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1. Introduction 

Since the publication of TRUESDELL'S fundamental article on mixture theory 
in 1957 and COLEMAN 8z; NOLL'S article on thermodynamics in 1963, there has 
been considerable interest in thermodynamic formulations of theories which 
describe the behavior of various types of mixtures.1 A survey of certain of these 
formulations can be found in the article by BOWEN. 2 

Generally speaking, mixture theories contain the possibility of three distinct 
physical phenomena. These are diffusion, chemical reactions, and multiple 
temperatures. These phenomena are the result of momentum, mass and energy 
transfers, respectively, between the constituents. When one or more of these 
phenomena are omitted in a particular formulation, the result is a theory of 
mixtures with internal constraints. 

This article is a thermodynamic formulation of a theory of mixtures con- 
strained such that diffusion between the constituents is not allowed. However, 
mass and energy transfers are allowed. The novel feature of this formulation is 
the presence of energy transfer in a mixture which is not capable of diffusing. As 
with many continuum models with internal constraints, the results obtained here 
are not a special case of a mixture theory which allows diffusion. From a 
physical standpoint, the model presented here is felt to apply to certain 
composite materials where relative motion between the constituents is not 
possible, but the thermodynamic properties of the constituents are fundamen- 
tally different. 

Section 2 contains the field equations and the entropy inequality appropriate 
to the constrained theory. Section 3 is concerned with the constitutive equations 
which define the mixture and the thermodynamic restrictions on these con- 
stitutive equations. Section 4 illustrates the results of Section 3 restricted to 
small displacement gradients, small coldness changes, small coldness gradients, 

1 TRUESDELL [1], COLEMAN & NOLL [2]. 
2 BOWEN [3]. 
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and small extent of reaction changes. For simplicity, in this section the mixture 
is assumed to have the symmetry of an isotropic solid. The results of this section 
take the form of a set of coupled linear partial differential equations which 
govern the mixture. In Section 5, these partial differential equations are spe- 
cialized further by the elimination of the possibility of chemical reactions. These 
simplified equations are used to investigate the propagation of one dimensional 
harmonic waves in a binary mixture. Among the results in this section are 
formulas which give phase velocities and attenuation coefficients for non- 
dispersive high and low frequency approximations. 

2. Preliminaries 

For a general theory of mixtures of 9l materials, where the combined effects 
of diffusion, chemical reactions and multiple temperatures are allowed, one must 
prescribe equations of balance and constitutive equations sufficient to determine 

deformation functions, 9l temperature fields and 9l density fields. For a 
constrained theory of mixtures, one can avoid certain of the complications of a 
general theory. For example, the theory of a mixture constrained such that 
diffusion, chemical reactions, and multiple temperatures are not present is 
formally identical to the theory of a single material. As indicated in the 
introduction, in this article we investigate the features of a certain constrained 
theory of mixtures. This theory is for a mixture of 9/materials constrained such 
that there is no diffusion. Chemical reactions and the effects of multiple 
temperatures are allowed. The occurrence of multiple temperatures in a non- 
diffusing mixture is the novel feature of this formulation. In this section, the 
governing balance equations appropriate to this investigation shall be stated. 

For a mixture of 9/materials constrained such that there is no diffusion, the 
motion of the mixture is described by a single point valued function ~ such that 

x = z ( x ,  t), (2.1) 

where X is the position of a particle of the mixture in its reference configuration, 
t is the time, and x is the spatial position occupied at the time t by the particle 
labeled X. As usual, Z is assumed to be invertible for each time t. The function Z 
and its inverse Z-1 must possess certain differentiability properties. For most of 
our calculations, it is sufficient for g and Z-1 to be at least of class C 2. The 
velocity and acceleration of X at time t are defined by 

and 

k = ~ (X, t) (2.2) 

i =~t~-(X, ). (2.3) 

The deformation gradient is defined by 

F = GRAD z(X, t), (2.4) 
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and the velocity gradient is defined by 

L = I I ~ F  - -  1 = grad ~(x, t), (2.5) 

where ~' denotes the material derivative of F. 
The mass density of the mixture is given the symbol p, and it is calculated 

from 

p =  Y', p, (2.6) 
a=la 

where p denotes the mass density of the a 'h constituent in the mixture. The mass 
a 

concentration for the a th constituent is 

The equations of balance take 
tions. For  simplicity here, we shall 
The field equations which govern the mixture are the following: 1 

(a)  Balance of mass for the a th constituent 

c=p/p.  (2.7) 
a a 

the form of field equations and jump equa- 
only record the appropriate field equations. 

~ + p t r L = &  
a a a 

(b)  Balance of mass for the a,h atomic element 

(2.8) 

7~d/M=O. (2.9) 
a = l  a a 

(c)  Balance of momentum for the mixture 

p ~ = d i v T + p b  
and 

T = T  ~. 

(d)  Balance of energy for the a th constituent 

p ~ = tr TT L - d i v  q + p r + g (2.12) 
a a  a a a a  a 

and 

(e)  Balance of energy for the mixture 

(g+Oe)=0. (2.13) 
a = l  a a a  

(2.10) 

(2.11) 

For the a t h  constituent, 6 is the mass supply, M is the molecular weight, e is 
a a a 

the internal energy density, T is the partial stress tensor, q is the heat flux 
a a 

vector, r is the heat supply and g is the energy supply. For the mixture, T is the 
a a 

1 BOWEN [3, Chap. 1], TRUESDELL & TOUPIN E4, Sections 159, 193, 215, 243]. 



238 R.M. BOWEN 

stress tensor and b is the body force density. The stress tensor for the mixture 
and the partial stress tensors are related by 

91 

T =  ~" T. (2.14) 
, = 1 ,  

The quantities Tfl are integers each of which represent the number of moles of 
t h e  ~ t h  atomic element in one mole of the a th constituent. If there are 9.1 atomic 
elements, then ~-rank[T~"]<min{91,9.1}. It can be shown that (2.9) implies 
balance of mass for the mixture in the form 2 

91 

b + p t r L =  ~ c=0 .  (2.15) 
a = l a  

Also, one can show that (2.9) and (2.8) imply that 

e=pM 2 P2J~, (2.16) 
a a v = l  

~ 1 - ~  

C-Co=M ~, t : ~  (2.17) 
a a a v = l  

and 
~ =j~ (2.18) 

for v= 1 . . . . .  9 l - 6 .  The 91 x ( 9 l - 6 )  matrix [P,~] is the stoichiometric matrix 
and obeys 

T~"P,~=O (2.19) 
a = l  

for v = 1 . . . . .  91 - ~ and e = 1,..., 9.I. The quantities j~, v = 1 .. . .  , 9 1 -  6 ,  are the 
reaction rates; the quantities {~, v= 1, ..., 9 l - 6 ,  are the extents of reaction and 
the quantities c o, a =  1 . . . . .  91, are concentrations at some previous time. The 

i1 

number 9 l -  ~ represents the number of independent chemical reactions allowed 
in the mixture. For  notational convenience, we shall write (2.18) in the vector 
form 

~=&, (2.20) 

where { and & are 9 1 - ~  tuples defined by 

~=(~*, ~2,-",  g~-~) (2.21) 

& =(Ja,J2, ...,J~-~). (2.22) 

In our later analysis (2.15), and (2.20) will be used in place of (2.8) and (2.9). As is 
well known, we can interpret our formulation as a theory of materials with 
internal state variables r  A theory of chemical reactions without 
diffusion and a theory of materials with internal state variables are formally 
equivalent. 

BOWER [3, Section 1.3]. 
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Certain comments should be made about the equations of motion for the 
constituents. Since there is no diffusion in our analysis, the equations of motion 
take the form 

p ~ = div T + p b +/3, (2.23) 
a a a a a 

where b is the external body force density for the a 'h constituent and /3 is the 
a a 

momentum supply to the a th constituent. The quantity b in (2.10) is related to 
the b's in (2.23) by 

. 1 91 

b = -  2 P b. (2.24) 
P a = l  

The momentum supplies must obey the condition 

91 

Z /3=0. (2.25) 
a _ l  a 

Note that (2.25), (2.24), (2.6) and (2.14) can be used to derive (2.10) by simply 
adding the Ol equation (2.23). In a theory of mixtures constrained such that there 
is no diffusion, 9 l -  1 of the momentum supplies are indeterminant. They can be 
viewed as forces of constraint arising from a no diffusion constraint. The 9l th 
momentum supply is determined by (2.25) which is equivalent to (2.10). Our 
analysis is carried out in such a fashion that we do not need to utilize (2.23). 

The entropy inequality which applies to our formulation is 3 

91 91 

P0 +div  Z q/O- Z pr/O>O, (2.26) 
a _ l a  a a = l a a  a 

where r/ is the entropy density for the mixture and 0 is the temperature for the 
a 

a th constituent. If (2.12) is used to eliminate r from (2.26), the result is 
a 

P~+ Z pe~+ Z OtrTrL+ ~ q'g+ ~ 0~>0, (2.27) 
a - - l a a a  a ~ l a  a a ~ l  a a a = l a a  

where 0 is the coldness of the a th constituent defined by 
a 

0 = 1/0, (2.28) 
a a 

g is the coldness gradient defined by 
a 

g = grad 0, 
a a 

2 is the Massieu function for the mixture defined by 

)~=~-- pO~ 
p Q = l a a a  

(2.29) 

(2.30) 

3 BOWEN [3, Section 1.6], BOWEN & GARCIA [5, Section 2]. 
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and 0 is defined by 
" ~ = ~ + ~ e .  

a a a l l  

Note  that from (2.13), 

(2.31) 

91 

~=0.  (2.32) 
a = l  a 

3. Constitutive Assumptions  and Thermodynamic  Restrictions 

The constitutive equations which define the mixture are taken to be 

,~ = 4(0,  g ,  F, ~), (3.1) 
b b 

e = e (& g, F, ~), (3.2) 
a a b b 

T = T(~9, g, F, ~), (3.3) 
a a b b 

q = q (~9, g,  F, r (3.4) 
a a b b 

g=g(~9,g,F, r (3.5) 
a a b b 

and 

o3 ----o5(0, g, F, ~). (3.6) 
b b 

These equations describe a mixture whose mechanical  response is like an elastic 
material  but it is capable of reacting chemically, conduct ing heat, and transfer- 
ring energy between the constituents. It follows from (3.2), (3.5), (3.6), (2.22) and 
(2.16) that 

0 = 0(0, g, F, ~). (3.7) 
a a b b 

From (2.11), (2.14) and (3.3), we must require that the response functions for T, a 
a 

= 1,2 . . . . .  9l, yield a symmetric stress T. However,  if we require that the energy 
equations (2.12) be indifferent to a change of frame, then one can use (3.5) and 
prove that each T must be symmetric, a In the following, we shall assume that 

a 

the response functions in (3.3) have symmetric  values. 
In order  to render (3.1) through (3.7) consistent with the ent ropy inequality, 

one must substitute these equations into (2.27). The result is 

,=a , ,=1 \t?F/ jL  
" (3.8) 

a 

1 BOWEN I-3, Section 2.5]. 
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By the now standard thermodynamic argument, (3.8) yields 2 

62 

C -PTg' 
a 

2 OAT=-pF \OF] ' 

a = l a a  

(3.9) 

(3.10) 

and 

where a is defined by 

62 
~g 

a 

(3.11) 

91 91 

pa.~b+ ~ q.g+ ~ OAd>O, (3.12) 
a = l  a a a = l  a a 

62 
a =  (3.13) 

The 9 l - ~  tuple a plays the role of the chemical affinity for the mixture. 
Actually, it is not identical to the chemical affinity of theories of reacting 
mixtures with a single temperature field. 3 Because of (3.11), it follows that 

2 = 2(0, F, ~), (3.14) 
b 

62 
p F, r  - p v, r (3.15) 
a a  a a  b U ~  b 

and 
62 

tr = tr(oa, F, ~) = b  ~ (0, F, r (3.16) 

91 

Also, from (3.14) and (3.10), the sum ~ oaT is a function of (Oa,F,~). 
a = l a a  b 

Given (3.15), (3.10) and (2.31), it is possible to show that the energy equation 
(2.12) can be written 

~ p ~ - 9 + t r  ~ L+p~.~=-divq+O+pr. (3.17) 
b = l  b b = l  a ~  a a a a  

b a 

Equation (3.12) contains other results which we shall need in the next 
section. These results are the restrictions implied by the entropy inequality at a 
thermodynamic equilibrium state. For a reacting mixture there are several 
possible states of thermodynamic equilibrium. 4 In this work we shall be con- 
cerned only with a thermodynamic equilibrium state defined by a = 0, g = g . . . .  

1 2 

2 T R U E S D E E L  [-6], C O L E M A N  • N O L L  [2], B O W E N  [3, Section 2.3]. 
3 B O W E N  [-7]. 

4 B O W E N  [,7], T R U E S D E L L  [-6]. 
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= g = 0  and ~q=3=.. .  = 3 = 3  + where 3 + is an arbitrary positive real number. 
91 1 2 91 

Clearly, by (2.32), the left side of (3.12) is zero in this equilibrium state. In order 
to obtain the simplest form of the equilibrium restrictions, we assume that (3.16) 
can be inverted for each (0, F, ~) to obtain 

b 

q =- r F, a). (3.18) 
b 

Note, in passing, that our inversion assumption implies that 

d e t ~ ( ~ , F ,  r (3.19) 
g 

for each (3,F,~). Given (3.18), we can eliminate r from (3.4), (3.6) and (3.7) to 
obtain b 

q = q * (3, g, F, a), (3.20) 
a a b b 

and 
= 0"(3, g, F, a), (3.21) 

a a b b 

& = e)* (3, g, F, a). (3.22) 
b b 

Given (3.20) through (3.22), the left side of (3.12) is a function of (0,g, F,a). If we 
define a function cb of (9, g, F, a) by b 

b b 
91 91 

q~(O,g,F, al=pa.tb+ ~ q.g+ ~ 30, (3.23) 
b b a = l  a a a = l  a a 

then, (3.12) yields 

and 

~/,(3, g, F, a) >= 0 (3.24) 
b b 

4~(0 +, 0,F, 0)=0. (3.25) 

Equations (3.24) and (3.25) show that 4~ is a minimum in the thermodynamic 
equilibrium state and, thus, 

-d~(g +fl~,f la,  o=0  (3.26) 

and 

d2 ~ +~,#a,F,  gr p o dfl~(3 + = >0  (3.27) 

for all real numbers ~,...,~, all vectors a , . . . , a ,  and all 9 l - |  tuples q~. An 
1 91 1 91 

elementary calculation shows that (3.26) is equivalent to the following three 
restrictions 

tb* (3 +, 0, F, 0) = 0, (3.28) 

q* (3 +, 0, F, 0) = 0 (3.29) 
a 
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and 
8" ('9 +, 0, F, 0) = 0. (3.30) 
a 

The additional restrictions which follow from (3.27) will not be shown explicitly 
here. In the next section, these restrictions will be given for a linear isotropic 
theory. 

4. Linear Isotropic Theory 

As an illustration of the results of Section 3, in this Section the special case 
of a mixture restricted to small displacement gradients, small coldness changes, 
small coldness gradients, and small extend of reaction changes will be in- 
vestigated. For  simplicity, the mixture is assumed to have the symmetry of an 
isotropic solid. 

The mixture is assumed to be at rest in a reference state of uniform coldness 
0o, uniform deformation F o = I  and uniform extent of reaction ~o- This state is 
assumed to be a thermodynamic equilibrium state and to have zero stress in 
each constituent. The density of the mixture is a constant denoted by PR" In 
order that the state just described satisfies the field equations (2.10) and (2.12), 
we require that 

b =0 (4.1) 
and 

r=O. (4.2) 
a 

In states near the reference state, the approximate constitutive equation for 
the Massieu function is 

PR2=pR2O - • Poeo(O-'9o)+~ ~ ~ c~ 
a = l  a a a a ,  = 1  a b 

- � 8 9  r ~ ( r  r189 E) 2 --'9o/~ tr E 2 
~ '~ (4.3) 

1 ~ f l . (g - '9o) t rE  - r  
a = l  a a 

-'9o ~" ( ~ -  ~o) tr E, 

where 20, eo, C,b, q~, 2,/~, 6,, ft, and �9 are material constants in the expansion of 2. 
a 

These constants are related to 2 in an obvious fashion. For example, C,b and 
are given by 

2 6 3 2 2  

c.b = ,oR '90 ~ ('90, I) = G~ (4.4) 

a b 

and 
822 

q~ = - 8r ('90, I) = ~ r .  (4.5) 

1 TRUESDELL & NOLL [8, Section 31]. 
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Note that (3.19) tells us that the symmetric matrix (it) is nonsingular.The symbol 
E in (4.3) is the classical infinitesimal strain tensor defined by 

2E = G R A D  w + (GRAD w) r, (4.6) 

where w(X, t) is the displacement vector. 
Given (4.3), it follows from (3.16) that 

91 
a = - ~ ( ~ - ~ o ) - 0 ~  - 1- ~ 6,(0-'90). (4.7) 

PR PR a= 1 a 

Note that (4.7) yields a = 0  in the reference state. Thus, the expansion (4.3) 
reflects the assumption that the reference state is a thermodynamic equilibrium 
state. In states near the reference state, it is easily shown that (3.10) is approxi- 
mated by 

62 
~o T = -PR dE" (4.8) 

Therefore, from (4.3), the stress T is given by 

1 91 
T= ~(tr E) I + ZpE +?d ~ ~ flb(Ob--'90) l +~t'(~--~O) I. (4.9) 

t-"O b= 1 

Equation (4.9) reflects our assumption that the reference state is stress free. It 
follows from (4.9) that/~ and ,~ are the Lain6 constants and fib is the coefficient of 
thermal expansion resulting from coldness changes in the b 'h constituent. 
Finally, it follows from (3.15) and (4.3) that 

1 
p e =  Poeo(1-trE)-~2o2 ~ C,b('gb--'90) 
. . . .  b- 1 (4.10) 

+~o  ft, tr E + 6 . ' ( ~ - ~ o ) .  

This result shows us that the N • N matrix [Cob ] is the specific heat matrix. 
The approximate versions of (3.20), (3.21) and (3.22) for a linear isotropic 

theory are 
1 

q : ~ 0 0  b ? l  Knb b~' (4.11) 

91 
O = ~ - ' a +  ~ ~,('9-,9o) (4.12) 

b = l  b 
and 

91 
O= ~ F,b(O--'9o)+PRX,.a. (4.13) 
a b= l  b 

The coefficient ~ - 1  in (4.12) is given in terms of the response function eS* by 
the formula 

c~r (,90 , O, 1, 0). (4.14) 
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If (4.7) is used, it easily follows that 

~ 0 o ,  (4.15) 

The N x N matrix [~,b] in (4.11) is the matrix of thermal conductivities. It 
follows from (4.11) that (3.29) is satisfied. In order that (3.28) and (3.30) be 
satisfied for all 0+, the coefficients ~b and F,b must obey the following con- 
ditions: 

91 

~,=0  (4.16) 
b = l  

and 
91 

F,b =0. (4.17) 
b = l  

Because of (2.32), it is also necessary that 

and 

91 

L,=O (4.18) 
t i = 1  

91 

F,b =0. (4.19) 
a = l  

If (4.11), (4.12) and (4.13) are substituted into (3.23), it is possible to show that 
(3.27) yields the following two inequalities: 

for all vectors a , . . . , a  and 
1 91 

1 91 

~C,b a. a > 0 (4.20) 
0 ~ Oa,  b= 1 a b 

PR~'~-'~+PR ~ ~b(~b+lb)'~+ ~ F~b%%>O (4.21) 
b = l  a , b = l  

for all real numbers , , . . . ,  ~ and all 9 l - ~  tuples ~. 

The equation of motion appropriate to the linear isotropic model can be 
obtained by substitution of (4.9) and (4.1) into (2.10) and formally linearizing the 
result. The resulting field equation is 

PR i~ = (f~+ fi) grad (div w) +/2 div (grad w) 
(4.22) 1 91 

+~0 b~ fib grad 0b + ~" grad ~. 

The energy equation for each constituent can be obtained by substitution of 
(4.2), (4.9), (4.10), (4.11) and (4.13) into (3.17). Among the linearizations involved 

91 8 T  
b ~T 

in deriving the energy equation is one which approximates ~ ~ b ~  by 00 ~ "  
b = l  

a Q 
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Because of this approximation, a linearized expression for the partial stresses T, 
a = 1, 2,. . . ,  9l, need not be given. The linearized energy equations are ~ 

91 

Z c,bO-Oo~,div#-026, '~ 
b = l  b 

91 91 

= ~ ~ ,bd iv(grad0) -00  z ~ F,b(O--Oo)--pRO2oX,.a. (4.23) 
b = l  b b = l  b 

Equations (4.12) and (2.20) combine to yield 

91 

~= ~ - '  a +  Z ~b( 0-0o)"  (4.24) 
b = l  b 

Equations (4.22), (4.23), (4.24) and (4.7) are the field equations for the linearized 
isotropic model. 

It is elementary to establish uniqueness theorems for solutions of (4.22), 
(4.23), (4.24) and (4.7) whenever we require certain inequalities to be valid. These 
inequalities are suggested by the following identity: 

~?t! (Z+�89 ,=E, ov ~q 1-  .ds 
(4.25) 

91 91 

where V is a fixed region, 0V is its boundary and 2; is defined by 

) Z = - ~oo PR .= ,  ~ (,~ ' (4.26) 
a 

or, by (4.3), 
1 91 

2;=�89 Z C,b(O--;~O)(O--O0) 
2~o, ,b=l  ~ b 

1 (4.27) 

+ 2~o PR (~ - ~o)" ~(~ - ~o) + ~" (~ - ~o) tr E. 

It follows from (4.11), (4.12), (4.13), (4.20) and (4.21) that the last term on the 
right side of (4.25) cannot be greater than zero. Therefore, (4.25) yields the 
inequality. 

~t!(2;+�89 a = l  ~ J v q ( 1 - ; )  "ds" ( 4 . 2 8 )  

If 2; is required to be positive definite; i.e. 

2; > 0, (4.29) 

for all nonzero E,O-Oo, 0 - 0  o ..... 0-~9 o and ~ -~0 ,  then one can use (4.28) 
1 2 91 

and standard arguments to establish the uniqueness of solutions to (4.22), (4.23), 
(4.24) and (4.7). Among the restrictions implied by (4.29) are the following: 



and 
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~+2/~>0,  / i>0,  (4.30) 

[c,b ] positive definite (4.31) 

positive definite. (4.32) 

5. One Dimensional Frozen Harmonic Waves 

In this section certain features of the linear isotropic theory are illustrated by 
briefly investigating the propagation of one dimensional harmonic waves in a 
binary mixture where no chemical reactions are possible. The omission of 
chemical reactions makes it appropriate to refer to the harmonic waves as 
frozen. Thus, 91=2, 9 l - 6 = 0  and the displacement vector takes the special 
form 

,~ (X, t) = (w (X, t), 0, 0). (5.1) 

The assumption of no chemical reactions implies that the material coefficients 
4 ,  ~ - 1 ,  ~, 3,, ~, and X,, for a =  1,2, are zero. The field equations for this one 
dimensional case can be written in the matrix forms 

* 2 ~32w 1 r3~ 
P R ~ = ( 2 +  /~)~+~51~o ~x (5.2) 

and 

where 

and 

9# c329 2 
(5.3) 

E = [ _  1 1 --111" (5.8) 

The derivation of (5.3) from (4.23) made use of (4.17) and (4.19). These two 
equations show that 

F21 r22J -- 1 = r E ,  (5.9) 

where F = F~ 1. It follows from (4.20) that K, the matrix of thermal conductivities, 
is positive semi-definite and from (4.21) that 

F_>0, (5.10) 

fill  (5.4) /~= & ' 

~=  1 (5.5) 

C=[ cll c12], (5.6) 
LC12 C221 

K= [/s /s (5.7) 
I._/s /s / 
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One dimensional harmonic waves are solutions of (5.2) and (5.3) of the form 

w = ae  i(kx-~~ (5.11) 
and 

=" b e  i(kX-~ (5.12) 

where a is a real number, b is a 2 x 1 matrix, k is the wave number (possibly 
complex) and 0) is the frequency (a real number). Because 0) is required to be 
real, the waves are propagating with assigned frequency. The phase velocity q of 
the wave represented by (5.11) and (5.12) is defined by 

q = 0)/R(k), (5.13) 

and the attenuation coefficient ~b is defined by 

r =,9(k). (5.14) 

If (5.11) and (5.12) are substituted into (5.2) and (5.3), the result is 

((f~ + 2 ~) k 2 - PR 0)2) a--  1 i k f l r  b = 0 (5.15) 
~'o 

and 
- 0 o k0)f la + ( l ~ k  2 - i(.oC + 0 2 f i E )  b = 0 .  (5.16) 

In order that (5.15) and (5.16) yield a non-trivial solution for a and b, it is 
necessary and sufficient for the determinant of coefficients to vanish. The 
solution of the resulting characteristic polynomial for k(0)) is the dispersion 
relation. 

The result of expanding the 3 x 3 matrix of coefficients is the polynomial 

(det K k  4 + ,92 F tr ((adj K) E) k2)(u 2 k 2 - 0) 2) 

- i0)k 2 tr ((adj K) C)(s 2 k 2 - 0)2) 

- 0 ) 2  d e t C ( v Z k Z - 0 ) z ) - i 0 ) , 9 ~ F t r ( ( a d j C ) E ) ( p 2 U - 0 ) 2 ) = O ,  (5.17) 

where u 2, s 2, v 2 and p2 are positive numbers defined by 

u2= )t+2P - ,  (5.18) 
PR 

S 2 = U s + j6T(adj K) ~6/p R ,9o tr(adj K) C, (5.19) 

v2 = u 2 + ~r  c -  1 ~/pR,9o (5.20) 
and 

p2 = u 2 + flr(adj E) fl/PR '90 tr(adj C) E. (5.21) 

In (5.17), adjK and adj C denote the adjoints of the 2 x 2 matrices K and C. The 
definition (5.19) assumes t r (adjK)C is not zero. Because C is symmetric and 
positive definite and K is positive semi-definite, tr(adj K) C cannot be negative. It 
is possible to show that 

/32 <p2 < v2 (5.22) 

and 
u 2 <s  2 < v 2. (5.23) 
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These results have been established in a more general context by BOWEN and 
RE1NICKE. a The physical dimension of the four quantities u, s, v and p is velocity. 
As will be shown below, in certain cases they represent phase velocities. 

It is informative to examine various limiting cases of the characteristic 
polynomial (5.17). The case where F ~  ~ corresponds to the situation when 
each constituent has the same temperature. In this case, (5.17) becomes the 
familiar characteristic polynomial of classical thermoelasticity, z In the remain- 
der of the section, certain of the high and low frequency limits of (5.17) will be 
investigated for the case when F is not infinite. 

The nondispersive low frequency limits are those limits which yield a 
frequency independent phase velocity. It is possible to show that if F+0,  then 
(5.17) yields the following nondispersive low frequency approximation: 

0)2 p2 1§ ( P~! +(p~---1) 1 -- pZtr(adjC) E Ftr (C_IE ) 0) +0(0)2). (5.24) 

For this mode of propagation, the phase velocity is given by 

q= +p+O(0)) (5.25) 

and, for q positive, the attenuation coefficient is the positive number 

0)2( /  u2\tr(adjK)E ( / ) 2 )  1 } 
gp=O(0)2)=~-pp~l- -~)p2tr(adjC)E ~- ~5--1 F t rC_l /~  +0(0)3). (5.26) 

It is possible to show that p is the isentropic wave speed familiar from classical 
thermoelasticity. In a rough way, low frequency corresponds to large time. With 
this correspondence in mind, one can view (5.25) as showing that after a large 
time there is one mode of propagation whose velocity is uneffected by the 
nonequilibrium effects of heat conduction and energy transfer. Equation (5.26) 
shows that the attenuation coefficient is second order in frequency and, while 
small, depends upon the heat conduction and energy transfer. In the limit as 
F--, ~ ,  (5.26) reduces to the classical thermoelasticity result for waves propagat- 
ing in a material with thermal conductivity tr(adj K) E = ~11 + ~c12 + ~c21 + b~22 
and specific heat tr(adj C ) E = c l l  § § 

If F = 0, one does not obtain (5.24). In this case, the result is 

0)2--/) 2 I t /  --~-] ~2 j0) +0(0) 2) (5.27) 

for the mode which is nondispersive in its low frequency limit. In this case, the 
squared phase velocity is approximately/)2 and the attenuation coefficient is, for 
positive phase velocity, a positive number. 

The nondispersive high frequency approximations to (5.17) are the following: 

(i) if det K~=0 

0)2 u 2 l + i ( s 2 _ u 2 ) t r K _ x c l  - - =  ~ +0(1/0) 2) (5.28) 

x BOWEN 8r REINICKE [9, Section 3]. 
2 CHADWICK [10]. 
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(ii) i f d e t K = 0  and tr(adjK)C~:0 

k 2 1 {  {lU~]O~Ftr(adjK)E ~ } 1 }  
j = ~  1+ i  ( s~! ~-(v2-s 2) +O(I/e~ 2) (5.29) 

tr (adj K) C 

and 

(iii) if K=O 

e)2-vZ 1+i  1 - ~  O~FtrC-IE +O(1/~2). (5.30) 

The phase velocity and attenuation coefficients for each case can be read off 
from (5.28) through (5.30). In each case, the attenuation coefficients are positive 
for the wave with positive phase velocity. 

Because high frequency nondispersive limits for progressive waves yield the 
same phase velocities and attenuation coefficients as occur with acceleration 
waves, (5.28) through (5.30) imply formulas for the decay of acceleration waves 
propagating in a mixture defined by (5.2) and (5.3). 
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