~2s2) a12 + s~(a~t - -  a22)],  

11 ---- - - [ (1  - -  ~2s2) b12 - -  2usa12 + (a l l  - -  a22) + u s ( b l l  - -  b22)], 

/2 ----- - - [ (1  - -  ~ s  2)  c 1 2  Af_ 2gsbl2 ..~ a l  2 _ (b11 - -  622) -~ z s ( c l l  - -  C 2 2 ) ]  , 

/3 = - - [bx2  - -  2use12 + (e l l  - -  e22)], 

Z.. = - [ c ~ ] ,  

m 

a12 : - - F 1 2  -[- ~2$ff12 -[- ; r  

612 = H12 [ -  ~sF12 -~ ;~F12 , 

C12 ~ - - F 1 2  

a .  i22) +,<if, ,  /L2) 

b l l  - -  622 = HI1 - -  922  -}- ~S(Fl l  - -  F22) -}- N(F22 - -  E l l ) ,  

r - -  c22 : - - F i x  ~ F22. 

77 
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The velocity U of the moving wall, the gap width h and viscosity r/(u) = T(u)/u 
are now introduced as dimensional parameters for defining the dimensionless 
parameters 

h - U 9Uh 
x2 = h-x, t = ~ t, ~ = --~, R - -  ~l(u),, 

= uh , x )  = 

U _  

The dimensionless parameters are introduced into (6.11) and, after dropping the 
overbars, we find the spectral problem in dimensionless form 

(6.13) R(a + io`x) (~0"" - -  o`2r) = o`'Co(a, x) ~p + io`3el(~r, x) V)' 

§ 062C2(0 ", X) ~p" § io~Ca(o', x) ~ ' "  § C4(o', x) v 2 .... , 

~v(O) = ~ ' ( 0 )  -----~(1) = ~v'(1) = 0 ,  

Equation (6.13) is nearly the same as (6.11) except that R appears in the right 
hand side and z has been set equal to 1 everywhere except in the dimensionless 
numbers R and (3,. In particular, we retain z in the non-dimensional ratios 
l~(x, s)/~(z) and therefore in the evaluation of F, H etc. 

w 7. Long Wave Solutions 

The wave length of disturbances is 2r~/o`. Long waves are those for which o  ̀
is small. The analyticity of the coefficients in (6.13) makes it natural to seek 
solutions as power series in o .̀ Thus 

(7.1) 

Hence 

(7.2) 
e - ~ 2 s  ~ e-Oos 

a = ao + o~al + ~2a2 + 0(o:) ,  

W(x) = Wo(X) + o`~ol(x) + o,2W2(x) + 0(0,3). 

~2 = ao + 0,(~ + ix) + o`2a2 + 0(o`3), 

[ ( . ) 1 - o~ (~q + ix) s + o:  - a 2 s  + ~ ( ~  + ix) 2 + 0(o, 3) 

and then from (6.11) 
g § ix) * 

C. = H~o --  ~(a, + ix) t t~,  - -  o`2 {a2H~I 
2 ,k 

(7.3) oo 
l i p  = f e - " : : { l . ( s ) /~}  ds. 

0 

//.2} + O(~:), 
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In the analysis to follow we shall need the functions 
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/ 4  ~ F I 2 ,  

(7.4) la ---- - -  (H12 + 3usFi2 + ~'F12 -'~ F22 --  F12), 

12 = --  (--2F12 + 3u2s2F12 + 3u2sff~2 + 2us(F22 --  Fn )  - -  u(F22 --  Fn )  

-+- 2~r -~- xHI2 - -  H l l  -~ H22 } . 

Inserting the representations (7.1) and (7.3) into (6.13), we identify independent  
powers o f  0~ to obtain the system of  equations for  (Wo, ~Pt, ~2 . . . .  ) and 

(~o, ~ , ,  a~ . . . .  ) 
p t  

H 4 o ~  ~ = Rao~o , 

H ,  ov,~ o - (a~ + ix) H, Ir~ o + iH~oV,'l" = R{aoV,'( + ( ~  + ix) V'o', 

(7.5) n40~l)i2 v - - ( 6 1  -}- ix) H ,  IV)~ ~ + iH30v)]" --  {a2H41 (a, + ix) 2 } .  2 H42 ~ 

p t  H t t  

- (a~ + ix) iH31~;'o" + H2owo' = R(ao(V,2 --  W0) + (al + ix) W~ + a~;o }, 

and for  each m = 0, 1, 2 , . . .  

(7.6) ~Vm(0) = V);n(0) = V)m(1) = Vdm(1) = 0. 

All solutions of  (7.5)x and (7.6) are o f  the form 

~'o = cos A x  - -  1, 

A ---- ~--Rao/H4o'---- 2mz~. 
(7.7) 

I f  we assume that  

(7.8) e-ae~~ l4 ~' ----- f 14(u, s) ds 
0 

is positive, where Re ao represents the real par t  of  go, and mono tone  decreasing, 
which is essential if H4o is to exist, then 14 = O(e~S), s ~ e~, o~ < 0 and 
Re a o > g, i.e. the spectrum of(7.5) ,  has a lower bound.  Also, if (7.8) is differenti- 
able with respect to s then (7.7) in the form 

4m2~2 f 
Rtro --  lae -~~ ds, m = O, 1, 2 . . . .  

o 

implies 

(7.9) 
(i) go <Z 0 i f  go is real,  

(ii) Re O'o < 0 if fro is complex.  
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The first tbllows automatically, while the second follows from a contradiction 
on assuming the opposite (see CRAIK (1968)), since 

~ 14e-R .. . .  COS [(Im ao) s] ds > O. 
0 

A necessary condition for the existence of a solution to (7.5)2 and (7.6) is 

(R(cr t q- ix) ~Po', ~Vo) --  iH3o(~o", ~o) + n4,((o', -~- ix) ~P~o", ~Oo) = 0, (7.1 O) 

where 
! 

; f ,  g> = f f g  dx .  
0 

The second term vanishes, while the third is simplified using (7.5)1 and (7.6). 
Then, (7.10) gives 

(7.11) ~rl = --i(x~0, ~Po)/QPo) = -- i /2 ,  

and so, to the first order in o~, e at has a time-periodic factor with period 2zr/~o, 
where the frequency o~ _~_ Im ao -- i0r + 0(o~2). 

Returning to (7.5)2 with (7.11) we obtain 

(7.12) 

where 

4 2  pn p t  r t l  
v,~ ~ + zl wl = (x  - �89 AV, o + BWo , 

B = --iHaoH4o. 

The relevant particular integral of  (7.12) and (7.6) is 

~Pl = ax[cos A x  --  1] + Ab(x  2 --  x) sin A x ,  

{5(, - oA2, 
(7.13) a -  4H--~oA2 2 - - - - - ~  I ,  

i R {  H,1A z } 
b --  4H4oA---~ 2 1 R " 

With ~Pl known we apply the Fredholm alternative to (7.5) and (7.6) to find the 
following expression for a2: 

o'2('H41(~Oo', ~oo'> -~- R(y:o, ~Po>) 

: --RaoQPo, ~Po) q- iR ( ( x  - -  �89 ~p~', V2o> --  iH3oQP~", ~Oo> 
(7.14) 

+ H20(ro, Wo> + ill41 (tx -- �89 r~v, to) 
1 t i t  --/-/31 ((X --  9 r~ , ~00) + �89 ((X --- �89 ~/)gv, ~0>. 
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The values of the integrals in (7.14) 

QPo, 9o) _ 3 (9o', 9o') A2 
' t t - -  

(9'0, 90) -- AZ'  (90, 90? ' 

' "  1 ~ 2  ~ , . i v  
( ( x  - �89 90 , ~'o~ 3 ( ( x  - ~1 ~,o, 9o )  

p t 

(90, 9o~ = -2-, (90, 90) 
= ~ (A 2 -- 42), 

(7.15) (9[',', 9o), _ _ 3 
(90, 90) ~- a + { b (A 2 + 3), 

t p  

((x -- �89 91,90)  a b 
(9o, 9o) -- 12A2 (A2 -- 6) + 1-T~(4A2 + 3), 

((x - - �89  a b 
(9~, 9~) - ~ ( A 2 +  30) - - ~ - ( 8 A  2 + 15), 

where a and b are as in (7.13). On substituting the above values into (7.14) we find 
that 

(7.16) 

R {1 H R A 2 ) ( 4 A 2 + 3 ) ]  
+ 48H4oA2 

+ 24H4oA 2 

48H4oA 2 + 33) 

1 
3 ~ H~ ~ + - ~  ~ ( A  ~ - -  42).  

2H3oA21 
R 'j 

2 A2} A  + 30, 
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The expression 

(7.17) 

(7 = (77' 0 "~- 060' I ~- ~2(7 2 -~ 0(~ 3) = (70 -- i~/2 + 0(;2(72 31- O(tx3), Re (70 < 0, 

together with (7.14) gives the explicit formula for (7 through terms of O(0~3). 
To compute (72 from (7.16) we need values for the quantities defining the 

H,t. This rheological information is not available even for one single non-New- 
tonian fluid. To obtain some more definite, if approximate, results, we follow 
BECKER (1980) in assuming that the kernels (3.8) have the short memory form (3.9) 
and that integrals of e -~~ times kernels of the Maxwell type with small relaxation 
time ;t are nearly the same as when e . . . .  = 1. Naturally such an assumption 
requires that 1(7o [ 2 be small when Z is small. Thus our analysis applies for all 
eigenvalues cro such that ](70 ] ---- O(1). Using the short memory idea, we find that 

'(~) 
H 4 ~  o ~ ~ ( ~ ) ,  

N 1 - -  N 1 / ~  
(7.18) Hao ='~ - -  

'7 ~(~)  , 

2~'(u) 
/ - / 2  -------4 '7(~) 

and all the other H,l are of lower order. Retaining only //40, Hao and H2o, 
given by (7.18), we reduce (7.16) to 

(7.19) (7,g = 5 --,7 - 4 § -~ 7 \ ~ /  + O(R) + 0(4) 

for small Reynolds numbers. We note that the shear rate may be large if the gap 
width is small enough for any Reynolds number. The same short memory assump- 
tion also implies that 

T '  

(7.20) R(7o = -- A2H4o ~ --A 2 ~ .  
'7 

After combining these expressions with (7.17), we get 

(7.21) i t •  2 

+ [0(4) + O(R)] ~2 -- 5 -  + O(~:). 
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We now consider special fluids for which ~' ---- ~ and N1/~ 2 are constants. Then 
(7.21) becomes 

(7.22) (7 = ~ -  (0r 2 - -  A 2) + w o~ -~- + [0(2) + O(R)] o~ 2 

1 io~ -}- O(o&), z" = ~r/. 

Since (N1/z') 2 =  K~ 2 for K > 0, (7.22) implies that the instability criterion 
Re tr > 0 may be realized at low Reynolds number for sufficiently high rates 
of  shear x, if  the first two terms in (7.22) dominate the sign of Re tr. This condition 
can be satisfied in situations in which the magnitude of the ratio of  the first normal 
to shear stress is sufficiently large. 
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Note added in proof. AKBAY et al. (1980, 1981) use the assumption of short memory 
and neglect another term to derive a critical value of four for the modified Weissenberg 
number defined in w 1. They show that when this number is less than four the flow is 
stable and when it is greater than four then numerical calculations show that it is 
unstable to short waves, a ~ ~ .  


