Estimates of Harmonic Measure

BJÖRN E, J. DAHLBERG

Communicated by J. C. C. NITSCHE

The object of this paper is a study of the relation between the harmonic measure of a set and its $(n-1)$ -dimensional Hausdorff-measure, $n \ge 2$. In this direction we have obtained the following result.

Theorem 1. Let $D \subset \mathbb{R}^n$ be a Lipschitz domain. Then a Borel measurable set $E \subset \partial D$ *is of harmonic measure zero with respect to D if and only if E is of vanishing* $(n-1)$ *dimensional Hausdorff measure.*

The case $n = 2$ has been settled in [10, p. 125], and the situation when D satisfies various additional conditions has been discussed in [2], [14], [15]. At the same time, even the case when D is a C^1 -domain is new when $n > 2$, as far as we know.

In [6] it is proved that if u is non-negative and harmonic in a Lipschitz domain D then u has a finite non-tangential limit at each point $Q \in \partial D$, except for a set of vanishing harmonic measure. Hence we have the following consequence of Theorem 1.

Theorem 2. *Suppose u is non-negative and harmonic in a Lipschitz domain D. Then u has a finite non-tangential limit at every point* $Q \in \partial D$ *except for a set of vanishing (n- 1)-dimensional Hausdorff measure.*

Let σ be the surface measure of ∂D . Since Lipschitz functions are differentiable almost everywhere (see [12, p. 250]) it follows that for all points Q on ∂D outside of a set of vanishing σ -measure there is an inward unit normal, which we denote by n_0 . If $E \subset R^n$ we denote the harmonic measure of $E \cap \partial D$ with respect to D by $\omega(\cdot, E)$. For the basic properties of ω , see [5, Chapter8]. We can now formulate a more precise version of Theorem 1.

Theorem 3. Let $D \subset \mathbb{R}^n$, $n \geq 3$, be a Lipschitz domain and let G denote the Green's *function of D. Let P* \in *D and put g*= $G(\cdot, P)$ *. Then there exists a set E* \subset ∂ *D such that* $\sigma(E) = 0$ *, and for all* $Q \in \partial D - E$ *the limit*

$$
\lim_{t \downarrow 0} \left(\partial / \partial n_Q \right) g(Q + t n_Q)
$$

exists. If we denote this limit by $(\partial/\partial n)g(Q)$ *, then the following results hold.*

(a) *If* $Q \in \partial D - E$ then $0 < (\partial/\partial n)g(Q) < \infty$.

(b) Let σ_n be the surface measure of $\{P \in \mathbb{R}^n : |P|=1\}$ and define $\gamma_n = [\sigma_n(n-2)]^{-1}$. *If* $F = \partial D$ then

$$
\omega(P, F) = \gamma_n \int\limits_F (\partial/\partial n) g(Q) d\sigma(Q).
$$

(c) *There is a number* $C>0$ *such that if* $P' \in \partial D$ *and* $0 < r < 1$ *, then* $\sigma(A(P', r)) \quad \int \quad [(\partial/\partial n)g(Q)]^2 d\sigma(Q) \leq C \left[\quad \int \quad (\partial/\partial n)g(Q) d\sigma(Q) \right]^2$, $A(P', r)$ $A(P', r)$

where $A(P', r) = \{Q \in \partial D : |P' - Q| < r\}.$

Theorem 3 makes it possible for us to compare the harmonic measure of a set with its surface measure.

Corollary. Let D be as above and let $P \in D$. Then there are numbers $\alpha > 1/2$, $\beta > 0$, and $C > 0$ such that if $F \subseteq \partial D$ then

$$
\omega(P, F) \leq C(\sigma(F))^{\alpha}
$$
 and $\sigma(F) \leq C(\omega(P, F))^{\beta}$.

Remark. The results of Theorem 3 and its corollary also hold in the case $n = 2$, but the proof given here for $n \ge 3$ must be modified. For other results in the plane case, see [13].

We say that a bounded domain $D \subset R^n$ is a Lipschitz domain if to each point $Q \in \partial D$ there corresponds a coordinate system (ξ, η) , $\xi \in R^{n-1}$, $\eta \in R$, and a function φ such that $|\varphi(\xi) - \varphi(\xi_1)| \leq C |\xi - \xi_1|$ for some C and $D \cap V = \{(\xi, \eta): \varphi(\xi) < \eta\} \cap V$ for some neighborhood V of Q .

We will, from now on, assume $n \geq 3$ unless otherwise mentioned. Let L be the class of functions in R^{n-1} such that

$$
\|\varphi\| = \sup_{x+y} |x-y|^{-1} |\varphi(x) - \varphi(y)| < \infty, \quad \varphi(0) = 0,
$$

support $\varphi \subset \{x \in R^{n-1} : |x| < 1\}.$

We define

$$
S(\varphi) = \{(x, \varphi(x)) : |x| \le 1\}.
$$

If $m > 0$ we put

$$
L(m) = \{ \varphi \in L : ||\varphi|| < m \} \quad \text{and} \quad \Gamma(m) = \{ (x, y) : m|x| < y \}.
$$

If $\varphi \in L(m)$ and $(x, y) \in \Gamma(m) + (\xi, \varphi(\xi))$ for some $\xi \in R^{n-1}$, then $y > \varphi(x)$. Let $\lambda = \lambda(m) = (m + 2)^{-1}$. Then for all $\eta > 0$

(1)
$$
\{(x, y) : |x| \leq \lambda \eta (1 - \lambda) \eta \leq y\} \subset \Gamma(m).
$$

From (1) follows the existence of numbers $A = A(m)$ and $B = B(m)$, such that $10\lambda^{-1} < B < \frac{1}{2}A$, with the following property: If $\varphi \in L(m)$ and

$$
D(\varphi, m) = \{(x, y) : |x| < 10 \quad \text{and} \quad \varphi(x) < y < m\Lambda\},
$$

then $D(\varphi, m)$ is star shaped with respect to $P_m=(0, mB)$. If $O \in R^n$, $r > 0$, we put $B(O, r) = {P \in R^n : |P - Q| < r}.$

Lemma 1. Let $m \ge 1$ and $\varphi \in L(m)$. Let G be the Green's function of $D = D(\varphi, m)$. *Then there are numbers* δ_0 , C_0 , and C_1 , which depend only on m, with the following *property. If* $Q \in S(\varphi)$, $0 < \rho < \delta_0$, then

$$
(2) \quad C_0^{-1} \rho^{n-2} G(Q + (0, C_1 \rho), P_m) \le \omega(P_m, B(Q, \rho)) \le C_0 \rho^{n-2} G(Q + (0, C_1 \rho), P_m).
$$

Proof. Let $Q = (\xi, \varphi(\xi)) \in S(\varphi)$ and put

$$
C(Q, \xi) = \{(x, y) : |x - \xi| < \lambda \varepsilon, \quad (1 - \lambda)\varepsilon < y - \varphi(\xi) < (B + 2)\varepsilon\}
$$

where λ and B are as above. Then there is a $\delta = \delta(m)$ such that $0 < \delta < 1$ and $C(Q, \varepsilon) \subset D$ for all $Q \in S(\varphi)$ and $0 \lt \varepsilon \lt \delta$. Suppose $|z| \lt 2$ and put $P = (z, \varphi(z))$. For $0 < t < 1$, let

$$
P_t = (x_t, y_t) = t P_m + (1 - t) P.
$$

If $|z-\xi| \leq t$ then $|x, -\xi| \leq 2t$ and

$$
(B-2)t m \leq y_t - \varphi(\xi) \leq (B+2)tm.
$$

Choosing $t = \varepsilon m^{-1} (B-2)^{-1} = c \varepsilon$, we find that $P_t \in C_1(Q, \varepsilon)$ when $|z-\xi| \leq t$, where

$$
C_1(Q, \varepsilon) = \{(x, y) : |x - \xi| \leq \frac{\lambda}{2} \varepsilon, \quad \varepsilon \leq y - \varphi(\xi) \leq \frac{1}{2}(B + 2)\varepsilon\}.
$$

Let G' be the Green's function of $C(Q, \varepsilon)$. Then a change of scale shows the existence of a number $C = C(m)$ such that

$$
C\varepsilon^{n-2} \inf \left\{ G'(Q+(0,\varepsilon), P) : P \in C_1(Q,\varepsilon) \right\} \geq 1.
$$

Now the function u_t : $P\rightarrow G(Q+(0, \varepsilon), tP_m+(1-t)P)$ is superharmonic in D. Furthermore if $P = (z, \varphi(z)) \in S(\varphi)$ and $|z - \xi| \leq c \varepsilon = t$ then

$$
C\varepsilon^{n-2}u_t(P) \ge C\varepsilon^{n-2}G'\big(Q+(0,\varepsilon),\,P_t\big)\ge 1.
$$

The minimum principle now gives $\omega(P, B(Q, c\varepsilon)) \leq C \varepsilon^{n-2} u_r(P)$ for all $P \in D$. Taking $P = P_m$ gives the right-hand inequality of (2).

Let $K(\rho) = \{(x, y) : |x| < \rho/2, -2m\rho < y < 2C_1\rho\}$. If $0 < \rho < \rho_0$, there is a number $C_2 = C_2(m)$ such that if $Q = (\xi, \varphi(\xi)) \in S(\varphi)$ then $D(Q, \varphi) \subset (K(\varphi) + Q) \cap D$, where $D(Q, \rho)$ is the ball with center $Q+(0, C_1 \rho)$ and radius $C_2 \rho$. Since $G(P, P')$ \leq $|P-P'|^{2-n}$ it follows that

$$
\sup \left\{ G\big(P, \, Q + (0, \, C_1 \rho)\big) : P \in \partial D(Q, \, \rho) \right\} \leq C_o^{2-n},
$$

where C only depends on m. Let ω' be the harmonic measure of the set $\{(x, y): |x-\xi|$ $\langle \rho/2, y = -2m + \varphi({\zeta}) \rangle$ with respect to $K(\rho) + Q$. Then the maximum principle implies that $\omega(P, B(A, \rho)) \ge \omega'(P)$ for all $P \in D(Q, \rho)$. Since there is a number $c>0$ depending only on *m* such that $\omega'(P) \geq c$ for all $P \in D(Q, \rho)$, the maximum principle now gives

$$
\rho^{n-2}G(P, a+(0, C_1\rho))\leq C\omega(P, B(Q, \rho))
$$

for all $P \in D-D(Q, \rho)$, where C only depends on m. Taking ρ_0 so small that $P_m \in D(Q, \rho)$, we obtain the left-hand inequality of (2), and the lemma is proved. We will need the following elementary estimate.

Lemma 2. *Let* $m \ge 1$, $\varphi \in L(m)$, and $D = D(\varphi, m)$. Then there is a number $c = c(m)$ > 0 *such that* $\omega(P_m, S_0(\varphi)) \geq c$, where $S_0(\varphi) = \{(x, \varphi(x)) : |x| \leq \frac{1}{2}\}.$

Proof. Put $\Omega = \{(x, y) : |x| < \frac{1}{3}, -2m < y < (B+1)m\}$ and let v be the harmonic measure of $\{(x, y): y = -2m\} \cap \partial \Omega$ with respect to Ω . Then $\omega(\cdot, S_0(\varphi))|\Omega \geq v$ and hence $\omega(P_m, S_0(\varphi)) \ge v(P_m) > 0$; the lemma is proved.

Lemma 3. Let $m \ge 1$, $\varphi \in L(m)$ and $D_1(\varphi, m) = D(\varphi, m) - \overline{B(P_m, m)}$, and put $g=G(\cdot, P_m)$. Then there is a constant $C=C(m)$ such that $(\partial/\partial y)g+C\geq 0$ in $D_1(\varphi, m)$.

Proof. Suppose first that $\varphi \in C^{\infty}(R^{n-1}) \cap L(m)$. Since we have

 $0 \leq g(P) \leq |P-P_n|^{2-n}$ for all $P \in D(\varphi, m)$

it follows from the Schauder estimates that there is a constant $C = C(m)$ such that $\sup\left\{\left|\left(\frac{\partial}{\partial y}g(P)\right|: P\in \partial B(P_m, m)\right\}\leq C$. Since g can be extended across both $\{(x, 0): 1 < |x| < 10\}$ and $\{(x, Am): |x| < 10\}$ by reflexion, it follows from [1, Thm. 7.3] that

$$
\sup\left\{\left|\left(\partial/\partial y\right)g(P)\right|: P\in \partial D(\varphi, m)-\left\{ \left(x, \varphi(x)\right): |x|\leq 2\right\}\leq C=C(m).
$$

Since $(\partial/\partial y)g$ has non-negative boundary values on the rest of the boundary the lemma follows in this case. If $\varphi \in L(m)$ and φ is not assumed to be of class C^{∞} , we can find a sequence $\{\varphi_i\}$ such that

$$
\varphi_i \in C_0^{\infty} \{x \in R^{n-1} : |x| < 1\}, \quad \varphi_i \ge \varphi, \quad ||\varphi_i|| < m, \quad \varphi_i \to \varphi \text{ uniformly.}
$$

If G_i denotes the Green's function of $D(\varphi_i, m)$ and $g_i = G_i(\cdot, P_m)$, then [3, Theorem 5.15] $g_i \rightarrow g$ uniformly on compact subsets of $D(\varphi, m) - \{P_m\}$. Hence by the Poisson representation formula $(\partial/\partial y)g_i \rightarrow (\partial/\partial y)g$ uniformly on compact subsets of $D(\varphi, m)-\{P_m\}$. Therefore the lemma follows from the previous case.

Let σ denote the surface measure of $\partial D(\varphi, m)$, $\varphi \in L(m)$. Let $E \subset S(\varphi)$ and let $E' = \{x \in R^{n-1} : (x, \varphi(x)) \in E\}$. Then

$$
\sigma(E) = \int\limits_{E'} \sqrt{1 + |\text{grad } \varphi|^2} \, dx.
$$

Therefore there is a number $C = C(m)$ such that

(3)
$$
C^{-1}r^{n-1} \leq \sigma(B(Q, r) \cap \partial D) \leq Cr^{n-1} \quad \text{for } Q \in S(\varphi).
$$

If $E \subset \mathbb{R}^n$ we define $\sigma(E) = \sigma(E \cap \partial D(\varphi, m))$.

Lemma 4. Let $m \ge 1$ and $\varphi \in L(m)$. If $E \subset S(\varphi)$ and $\sigma(E) = 0$, then E has harmonic *measure zero with respect to* $D(\varphi, m)$ *.*

Proof. From (3) and Lemma 1 follows the existence of a constant $C = C(m)$ such that

(4)
$$
\limsup_{r\to 0}\frac{\omega(P_m, B(Q, r))}{\sigma(B(Q, r))}\leq C \limsup_{t\to 0} (\partial/\partial y)g(Q+(0, t)).
$$

From Lemma 3 and the fact that $(\partial/\partial y)g$ has finite non-tangential boundary values except on a set of harmonic measure zero [6], it follows that

$$
\limsup_{r\to 0}\,\omega(P_m,\,B(Q,\,r))/\sigma(B(Q,\,r))<\infty
$$

for all $O \in S(\varphi)$ except for a set of harmonic measure zero. As in [11, Theorem 14.5], the conclusion of the lemma now follows at once.

Lemma 4 implies the existence of an $f \in L^1(S(\varphi), \sigma)$ such that

$$
\omega(P_m, E) = \int_E f d\sigma
$$

for all $E \subset S(\varphi)$. We notice that $f \ge 0$ and

(5)
$$
\int_{S(\varphi)} f d\sigma \leq 1.
$$

We will now show $f \in L^2(S(\varphi), \sigma)$.

Lemma 5. Let $m \ge 1$ and $\varphi \in L(m)$. Then there is a number $C = C(m)$ such that

$$
\omega(P_m, E) \leq C \bigvee \sigma(E)
$$

for all $E \subset S(\varphi)$ *.*

Proof. Let $g = G(\cdot, P_m)$, where G is the Green's function of $D(\varphi, m)$. Then there is a function g_1 harmonic in $D(\varphi, m)$ such that $g(P) = |P - P_m|^{2-n} + g_1(P)$. From Lemma 3 it follows that there is a constant $C_1 = C_1(m)$ such that $(\partial/\partial y)g_1 + C_1 \ge 0$ in $D(\varphi, m)$. Since

$$
\sup \left\{ |g_1(P)| : P \in D(\varphi, m) \right\} = \max \left\{ |P - P_m|^{2-n} : P \in \partial D(\varphi, m) \right\}
$$

there is a constant $C_2 = C_2(m)$ such that $h(P_m) \leq C_2$ where $h = (\partial/\partial y)g_1 + C_1$. Let $0 < t < 1$. Since $D(\varphi, m)$ is star shaped with respect to P_m we have

$$
h(P_m) = \int\limits_{\partial D(\varphi,m)} h\big(tQ+(1-t)P_m\big)\omega(P_m,dQ) \geq \int\limits_{S(\varphi)} h\big(tQ+(1-t)P_m\big)\omega(P_m,dQ).
$$

Putting

$$
F(Q) = \liminf_{n \to \infty} h\left(\left(1 - \frac{1}{n}\right)Q + \frac{1}{n}P_m\right), \qquad Q \in S(\varphi).
$$

we see from [6] and Lemma 3 that

$$
F(Q) = \limsup_{t \to 0} h(Q + (0, t)) \quad \text{a.e.} \quad [\omega(P_m, \cdot)].
$$

By (4) and the definition of h there exists a constant $C_3 = C_3(m)$ such that $C_3(F+C_3) \geq f$ a.e. $[\omega(P_m, \cdot)]$. Fatou's lemma and (5) now gives

(6)
$$
\int_{S(\varphi)} f(Q) \omega(P_m, dQ) = \int_{S(\varphi)} f^2 d\sigma \leq C = C(m).
$$

If $E \subseteq S(\varphi)$ we have $\omega(P_m, E) = \int f d\sigma \leq C \int f(\sigma(E))$ by Hölder's inequality. This E proves the lemma.

Lemma 6. Suppose D_1 and D_2 are bounded domains which are regular for the *Dirichlet problem. Assume that* $E \subseteq \partial D_1 \cap \partial D_2$ is closed and that there is an open *set V with* $E \subset V$ *and* $V \cap D_1 = V \cap D_2$ *. Let* ω_i *denote the harmonic measure of E* with respect to D_i . Then $\omega_1(\cdot, E) = 0$ if and only if $\omega_2(\cdot, E) = 0$.

Proof. Suppose $\omega_1(\cdot, E) = 0$, and notice that

$$
\lim_{P \to 0} \omega_2(P, E) = 0 \quad \text{for all } Q \in \partial D_2 - E.
$$

Let $\Omega = R^n - E$; for $P \in \Omega$ define $u(P) = \omega_2(P, E)$ if $P \in \Omega \cap D_2$ and zero otherwise. Then u is continuous and subharmonic in Ω . Define $\varphi(P)=0$ if $P \in E$ and $\varphi(P)$ $=u(P)$ if $P \in \partial D_1 - E$. Then φ is continuous in ∂D_1 . Now let v be the harmonic function in D_1 with boundary values φ . Fix a point $P_0 \in D_1$ and choose a sequence $\{U_i\}$ of open sets such that $\omega_1(P_0, U_j) \rightarrow 0$ and $U_j \supset E$. Then the maximum principle implies that $u|D_1 \le v + \omega_1(\cdot, U_j)$. Letting $j \to \infty$, we have $u|D_1 \le v$. Then since $V \cap D_1 = V \cap D_2$ and $E \subset V$, we have $\lim_{P \to Q} \omega_2(P, E) = 0$ for all $Q \in V \cap \partial D_1$ and hence $\omega_2(\cdot, E) = 0$. Since the other direction is analogous we have proved the lemma.

Let $D \subset \mathbb{R}^n$ be a Lipschitz domain. We say that D is *simple* if there is a function $\varphi \in L(m)$ and a number $\beta > 0$ such that D is congruent to $\{\beta P : P \in D(\varphi, m)\}$. In this case, for $0 < t < 1$, we let $S(D, t)$ be the part of the boundary of D corresponding to $\{(x, \varphi(x)) : |x| \le t\}$. If D is a Lipschitz domain, it follows from the definition that there are finitely many simple Lipschitz domains D_i , $1 \le i \le N$, such that for each *i* there is an open set *V_i* with the property that $D_i \cap V_i = D \cap V_i$ and

(7)
$$
S(D_i, 2/3) \subset V_i \cap \partial D \quad \text{and} \quad \bigcup_{i=1}^N S(D_i, \tfrac{1}{2}) = \partial D.
$$

We can now prove Theorem 1.

Proof of Theorem 1. From (7) and (3) it follows that a set $E \subset \partial D$ is of vanishing $(n-1)$ -dimensional Hausdorff measure if and only if $\sigma(E)=0$, where σ is the surface measure of ∂D .

To prove Theorem 1, we see from (7) and Lemma 6 that it is sufficient to show that, if $\varphi \in L(m)$ and $E \subset S(\varphi)$, then E is of harmonic measure zero with respect to $D(\varphi, m)$ if and only if $\sigma(E) = 0$. By Lemma 4, in order to prove this equivalence it is enough to show that $\omega(\cdot, E)=0$ implies $\sigma(E)=0$. To prove this, we argue by contradiction.

Suppose there is a number $m \ge 1$, an element $\varphi \in L(m)$, and a set $E \subset S(\varphi)$ such that $\sigma(E) > 0$ but $\omega(P_m, E) = 0$. Put

$$
E' = \{(x, 0) : |x| < 1 \quad \text{and} \quad (x, \varphi(x)) \in E\}.
$$

Let |F| denote the Lebesgue measure of a set $F \subset R^{n-1}$. Then $|E'| > 0$ and we may without loss of generality assume 0 is a point of density of E' , i.e.

$$
\lim_{r\to 0}\frac{|E'\cap B(r)|}{|B(r)|}=1\quad \text{where}\quad B(r)=\left\{x\in R^{n-1}:|x|
$$

Put $e_r = \{x \in \mathbb{R}^{n-1} : |x| < 1/2 \text{ and } r \in \mathbb{R}^n\}$. Pick a Lipschitz function F in \mathbb{R}^{n-1} such that $F(x)=1$ for $|x| < 2/3$ and the support of F lies in $\{x \in R^{n-1} : |x| < 1\}$. Define $\varphi_r(x)=r^{-1}F(x)\varphi(rx)$. Then $\varphi_r\in L$ and $\|\varphi_r\|\leq C\|\varphi\|$, where C is independent of *r*. Let *k* be a number such that $\sup_{0 \le r \le 1} ||\varphi|| < k$. If $E_r = \{(x, \varphi_r(x)) : x \in e_r\}$ then by Lemma 6 the harmonic measure of E_r with respect to $D(\varphi_r, k)$ is zero.

From Lemma 2 we have

$$
\omega(P_k, S_r) \geq C > 0,
$$

where $S_r = \{(x, \varphi_r(x)) : |x| < 1/2\}$ and C is independent of r. From Lemma 5 we have

$$
\omega(P_k, S_r) \leq C \sqrt{\sigma(S_r - E_r)} \leq C \left| B\left(\frac{1}{2}\right) - e_r \right|^{1/2} = C \left(1 - \frac{|E' \cap B(r)|}{|B(r)|} \right)^{1/2} \to 0
$$

as $r \rightarrow 0$. This yields a contradiction, and hence completes the proof of Theorem 1.

In the next lemma we shall compare the Green's functions of two Lipschitz domains with intersecting boundaries. The proof will use a result of NAIM, which was pointed out to the author by Professor PAUL GAUTHIER.

Lemma 7. Let D_1 and D_2 be two Lipschitz domains in R^n , $n \ge 2$, and let g_i denote *the Green's function of D_i with pole at* $Q_i \in D_i$ *, i=1, 2. Suppose there is a domain* $W \subset D_1 \cap D_2$ such that for some open set V we have $\overline{W} \subset V$, $V \cap D_1 = V \cap D_2$, and $Q_i \in D_i - V$, *i*=1, 2.

Then there is a constant $C>0$ *such that*

$$
g_1(P) \leq Cg_2(P)
$$
 for all $P \in W$.

Proof. Assume the conclusion is false. This means there is a sequence of points $P_n \in W$ such that

$$
\lim_{n\to\infty}\frac{g_1(P_n)}{g_2(P_n)}=\infty.
$$

We may without loss of generality assume that $\lim_{n \to \infty} P_n = Q_0$ exists. Since $Q_i \notin W$ for $i=1, 2$, we must have $Q_0 \in \partial W \cap \partial D_1 \cap \partial D_2$. From the definition of a Lipschitz domain follows the existence of a neighbourhood U of Q_0 such that $U \subset V$ and $U \cap D_1$ is a Lipschitz domain. Let g denote the Green's function of $U \cap D_1$. Since the Martin boundary of a Lipschitz domain coincides with the Euclidean boundary [7, Theorem 4.2], it follows from the computation in [9, p. 223] that if $Q \in U \cap D_1$ then

$$
\lim_{n\to\infty}\frac{g(P_n, Q)}{g_i(P_n)}=K_i(Q)-h_i(Q).
$$

Here K_i is the kernel function of D_i with pole at Q_0 , normalized by $K_i(Q_i) = 1$, and h_i is the harmonic function in $U \cap D_1$ with boundary values equal to $K_i(Q)$ when $Q \in \partial (U \cap D_1) \cap D_1$ and zero otherwise. Hence $h_i \leq K_i$ in $U \cap D_1$. Suppose $h_i(Q')=K_i(Q')$ for some $Q' \in U \cap D_1$. From the maximum principle it follows then that $h_i(Q) = K_i(Q)$ for all $Q \in U \cap D_1$. Hence

$$
\lim_{Q \to Q_0} K_i(Q) = \lim_{Q \to Q_0} h_i(Q) = 0.
$$

Since $\lim_{Q \to P} K_i(Q) = 0$ for all $P \in \partial D_i - \{Q_0\}$ we obtain $K_i \equiv 0$, which is a contradiction. This shows that $h_i(Q) < K_i(Q)$ for all $Q \in U \cap D_1$. Hence

$$
\lim_{n \to \infty} \frac{g(P_n, Q)}{g_i(P_n)} > 0
$$

for all $Q \in U \cap D_1$. This gives

$$
\lim_{n\to\infty}\frac{g_1(P_n)}{g_2(P_n)}<\infty,
$$

which contradicts the assumption in the beginning of the proof.

We shall next compare positive harmonic functions which simultanously vanish on a part of the boundary.

Lemma 8. Let $\varphi : R^{n-1} \to R$, $n \ge 2$, be a Lipschitz function such that $\varphi(0) = 0$. *Suppose that positive numbers a, b and c have been chosen such that*

- *(i)* $a > 2$ sup $\{|\varphi(x)| : |x| \leq 4b\}$, and
- *(ii) the domain* $D = \{(x, y) : \varphi(x) < y < 4a, |x| < 4b\}$ *is star shaped with respect to* $P_0 = (0, c)$.

Put $D_1 = \{(x, y) : \varphi(x) < y < a, |x| < b\}$. *Then there is a constant C* > 0 such that *if u and v are non-negative harmonic functions in D which vanish on* $\{(x, \varphi(x)) : |x|$ \leq 4b} and which satisfy $u(P_0) \leq v(P_0)$, then $u(P) \leq Cu(P)$ for all P in D_1 .

Proof. Let $D_j = \{(x, y) : \varphi(x) < y < ja, |x| < jb\}$. By a result of HUNT and WHEEDEN [7, (2.4)] there exists a constant C_1 such that

$$
u(P) \leq C_1 u(P_0)
$$
 for all $P \in \overline{D}_3$.

Also from Harnack's inequality there exists a constant $C_2 > 0$ such that

$$
v(P) \geq C_2 v(P_0) \quad \text{for all } P \in T,
$$

where $T = \{(x, 3a): |x| \le 3b\}$. Let g denote the harmonic measure of ∂D_3 $-\{(x, \varphi(x_1)): |x|<3b\}$ with respect to D_3 , and let h denote the harmonic measure of T with respect to D_3 . Then $u \leq C_1 u(P_0)g$ and $v \geq C_2 v(P_0)h$ in D_3 . To prove the lemma it is now sufficient to show that there is a constant C such that $g(P) \leq Ch(P)$ for all $P \in D_1$.

Define

$$
\psi(x) = \min (\varphi(x), \alpha - \beta |x|), x \in R^{n-1}.
$$

It is easily seen that we can choose α and β such that $\psi(x) = \varphi(x)$ for $|x| \leq 2b$ and $\psi(x) < \varphi(x)$ for $|x| > \frac{5}{2}b$. With this choice, let

$$
U_j = \{(x, y) : \psi(x) < y < ja, \ |x| < jb\}.
$$

Choose a point $Q_1 \in U_4 - \overline{U}_3$ and denote by G_1 the Green's function of U_4 with pole at Q_1 . We now extend g to U_3 by defining $g(P)=0$ if $P \in U_3-D_3$. With this extension g is subharmonic in U_3 . Since inf $\{G_1(P): P \in \partial U_3 \cap D_4\}$ is positive it follows from the maximum principle that

$$
g(P) \leq C_3 G_1(P) \quad \text{for all } P \in U_3.
$$

Let $Q_2 \in D_3 - \overline{D}_2$ and denote by G_2 the Green's function of D_3 with pole at Q_2 . Let B be a ball with center at Q_2 such that $\bar{B} \subset D_3 - \bar{D}_2$. We now observe that

$$
\sup \left\{ G_2(P) : P \in \partial B \right\} < \infty, \quad \inf \left\{ h(P) : P \in \partial B \right\} > 0.
$$

Since the boundary values of G_2 vanish on ∂D_3 , it follows from the maximum principle that there is a constant C_4 such that $h(P) \geq C_4 G_2(P)$ for all P in $D_3 - B$. If we now use Lemma 7 to compare G_1 and G_2 in D_1 , we find that $g(P) \leq Ch(P)$ for all $P \in D_1$, and as noted above, this proves the lemma.

The next theorem was formulated in [8, Thm. 2.2] but Professor KEMPER has pointed out to me in a conversation that the proof contains a mistake on page 253, line 1.

Theorem 4. Let $D \subset \mathbb{R}^n$, $n \geq 2$, be a Lipschitz domain and let V be an open set such *that V* \cap ∂D \neq 0. Suppose *W* is a domain such that $W \subseteq D$ and $\overline{W} \subseteq V$, and let P₀ *be a point in W.*

Then there is a constant C> 0 such that if u and v are non-negative harmonic functions in D which vanish on $V \cap \partial D$ *and satisfy* $u(P_0) \leq v(P_0)$ *, then* $u(P) \leq Cv(P)$ *for all* $P \in W$.

Proof. If Ω is congruent to a domain of the type indicated in Lemma 8, we denote by $\Gamma(\Omega)$ the part of $\partial \Omega$ corresponding to $\{(x, \varphi(x)) : |x| < b\}$. We notice that Theorem 8 follows from Harnack's inequality if $\partial W \cap \partial D = \emptyset$. Otherwise we can find finitely many domains Ω_i , each of them congruent to a domain of the form indicated in Lemma 8, such that $\bigcup \Gamma(\Omega_i) \supset \overline{W} \cap \partial D$. The theorem now follows

by repeated application of Harnack's inequality and Lemma 8.

The proof of Theorem 3 will be based on the following lemma.

Lemma 9. Suppose that $D \subset \mathbb{R}^n$, $n \geq 3$, is a Lipschitz domain and suppose further *that there is an open set V and a function* $\varphi \in L(m)$ *such that*

$$
D \cap V = D(\varphi, m) \cap V
$$

and

$$
S'(\varphi) = \{(x, \varphi(x)) : |x| \le 2/3\} \subset V \cap \partial D.
$$

Let σ denote the surface measure of D, let

$$
S_0(\varphi) = \{(x, \varphi(x)) : |x| \leq \frac{1}{2}\},\
$$

and for $Q \in S(\varphi)$ let n_Q denote the unit inward normal of D, whenever it exists. For $P \in D$, define $g = G(\cdot, P)$, where G is the Green's function of D. Then the follow*ing conclusions hold.*

(a) *There is a set* $E \subset S_0(\varphi)$ *such that* $\sigma(E)=0$,

$$
\lim_{t\downarrow 0} \left(\frac{\partial}{\partial n_Q}\right)g(Q+tn_Q)=(\frac{\partial}{\partial n})g(Q) \text{ exists,}
$$

and

$$
0 < (\partial/\partial n)g(Q) < \infty \quad \text{ for all } Q \in S_0(\varphi) - E.
$$

(b) If $F \subset S_0(\varphi)$ then

$$
\omega(P, F, D)=\gamma_n \int\limits_F (\partial/\partial n)g(Q)d\sigma(Q).
$$

(c) *There is a number C*>0, *depending on D,* φ *and V, such that if* $P' \in S_0(\varphi)$ *and 0 < r < 1, then*

$$
\sigma(A(P',r)) \int_{A(P,r)} [(\partial/\partial n)g(Q)]^2 d\sigma(Q) \leq C \left[\int_{A(P,r)} (\partial/\partial n)g(Q), d\sigma(Q) \right]^2,
$$

where $A(P', r) = B(P', r) \cap \partial D$.

Proof of part (a). Put $D' = D(\varphi, m)$, and let G' denote the Green's function of D'. Notice that if we take $\varepsilon \in (0, 1)$ sufficiently small and put

$$
D'' = \{(x, y) : |x| < 2/3 + \varepsilon, \qquad \varphi(x) < y < \varphi(x) + \varepsilon\},
$$

then $D'' \subset D \cap D'$ and $\{P, P_m\} \subset R^n - D''$. Since g and $g' = G'(\cdot, P_m)$ are positive and harmonic in D" and have vanishing boundary values on $\{(x, y) : y = \varphi(x),\}$ $|x| \le 2/3 + \varepsilon$ it follows from Theorem 4 that there is a neighborhood U of $S'(\varphi)$ and a number $C>0$ such that for all $O \in U \cap D$

$$
(8) \tC^{-1}g'(Q) \leq g(Q) \leq Cg'(Q).
$$

We may assume this inequality holds for all $Q \in D''$, if necessary by making ε smaller.

For $Q=(x, y) \in D$, we denote by $d(Q)$ the distance from Q to ∂D , and if $Q \in D(\varphi, m)$ we let Q^* denote the point $(x, \varphi(x))$. Pick f such that

$$
\omega(P_m, E, D') = \int_E f d\sigma
$$

for all $E \subset S(\varphi)$. If

$$
f^*(Q) = \sup \left\{ r^{1-n} \int\limits_{A(Q,r)} f(P') d\sigma(P') : 0 < r < 1 \right\},\,
$$

then it follows from (6) that

(9)
$$
\int\limits_{S(\varphi)} (f^*(Q))^2 d\sigma(Q) < \infty.
$$

Harnack's inequality and the Schauder estimates give

(10)
$$
|\text{grad } g(Q)| \leq C(d(Q))^{-1}g(Q^*+(0, d(Q)))
$$

for all $Q \in D''$. Hence from (7) and Lemma 1 we see that if $Q \in S'(\varphi)$ and $Q' \in D''$ \cap (K+Q), then

(11)
$$
|\text{grad } g(Q')| \leq C f^*(Q),
$$

where $K = \{(x, y): 2m |x| < y\}$. From (11) it follows that $|grad g|$ is non-tangentially bounded a.e. with respect to σ at $S'(\varphi)$. This implies, using [6], that grad g has a finite non-tangential limit a.e. on $S'(\varphi)$. Hence part (a) follows from Theorem 1.

Proof of part (b). Extend g to all of $Rⁿ$ by putting $g \equiv 0$ outside D. Then g is continuous and subharmonic in $Rⁿ - {P}$. Since

(12)
$$
g(Q) = |P - Q|^{2-n} - \int_{\partial D} |P' - Q|^{2-n} \omega(P, dP', D)
$$

for all $Q \in R^n - (\partial D \cup \{P\})$, and $g(Q') = 0$ for all $Q' \in \partial D$, Fatou's lemma implies

$$
\int_{\partial D} |P'-Q'|^{2-n} \omega(P, dP', D) < \infty \quad \text{ for all } Q' \in \partial D.
$$

Let $O' \in \partial D$, and let Γ be a truncated cone with vertex at Q' such that $(i) \bar{\Gamma} - \{Q'\} \subset D$, and *(ii)* there is a number C for which $d(Q) \ge C|Q-Q'|$ for all $Q \in \Gamma$. If $P' \in \partial D$ and $O \in \Gamma$ then

$$
|P'-Q'| \leq |P'-Q| + |Q-Q'| \leq |P'-Q| + Cd(Q) \leq (C+1)|P'-Q|.
$$

Hence the dominated convergence theorem implies that

$$
g(Q') = |P - Q'|^{2-n} - \int_{\partial D} |P' - Q'|^{2-n} \omega(P, dP', D).
$$

Consequently (12) holds for all $Q \in R^n - \{P\}$. Therefore, if $h \in C_0^\infty(R^n)$ and P does not belong to the support of h ,

(13)
$$
\int\limits_{D} g(Q) \Delta h(Q) dQ = \gamma_n^{-1} \int\limits_{\partial D} h(Q) \omega(P, dQ, D),
$$

where Δ denotes the Laplace operator.

Suppose now the support of h lies in the set

$$
\{(x, y) : |x| \le 2/3, \, \varphi(x) - \varepsilon/2 < y < \varphi(x) + \varepsilon/2.\}
$$

Then

(14)
$$
\int\limits_{D} g(Q) \Delta h(Q) dQ = \lim\limits_{S \to 0} \int\limits_{D_S} g(Q) \Delta h(Q) dQ,
$$

where D_s is defined by the following procedure. Pick a function $\chi \in C_0^{\infty}(R^{n-1})$ and put $\varphi_s = \chi_s^* \varphi$, where $\chi_s(x) = S^{1-n} \chi(S^{-1} x)$. Then

$$
\|\varphi_S - \varphi\|_{\infty} \to 0 \text{ as } S \to 0, \quad \sup_{S > 0} \|\text{grad } \varphi_S\|_{\infty} < \infty,
$$

and
$$
\lim_{S \to 0} \text{grad } \varphi_S(x) = \text{grad } \varphi(x) \text{ a.e.}
$$

We now define $\psi_s = \varphi_s + 2 ||\varphi_s - \varphi||_{\infty} + S$ and put

$$
D_S = \{(x, y) : |x| < 2/3 + \psi_S(x) < y < \psi_S(x) + 2\varepsilon/3\}.
$$

Notice that if S is sufficiently small then $D_s \subset D''$. Green's formula now gives

$$
\int_{B_S} g(Q) \Delta h(Q) = \int_{A_S} h(\partial/\partial n) g d\sigma - \int_{A_S} g(\partial/\partial n) h d\sigma = A(S) + B(S),
$$

where we have put $A_s = \{(x, \psi_s(x)), |x| < 2/3 + \varepsilon\}$. We observe that $B(S) \to 0$ as $S\rightarrow 0$. Put

$$
F_S(x) = (1 + |\text{grad } \psi_S|^2)^{1/2}, \qquad H_S(x) = (\text{grad } g(x, \psi_S(x), n_s(x)))
$$

where n_s denotes the inward unit normal to ∂D_s at $(x, \psi_s(x))$. Then

$$
A(S) = \int h(x, \psi_S(x)) H_S(x) F_S(x) dx.
$$

The proof of part (a) shows that

$$
H_S(x) \to (\partial/\partial n) g(x, \varphi(x)) \text{ a.e.}
$$

$$
F_S(x) \to (1 + |\text{grad } \varphi(x)|^2)^{1/2} \text{ a.e.}
$$

and

as $S\rightarrow 0$. From (9) and (11)

$$
\int_{|x| < 2/3 + \varepsilon} \left(\sup_{0 < S < \delta} |H_S(x)| \right)^2 dx < \infty
$$

if δ is sufficiently small. The dominated convergence theorem together with (14) now implies that

$$
\int\limits_{D} g(Q) \Delta H(Q) dQ = \gamma_n \int\limits_{S(\varphi)} h(Q) \left(\partial/\partial n \right) g(Q) d\sigma(Q).
$$

Part (b) then follows from relation (13).

Proof of part (c). Suppose $P' \in S_0(\varphi)$ and $0 \lt r \lt \varepsilon$. Then from (6) the function

$$
h(Q) = \int_{A(P',r)} (\partial/\partial n) g'(Q') \omega(Q, dQ', D')
$$

is non-negative and harmonic in D' . Since the boundary values of h vanish outside $A(P', r)$ it follows from [7, (2.4)] and [6, p. 311] that

(15)
$$
h(P_m) \leq C \omega(P_m, A(P', r), D')h(P' + (0, r)).
$$

Let $D_1(\varphi, m)$ be as in Lemma 3, and let v be the harmonic measure of $\partial D_1(\varphi, m)$ $-\{(x, \varphi(x)) : |x| < 2\}$ with respect to $D_1(\varphi, m)$. Then from Lemma 3 there is a number $C = C(m)$ such that

$$
(\partial/\partial y)g'(Q) \geq \int\limits_{S(\varphi)} (\partial/\partial y)g'(Q')\omega(Q, dQ', D') - Cv(Q)
$$

for $Q \in D_1(\varphi, m)$. From (4) and part (b) we may find a $C = C(m)$ such that

 $(\partial/\partial y)g'(Q) \geq Ch(Q) - Cv(Q).$

Theorem 4 implies that $v(O) \leq Cg'(O)$ for all $O \in D''$. It now follows from (10) that

$$
h(Q) \leq C d(Q)^{-1} g'(Q^* + (0, d(Q)))
$$
 for $Q \in D''$.

From Lemma 1 we have

$$
h(P' + (0, r)) \leq Cr^{1-n} \omega(P_m, D(P', r), D').
$$

From this estimate and (15) we find

$$
\sigma(A(P',r)) \int_{A(P',r)} [(\partial/\partial n)g'(Q)]^2 d\sigma(Q) \leq C \Biggl(\int_{A(P',r)} (\partial/\partial n)g'(Q) d\sigma(Q)\Biggr)^2.
$$

Part (c) follows now from (8), and the lemma is proved.

Proof of Theorem 3. Covering ∂D by simple Lipschitz domains as in the proof of Theorem 1, we obtain Theorem 3 directly from Lemma 9.

Proof of the Corollary. We observe the following consequences of Theorem 3. First, from a theorem of Gehring [4] and part (c)

$$
\int_{\partial D} [(\partial/\partial n)g(Q)]^p d\sigma(Q) < \infty
$$

for some $p > 2$. Hölder's inequality now gives the first part of the corollary. Since $\omega(P, \cdot)$ and σ are comparable in the sense of [3, p. 248], Lemma 5 of [3] then yields the second part of the conclusion.

We shall now obtain some lower bounds for the exponents appearing in the corollary. For $0 < \theta < \pi$, let

$$
D(\theta) = \{ P = (x, y) : |x| < 1, \quad (x_{n-1}^2 + y^2)^{1/2} \cos \theta < y < 1 \}
$$

and define $v(P) = \text{Re}(y + ix_{n-1})^{\rho(\theta)}$, where $\rho(\theta) = (2\theta)^{-1}\pi$. Then v is non-negative and harmonic in $D(\theta)$, and v has vanishing boundary values on

$$
\partial' D(\theta) = \{(x, y) : y = (x_{n-1}^2 + y^2)^{1/2} \cos \theta\}.
$$

Fix a point $P_0 \in D(\theta)$ and put $g = G(\cdot, P_0)$, where G is the Green's function of $D(\theta)$. By Theorem 4 there exists a number $C>0$ and a neighborhood V of $\partial' D(\theta) \cap \{(x, y) : |x| \leq 1/2\}$ such that

$$
(16) \tC^{-1}v(P) \leq g(P) \leq Cv(P)
$$

for all $P \in V \cap D(\theta)$. Now for $0 < \varepsilon < 1/2$, let

$$
E(\varepsilon) = \{(x, y) \in \partial' D(\theta) : |x| \le 1/2, \quad |x_{n-1}| \le \varepsilon\}
$$

and notice that there is a number $C = C(\theta)$ such that

$$
C^{-1}\varepsilon \leq \sigma(E(\varepsilon)) \leq C\varepsilon.
$$

From (16) follows the existence of a constant $C = C(\theta)$ such that

$$
C^{-1} \varepsilon^{\rho(\theta)} \leq \omega(P_0, E(\varepsilon)) \leq C \varepsilon^{\rho(\theta)}.
$$

Let α and β be as in the corollary. Letting $\theta \rightarrow \pi$ and $\theta \rightarrow 0$ respectively, we see that, in general, $\alpha > 1/2$ and $\beta > 0$.

References

- 1. AGMON, S., A. DOUGLIS & L. NIRENBERG, "Estimates near the boundary of solutions of elliptic partial differential equations satisfying general boundary conditions". Com. Pure Applied Math. 12, 623-727 (1959).
- 2. CARLESON, L., "On the existence of boundary values of harmonic functions of several variables". Ark. Mat. 4, 339-343 (1962).
- 3. COIFMAN, R. R. & C. FEFFERMAN, "Weighted norm inequalities for maximal functions and singular integrals". Studia Math., 51, 241-250 (1974).
- 4. GEHRING, F.W., "The L^P -integrability of the partial derivatives of a quasiconformal mapping". Acta Math. 130, 265-277 (1973).
- 5. HELMS, L.L., "Introduction to potential theory". New York: Wiley-Interscience 1969.
- 6. HUNT, R. & R.L. WHEEDEN, "On the boundary values of harmonic functions". Trans. Amer. Math. Soc. 132, 307-322 (1968).
- 7. HUNT, R.A. & R.L. WHEEDEN, "Positive harmonic functions on Lipschitz domains". Trans. Amer. Math. Soc. 147, 507-527 (1970).
- 8. KEMPER, J.T., "A boundary Harnack principle for Lipschitz domains and the principle of positive singularities". Comm. Pure Applied Math. 25, 247-255 (1972).
- 9. NAïm, L., Sur le rôle de la frontière de R.S. Martin dans la théorie du potentiel. Ann. Inst. Fourier (Grenoble), 7, 183-281 (1957).
- 10. PRIWALOW, I,I., "Randeigenschaften analytischer Funktionen". Berlin: Deutscher Verlag der Wissenschaften 1956.
- 11. SAKS, S., Theory of the integral. New York: Hafner Publishing Company 1937.
- 12. STEIN, E.M., "Singular integrals and differentiability properties of functions". New Jersey: Princeton University Press, Princeton 1970.
- 13. WARSCHAWSKI, S.E. & G.E. SCHOBER, "On conformal mapping of certain classes of Jordan domains". Arch. Rational Mech. Anal. 22, 201-209 (1966).
- 14. WIDMAN, K.-O., "Inequalities for the Green function and boundary continuity of the gradient of solutions of elliptic equations". Math. Scand. 21, 17-37 (1967).
- 15. ZIEMER, W.P., "Some remarks on harmonic measure in space". Pac. J. Math. 55, 629-638 (1974).

Department of Mathematics University of Göteborg, Göteborg Chalmers University of Technology, Fack Sweden

(Received May 9, 1976; revised October 13, 1976)