
The Linearization Principle for the Stability 
of Solutions of Quasilinear Parabolic Equations, L 

MICHEL POTIER-FERRY 

Communicated by S. ANTMAN 

w 1. Introduction 

The aim of this paper is to prove existence, uniqueness and stability theorems 
for an abstract quasilinear equation, in such a way that the results can be applied 
to the equations governing the motion of viscoelastic three-dimensional bodies. 
For such bodies one can justify the Energy Criterion, which has been widely used 
in elastic stability theory. This program will be carried out in a companion 
paper [19]. To my knowledge, results as accurate and general as these were known 
only for semilinear equations [ 11 ], [ 12], [ 13]. The simplest example of a quasilinear 
parabolic equation is the nonlinear heat equation, which can be written in the 
form 

~U "-; ~2U 
(1) ~t aO(x , u, Vu) 8~ii-Sxj f (x ,  u, VU) 

YxE.Q, t >= O, 

where Q is a bounded domain of R N with a sufficiently smooth boundary 8Q. 
Here and throughout this paper the summation convention is used. We derive 
(1) below. There we identify u and a 0. If  the temperature is fixed on 8.Q, then u 
satisfies the Dirichlet condition 

(2) u(x, t) = 0 u  6 OK2, t >= O. 

If  ~f2 is insulated, then u satisfies 

(3) Qi(x, u, 7u) ni(x) = 0 u  c ~K2, t >= O, 

where we denote by ni the components of the normal to ~f2 and by Qi those of the 
heat flux vector, which is a nonlinear function of the temperature and of its gra- 
dient. Unfortunately our techniques have not yet proved capable of handling (3). 

Our main tool is P. E. SOBOLEVSKII'S theory of evolution operators [21], which 
generalizes the theory of holomorphic semigroups. First, the system (1), (2) is 
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considered as an abstract equation in a Banach space X: 

du(t) 
(4) T + T(u(t)) u(t) = f(u(t)) 

where T(u) is a family of  closed linear operators that depend nonlinearly on u 
and that have a domain D that is dense in X and is independent of u. To take 
account of  the quasilinear character of the equation (4), we assume that the oper- 
ator T(u) and the second member f(u) are well defined not only when u is in the 
domain D, but  also when u is in an intermediate space between D and X. The 
idea underlying our approach is to seek the solution as a fixed point in a suitable 
functional space of the map u-+ v, where v is the solution of the nonhomogeneous 
linear equation (5) 

dr(t) 
(5) - - ~  + T(u(t)) v(t) = f(u(t)). 

Since the operator A(t) = T(u(t)) is not independent of time, equation (5) can- 
not be solved by the theory of  semigroups. We therefore use the theory of  P. E. 
SOBOLEVSKII [21]. The evolution operator U(t, z) is a linear operator defined for  
t => z by the initial value problem 

~---~U(t,z)+A(t)U(t,z)=O for t > z ,  U ( z ' , T ) = I d .  

SOBOLEVSKII has proved the existence of the family {U(t, ~)} and has obtained a 
variation of constants formula that permits us to transform the differential 
equation (5) into an integral equation. But in order to obtain a solution of (4) 
by the contracting map theorem, we must know how the evolution operator  
varies with u(t). 

In the same way, to prove the stability result, the exponential decay property 
of the operator U(t, ~) is needed. Both of these essential points, which are not 
considered in SOBOLEVSKII'S paper, are studied in Section 3. In Section 4 the theo- 
rems on abstract quasilinear equations are proved by the methods just described. 
Some properties of intermediate spaces and fractional powers of  an unbounded 
operator are recalled in the Appendix. In the second section the main results are 
stated and are applied to the nonlinear heat equation. 

In the application to the concrete equations (1), (2), the spaces D and X are 
chosen as follows: 

X : LP(.Q), O ---- W2'P(Q) A W~'P(Q) 

where W2'P(Q) is the classical Sobolev space of functions having their derivatives 
up to order 2 in LP(Q). Wo t'p(Q) is similarly defined, but the functions of  this space 
must vanish at the boundary. For  (1) to have a meaning, it is necessary that the 
functions of D have a bounded gradient. A Sobolev embedding theorem [20] 
implies that this is true if and only i fp  is greater than the dimension N of  the open 
set g2. Other possible spaces would be the small Nikolskii spaces [5]. For  these 
DA PRATO & GRISVARD [4] have even proved a variation of constants formula 
that could permit an analysis not requiring the evolution operator theory. Our 
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abstract result could not be applied with the H61der spaces because the domain 
D would not be dense and also because the initial data would necessarily satisfy 
a nonlinear compatibility condition at the boundary, whereas SOBOLEVSKII'S 
theory requires a linear space as a domain D. The boundary condition (3) is 
not considered for the same reason. Of course there exist other evolution operator 
theories [8], [10] which could be used for the study of nonlinear boundary condi- 
tions, but they are intricate and their results are not as accurate as SOBOLEVSKII'S. 

One may ask whether the theories of SOBOLEVSKU [21] and of LIONS-PEETRE 
[15], which use interpolation spaces, could be profitably replaced in our analysis 
by more direct methods relying on energy estimates. The use of energy estimates 

to obtain uniform bounds on Vu, which are critical in the analysis and which 
rely on embedding theorems, becomes very difficult when the nonlinearities are 
"strong" and when the dimension N exceeds 1. On the other hand, the most 
refined properties of solutions of parabolic equations, such as the estimate (20), 
follow from semigroup theory and not from energy estimates. By using semigroup 
theory I have obtained a result [19, Theorem 1] for three-dimensional viscoelasti- 
city that is sharper than that obtained by EBmARA [22] for a corresponding one- 
dimensional problem with a linear elastic response. I believe that it might be possible 
to establish results similar to those stated here by using an interpolation theory 
simpler than that of LIONS-PETREE in a Hilbert space setting. Such procedures 
might be able to handle boundary conditions of the form (3). Nevertheless, I 
feel that the semigroup approach will remain more powerful than energy methods 
for this class of problems. 

The results of this paper were announced in [18]. 

w 2. The main results and an application 

a) The main results 

We now state an existence and uniqueness theorem and a stability theorem for 
the initial value problem; these are the two main results of this paper. The inter- 
polation spaces in the sense of LIONS-PEEa'RE [15] (described in the Appendix) 
are denoted by [D, X]o,, and their norms by 1[ I[0.p. We introduce the following 
set: 

X(~o, /3)=(2ECl[Arg2l=<et /2+~o or R e 2 ~ - - f l } .  

If the numbers e~ and fl are positive, this set is the union of a sector and a 
triangle. 

Theorem 1 (Existence and Uniqueness). 

Let X and D be Banach spaces with D dense in X. Let the norm of  X be denoted 
by ll. II. Let 0 < 0 < :  1, 0 < : 0 ' <  1, 1 ~ p <= oo. For each u in a neighborhood 
of  O in [D, X]o,p let T(u) : D-+ X be a closed linear operator. Let f be a nonlinear 
map from a neighborhood of  0 in D into [D, X]o,,p. Suppose that 
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(i) There exist positive numbers o~, fl and C such that X(~o, fl) is contained in the 
resolvent set of  T(O) and 

11 IT(O) + ,q- '  I1 < C/[1 + 2 ] Va E.S(,o, ~). 

(ii) For any given x in D, the map u--> T(u) x from a neighborhood of 0 in [D, X]o,. 
into X is differentiable and there are numbers ~ > O, C > 0 such that its deri- 
vative [T'(u) --] x satisfies the Hrlder condition 

II [T'(u2) v - -  Z'(u,)  v] xll =< C(ll u2 - -  ul II0,P" II vii0,, Ilxllo. 

Oii) There is a number C > 0 such that f satisfies the Lipschitz condition 

liT(u2) --f(u,)II0'.p < c II u ,  - u,  11o. 

Then there exist positive numbers e and to such that the initial value problem 

(6) 

has a unique solution 

(7) 

du 
--~ + T(u) u : f (u) ,  u(O) ---- Uo 

u E C([0, to], D) ~ CI([0, to], X) 

provided that II Uo I[o ~ ~. 

Theorem 2 (Linearization principle). Suppose that the hypotheses of Theorem 1 
hoM and furthermore that there is a number C > 0 such that 

(iv) [If(u)l[o,,~ ~ c Ilull 2 .  

Then the solution u of (6) can be extended to any positive time t and the equili- 
brium solution u = 0 is exponentially stable with respect to the norm o lD.  More 
precisely, i f  II no lid is sufficiently small, then there are positive numbers C and fl 
such that 

(8) 11 u(t)Iio ~ c II no 11o exp ( - - f i t ) .  

Remarks. 1) Theorem 2 is a justification of  the linearization principle, because, 
by Assumption (iv), the linearized equation in a neighborhood of u = 0 is 

du 
(9) ~ -~- T(0) u = O. 

Assumption (i), ensuring that the spectrum of T(0) lies to the left of the line 
Re 2 = --fl, implies the exponential decay of the solutions of  (9). 

2) The other Assumptions (ii) and (iii) are technical; they characterize the quasi- 
linear character of  the equation (6). 

3) The initial value problem can be solved in the same way when the operator 
T and the second member f are H61der continuous functions of time. 
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b) Application to the nonlinear heat equation 

Let us consider a rigid heat conductor that occupies a domain 12 of the Eu- 
clidean space R N. The energy balance gives the equat ion  

de 
(10) 0 -~  = r -- div 

where Q is the mass density, e the internal energy per unit mass, r the heat supply 
per unit volume and-~ the heat flux vector. It is assumed that the internal energy 
e depends only on the temperature Twhile the heat flux vector and the heat supply 
are functions of the temperature and its gradient. Hence the nonlinear heat equa- 
tion is obtained as 

OT 
(11) pe'(r)  ~ = r(T, VT) -- div ~(T, VT). 

Let To(x) be a temperature field that represents either the temperature field 
at time 0 or a stationary solution whose stability is to be studied. We let 

u(x, t) = T(x, t) -- To(x), 

0 
a,j(x, u, Vu) -- O(VT)j Q,(To + u, VTo + Vu)/Qe'(To + u). 

Then equation (11) can be put into the form 

Ou _ aij(x, u, Vu) ~2u (12) Ot ~ + g(x, u, Vu). 

The requirement that the temperature be prescribed on the boundary of O 
yields 

(13) u(x, t) = 0 Vx E ~12, t >= O. 

Theorem 3. 

Let .(2 be a bounded domain in R N and let 8Q be in C 2. Let the functions 

(x, u, G) -+ ao(x, u, G), g(x, u, G) be defined for x in ~ and for (u, G) in a neighbor- 
hood of  0 in R •  u. Let there be a number ~ > 0 such that the functions 

(u, G) -+ aij(x, u, G) are in C 1'~ uniformly for x in g2 and let there be a number 
e > 0 such that the functions (u, G) -+ g(x, u, G), [g(x, u, G) -- g(x', u, G)]/ 

Ix -- x' I* are in C 2 uniformly for x, x' in s Let aO(x, O, O) be uniformly elliptic: 
there exists a Co > 0 such that 

a,j(x, O, O) ~i~j ~ Co~i~j Vx  E ~ ,  ~ ~ ~N. 

I f  p > N, i f  the initial data are sufficiently small in W2'p(Q), and i f  the initial data 
vanish on a~2, then equations (12) and (13) have a unique solution in the class 

c([0, to], w2,~(o)) c~ c'([0, to], L~(O)). 

Furthermore, i f  u = 0 satisfies (12) and (13) and i f  all solutions of the linearized 
equation decay exponentially, then the solution of(12) and (13) exists for all positive 
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times t and the equilibrium state u ~ 0 is exponentially stable with respect to 
the W2'p-norm. 

Remark 4. The main consequence of this theorem can be formulated as follows. 
Let To(x) be a stationary solution of the heat equation. If  this stationary 

solution, the boundary of the body and the constitutive laws are sufficiently 
smooth and if the coefficients of  the linearized equation are uniformly elliptic, 
then the linearization principle can be applied to the study of  the stability of the 
solution To(x). 

Proof of Theorem 3. We rewrite the heat equation in a slightly different form: 

(14) 8u aii(x, u, Vu) ~2u Ou 
8t Oxi Oxj b~(x) ~ -- c(x) u q- ku 

: g(x, O, O) + ku q- R(x, u, Vu) 

with 
k ~ 0 ,  

~g ~g 
hi(x) - -  a(Vu)i (x, 0, 0), c(x) = ~ (x,  O, 0) .  

Then R(x, u, Vu) is the second order remainder in the Taylor's expansion of  
g(x . . . .  ). For the application of Theorems 1 and 2, we set 

X = LP(.Q), D = W2'p(/2) A Wol,P(~2), 

~2v ~v 
T(u) v : --ao(x, u, Vu) ~x i ~xj bi(x) ~ -- c(x) v q- kv. 

f(u) is the expression given in the second member of (14). The uniform ellipticity 
of  (ao(x, 0, 0)) implies that Ghrding's inequality is valid: There exist numbers 
C 1 > 0 , 2 ~ 0  such that 

~u ~u 
f a o ( x , O ,  O)-~ixi-~xjdx~ C~ Ilull~-- ,~ Ilull~2 VuE H1(~2). 

Then using this inequality and a classical criterion [9, p,. 490] we can easily prove 
that the operator T(0) generates a holomorphic semigroup that decays exponentially 
in the space L2(12), if k is chosen sufficiently large. The estimation (i) of Theorem 1 
is a classical result, which can be obtained either by an energy method [2],  [21], 
or by a more general process [1] (which will be also used in a forthcoming paper 
[19]). Furthermore T(0) has a compact resolvent because D is compactly embedded 
in X. Thus the spectrum of T(0) consists of isolated eigenvalues accumulating 
only at infinity [9]. If  the solutions of the linearized equation decay exponentially 
and if we set k = 0, the spectrum ofT(0) is located to the left of a line Re 2 = --fl 
(fl > 0) so the estimation (i) holds even for k = 0. 

In order that Assumption (ii) of Theorem 1 be true, it is sufficient that the 
map u ~ ao(x, u, Vu) be in C l'n from [D, X]o.p into C(t'2). By means of an era- 
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bedding theorem [16] we find that 

Ws'P(~'~) Q C1(~r for 2 > s > 1 -1- Nip, 

and by means of an interpolation theorem [7] we find that 

1 
[D, X]o,p = W2~176 A WJo "(Q) for 0 < 0 -< -~-. 

We conclude that Assumption (ii) is valid if the mapping (u, G)-+ %(x, u, G) 

is in C l'n, uniformly for x E ~ ;  this is a hypothesis of Theorem 3. 
To prove Assumptions (iii) and (iv), we may use the following embedding 

theorem [20] and interpolation theorem [7]: 

W1'P(g2) Q C~(I2) Q W"P(Q) for e : 1 --  N/p, 

[D, X]l_e/2,p : We'P(g2) for e' < 1 -- NiP. 

Furthermore, the hypotheses on g( . . . . . . .  ) allow us to show that 

II R(x, u2, Vu9 -- R(xl, ul, ~u,)llc~<~) < C[II u2 -- ulllc~<~) + IlVu2 --fTul IIc~)l, 

IIR(x, u, fTu)[Ic=(o)<= C[l[ul[~=(o)+ [[Vull:c=(o)]. 

All these properties imply Assumptions (iii) and (iv). Then Theorem 3 is a conse- 
quence of Theorems 1 and 2. 

w 3. The nonhomogeneous equations 

We first recall Sobolevskii's results about the nonhomogeneous equation 

du 
(15) --~ q- A(t) u = f ( t ) ,  u(0) : Uo. 

Proposition 4. Let X and D be two Banach spaces such that D is dense in X and is 
continuously embedded in X. Let (A(t)} be a family of  closed linear operators on 
X that are defined for t6  [0, to] and have the common domain D. Let there be 
numbers C ~ O, or E [0, 1] such that 

(16) [I[A(t) --A(~)lxll < C]t -~l~l lxlI~ v t , ~  [0, to], V x C O .  

Let there exist positive numbers co and fl such that the set X(og, fl) is contained in 
the resolvent set of  all the operators --A(t) and such that there exists a C > 0 

for which the resolvent satisfies the estimate 

(17) II [A(t)-k 2]-1l[ ~ C/[1 q-I~]1 YAE,F,(~o, fl). 

Then there exists an evolution operator U(t, 3) that is defined and is strongly 
continuous when 0 <_ z <~ t <_ to, that is uniformly differentiable when "r q- tl <: 
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t < to (q > O) and that satisfies 

8 U(t, T) 
(18) 8------~ q- A(t) U(t, T) : O, 

(19) U(t, s) U(s, z) = U(t, z), U(t, t) = I, 

(20) 1[ Ar(t) U(t, 3) A-~(z)II < C(t -- z) ~-~, 0 <_ ~ <_ ~ < 1 q- or * 

Furthermore, i f  the initial data Uo are in D and i f  f is in the class C([0, to], 
[D, X]o,,p) for 0 <: 0 "< 1, then the variation of  constants formula 

t 

(21) u(t) : U(t, O) Uo + f U(t, s)f(s) ds 
0 

gives the unique solution o f  Equation (15) and 

(22) u(t) E C([0, to], D) A C1([0, to], X). 

The inequality (17) implies that the operator A(t) generates a holomorphic 
semigroup exp [--sA(t)]. The fundamental estimate (20) is a generalization of 
classical estimates for holomorphic semigroups. It will be noted that the range 
of  possible values for 7 and 0 depends on the differentiability of A(t). 

But SOBOLEVSKII established the variation of constants formula (21) under the 
further assumption that 

f E  C~([0, to], X), ~ > 0. 

We now give a short proof of  (21). First (18), (19) and the strong continuity prop- 
erty allow us to show that U(t, O) Uo is a solution of the homogeneous equation 
in the class (22). It remains to check that 

t 

v(t) = f u(t, s) f (s)  ds 
0 

satisfies (22) and (15) with a zero initial data. Note that v(t) is in D by the estimate 
(20) and Corollary A2 of the Appendix. The proof of the D-continuity of  v(t) 
is left to the reader. Let h be a small positive number. Then 

1 

[v(t + h) -- v(t)]/h = f U(t + h, t -~ 2h) f ( t  A- 2h) d2 
0 

t 

+ f [u(t + h, s) - u(t, s)]f(s)/h ,is. 
0 

Clearly, the first integral converges to f ( t )  in X when h goes to zero. By using 
(18), (20) and Corollary A2 of the Appendix, we find that 

I[ [U(t q- h, s) -- U(t, s)lf(s)/hll <= C(t -- s) -1+~ IIf(s)llo,,. 

* The definition and the main properties of the fractional powers of an operator 
are recalled in the Appendix. 
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for e > 0. If  t > s, then [U(t + h, s) -- U(t, s)]f(s)/h, converges to --A(t) U(t, s) 
f ( s )  when h goes to zero. Then v(t) possesses a right derivative in X, which is 
given by 

t 

D+v(t) = f ( t )  -- f A(t) U(t, s)f(s) ds = f ( t )  -- A(t) v(t). 
0 

But a classical argument [9] allows us to prove that v(t) is differentiable and is 
the solution of (15). 

We now study the decay of the evolution operator U(t, "r) when t -- v goes 
to infinity. 

Proposition 5. Let {A(t)} be a family of  unbounded operators satisfying the condi- 
tions of  Proposition 4for  any positive to. Suppose that there exists an operator A~o, 
which also satisfies (17), and a positive number e such that 

(23) [1 [A(t) - -  Aoo] xll =< e Ilx[[o VxC D, 

(24) l[ [A(t) --A(s)]x[[ ~ e  [t --sl~llx[[o VxC D 

for any t, sE [0, q]. I f  e is sufficiently small, then 

(25) [[A(t) U(t, v) A-r(z)[[ <~ C I t - - z l - l + r  exp [--fi(t - -z)]  

Vt, z, 7 satisfying 0 ~ ~: <_ t ~ tl, 0 <: ~ <: 1, 

where the constant C depends on e and ~ and on the constants related to the operator 
Aoo, but not on q. I f  Assumptions (23) and (24) are valid for any positive t and s, 
then (25) is also valid. 

Remark. By a classical perturbation result, [9] p. 497, it is sufficient that Aoo 
satisfy (17) for 2 in X(~o,/3) in order that A(t) satisfy also (17) for 2 in Z'(09~,/3~) 
with 

0 < 09~ < 09 and 0 </38 < /3 .  

Proof of Proposition 5. Since resolvent set of --Aoo is open, it contains a set 
27(09,/31) with /31 >/3 .  Moreover, 

[[(4 + Aoo)-I [[ ~ (7/(1 + I21) v2 E 27(09,/3 0 .  

It follows from the previously quoted perturbation theorem that 

[I [2 + A(t)] -1 [I ----< C/(1 + [2 l) v2 ~ z(09,,/32) 

with /31 > t32 >/3 ,  to > 09' > 0, and C independent of t. The semigroup can 
be represented by Dunford's integral: 

exp [--sA(t)] = (2i:0 -1 f eZS[A(t) + 4] -1 d2. 
F 

Following [9] we then obtain 

[1 exp [--sA(t)] l[ :< C exp (--/33s), 

(26) [I A(t) exp [--sA(t)] II =< c exp (--/33s)/s 
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with f12 > f13 > fl and C independent of t and s. Because A(t) commutes with 
the semigroup exp [--sA(t)] and the operators A(t) A-1(3) are uniformly bound- 
ed, we obtain 

(27) II A(t) exp [ - - ( t  -- 3) a(t)] A-l(3)l[ < C exp [--fla(t -- z)]. 

We now derive the estimate (25) when 7 ---- 1. In this case the norm of the 
operator W(t, 3) =- A(t) U(t, 3) A-1(3) must be bounded by C exp [--fl(t -- 3)]. 
SOnOLEVSKU [21] remarked that the operator 

r = exp [ - ( t  - s) Aft)] U(s, ~) A-I(3) 

is strongly differentiable. The integration of $'(s) between 3 and t shows that 
W(t, ~) is the solution of the Volterra integral equation 

(28) W(t, 3) = A(t) exp [--(t -- z) A(t)] A-1(3) 

t 

+ f A(t) exp [--(t -- s) A(t)] [A(t) -- A(s)] A-~(s) W(s, 3) ds. 

The estimates (24) and (26) show that the kernel of this equation is bounded 
above by 

C e(t -- s) ~-1 exp [--fla(t -- s)]. 

A norm is introduced for the bounded operators in X that depend on two para- 
meters t and 3: 

[llwl[[ -- Sup IlW(t, 3 )exp[ f l ( t -3 ) ] l l .  
ta ~ T ~ t ~ t 3  

Equation (28) and the estimates (24), (26), (27) imply that there exist two positive 
constants Co and C~ such that 

t3 

[11 will =< Co/2 + C~ e f (t3 - s) ~-' exp [(fl - f13) (t3 - s)] ds III wtl[. 
t2 

Because the integral is bounded by a constant C2 independent of t2 and ta, it 
follows that 

I11 will _-< Co/2 + c,c  II1 will. 
1 If  e is smaller than ~-C1C2, then IllWlll is smaller than Co. Therefore 

(29) [[ W(t, z)[[ :< Co exp [--fl(t -- 3)] 

and the latter is the same as (25) with y : 1. For a complete proof of (25), we 
note that 

(30) [I A(t) U(t, 3) A-~(3)11 

<: C(t -- 3) -I+~ exp [--t3(t -- z)] when 0 ~ t -- 3 ~ 1. 

I f  t -  3 is greater than 1, the semigroup identity (19) implies that 

(31) A(t) U(t, 3) A-v(3) = W(t, 3 + 1) A(3 + 1) U('r + 1, 3) A-V(3), 
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and  (29), (30), (31) give the desired result 

I[ A(t) U(t, T) A -7(z)l[ ~ C exp [--fl(t --  z)]) when t - -  z ~ 1. 

The following proposition shows how the evolution operator  is changed if 
the  generator A(t) is suitably perturbed. 

Proposition 6. Let A(t) and A(t) be two unbounded operators that satisfy the condi- 
tions of  Proposition 4 with the same domain D. Let the positive number A, which 
characterizes the closeness of  A(t) to A(t), be defined by 

(32) 11 [A(t) - -  A(t)] x H ~ CA [[xlln VtE [0, to], xE  D,  

(33) II [A(t) - -  A( t )  - -  a ( s )  + A(s)] xll = C A  It -- sl IIXIID Yt, sE [0, to], xE  D 

I f  to is smaller than a number t l independent of  A, t ands, then the corresponding 
evolution operators U(t, ~) and U(t, "r) are close in the following sense: 

(34) IIA(t) g(t, z) a - ' ( z )  -- a(t) U(t, z) a- ' (z ) l l  --<-- C A ,  

(35) II[f(t, ~) -- U(t ,~ ) l x l lo  <- _ C A  I[x[Io V x E D ,  

(36) II A(t) U(t, z) A-e(z)  -- A(t) U(t, "t) A -e(z)I[ <= C A(t -- z) e-t  

f o r  0 < 7' <-- o~, 

(37) l[ [U(t, v) -- U(t, z)] xllo <---- C A(t -- ~)~-1 Ilx[ll-r,,, 

Yy, 7 ' , p :  0 < y < y'  ~ o~, l<=p<=o%u 

where C denotes various constants independent of  t, �9 and A. 

Proof of Proposition 6. 

a) Proof of  (34) and (35). The following abbreviated notat ion will be used: 

W(t, z) ---- W(t, z) -- W(t, z), OA(t) = A(t) -- A( t ) . . .  

Formula  (28) implies that 

W(t, z) = t~{A(t) exp [--( t  - -  z) A(t)] A-l(z)} 

t 

+ f ~(A(t) exp [--( t  - -  s) A(t)l} [A(t) - A(s)] A-l(s)  W(s, v) ds 
T 

t 

§ f A(t) exp [--( t  --  s) A(t)] 6[A(t) --  A(s)] A-'(s)  W(s, z) ds 
(38) 

t 

+ f A(t) exp [--( t  - -  s) A(t)] [A(t) - -  A(s)] 6A-l(s) W(s, z) ds 

t 

+ f A(t) exp [--( t  --  s) A(t)] [A(t) - -  A(s)] A-l(s) OW(t, ~) ds. 
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Let us assume for a moment that we have proved the three estimates 

(39) [[ [OA-l(s)] xll < CA Ilxllo, 

(40) II O(A(t)exp [--(t -- r) A(t)]}l I =< CA/(t -- ~), 

(41) II 0(a(t) exp [--(t -- r) A(t)] a-l(z)}l[ =< CA.  

Then the following inequality can be deduced from (38), (16), (17), (20), (33), 
(39), (40), (41): 

t 

I[0W(t, ~)1[--< CoA -t-C~A f ( t - - s )~- l  ds 
T 

t 

+ c~ f ( t - - s )~ - ld s  sup I[0W(s,T)II 
T ~ < S < t  

Hence [l~W(t,~)[I < CA if 0<= t --7:<= t I ~ [o~/2C2] 11~, which is exactly 
(34). Inequality (35) follows easily from (34), (32)and (39). 

Now the three estimates (39), (40), (41) are to be proved. Inequality (39) is 
a special case of the following estimates for the resolvent 

(42) 11~([2 + A(t)]-a}ll =< CA~(1 -t- 12l) v2 E x(to, fl), 

(43) II~([;t + A(t)]-~}xllD <= CA Ilxll V2~2:(co, fl), 

which come from (32), (17) and the formula 

(44) ~{[2 + A(t)] -~} = [;t + A(t)]-l[A(t) -- A(t)] [2 + a(t)]  -x . 

By using (42) and the integral form of the semigroup 

1 exp [--sA(t)] = (2i~s)-1 r f  ' e r + A(t) d2' 

where _P' joins ~ • (--ie -i~) to c,o • ie i~, we obtain (40) and 

(45) IId(exp [-sA(t)]}l[ < CA.  

Finally, (41) is a consequence of (39), (32), (45) and of 

~(A(t) exp [--(t -- ~) A(t)] A-I(~)} 

= ~(exp [--(t -- ~) A(t)l } A(t) A-I(~) -t- exp [--(t -- T) A(t)l ~[A(t) A-I(~)]. 

b) Proof of (36). We let W~(t, ~) = A(t) U(t, ~) A-~(~). Then equation (28) 
implies that W~(t, ~) is the solution of the Volterra integral equation 

(46) W~(t, ~:) = A(t) exp [--(t -- ~) A(~)] A-~(~) 

t 

+ f A(t) exp [--(t -- s) A(t)] [A(t) -- A(s)l A-l(s) W~(s, ~) ds, 
-r 

because the two members of (46) coincide on the dense subset D[AI-~(~)]. The 
proof of (36) is similar to that of (34) since the following estimate will now be 
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established �9 

(47) [1 t~(A(t) exp [ - - ( t -  z) A(t)] A-V(z))II <= c A(t -- z) v-1 . 

First, the definition of the fractional power given in the Appendix yields 

OO 

A _ V ( t )  _ A - v ( z )  _ sin (:W_____~) f 2_v[ 2 + A ( t ) ] _ X [ A ( , )  _ A(t)] [2 + A(z)] -1 d2. 
7[ 0 

Using (16) and (17), we obtain 

(48) I] A-e(t)  -- A-r(z)l] ~ C It -- z I ~, 0 < 7 < 1. 

In the same way (A3) yields 

(49) 0 < e < 7 < 1 ~ IlA~ 6[A-V(t)]l[ <: C A ,  

(50) 0 < v < 1 ~ II ~[A-~(t)  - -  A-~(3)]  II < C A It - -  T ]% 

We now invoke the following lemma, which will be proved below. 

L e m m a  7.  

IJ6(Ae(t) exp [--sA(t)]}[[ <: GAs  -~ for 0 < 0 < 1. 

Then (47) is a consequence of Lemma 7, of (48), (50) and (40) and of the identity 

A ( t )  exp [- - ( t  - -  3) A(t)] A-~(-c) = .4~-~(t) exp [ - - ( t  - -  ~) A(t)] 

+ A(t) exp [--(t -- z) A(t)] [A-r(z) -- A-V(t)]. 

c) Proof o f  (37). We have 

(51) II [u(t, ~) - u(t, 3)] XlID 

C(l[ [A(t) U(t, z) -- A(t) U(t, 3)] x[[ + II [A(t) - a(t)]  U(t, T) xll}. 

Let 7" be such that 0 < 7 < 7 " < 7 ' .  Then 

II 6[A(/) U(t, 3)] xll =< II O[A (t) u(t, 3) .4-~"(T)] A~"(3) xJI 

+ II{A(t) U(t, 3) A-~(~)} {A~(x) O[A-~"(3)]a~"(x) x[l 

<_ CA( t  --~)~-1 [[AV"(3)xll (by (36) and (49)), 

(52) IlO[A(t) U(t, 3)] xl[ ~ CA(t  -- T) ~-~ IIx[l~-~,., (by Corollary A2). 

Inequality (37) follows from (51), (52), (32) and (20). 

P r o o f  o f  L e m m a  7.  

We first prove that 

(53) IIt~[A~ + A)-']rr _-< CA v o c  ]o, 
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If we let a = 1 - -~ ,  then (53) is equivalent to 

I[~[A-~A(,~ + A)-']II < C A  [~t] -~, or 

(54) / ~-~ + #)-IA(A + ~)-11 d~ <= CA I~1 -o. 

Using (42) and (43) we can show that 

~-"  ~[(A + ~)-IA(A + a)-q 
I 

< f t,-O(ll~[(A + ~,)_1] A(A § ~)-lll + II(A + ~)- '  O[A(A + ~)-~]ll} at, 
1~1/2 

oo 

< c ~  f t ,  -(1+~ #t, <-- c ~ I~ I -~ 
[a12 

Next, the resolvent identity 

(z - ~) (a + ~)-' (A + ~)-~ = (A + ~,)-~ -- (a + ~)-~ 

implies that 

Ia-'~O[A(A§ <=CA f I t - ~  z d#<CA[~ I 
0 

These inequalities give (54) and (53). Finally Dunford's integral and (53) yield the 
required inequality: 

][~{Aeexp[_As]}[[<(2zrs)_lfe~,l~{AQ( 2, ) -1}  = 7 + A d2' <= CAs -~ 

w 4. Proof of the main results 

a) Proof of Theorem 1 

The interpolation inequality (A6) implies that if a solution u(t) of (6) is in 
the class (7), then it also satisfies 

[In(t) - u(s)l[o,. <= C I [ u ( t )  - u(s)ll 1-~ Ilu(t) - u(s)l[ ~ 

I IF (55) Ilu(t) - u(s)llo,. <= C It - s o<tztoMaX llu(t)[Ik~ _ --d-[(t) . 

Thus it is sufficient, especially for uniqueness, to seek u(t) in the Banach space 

E = C~ to], [19, Xlo,p) A (7([0, tol,/9) 

with norm defined by 

lllul[I = Max [lu(t)[[o + S u p  { l l u ( t )  - u(s)l[o,. I t - s l - ~  
O~_t~to O~s,t~to 
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Now it is obvious that the solutions of (6) satisfying (7) are fixed points in E of 
the map u-~ v where v is the solution of the nonhomogeneous equation 

dr(t) 
(56) d t +  T(u(t)) v(t) = f(u(t)),  v(O) = Uo. 

If u is in E and x is in D, then the map t--~ T(u(t)) x from [0, to] into X is H61- 
der continuous with exponent 0 by Assumption (ii). Let 

A(t) = r(u(t)). 

Then by a previously quoted perturbation theorem [9] p. 497, the operator el(t) 
satisfies the estimate (16). Proposition 4 permits us to define an evolution operator 
Uu(t, s) such that (18) and (19) hold. By Assumption (iii) the map t---~f(u(t)) 
is continuous from [0, to] into [D, X]o,,r Then the variation of constants formula 
(21) gives v(t): 

t 

(57) v(t) = Uu(t, O) u o -q- J Uu(t, s)f(u(s)) as ~- ~ (Uo, u). 

Furthermore, ~(uo, u), which has just been defined, is a map from a neighbor- 
hood of 0 in D • E into E. Now, by the Contracting Map Theorem [6], it is suffi- 
cient that the map ~-(Uo, -) is contracting in E in a neighborhood of 0 (uniformly 
in Uo) and that Ill,r(0, 0)111 is sufficiently small, in order that Theorem 1 hold. 
We define 

t t 

y(t) ~-- ~(0 ,  O) = f Uo(t, s)f(O) ds = f exp [--T(0) (t -- s)]f(0) ds. 
0 0 

Let 0"E ]0', 1[. Using (15) and CorollaryA2, we find that 

[ly(t)liD <= I}f(O)liO,,p Ct 1-6" 

and by the equation (56) that 

Therefore (56) yields 

II[ (0, 0)11[ < C llf(o)lfo,,, N - ~  + tr176176176 

and [[1~(0, 0)I[[ is sufficiently sman if to is. 
Now let ut and u2 be two functions of E that are close to zero. Let us denote 

by vs = ~'(Uo, us), v2 = .~(Uo, uz) the two functions of E that are obtained by 
(57). 

First, Uu~(t, s) -- Uu,(t, s) is estimated by means of Proposition 6. Assumption 
(ii) leads to following inequality 

[[(T(u2(t)) -- Z(us(t))} xll --< c II u2(t) - us(t)l[0.p II xl[o ~ c Ill u2 - u~ l tl IIxJIo. 
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Hence A(t) --~ T(u2(t)) and a( t )  ~-~ T(ul(t)) are such that  the condition (32) of 
Proposition 6 holds with A = ]]lu2 - -u~ ]1]. On the other hand, if we define 

dT =~ T(uz(t)) --  T(ua(t)) --  r(uz(s)) § r(ul(s)) ,  
then 

1 

6T ---- f ([T'(2uz(t) + (1 --  2) u~(t)) --  T'(2u2(s) + (1 -- 2) u~(s))] �9 (uz(t) - -  ul(t)) 
0 

§ r'(2u2(s) § (1 -- 2) u~(s)). (u2(t) -- u~(t) --  u2(s) § u~(s))) d,~. 

Assumption (ii) is used again to obtain the estimate 

Vt, sE [O, to] ,xE D [l(OT)xll <= Cllluz -ua[ll l t -  sl~ 
Therefore, A(t) and A(t) satisfy the second condition (33) of  Proposition 6 with 
o~ = 0~/. The estimates (35) and (37) yield 

H[Uu,(t, O) - -  fu,(t,  0)] u[Io =< C Illu~ - u ,  III Iluollo (58) 

and 

(59) [[ [Uu2(t, s) - -  Uu~(t, s)]f[[o ~ C t]]u2 --  ux ]]] (t --  s) -~ Ilfll0~,~ for 

1 > 02 > 01 = Max {0', 1 -- 0~/}. 

The formulae (57), (58), (59) lead to 

(60) Ilvz(t) --  vl(t)[Io <= C Itlu2 - ul ill [[luol[o + t~-~ 
From (56), (60) and Assumptions (ii) and (iii) we find that  

dv2(t) dvl(t) 
(61) dt dt <: c Illu2 - u~ I]i. 

By combining (60) and (61) with the interpolation inequality (A6), we obtain the 
desired estimate 

lily2 - v~ Ill < c IIlu2 - u,  Ill [lluollv § t~-~176 

which shows that  the map ~'(Uo,-) is contracting if ][ Uo lid and to are sufficiently 
small. 

b) Proof  o f  Theorem 2 

The existence of  u(t) has been proved for tE [0, to]. I f  IlU(to)llo is smaller 
than e, Theorem 1 can be used again to prove the existence of  u(t) for t E [to, 2to] 
and so on. To obtain the existence theorem for any positive to, it is sufficient to 
show that  

Ilu(t)llo < ~ Vn ~ 1, VtE [0, nto] 

and in order to ensure that  this inequality hold, it is sufficient to prove the estimate 
(8). Let  

I u [, = Max [[ u(t) exp (fit)IIo- 
O~t'<t~ 
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(8) is equivalent to 

(62) ~ > 0 such that u  > 0, I[ no lid < ~ ~ [u I. =< C II no liD. 

If II u(t)lid is not greater than a sufficiently small number e, then ~ -  (t) remains 

small by equation (6) and by Assumptions (ii) and (iv), and u also remains 
small by the interpolation inequality (A6). Thus it can be shown that 

[I [T(u(t)) --  T(0)] Nil < ~' 112110, 

II [Z(u(t)) --  T(u(s))] xll ~ e' It - s I ~ II xltD. 

where ~' can be made as small as necessary by making e small. Then Proposition 5 
can be applied so that the operator U(t, z) must satisfy the estimate (25). We set 
v = u in equation (57) and use (25) and Assumption (iv) to obtain 

t t  

lul,~ <= Co[lluollD + tul,=~ f exp (--fls) (tt --  s) -~  ds]. 
o 

But the integral is bounded independently of tl. Thus 

lu l .  _-< Co Iluollo + c l  lul,=,, 

and it is obvious that (62) holds with ~ /~  1/4CoC~, because lul. depends con- 
tinuously on t,. 

Appendix 

a) Fractional power o f  an operator (cf. [14] w 14) 

Let A be a closed operator in the Banach space X, and let the domain D of 
A be dense in X. It is assumed that A is of positive type, which means that A 
has a resolvent (2 + A) -1 for any real non-negative 2 that satisfies 

(A1) (2 + A) -~ <= C/(1 + 2) u >~ O. 

Thus the fractional power A ~ (o~ E R) can be defined in the following manner. For 
o~ E ]0, 1[, the operator A -~, which is bounded, is given by 

Do 

sin (vro 0 f 2-~(). + A)-1 d2. 
7~ 0 

(A2) A . . . .  

For each such o~ we define 

A ~ = ( A - " ) - I  

and for all real o~ we define A ~ inductively by 

A 1+~' = AA% 
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Note that SOBOLEVSKII [21] used an alternative definition, but both definitions are 
known to be equivalent [14]. It can be proved that 

A ~'+t~ = A~'A ~ u fl E R .  

The main property of fractional powers of an operator is the interpolation in- 
equality: 

IIA~xl[ ~ c(oOl[xlll-~[IAxll ~ VxE D, ccE [0, 11. 

The latter permits us to prove a property of the resolvent. Indeed, (A1) implies 
that the operators A(2 § A) -1 are uniformly bounded. Therefore 

(A3) I[A~(2 + A-1)H =< C/(I + 2) ~ by the interpolation inequality. 

If the operator generates a strongly continuous and bounded semigroup, then 

(A4) II [cap ( - - A t )  - -  I1 ull =_< c (~ )  t ~ IIA~ull. 

Furthermore, if the semigroup is holomorphic, then 

(A5) ][A exp ( - -At )  ull ~ C(oO t ~-1 IIA~ull, 0 <  o~ _< 1. 

In spite of those good properties, there is a great disadvantage in the theory: 
the space D(A ~) is an intermediate space between D and X, but it is not known if 
it is typical of the pair of spaces D and X or if it depends on the operator A. That 
is why we have also used the interpolation theory in the sense of LIONS-PEETRE [15]. 

b) Interpolation theory 

Let D and X be two Banach spaces such that D is dense in X, with a continuous 
embedding. The interpolation theory following LIONS-PEETRE defines a two- 
parameter family of interpolation spaces, which are denoted by [D, X]o,p 0 < 0 < 1, 
1 ~ p =< ~ ,  in agreement with the notation of BUTZER-BERENS [3]. 

We recall only a few properties of these spaces: 

[D,X]o,,p,([D,X]o,p if 0 ' < 0  or if 0 ' = 0  p '<=p,  

(m6) Ilxlf0,p =< CO, p)Iix[l~ -~  Ilxtl ~ v0 E ]0, 1[, xE D. 

To compare these spaces with D(A~), the following result is needed. 

Proposition A 1 ([15] Propositions 4-1-I and 4-1-2). 
Let Y be an intermediate Banach space (D ( Y C X). In order that 

[D, X]o,l C Y C [O, X]o.~, 

it is necessary and sufficient that 

(A7) 3 C  such that Ilxllr =< c ItxH~ ~ I[xll ~ VxE D,  

(A8) 3 C > 0  such that foreach xE  Y and for each t > O there is an xoE X 
and an xl  in D with 

X ~ X 0 + X 1 

I[Xollx<= Ct-~ lix, II =< Ct'-~ 
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Corollary A2. 

Let an unbounded operator A in a Banach space X generate a holomorphic 
semigroup. Then 

[D(A), X]o,, C D(A 1-~ C [D(A), X]o,oo V0 E 10, 1[. 

Proof. It is sufficient to prove that the space D(A 1-0) satisfies the properties (A7) 
and (A8). (A7) comes from the interpolation inequality for fractional powers of  
an operator. For  any x in D(A 1-0) and t positive we set 

xl ---- exp (--At) x, Xo = [Jr --  exp (--At)]  x. 

Then (A8) is a consequence of (A4) and (A5). 
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