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Introduction 

Suppose two or more stress-free homogeneous solid bodies are joined firmly 
together along various surfaces at a temperature 0o. As the temperature is changed, 
the joined body will deform in some way with null traction at its boundary. 
Generally, we expect the joined body to build up stress unless some special 
conditions are satisfied by the orientation and constitution of the bodies, and 
by the shapes of  the dividing surfaces. 

ERICKSEN [1] has given a description of stress-free joints for two homoge- 
neous bodies of  the same material,* but of  different orientation, under a mild 
condition on the material response. I t  is the purpose of this paper to analyze 
stress-free joints in bodies composed of  different materials and in joints composed 
of more than two bodies. ERICKSEN'S condition is essentially that a single, homo- 
geneous, unstressed body, made of the same material as the pair, deforms homo- 
geneously with a known Cauchy-Green strain as the temperature 0 changes. 
He points out that a similar theory would arise if 0 were interpreted as the moisture 
content. In this way, some of  the solutions can be illustrated by joints used 
commonly by cabinetmakers. 

* Precisely, the two Cauchy-Green strain tensors describing the deformation of 
the bodies with changes in temperature are equal, when referred to appropriate reference 
configurations. 
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The problem involves two parts: the description of how the unstressed bodies 
deform, and the formulation of the notion that the bodies continue to stick 
together as 0 changes. The latter is strictly analagous to certain rules which arise 
in the study of coherent phase transformations. JAMES [2] finds "rules of  coherence" 
for phase transformations in which a parent phase and several variants of a 
daughter phase meet at a point. Although these rules are purely kinematic, they 
place quite severe restrictions on the arrangements of the phases. In this paper 
I use these rules and other ideas from joinery to describe the simplest stress-free 
joints consisting of more than two bodies. 

The possibility that a polycrystal can build up stress with changes of tem- 
perature seems ignored in the current understanding of solidification and annealing, 
except in ceramics [3] where the stress built up during cooling can break up the 
material. Theories of annealing, for example, rely heavily on the energetics of 
grain boundaries. It seems likely in some cases that bulk energies associated with 
the stresses built up in the grains themselves could be as important as the surface 
energies. It is intriguing to note that many minerals, especially those of lower 
symmetry, do not occur naturally in polycrystalline forms. However, even the 
familiar hexagonal or tetragonal polycrystalline metals will build up stress unless 
some rather special conditions are met (cf. w 4 and 6). 

To extend the results to alloys, it is desirable to have a treatment of stress-free 
joints in which the bodies are composed of different materials. In w 5 I analyze 
joints of this kind for two bodies, and some results for several bodies of different 
material are given in w 6. The question of whether two bodies of different material 
can be joined to remain stress-free partly reduces to a question of whether two 
triangular domains in a certain plane overlap. 

For two bodies of the same material, there is a prescription for making a 
stress-free joint with a given dividing plane which works for all materials. There 
is only one such universal prescription. In w 6 I find all stress-free polycrystals 
which are universal in this sense. 

Some of the results of w 5 are obtained from a linearized version of the prob- 
lem. Although thermal stress is usually associated with infinitesimal deformation, 
it is desirable not to linearize the equations, and I do so only where it seems 
unavoidable. The reason for this is that the nonlinear equations bear a formal 
similarity to the equations used to find twinned configurations. Thus, the analysis 
delivers information about twinning. 

1. Formulation 

Let two bodies* occupy homogeneous, unstressed, disjoint reference con- 

figurations ~ und ~ at the temperature 0o. I f  we allow the temperature to vary 
over some set J containing 0o, but we continue to apply null traction to the 

* A hat shall always denote quantities associated with the second body; if more 
than two bodies are considered, subscripts 1, 2 . . . .  will be associated with them. The 
subscript 0 will always indicate that the quantity is associated with the reference con- 
figuration. 
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boundary of each body, each body will deform in some manner. This deformation 
will not be unique, since a rigid rotation and translation of either body, at any 
value of 0 in d ,  will not affect the given conditions. However, it is plausible 
to assume that the deformation of each body is homogeneous and is governed by 

unique functions U(O), ~r(0) representing the right stretch tensors as functions 
of 0 E J .  The solutions of the appropriate boundary value problems do in fact 
deliver unique right stretch tensors for a large class of stable constitutive relations, 
as discussed in w 2. In any case, I shall assume the deformations of the bodies 
are of the forms 

y : F(O) x + c(O) = R(O) U(O) x + c(O), x E ~ ,  
(1.1) 

y = #(o)  x + c(O) = i t (o)  f1(o) x + ~(o), x E ~, 

for some rotations R(O), it(0) and translations c(O), b(0) which can be any func- 
tions of 0 in oa whose values are proper orthogonal tensors and vectors. 

I wish to join the bodies at the temperature 0o. I assume that on ~R and on 

~ congruent surfaces have been cut, so that by a suitable rotation Rff and 

translation c o of ~ ,  the two surfaces can be brought into coincidence. This may 

involve restricting attention to subsets of ~ and ~ ,  but this will not affect any 
of the other assumptions we have made. Also, no greater generality would be 
obtained by allowing both bodies to translate and rotate before joining them, 
since a subsequent rotation and translation of the joined bodies could always 
be done so as to bring the first body back into the configuration #~, again, without 
affecting any of the other assumptions. 

Let the dividing surface be 5 a and let ~ '  = R~'~ + c 0. A natural expression 
of the idea that the bodies are joined firmly along 6 a is the statement that the 

deformation of ~ U ~ '  is continuous for all 0 in J .  The condition of continuity 
is simply that for all x E 6  e and all 0E J ,  

(it(O) U(O) R o -- R(O) U(O)) x + (b(O) -- c(O)) = 0. (1.2) 

Equation (1.2) implies that ~(0) = c(O) for all 0 E J ;  without loss of generality, 

we put ~(0) = c(O) ~ O. Similarly, if (1.2) is satisfied with rotations/~(0), R(O), 

we can premultiply it by RT(O), define the relative rotation /~(0) by /~(0)---- 

Rr(O)/~(0), and write (1.2) in the equivalent form 

(R(O) (J(O) Ro -- U(O)) x ----- 0, V x E 5 e .  (1.3) 

One problem to be studied is the following: given U(O) and U(O), 0 E J ,  f ind a 

constant rotation Ro and a temperature-dependent rotation R(O), 0 E J ,  such that 
(1.3) is satisfied for all x on the surface 5 p. 

By differentiating (1.3) with respect to x in various directions tangent to 5 a, 

we see that /]URo -- U has at least a two-dimensional null-space. Thus, there 
are two alternatives implied by (1.3): 

(i) The null-space of R ( O ) ( Y ( O ) R o -  U(O) is three-dimensional for all 

0 E d ,  so /](0) ~J(0) Ro = U(O) and 5 a is any surface; or 
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(ii) The null-space of R(O) t)(O) Ro --  U(O) is two dimensional for at least 
one value of 0 in Jr so 6o is a plane*. 

Therefore, if ~ and #~' are joined along a curved interface, either the defor- 

mation gradients referred to ~ and ~ '  are equal for all 0 in J ,  or the joint builds 
up stress with changes in temperature. Since every stress-free joint which can 
be made with a curved interface can also be made with a plane one, I shall for- 
mulate the problem in terms of plane interfaces. To render the analysis complete, 
I shall simply point out the cases in which (i) is fulfilled. 

With this understanding in mind, I shall assume that if' is a plane with a 
normal n o and that c o has been so chosen that x = 0 lies on if'. Given U(O) 

and U(0), a solution of (1.3) then can be regarded as a triple (/~(0), Ro, no). 

However, equation (1.3) shows that for any such solution,/~(0) is uniquely deter- 
mined by Ro and no. Thus, if two bodies are joined, a stress-free joint shall be 
a pair (Ro, no) consisting of a constant rotation R o and a constant unit vector 
n o which solve (1.3). Without yet introducing specific constitutive relations, we 

shall say that the two bodies are of the same material if U(O)= /](0) for all 
0 E J .  This definition entails the idea that the two bodies have identical thermal 

response when referred to the reference configurations ~ and ~ .  
A different form of equation (1.3) is sometimes useful: if 6~ is a plane with 

normal no, equation (1.3) is satisfied if and only if for each 0 E J there is a vector 
a(O), the amplitude, such that 

R(O) I)(O) R o = U(O) + a(O) | n o. (1.4) 

The case (i) above is equivalent to the condition a(O) = 0 for all 0 E J .  
For stress-free joints consisting of f >  2 bodies, the definitions are strictly 

analagous. Here, we shall treat the topology informally (see w 6 for precise state- 
ments). Let f bodies be joined at e plane interfaces with normals I101 . . . . .  n0e 
in polyhedral reference configurations 0~ . . . . .  #t). Let positive, symmetric tensor 
functions UI(O) . . . .  , Uf(O) be given. Suppose there are constant rotations 
R01 . . . .  , Roy such that U~(O) is the unique right stretch tensor corresponding 
to zero stress, measured relative to the reference configuration Roi~'  i (no sum). 
The collection (R01 . . . . .  R0f; ~ . . . . .  0~)) will be termed a stress-free joint if there 
are relative rotations /~ l (0)= 1, R2(0) . . . . .  Rz(0) and translations c 1 ( 0 ) =  O, 
c2(0 ) . . . . .  cf(O) such that the function 

y ---- Ri(O) Ui(O) Roix + ci(O) x E ~ ,  i ---- 1 . . . . .  f (no sum) (1.5) 

is a continuous function of x on ~ LJ ... L / ~  for each 0 in J .  Notice that (1.5) 
implies jump conditions like (1.3) or (1.4) at each interface; however, these jump 
conditions are not sufficient for the existence of a continuous deformation y(., 0) 
even when f = 3. See w 6 for details. 

While stress-free polycrystals are not ordinarily formed by rotating and 
joining bodies at a certain temperature, they are often pictured as being composed 
of randomly oriented crystallites whose thermal response would be the same after 

* Recall that 5p is independent of O. 
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suitable rotations. Stress-free polycrystals of one material will satisfy U,(O) . . . .  
...---- Ui(O ) for all 0 in J .  If  U,(Oo) . . . . .  Ui(Oo ) = 1 we may interpret 
R0~ , . . . ,  Rri  as the orientations of crystallites or grains at the temperature 0o E J .  

2. Connections with Twinning, Symmetry and Stability 

It is useful to introduce constitutive relations in order to assess the assumptions 
involved. Non-linear thermoelasticity is a good prototype. 

Let W = I#(F, O) be the stored energy function of a homogeneous thermo- 
elastic body referred to a reference configuration ~ .  By Galilean invariance, W 

is given by a function of U = (FrF)�89 and 0 only: 

W = I~(U, 0). (2.1) 

The equations of equilibrium for a body subject to zero stress everywhere are 

e# 
bU (U, 0) ---- 0. (2.2) 

We would like to know if there are reasonable assumptions on li z which would 
imply uniqueness of the stable solutions U(O) of (2.2). 'Stable' will be interpreted 
in the sense of GIBBS. These assumptions will clearly have to rule out some phase 
transformations, since energy functions appropriate for a body which can change 
phase* will have the property that (2.2) is not uniquely invertible at the transfor- 
mation temperature. 

We begin by considering one body. A homogeneous deformation y(x, 0), with 

U(O) = (7y  r 7y)�89 satisfying (2.2), is stable according to the Gibbs criterion if 
for each fixed 0 in ~', 

f ~V(U(O), O) dx <= f ~'((Vz~ Vz)�89 0) dx, (2.3) 

for all continuous, piecewise differentiable functions z(x) whose gradients lie in 

the domain of /~( . ,  0). We can take Vz ---- S = const, in (2.3) and conclude that 

W(U(O), O) <= Ifz(S, O) (2.4) 

holds for all positive, symmetric S in the appropriate domain. The condition 
(2.4) is necessary and sufficient for (2.3). 

The condition (2.4) is not sufficient that U(O) be the unique solution of (2.2); 

however, if if," satisfies the stronger condition, 

I~(U(O), O) < W(S, O) V S = S r > O, S ~ U(O), (2.5) 

* To include these materials, it may only be necessary to restrict J so as not to 
include the transformation temperature. In a more general treatment, we would allow 
U(O) to become multi-valued at the transformation temperature. 
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then U(O) is clearly the only solution of (2.2) calculated from a stable deformation. 
Thus, thermoelasticity, taken with the inequality (2.5), justifies the assumptions 
of w 1 if we restrict attention to strictly stable deformations. 

Let the point group ~ be defined as the set of all constant orthogonal tensors 

Q such that for all 0 in J and all U in the domain of l)V 

W(QUQ r, O) = 14/(U, 0). (2.6) 

If  1~" satisfies (2.6) in addition to (2.5), we shall have 

Q U(O) Qr ~_ U(O) u Q C ~,  u 0 E J .  (2.7) 

Thus the inequality (2.5) appears to be the origin of the fact that cubic crystals 
often suffer dilations with changes of 0 and that crystals of lower symmetry have 
functions U(O) with two or more distinct eigenvalues. The most general forms 
of U(O) consistent with (2.7) for all of the crystallographic point groups can be 
found in the literature (cf. COLEMAN St; NOEL [4]). 

If  U(O) is continuous, if U(Oo) ~-- 1, and if the linear elasticity tensor is 
positive-definite at 0o, a local version of the preceding argument can be given. 
In particular, (2.7) follows from these local assumptions with J restricted to an 
interval about 0o. 

While the assumption of stability (2.5) does yield (2.6) and (2.7), and therefore 
permits a relation between U(O) and the symmetry of a body to be established, 
it is ill motivated. We really should base the argument upon a concept of stability 
for the joined body. To this end, consider f bodies joined in reference configura- 
tions ~ ,  . . . ,  ~). For simplicity, assume that the bodies are of the same material 
(cf w 1). Assume that the response of this material relative to the reference con- 

figuration ~ is governed by the stored energy function W(U, 0) introduced at 
the beginning of this section. Let (R01 . . . . .  Rof; ~l) . . . . .  ~ )  be a stress-free joint 
arising from a deformation y(x, O) whose stability we judge according to the Gibbs 
criterion. Omitting the details, we can show that y(x, O) is stable according to 
the Gibbs criterion if for each 0 E J ,  

f Vz VzR ,, O) --  # (V(O) ,  0)} d, > 0, (2.8) 
i=1 .q?~. 

holds for all continuous, piecewise differentiable z(x). The assumption that z(x) 
is continuous expresses the notion that the test fields do not allow the joined body 
to break apart. My point is that the first term in (2.8) has a special structure, and 
it seems possible that (2.8) could be fulfilled for all appropriate z(x) while (2.3) 
fails for some z(x). However, (2.3) is equivalent to (2.4), and (2.4) implies (2.8). 
In this sense, the absolute stability of  a stress-free crystal implies the absolute 
stability of  any stress-free polycrystal made of the same material. 

To clarify the connection between stress-free joints and twinning, we return 
to the definition of' the point group (2.6). Molecular calculations show that (2.6) 
is actually satisfied by some nonorthogonal Q. Such Q, referred to as 'lattice 
invariant deformations' by materials scientists, can be found by considering the 
transformations which map a periodic set of lattice points into itself. Assume 
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that W is consistent with such a molecular theory and let (2.6) be satisfied by all 
Q in a group (#. In the simplest case, a pairwise homogeneous deformation, 
specified by deformation gradients F and F + a | no, is a twin [5] if there is 

a ro t a t i on  i~ with / ~ 2 = 1  and an H E f t  such that 

R F H  : F + a | no. (2.9) 

In general H need not be orthogonal, in which case (2.9) and (1.4) are not equi- 
valent. However, some twins are described by (2.9) with an orthogonal H (or, 
equivalently, with H similar to an orthogonal tensor), and the analysis which 

follows bears upon these. It is interesting to note that when (1.4) is solved for R, 

Ro, a and no ( e l  w 4), many of the solutions turn out to have the property R2 = 1. 

3.  B a s i c  A n a l y s i s  

Assuming without loss of generality (cf. w 2, alternative (ii), and the discussion 
which follows it) that 6e is a plane with normal no, we seek stress-free joints 

(Ro, no). Given positive symmetric tensors t)(0) and U(O), 0 E J ,  Ro  and no 
must satisfy 

~(o) fs(o) RoX = v(o) x v x I no, (3.1) 
for each 0 E or and for some relative rotation /~(0). 

Since the left (or right) hand side of (3.1) is linear in x, we can assume without 
loss of generality that [ x [ = 1. Then, the set of vectors given by either side of 
(3.1) describes an ellipse in a plane with normal 

V- l (O)  no 
n(O) - -  I U- ' (O)  no [ " (3.2) 

We shall begin by calculating all ellipses obtained from y = Ux,  Ix] = 1 
x �9 n o ---- 0, for various values of the unit vector no. Let C = U 2. Since an ellipse 
in E 3 is determined up to a rotation by its major and minor axes, it will be help- 
ful to calculate these. Thus, we shall be interested in extrema of 

y . y -~- x . C x  (3.3) 

subject to the constraints 

x .  x = 1 and x . n o  = 0. (3.4) 

We shall use repeatedly the fact that either y �9 y is the same for all values of x 
satisfying the constraints, or y . y  has exactly two extrema on the set (3.4), 
one maximum and one minimum. Let Lagrange multipliers 2, 2# be associated 
with the constraints (3.4)1, (3.4)2. The extrema are attained at values of x which 
satisfy 

0 = � 8 9  - -  2 x "  x - -  2 # x "  n o ) ,  
(3.5) 

= C x  - -  2x  - -  # n o .  
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Equivalently, 

(C - -  3,1) x = #no .  (3.6) 

I f  we premult iply (3.6) by adj ( C -  3,1), we get 

(det (C - -  3,1)) x = # (adj (C - -  3,1)) no,  (3.7) 

and if we take the scalar p roduc t  of  (3.7) with n o and use (3.4)z, we get 

# n  0 �9 (adj (C - -  3,1) no) ---- 0. (3.8) 

Equat ion (3.8) implies that  either # = 0 or 

no"  (adj (C --  3,1) no = 0. (3.9) 

The condit ion # ---- 0 is subsumed by (3.9). To  see this, notice that  if  # = 0 
3, is an eigenvalue and x is an eigenvector of  C (cf. (3.6)). Thus  the null space of  
adj (C - -  3,1) is the set o f  all vectors perpendicular  to x, and by (3.4)2 no belongs 
to this set. Thus,  if # = 0, (3.9) is satisfied. 

I shall denote by a and b the major  and minor  axes of  the ellipse corresponding 
to definite values of  C and n o ; ao = U - l a ,  bo = U - l b  shall be the unit  vectors 
in the reference configuration which are deformed into a and b. I f  l aI  = I hI,  
the ellipse is a circle; in this case a and b will denote any pair  o f  perpendicular  
vectors whose termini  lie on the circle. I f  we take the scalar p roduc t  o f  (3.6) with 
x and use (3.4), we get 

3, = x .  C x .  (3.10) 

Thus  the Lagrange multiplier  3, can be interpreted as the squared length of  y ---- Ux. 
The symbols  3,a and 3,b will denote  the values o f  3, given by (3.10) when x = ao 
and x- - - -bo ,  respectively. That  is, 3,a: laI  2 and 3 ,b= Ibl 2. The nota t ion  
is summar ized  by Figure 1. 

a 

/ I  

Fig. 1. Notation. 
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The  vectors  a o and b o are always or thonormal .  To  see this, evaluate (3.6) at 
x = ao, take the scalar p roduc t  o f  the result with bo, use the constraint  (3.4)2 
to el iminate n o �9 bo, and  then use the fact that  a �9 b ---- a o �9 Cb  o = O. 

We return now to (3.9). Let  C have the spectral  representa t ion 

C = c l e  1 | e l  q- c2e2 (~ e2 -]- c3ea | ea (3.11) 

with 0 < cl -<- c~ <-- Ca. Expressed relative to the basis {ei} , the condit ion (3.9) 
becomes 

n21(c2 - -  2)(c3 - -  2) + n22(ci - -  2) (c3 - -  2) 4- H23(Cl - -  2) (e 2 - -  2 )  : 0 (3.12) 

which yields the following quadrat ic  equat ion for  2: 

2 2 - 2((e~ + c3) n0~1 + (c~ + e3) "12 + (e~ + e9 ,,~) 
(3.13) 

-]- (c2e3/ ' /21 Jr- CLC3H22 - ~  e l c 2 n 2 3 )  = 0 .  

According  to the fact  stated just  after equat ion (3.4), equat ion (3.13) has at  
least one real root.  Suppose it is a repeated root.  Then,  since the ellipse is a circle, 
there is a one -pa ramete r  family of  unit  vectors  x which solve (3.6). This is possible 
only if C -  21 is not  invertible. Thus,  we have 

L e m m a l .  I f  the ellipse defined by  y =  Ux, Ix[ = 1, X ' n o = 0 ,  is a circle, 
then its radius is an eigenvalue o f  U. 

To proceed further,  it is helpful to look at special cases. 

Case 1. c~ ~ c2 ~ c3 

First, suppose the roots  o f  (3.13) coincide. Then,  by L e m m a  1 2a = 2b ---- ck 
for  some k E {1, 2, 3}. Let  l and m be the indices of  the remaining eigenvalues. 
I f  we substitute 2 = c k into (3.12), we get 

ng~(ct - -  c~) ( e  m - -  Ck) : 0 ,  (3.14) 

not = 0. N o w  if we solve (3.6) for  x, we get (in the spectral 

X l : /_t(C l - -  ek )  - 1  nOb  

which implies tha t  
basis) 

(3.15) 
Xm = #(Cm - -  Ck) -1 nora, 

while xk is unrestricted. Wi thou t  loss of  general i ty* we can assume /z ~ 0. I f  
we combine  (3.15) with the constraint  (3.4)2 and use the condit ions # =1= 0 and 
not =~ 0, we get 

(C I - -  ek )  - 1  H2I = (C m - -  ek )  - 1  H2m . (3.16) 

* I f  /z = 0 then (3.15) uniquely determines x, Ixl = 1. Since we have assumed the 
roots of  (3.13) coincide, there is a nontrivial one-parameter family of  x given by (3.15), 
which therefore must be obtained under the condition /~ =~ 0. 
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Equat ion (3.16) implies that  k = 2. Thus 2 = c2. Without  loss of  generality, 
say that  l ---- 1 and m = 3. F rom (3.16) and the condit ion [no[ ---- 1, it follows 
that  

and (3.14) gives, 

n 2 1  _ c 2  - -  Cl, ng 3 c3 --  c2 (3.17) 
C 3 - -  C 1 C3 - -  C 1 

no2 = 0. (3.18) 

The equations (3.17) and (3.18) give exactly two planes upon which the ellipses 

are circles, and these circles have radii equal to t/~2. 
Now we turn to  the case in which (3.13) has distinct roots  ~ > ;tb. We can 

write (3.13) in form 

where 

2 2 - -  ;tA + B = 0, (3.19) 

a = 2~(C, no)  = (c 2 -~ c3) 1,021 -~ (e 1 -~- c3) n022 -~ (c I -~- c2) n23, 

S = B(C ,  lrlo) = c2c3 n21 -~- ClC3n22 2f_ ClC2n23. 
(3.20) 

For  applications to joinery, it will be useful to understand the relation between 
(2a, ;tb) and no. We have 2~ + 2b ---- A, 2a2 b = B, which show that  2~ and 2b 
determine A and B uniquely. The equations (3.20) and the condit ion no �9 no ---- 1 
constitute linear equations for determinat ion of  n21, n22, n023 . The determinant  
of  this system is (c3 --  c~)(c~ --  c2)(c3 --  c2), which does not  vanish. Thus,  
we have 

Lemma 2. I f  cl < c2 < c3 are given and 2 a > 2b, then the squared components 
of  the unit normal vector no relative to the basis {el} are determined uniquely by 
2a and ;t b. Symbolically, 

no = zb; e l ,  c2, c3).  (3.21) 

In fact, the functions f~ can be extended continuously to include 2~ ---- 2b = c2, 
the values of  these functions being given by (3.17) and (3.18). At this point, 
(3.6) could be used to calculate a o and bo. Also, some further  facts concerning 
the domain  of  the fi  are useful when bodies of  different material are joined, but  
we defer these until  w 5. 

Summary cl < c2 < c3. 

1. Ellipses, 2 a > ;t b 

no : no~ei, nZi = fi(2~, ).b; cl, c2, c3). (3.22) 
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2. Circles, h a = 2 b 

n o : n o i e i ,  

/'12 2 = O, 

H~Io - -  r  - -  C1 

C 3 - -  C 1 

n~3o - -  C3 - -  C2 
J 

C 3 - -  C 1 

(3.23) 

Case 2. ca = r  

In  this case, (3.12) becomes 

(n21 -~- n22) ( c  1 - -  2)  (c  3 - -  2)  + n23(Cl - -  2)  2 = 0 .  (3.24) 

Equat ion (3.24) is satisfied with 2 = ca. Then, (3.6) yields either # @ 0 and 
n o = -~--e3, or /z = 0 and no unrestricted, f f  /z @ 0, the ellipse is a circle and 
ao, bo are any or thonormal  vectors in the el  - -  ez plane. I f  # = 0, we have 
x .  e3 = 0, f rom (3.6). 

N o w  suppose 2 =~ ca. Then (3.24) becomes 

(n21 -t- /'/022) (c3 - -  2 )  -~  n023(Cl - -  2)  : 0 ,  ( 3 . 2 5 )  

which implies that  

2 : (cl - -  c3)n023 + ca. (3.26) 

Equat ion (3.26) delivers one value o f  2; the other value must  therefore follow 
f rom /z : 0, which is covered above. 

Summary cl ---- C2 ~ r 

1. Ellipses, ha ~ 2b 

n 0 =~ ~ e 3 ,  

2. Circles, ha : 2b 

n o = -~-e3~ 

(If C 1 = C 2 ~ C3, 

2b=C1, 
h a = (C 1 - -  C3)11~3 - ~  C 3 .  (3.27) 

2 b = C l ,  

ha : C1. 

exchange a and b above). 

(3.28) 

Case 3. cl = c2 = Ca. All circles are ellipses o f  radius cl. 

To make stress-free joints using these results, we begin with (3.1) and impose 
the restriction ] x I = 1. Fix an n o independent  o f  0 and calculate an or thonormal  
set (ao(O), bo(O), no) such that  a(O)= U(O)ao(O) and b(O)= U(O)boO) are 
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principal axes of an ellipse in the plane with normal* n(O). Let 2a(0 ) and ;tb(0 ) 
be the corresponding lengths. Equation (3.1) imposes the restriction that 

R(O) U(O) Roao(O ) and /~(0) ~r(0) Robo(O ) (3.29) 

are principal axes of the same ellipse with the same lengths ;ta(0) and 2b(0 ). Let 

ao(O) : Roao(O),  

bo(O) = Robo(O), (3.30) 

~(0) : RT(O) a(O), 

b(o) = ~ ( o )  b(O). 

It follows from the remarks made above that rio = ao ,a bo is independent of 0 

and that & = U(0)rio and b = U(0)b o are principal axes, with lengths 2~(0) 
and 2b(0), of an ellipse in the plane with normal 

ri _ t ) - ' ( 0 )  rio 
t t)-l(0) rio I (3.31) 

In summary, necessary conditions that (3.1) be satisfied are that there be ortho- 

normal triads {ao, bo, no) and (?to, bo, ho}, related by a constant rotation R o, 
having the property that no is constant, and such that Uao, Ub o and Uro, lJbo 
represent principal axes of  congruent ellipses in the planes with normals n and ri, 
respectively. 

These conditions are also sufficient, since they guarantee the existence of 
R(0) such that (3. I) is satisfied for x = a o and x = bo, which in turn implies 
that (3.1) is satisfied for all x perpendicular to no. Notice that we shall not 
expect stress-free joints to be unique, since if {ao, bo, no} serves as an ortho- 
normal triad satisfying the appropriate conditions, then so will {4-ao, (+)bo,  

((-4-)) no}. Similar ambiguity arises with /~(0). 
The procedure for finding stress-free joints will be the following. Fix no = 

const, and write down all orthonormal sets (ao(O), bo(O), no) such that U(O) ao(O ) 
and U(O)bo(O ) are principal axes of an ellipse in the plane with normal n(O) 
for all 0 in J .  Calculate 2a(O ) and 2b(0 ). Using the results of this section, find all 

ellipses based on U(0) whose principal axes have lengths 2a(0 ) and ;tb(0 ). Calculate 

{rio(0),/~o(0), rio} for each of these ellipses, accounting for ambiguity in principal 
axes. If the two orthonormal triples are related by a constant relation Ro, then 
(Ro, no) is a stress-free joint. 

4. Joining Bodies of  the Same Material 

If we restrict attention to bodies of the same material, then U(O) = (](0) 
for all 0 in J .  This case was treated by ERICKSEN [1] using different methods. Let 
(7(0) : U(0)  2 : s cie i ~) ei, cl ~ C2 ~= C3. 

* Cf. (3.2.) In some examples it happens that ao and bo depend nontrivially upon 0; 
cf. w 4. 
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To organize the results, it will be convenient to list some properties that 
C(O) can have which are relevant to problems in joinery. 

(i) C has distinct eigenvalues c~ < c2 < c3 for some value of  0 in J .  
(ii)uv There are constant orthonormal vectors {u, v} such that u .  Cv = 0 

for all values of 0 in J .  
(iii)k The axis containing the eigenvector e,  is independent of 0. 
(iv)• The condition ca ~ cl is fulfilled and for appropriate choices of the 

eigenvectors el,  ca, 

e~ ~ e 3 
LC3 - -  ClJ [C3 - -  CIJ 

is independent of 0. 
(v) The eigenvalues of C satisfy c~ = c2 for all 0 in J ,  and c3 ~ c, 

for some 0 in J .  
(vi) The eigenvector e3 lies in a constant plane for all values of 0 in J .  
(vii) The eigenvalues of C are all equal for all values of 0 in J .  
I shall give only conditions sufficient that a particular stress-free joint exists. 

While it might seem possible at first to give an exhaustive treatment, there are 
certain unusual stress-free joints, arising from rather special functions U(O), 
which I have not been able to organize in a simple way. To understand some of 
these unusual cases, the reader may try to find a constant R o given by various 
combinations of the right hand sides of (4.3) below, while permitting ei(0) to 
be an adjustable function of 0. 

First suppose C satisfies (i), but none of the other conditions (ii)u v through 
(vii). Let no = const, be given (no does not satisfy (3.23) for all 0 in or because 
(v)• is not fulfilled). Equation (3.22) shows that the squared components n2i 
relative to the basis {ei} are determined by the lengths 2 a ~ ;t b of the major 
and minor axes. Equation (3.6) shows that a~i and b2i are similarly determined. 
These facts can be summarized concisely if we define Qo = 1 and Qi as a 180 ~ 
rotation about an axis through e,-: 

Qo = 1, 
(4.1) 

Qi = - 1  + 2ei | ei, i = 1, 2, 3 (no sum). 

Then Ro must satisfy 

R o ao = ~ Q ;  ( ~ ) a o  , i - - 0 ,  I , 2 , 3 .  (4.2)  

bo [((t))  bo j 
The notations (_~) and ((4-)) in (4.2) indicate that the sets of :[: signs are not 
associated. By accounting for the fact that R o is a rotation, we can reduce (4.2) 
to 

[ Q i ( - 1  § 2n o | no), or 

R o = ~Qi(-1  + 2ao | ao), or i = 0, 1, 2, 3 .  (4 .3)  
/ 
| q i ( -1  + 2bo | bo), 
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In particular, (4.3) yields 

= ! I n ~  
Rono [ i ( _ n o  + 2et(ei.no)), 

A sufficient condition that Rono = const, is 
with i----0, we are left with R o = l  or 

Ro = - - 1  + 2no @ no 
o r  

o r  

R o = - - 1  + 2a o @ a o 

i = 1, 2, 3, (no sum). 
(4.4) 

i = 0. Returning now to (4.3) 

(4.5) 

(4.6) 

R o = - l §  o |  o. (4.7) 

If Ro is given by (4.5), it is constant, but this is not true of (4.6) and (4.7). To 
see this, note that Ua o and Ubo are principal axes of an ellipse; thus, Uao �9 Ubo 
= ao �9 Cbo ---- 0, which is not fulfilled because (ii)u v is not fulfilled. Thus, given 
the constant vector n o the stress-free joints 

(1, no), 
(4.8) 

(--1 + 2no | no, no) 

exist in materials for which only (i) is met. 

More generally, (4.8) gives the only stress-free joints possible in every homo- 
geneous material, that is, possible for all choices of U(O) and J .  The relative 
rotation corresponding to the stress-free joint (--1 + 2no | no, no) is 

/~(0) ----- --1 + 2n(0) | n(O), (4.9) 

n(O) being given by (3.2). 
Now suppose C(O) satisfies (ii)u v. We still can take i----0 in (4.3) and get 

(4.5), (4.6) and (4.7), but now there are constant R o satisfying (4.6) and (4.7). 
In fact, if we put a o = u ,  b o = v  and n o = a o A b o ,  then we have the addi- 
tional stress-free joints 

( - 1  + 2u | u, u Av), 
(4.1 O) 

(--1 + 2v | v, u AV). 

The relative rotations corresponding to (4.10)1,2 are --1 + 2U(0) u @ U(O) u 
and --1 + 2U(0) v | U(O) v, respectively. In summary, for each pair of vectors 
u, v satisfying (ii)u,v we obtain the stress-free joints (4.10). 

It might seem from (4.4) that new stress-free joints would arise with i 4 : 0  
if ei were merely contained in a 0-independent plane (with (iii)i not satisfied). 
These turn out to lead back to special eases of (4.8). 

Now assume (iii)k is met. Equation (4.3) delivers constant Ro with i • k. 
More generally, if 

(Ro, no) (4.11) 
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is any stress-free joint with a corresponding relative rotation /~(0), then 

(QkRo, no) (4.12) 

is also a stress-free joint  with a corresponding relative rotation /~(0) Qk. 
Now suppose (iv)+ is fulfilled. Let 

no = + e3. (4.13) 
t c 3 -  Cll 153 - Cll 

Equations (3.23) or (3.28) show that ;t a : ;t b. Thus we can choose R o to be any 
constant rotation which maps a pair of  orthonormal vectors in a plane normal 
to no to any other orthonormal pair in the same plane. A general expression 
for a rotation of this kind is 

Ro = (~Q,,o, (4.14) 

where 0 is either 1 or a 180 ~ rotation about a fixed vector normal to no and 
where Q,,o is any constant rotation with axis no. Every rotation of  this kind gives 
rise to a stress-free joint (Ro, no). Similar statements hold for (iv)_, and if both 
(iv)+ and (iv)_ hold, (4.12) can be invoked with i = 1. 

Now suppose C(O) satisfies (v) but neither (iii)a nor (vi). Equation (3.28) is 
not fulfilled because the axis through e 3 is not constant. Thus, 2a ~ 2b and 
no/x e a =[= 0 hold for at least one value of 0 in J .  

Let no be a fixed vector. It  follows from (3.27) and (3.6) that at values of  0 
where no/~ ea =[= 0 we have 

•  e3) 
bo-- [no A e31 (4.15) 

and 
ao = ( •  (no ^ bo). (4.16) 

The constant rotation R o satisfies (3.20)2 in particular, which yields 

ho A ea = •  ^ e3). (4.17)_~ 

To get (4.17), we have used the fact that ]ho �9 e3I = lno  �9 e3 I, which follows from 
(3.27). 

I f  e3(0) is parallel to no for some 0 in J ,  or if (4.17)+ holds in part  of  ~r and 
(4.17)_ holds in the balance of  J ,  some stress-free joints arise which seem 
not easily described. I shall seek stress-free joints following from (4.17) with one 
sign on all of  J and with n o A e  3 ~ 0  on all of  J .  

Equation (4.17)+ is equivalent to the equation 

(Ro T - -  1) e 3 = ~n o (4.18) 

for some scalar ~ which may depend upon 0. Let e : const, be a unit vector 
on the axis of  Ro. I f  we take the scalar product of  (4.18) with e, we get 

: 0 or n o �9 e = 0. (4.19) 



28 R .D .  JAMES 

The former implies that e3 is parallel to e, a condition we have forbidden by 
assuming the negative of  (iii)3. The latter is a Fredholm condition for (4.18); 
it shows that there is a constant vector f and a scalar o~ such that 

e 3 = ~e q- ~f, (4.20) 

which implies the other forbidden condition (vi). Notice that the same conclusions 
are reached if we put ~ = 0 on part  of  or and no �9 e = 0 on the balance of 2 r. 

Equation (4.17)_ is equivalent to the equation 

(R r + 1) e3 = ~n0. (4.21) 

I f  Ro r -q-1 is invertible, equation (4.21) implies that the axis through e 3 is 
constant. Thus, to avoid satisfying (iii)3, Ro r q - 1  must fail to be invertible: 
there is a (not necessarily constant) vector m such that 

Rom : - - m .  (4.22) 

Equation (4.22) implies that e . m  = 0, while equation (4.21) implies that 
~ n o ' m  = 0. I f  n o ' m  = 0 (the Fredholm condition), we find from (4.21) 
that 

e 3 = ocm -~- ~f, (4.23) 

.f being a constant vector and o~ being a scalar. According to (4.23), e3 lies in a 
fixed plane unless the axis through m is not constant. But if the axis through m 
is not constant, then no and e must be parallel. The latter leads immediately 
back to (4.8). On the other hand, if e = 0 on a subset of  J ,  then R o sends both 
e3 and m to their negatives on this subset. This implies that either e 3 is parallel 
to m,  which yields the forbidden condition (vi) when combined with (4.23), 
or R o is of  the form 

--1 q- 2e | e, e .  e 3 = 0. (4.24) 

But by the opposite of  (vi), (4.24)2 cannot hold on all of  J .  Keeping this in mind, 
we put (4.24), into (4.21); we find that e = no, which again leads back to (4.8). 

Therefore, if no / ,  e3 q= 0 on J ,  if (4.17)+ or (4.17)_ holds on J ,  and if C(O) 
satisfies (v) but neither (iii)3 nor (vi), the only stress-free joints which exist are 
those (given by (4.8)) which exist in every homogeneous material. 

Now suppose C(O) satisfies (v) and (vi). Equations (4.19)2 and (4.24)2 can 
now be fulfilled, leading to stress-free joints. To describe these, let e3 lie in the 
constant plane ~ with the constant normal r. Let no be any fixed unit vector 
in ~ and let e =  rAno. Then (4.18) is satisfied with R o = - - l q - 2 e |  
and we obtain the stress-free joints 

( - - l + 2 e Q e ,  no), e = r A n o .  (4.25) 

Also, equation (4.24) admits solutions of  the form Ro = --1 q- 2r | r, which 
leads to the stress free-joints 

( - -1  + 2r | r, no). (4.26) 
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The joints given in (4.25) and (4.26) also could have been obtained by other 
procedures. For example, the conditions (v) and (vi) imply that (ii)uv is satisfied 
with u = e ,  v =  r. 

Now suppose (v) and (iii)3 are fulfilled. First suppose no/x e3 =4= 0. All 
joints can now be read off directly as solutions of (4.18) or (4.22). To describe 
these joints, let b be a constant unit vector satisfying ~ �9 no = O, b .  (no A e3) = O, 
let e I be a fixed vector normal to e 3, and let Q~ be a rotation of any angle 
having its axis parallel to e3. The following represent all stress-free joints under 
the restrictions (v) and (iii)3 and the assumption no A e3 =4= 0: 

no), 

(O~(-1 + 2e I | el) , no )  , 

(Q~(-1 + 2n 0 | no), no), 

(Q~(-1 + 2b | b), no). 

(4.27) 

If  no = e3, we obtain only the stress free-joints (4.27)1 and (4.27)2. For either 
of the joints (4.27)1 or (4.27)2, the dividing surface need not be a plane (cf. w 1). 

Finally, if (vii) is satisfied, every pair (R o, no) is a stress-free joint, and the 
dividing surfaces need not be planar. 

Some of the assumptions (i) through (vii) are illustrated by materials of de- 
finite symmetry, if we accept the connection between symmetry and stability 
which leads to (2.7). The condition (i) is associated with crystals of lower symme- 
try: triclinic, monoclinic and orthorhombic crystals. It is interesting to note that 
(iv)+ is fulfilled for a material of orthorhombic symmetry with constant coeffi- 
cients of thermal expansion: ci(O) ----- kiO. The assumption (v) is associated with 
tetragonal, hexagonal and transversely isotropic materials, while (vii) is associated 
with cubic and isotropic materials. 

5. Joining Bodies of  Different Materials 

We now seek congruent ellipses in planes with normals h and n obtained from 

C(0) = U(0) 2 and from C(O) = U(0) 2. The squared lengths of the major and 
minor axes are roots of (3.19) in both cases. Thus, the conditions that two ellipses 
obtained by the procedure described in w 3 are congruent are simply 

.4(C(0), no) = A(C(O), rio), 
(5.1) 

= r i o ) ,  

the functions A and /~ being defined by (3.20). Given C(O) and C(0) we seek 
constant unit vectors no and ri o which satisfy (5.1), this being a necessary condi- 
tion that there be a stress-free joint. 

It will be convenient for the purpose of solving (5.1) to view {A(C, no),/~(C, no) } 

as a point in the A - B  plane. As no runs over all unit vectors, (A-(C, no),/~(C, no)} 
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will determine a locus of points in the A-B plane. The two regions found in this 

way by using C(0) and then C(O) will overlap, if (5.1) has a solution (no, rio). 
To find the regions of the A-B plane just described, we write out (3.20) and 

the condition n o �9 no = 1 : 

A = (c 2 2f_ c3 )//21 _~_ (c I _{_ c3 ) n22 21_ (c 1 _~. c2 ) n23, 

g = c2c3n21 + ClC3n22 -~- ClC2n23, (5.2) 

1 =n021+n~2+n023 �9 

Assume 0<~c1=<c2--<_c3. Recall that A = 2 a + ; t b  and B=2a2b.  The 
equations (5.2) are linear equations for (no21, n022, n~3). Equation (5.2) defines a 
triangle in R 3, the triple (n21, n22, ng3) being a typical point in this space. The 
equations (5.2)1,2 then can be viewed as a linear mapping from p~3 to R 2 defined 
on a triangle, whose range must therefore be a triangle, a line segment, or a 
point. To find the appropriate figure it is sufficient to find its vertices by putting 
two ofn0i equal to 0, and the remaining one equal to 1. If  C has distinct eigenvalues, 
we obtain the hatched region shown in Figure 2. The triangle is always nondegener- 
ate if the eigenvalues are distinct. It becomes a line segment if two eigenvalues 
are equal, and a point if all three are equal (the co-ordinates of the vertices shown 
in Figure 2 are always maintained). 

c2c3 

ICLC3 co 

CI Cz 

I I I 

C 1 +C 2 Cl+C 3 C2+C 3 
A 

Fig. 2. The range of equation (5.2). 

Let triangles be drawn in this way for both C(O) and (~(0), for a fixed value 
of 0. As explained above, a necessary condition that there be a stress-free joint 
is that the two triangles overlap. I f  this is true for all 0 C J ,  further analysis 
in the spirit of w 4 will be necessary to determine whether the appropriate constant 
rotation lto and unit vector no can be found. 

However, in certain special cases the "test of overlapping triangles" will be 
sufficient. We may wish to join the bodies at one temperature and have them 
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stress-free at another single temperature 0t. In this case we let ~f consist of 01 
only and notice that any appropriate (Ro, no) will be constant on J .  In this case 
it would be easy to write down all stress-free joints, but I shall not do so. The 
same kind of simplification is achieved by linearizing the problem, so that C(O) 
and (~(0) are replaced by constant tensors. 

6. Stress-Free Polyerystals 

In this section we consider stress-free joints consisting of more than two bodies. 
Recall the formal definition of a stress-free joint (R01 . . . . .  Roy; ~1' 1 . . . . .  ~'f) 
given in Section 1. Let the positive symmetric functions UI(O ) . . . . .  Uf(O), 0 C . f  
be given. 

Part of the problem of finding stress-free polycrystals concerns the conditions 
under which a set of deformation gradients {FI(0 ) . . . . .  Fz(O)} defined respectively 
on the regions ( ~  . . . . .  ~ }  are gradients with respect to x of a continuous defor- 
mation y(x,  0). These deformation gradients must be of the special form 

Fi(O) = Ri(O) Ui(O) Roi; (6.1) 

however, the first results I shall describe do not depend on the particular form 
of the deformation gradients. 

A treatment of general configurations of the regions 9~ . . . . .  ~} is made dif- 
ficult by two facts. The first is that even if jump conditions like (1.3) are satisfied 
across every plane of discontinuity, there may not exist a continuous deformation. 
Figure 3 shows a particularly simple two-dimensional example of this kind (which 
could be made three-dimensional) consisting of three regions surrounding a 
hole. There are no distinct constant deformation gradients (F1, F2, F3) defined 
on {~'~, ~ ,  ~'3} that are gradients of a continuous deformation, even though 
there is a set of three deformation gradients satisfying the jump conditions at 
each interface. I omit the details. The second fact is that even if a continuous 
function y(x, 0) is found, it may not be invertible. A theorem of BALL [6] shows 
that if the function y(x,  O) is not invertible, it is also not invertible when restricted 
to ~ ( ~  L].. .  k] ~}). Here I have no readily available information on how 0 ( ~  
... L/9~}) is deformed. 

Fig. 3. Each pair of bodies forms a stress-free joint but the collection does not form 
a stress-free polycrystal unless all three deformation gradients are equal. 
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For these reasons I shall consider a special class of regions 9~' 1 . . . . .  9t~ which, 
nevertheless, describes a sufficiently small neighborhood of any point in a poly- 
crystal quite generally. Consider a sphere Se with center P. Place a finite number 
of points (vertices), v of them in all, on ~5 a and join them pairwise by e arcs of 
great circles (edges), so as to divide up 3 ~  into f regions (faces). Assume that 
the two endpoints of each edge are distinct vertices, that edges only intersect 
at their endpoints, and that the set of points consisting of edges and vertices is 
connected. Then Euler's relation f - - e  + v = 2 is satisfied. Now construct 
line segments joining each vertex to P. Each edge and the line segments which 
connect its terminal vertices to P bound a part of a plane in 6 a. These parts 
of planes (interfaces) divide 6 a in to fconnec ted  regions; I shall assume the regions 
constructed in this way are 9t~ . . . . .  ~t~. A subdivision of the sphere carried out 
according to these rules will be termed a partition of Se. 

One measure of the "simplicity" of a partition is the number e of interfaces 
present, since the relation . f - -  e + v = 2 implies that it is an upper bound for 
both f and v. I shall consider the following problem: Given e, are there any par- 
titions with e interfaces, having constant deformation gradients {F 1 . . . . .  Ff} defined 
on { ~  . . . . .  ~t'y}, such that the F l . . . . .  Ff are gradients of  a continuous deformation 
y(x) and such that F i ~= Fj when ~ and ~ share an interface ? A partition ad- 
mitting a continuous deformation of this kind will be termed coherent. Clearly, 
coherent partitions are the only partitions of which stress-free polycrystals can be 
composed. It might seem at first that ideas of continuity alone provide only 
rather weak restrictions on stress-free polycrystals, but the restrictions turn out 
to be quite significant. 

Partitions of 5 a partly avoid the difficulties with general arrangements 
discussed above. First, the jump conditions (1.3), imposed at each of the e inter- 
faces, are necessary and sufficient for the existence of a continuous deformation. 
Second, if there is one such continuous deformation, there are always invertible 
continuous deformations, although these may not have the special property 
(6.1). See JAMES [2] for details. 

The solution of the problem discussed above is more easily described if we 
note that given a coherent partition with certain values of e, f and v, we can 
always make another coherent partition in a trivial way by adding a vertex to 
the interior of an existing edge, thereby increasing e and v each by one. Partitions 
formed in this way clutter the description. To avoid them, it is convenient to 
confine attention to partitions without removable vertices, a removable vertex* 
being one at which exactly two edges meet which themselves do not intersect at 
another vertex. 

Excluding partitions with removable vertices, a list of all coherent partitions 
with e = 2, 3, 4, 5, 6, 7 is given in Figure 4. The partitions are defined explicitly 
from Figure 4 by naming the vertices, edges and faces and by listing their topo- 
logical relationships (i.e., "a  is on the boundary of b") and by accounting for 
certain restrictions mentioned below. These are: the two interfaces are parallel 
in the coherent partitions with e = 2, no two of the three interfaces are parallel 

* This definition is explained further by JAMES [2]. Also, an algorithm by which 
any given partition can be judged coherent is given in [2]. 
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in coherent partitions with e ---- 3, no two of the three interfaces are parallel 
at any line segment where exactly three interfaces meet in coherent partitions 
with e ---- 6 or e ---- 7. There are no further restrictions. Thus, the precise angles 
between the interfaces are not determined by coherence in most cases. 

a 

d 

b 

e 

C 

f 

L 

g h i 

j k 1 

Fig. 4. Coherent arrangements with up to seven surfaces of discontinuity. 

Stronger results are obtained if we make use of the special forms of the de- 
formation gradients given by (6.1). For example, consider stress-free partitions 
of one material. Then, since UI(O) . . . . .  Uf(O), the equations (6.1) imply 
that det Fi(O) = v(O), i = 1 . . . . .  f ,  for some function v(O). Suppose 8 ~  and 
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c ~  share the k th interface which has amplitude a k (cf. (1.4)) and normal nok. 
Then 

Fi(0) - Fi(0) = ak | n0~, (6.2) 

implying that 

F,(O) F71(0) ---- 1 q- a k | FTr(0) no~. (6.3) 

If we take the determinant of (6.3) and use the equivalent of (3.2), we get 

ak" nk : 0, (6.4) 

n k being the normal to the image of the k th interface under y(x, O) (the deformed 
k th interface). 

This result has some immediate consequences for special coherent partitions. 
For example, it is known (c f  [2]) that the coherent partitions with e = 6, except 
for the ones represented by Figure 4g, all have the property that all six ampli- 
tudes are parallel. Notice that for any of the coherent partitions of  Figures 4e 
and 4f, the deformed interfaces give rise to a basis of normal vectors. But if 
(6.4) is satisfied for a basis (rig} and parallel amplitudes, then all six amplitudes 
must vanish, a condition forbidden by the definition of a coherent partition. 
Thus, the partitions o f  Figures 4e and 4f  cannot support stress-free polycrystals 
of  one material i f  all interfaces are surfaces o f  discontinuity. 

Partitions in the class 4e occur commonly in polycrystals with randomly 
oriented grains, as discussed by SMITa [7]. 

Another result of this kind concerns coherent partitions with e = 3, which 
also must have parallel amplitudes. For a coherent partition with e = 3, let a 
be a unit vector parallel to the amplitudes. If  this partition also belongs to a 
stress-free polycrystal, a will be parallel to the "axis" (c f  Figure 4b) of  the 
partition. Thus an interface in a stress-free coherent partition cannot be bounded 
by two nonparallel line segments each of  which is on the boundary of  exactly three 
regions. 

Similar but more complicated rules can be derived for other partitions. 
These rules suggest that it might be quite difficult to make stress-free polycrystals 
in materials of lower symmetry. I have written out a number of examples using 
partitions with e = 3 and e = 4, and then I have used these to build up some 
space-filling stress-free polycrystals. These do not seem to lend themselves to 
an orderly classification, so I shall not describe them. In every case, I found it 
necessary to use stress-free joints other than the ones given by (4.8). This suggests 
that materials for which the only stress-free joints are given by (4.8) have stress-free 
polycrystals of a trivial kind: layers separated by parallel planes. 

The following calculations worked out in collaboration with S. SPECXOR 
show that such layered bodies are indeed the only stress-free polycrystals of one 
material, possible in all materials. 

Let us begin with the stress-free joints (--1 q-2no | no, no) and try to 
arrange them in a coherent partition. An unlayered polycrystal will have at least 
one line segment at which n ~> 2 regions meet, so it is natural to study partitions 
for which v = 2, f---- n, e ---- n; these consist of n leaves meeting along an axis 
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(e.g. Figures 4b, c, d, g, 1). Let the regions ~ and ~ + 1  and the interfaces be 
numbered consecutively, so that the i th interface separates the regions ~ and 
~ i+l  and the n th interface separates the regions ~ "  and ~ .  

Assuming that the regions ~ . . . . .  ~ are given, we seek necessary conditions 
that (Rol . . . . .  R0n;~'l . . . . .  ~ ' )  be a stress-free joint for some choice of the ro- 
tations R01 . . . . .  R0n. Let FI(O ) be the deformation gradient in ~ .  According to 
(6.1) and w 4, the remaining deformation gradients can be obtained by induction: 

Fi+l(O ) : Ri(O ) Fi(O ) R0i , i : 1 . . . . .  n -- 1 (no sum). (6.5) 

In (6.5) we have from (4.8) and (4.9), 

Ri(O ) : - - 1  q- 2hi(0) | hi(O), 
(6.6) 

Roi ---- --1 q- 2noi | noi (no sum), 

noi and ni(O)being unit normals to the i th interface and the i th deformed inter- 
face, respectively. Notice that all Fi(O ) are determined by ~ . . . . .  ~'n and FI(O ). 
By construction, the joints (Ro~ , noi), i = 1 . . . . .  n -- 1, each associated with the 
pair of  bodies ~ _ 1 ~ ,  are stress-free. Thus, the condition that the polycrystal 
be stress-free is simply 

Rn(O ) F,,(O) Ron : FI(O), (6.7) 

which, by the use of (6.5), becomes 

an(O).., a l (0 )  Fl(O) Rol . . .  Ron ----- FI(O). (6.8) 

Retracing the steps of the argument, we see that equation (6.8) is necessary 
and sufficient that a partition of the form e : n, f = n, v : 2 be a stress-free 
polycrystal (of one material). 

If  we premultiply(6.8) by its transpose and let C1(0) :-  F~(O)rFI(O), we get 

Rr~ ... R~'IC~(0) Rol ... Ro~ : C~(0). (6.9) 

We can choose a material for which C~(O) has distinct eigenvalues and 0-dependent 
eigenvectors. Then (6.9) is satisfied if and only if 

Rol ... R0, ----- 1. (6.10) 

Returning to (6.8), we conclude that 

RI(0) ... Rn(O ) = 1. (6.11) 

Let mo be a unit vector on the axis of the partition: mo �9 not ---- 0, i = 1 . . . . .  n. 
Equation (6.10) implies that 

Rol . . .  Ronmo : mo ,  (6.12) 

while the definition (6.6)2 implies that 

Rol ... Ronmo : - b m o ,  (6.13) 

the minus sign occuring if and only if n is odd. It follows that there must be an 
even number of regions. 
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Assuming n is even, we group the terms on the left hand side of (6.10) in 
consecutive pairs. Notice that each of these n/2 pairs has the property that mo 
lies on its axis of  rotation, i.e. 

RoiRo(i+l) m o  = m o .  (6.14) 

Let 4~iE (0, 2z 0 denote the angle between the ( i -  1) st interface and the i th 
interface measured from the i th interface by an arc which does not cross any other 
interface. A short calculation gives the angle of  rotation for the pair RoiRo(i+l) 
as 24~,.+1, the sense of rotation being from i -f- 1 to i. Since each of these pairs 
has the same axis of rotation, equation (6.10) is equivalent to the simple equation 

~b2 -4- 4~4 -}- ... + ~n = z~. (6.15) 

In words, the angles determined by the planes bounding the even (or odd) numbered 
regions are complementary. 

The condition (6.15) can always be satisfied by choosing the regions R~ . . . . .  R' n 
appropriately. In doing so, no restrictions are imposed on FI(O). 

Let /z~ (0, 2z 0 be the angle between the deformed ( i -  1) st and the i tn 
interfaces determined in the manner described above. By the same argument 
as that which leads from (6.10) to (6.15), we can show that (6.11) is equivalent 
to the statement 

/z20 § #o §  #o = z~. (6.16) 

Thus, (6.15) and (6.16) comprise necessary and sufficient conditions that the 
polycrystals being studied are stress-free. 

It is not difficult to choose a function CI(O) which makes (6.16) fail. This 
can be done by taking an appropriate pair of consecutive even numbered deformed 
regions and by assuring that the sum of their included angles exceeds z~. I omit 
the details. 

To understand the kind of restriction imposed by (6.16), it is helpful to consider 
partitions for which 

~bl = 4~2 = ... ---= 4~n. (6.17) 

A short calculation of the deformed angles based upon (6.5) and (6.6) shows that 
these must satisfy 

#~ =/z~ = . . .  = #o (6.18) 

for all 0 in J .  But (6.18) implies that 

2z~ 
/x ~ = -  = const., (6.19) 

n 

which, in turn, shows that C~(O) -~ must leave a pair of constant vectors unsheared: 

(no1 �9 S(O) no1)�89 (no2. S(O) no2)�89 no~" no2 = cos u 0 in ~r (6.20) 

In this expression, S(O) = C~(O) -~. 
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