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The object of  this paper is a study of the relation between the harmonic 
measure of a set and its ( n -  1)-dimensional Hausdorff-measure, n>2 .  In this 
direction we have obtained the following result. 

Theorem 1. Let D ~  R" be a Lipschitz domain. Then a Borel measurable set E c O  D 
is of harmonic measure zero with respect to D if and only if  E is of  vanishing (n - 1)- 
dimensional Hausdorff measure. 

The case n =2  has been settled in [10, p. 125], and the situation when D satisfies 
various additional conditions has been discussed in [2], [14], [15]. At the same 
time, even the case when D is a Cl-domain is new when n > 2, as far as we know. 

In [6] it is proved that if u is non-negative and harmonic in a Lipschitz domain 
D then u has a finite non-tangential limit at each point QeOD, except for a set 
of vanishing harmonic measure. Hence we have the following consequence of  
Theorem 1. 

Theorem 2. Suppose u is non-negative and harmonic in a Lipschitz domain D. 
Then u has a finite non-tangential limit at every point Qe OD except for a set of  
vanishing ( n -  1)-dimensional Hausdorff measure. 

Let a be the surface measure of 0 D. Since Lipschitz functions are differentiable 
almost everywhere (see [12, p. 250]) it follows that for all points Q on ~D outside 
of a set of vanishing a-measure there is an inward unit normal, which we denote 
by nQ. If E c R "  we denote the harmonic measure of Ec~OD with respect to D 
by co(., E). For  the basic properties oleo, see [5, Chapter8]. We can now formulate 
a more precise version of Theorem 1. 

Theorem 3. Let D ~ R", n > 3, be a Lipschitz domain and let G denote the Green's 
function of D. Let P~D and put g=G( . ,  P). Then there exists a set E c O D  such 
that a ( E ) = 0 ,  and for all Q E 3 D - E  the limit 

lira (O/OnQ)g(Q + tnQ) 
t ,~ O 

exists. I f  we denote this" limit by (0/0 n) g (Q ), then the following results hold. 
(a) I f  Q e 3 D - E  then O<(O/?n)g(Q)< ~ .  
(b) Let a, be the surface measure o f {Pc  R" " IP[= 1 } and define 7, = [a, (n - 2)1-1. 

I f  F= O D then 
Co(P, r ) = 7 ,  S (8 /Sn)g(Q)da(Q) .  

F 
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(c) There is a number C> 0 such that if P'~ ~D and 0 < r < 1, then 

a(A(P',r)) ~ [(?/On)g(Q)]Zda(Q)<C[ ~ (?/On)g(Q)da(Q)] 2, 
A(P',r) A(P',r) 

where A(P', r)={QeaD: [P'-Ql<r}. 
Theorem 3 makes it possible for us to compare the harmonic measure of  a 

set with its surface measure. 

Corollary. Let D be as above and let PeD. Then there are numbers ~ > 1/2, fi > 0, 
and C > 0 such that if F c  ~ D then 

co(P, F)<=C(a(F)) ~ and a(F)<C(co(P, F)) p. 

Remark. The results of  Theorem 3 and its corollary also hold in the case n = 2, 
but the proof  given here for n > 3  must be modified. For  other results in the 
plane case, see [13]. 

We say that a bounded domain D c R" is a Lipschitz domain if to each point 
QeOD there corresponds a coordinate system (4, q), {eR"-I,  qeR, and a function 
r such that ko(4) - ~,0(4a)[ =< C]r - ~1 [for some Cand Dc~ V= {(4, q) : ~o(4) < q} c~} nv 
for some neighborhood V of Q. 

We will, from now on, assume n >  3 unless otherwise mentioned. Let L be 
the class of functions in R "-1 such that 

[[q~[[ = sup [x-yl-l[qg(x)-q~(y)[<oo, q~(0) = 0, 
x:#y 

support q~c {x~R"-l:  [x[<l}.  

We define 

{(x, Ixl_-__l}. 
If rn > 0 we put 

L(rn)={q~L: llq~ll<rn } and F(m)={(x,y):rn[x[<y}. 

If q~eL(rn) and (x,y)eF(rn)+(4, q~(4)) for some 4ER "-1, then y>q~(x). Let 
2 = 2 (rn) = (rn + 2)- 1. Then for all ~/> 0 

0)  {(x, y) : Ix] __<,~(I -;t)~__<y} = r(m).  

From (1) follows the existence of numbers A=A(rn) and B=B(rn), such that 
102 -1 <B<�89 with the following property: If ~oeL(rn) and 

D(~o, rn)={(x,y): [x[< 10 and qg(x)<y<rnA}, 

then D(cp, rn) is star shaped with respect to P, ,=(0,  rnB). 
If QeR", r >0 ,  we put B(Q, r)={PeR" : IP-Q[<r}. 

Lemma 1. Let rn> 1 and q~eL(rn). Let G be the Green's function of D=D(q~, rn). 
Then there are numbers 6 o , C O , and C1, which depend only on rn, with the following 
property. I f  QeS(q~), 0 <p  < 6 o, then 

(2) CoIp"-2G(Q+(O, CID), Pm)<=CO(P,., B(Q, p))<=Cop"-2G(Q+(O, Cxp), Pro)- 
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Proof. Let Q=(~,  ~0(~))eS(~p) and put 

C(Q, ~)={(x,y):  ]x-~[<2e, ( 1 - 2 ) e < y - q ~ ( ~ ) < ( B + 2 ) e }  

where 2 and B are as above. Then there is a 6 = 6(m) such that 0 < 6 < 1 and 
C(Q, e )cD for all QeS(cp) and 0 < e < 6 .  Suppose ]z[<2 and put P=(z, ~o(z)). 
For 0 < t < 1, let 

P,=(xt ,y t )=tPm+(1-- t )P.  

If  Iz-{I  < t  then I x , - { l < 2 t  and 

( B -  2) tm< y,-~p({)<(B+ 2)tm. 

Choosing t = e m- l ( B -  2 ) -1 = c e, we find that P, e CI ( Q , e) when Iz - { [ < t, where 

C, (Q, e)= {(x, y) " l x - { l < ~  e, ~ < y -  ~0({) <�89 

Let G' be the Green's function of C(Q, e). Then a change of scale shows the 
existence of a number C= C(m) such that 

Ce "-2 inf {G'(Q +(0, e), P ) : P e C , ( Q ,  e)} > 1. 

Now the function u, :P+G(Q+(O, e), tPm+(1- t )P)  is superharmonic in D. 
Furthermore if e = (z, s(~0) and Iz -  31 < ce = t then 

Ce"-2ut(P)>=Ce"-2G'(Q+(O, g), P,)>= 1, 

The minimum principle now gives co(P, B(Q, ee))<=Ce"-2u,(P) for all P~D. 
Taking P = P,, gives the right-hand inequality of (2). 

Let K(p) = {(x, y) : Ix[ < p/2, - 2 m p < y < 2 C, p }. If 0 < p < Po, there is a num- 
ber C2=C2(m) such that if Q=({,  q~(~))~S(cp) then D(Q,p)c(K(p)+Q)c~D, 
where D(Q, p) is the ball with center Q+(0,  Cap ) and radius C2p. Since G(P, P') 
_~ IP-P'I  2-" it follows that 

sup {G(P, Q +(O, c ,p) ) :  Pe(~ D(Q, p)} <= C~-", 

where C only depends on m. Let co' be the harmonic measure of the set {(x, y): I x -  r 
<p/2, y= -2m+cp({)}  with respect to K(p)+Q. Then the maximum principle 
implies that co(P, B(A, p))>__co'(P) for all PeD(Q, p). Since there is a number 
c > 0  depending only on m such that co'(P)>c for all PeD(Q, p), the maximum 
principle now gives 

p"-zG(P, a+(O, Cxp))<Ceo(P, B(Q, p)) 

for all P e D - D ( Q ,  p), where C only depends on m. Taking Po so small that 
P,, �9 D (Q, p), we obtain the left-hand inequality of (2), and the lemma is proved. 

We will need the following elementary estimate. 

Lemma 2. Let m>_ 1, opeL(m), and D=D(cp, m). Then there is a number c=c(m) 
>0 such that co(Pro, So(q~))>=c, where So(r r �9 [xl=<l }. 

Proof Put g2= {(x, y)" Ixl <�89 - 2m < y  < (B+ 1)m} and let v be the harmonic 
measure of {(x, y ) :  y=-2m}c~aY2 with respect to O. Then co(-, So(q~))lO>-_v 
and hence co(P,,, So(r the lemma is proved. 
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Lemma3. Let r e > l ,  (oeL(m) and Dl(q~,m)=D(ip, m ) - B ( P  m, m), and put 
g=G(.,  Pr,). Then there is a constant C=C(m) such that (O/Oy)g+C>_>_O in 
D 1 ((o, m). 

Proof. Suppose first that (peC~176 Since we have 

O<g(P)<__ ]p_p,.[2-. for all PED(~o, m) 

it follows from the Schauder estimates that there is a constant C =  C(m) such 
that sup{I(O/Oy)g(P) I :P~OB(Pm, m)}<=C. Since g can be extended across 
both {(x, 0):  a < Ixl < a0} and {(x, Am): Ixl < 10} by reflexion, it follows from 
[1, Thm. 7.3] that 

sup {](O/~y)g(e)]: PeOO(rp, m ) -  {(x, q)(x)) : Ixl <2} < C =  C(m). 

Since (O/Oy)g has non-negative boundary values on the rest of the boundary 
the lemma follows in this case. If qosL(m) and r is not assumed to be of class 
C ~ we can find a sequence {r such that 

~o, eC~{xeR"-l: [x[<l}, O,__>~0, [l~,,[[<m, q~i--.~puniformly. 

If Gi denotes the Green's function of D(~pi, m) and gi = G~(., P,,), then [3, Theorem 
5.15] g ~ g  uniformly on compact subsets of D((o, m)-{Pm}. Hence by the 
Poisson representation formula (O/?y)gi~(O/Oy)g uniformly on compact subsets 
of D(cp, m)-{Pro}. Therefore the lemma follows from the previous case. 

Let a denote the surface measure of gD(~o, m), ~o~L(m). Let EcS(~o) and let 
E ' = { x e R " - l  : (x, (o(x))eE}. Then 

a ( E ) =  S ~'1 + ]grad (ol 2 dx.  
E' 

Therefore there is a number C=  C(m) such that 

(3) C-lrn- I<a(B(Q,  r)c~OD)<Cr "-1 for Q~S((o). 

If E c R "  we define a(E)=a(Ec~OD(cp, m)). 

Lemma 4. Let m >_ 1 and q9 ~ L (m). I f  E c S(~o) and a (E) = O, then E has harmonic 
measure zero with respect to D ((o, m). 

Proof. From (3) and Lemma I follows the existence of a constant C=C(m) 
such that 

(4) lim sup < C lim sup (8/Sy)g (Q + (0, t)). 
~o  a(B(Q, r)) = ,-+o 

From Lemma 3 and the fact that (O/Oy)g has finite non-tangential boundary 
values except on a set of harmonic measure zero [6], it follows that 

lim sup o)(P m, B(Q, r))/a(B(Q, r))< Go 
r --* O 

for all Q e S(q0 except for a set of harmonic measure zero. As in [! 1, Theorem 14.5], 
the conclusion of the lemma now follows at once. 
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Lemma 4 implies the existence of an f e d  (S((o), o) such that 

co(P,,, E )=~ fda  
E 

for all EcS(q~). We notice thatf~=O and 

(5) ~ fd~<=l. 
s(o) 

We will now show f ~ L  2 (S(~0), a). 

Lemma 5. Let m> l and cpeL(m). Then there is a number C = C ( m )  such that 

co(P,,, E) < C ~ ( ( E )  
for all EcS(cp). 

Proof. Let g=G(., Pro), where G is the Green's function of D(qo, m). Then there 
is a function gl harmonic in D(~0, m) such that g(P) = [P-PmJ2-"+gl (P). From 
Lemma 3 it follows that there is a constant C1 = C1 (m) such that (B/3Y)gi + C1 >0 
in D(cp, m). Since 

sup {[gl(P)l : PED((p, m)} = m a x  { [ P - P . , l a - "  : Pet?D(q), m)} 

there is a constant C2 = C2 (m) such that h(P,,)< Ca where h =(~/OY)gl + C1. 
Let 0 < t < 1. Since D (q), m) is star shaped with respect to Pm we have 

h(P.,) = f 
~D(~,m) 

Putting 

h(tQ+(1-t)P,,)co(Pm, dQ)> ~ h(tQ+(1-t)P, ,)co(P, , ,  dQ). 
s(~o) 

we see from [6] and Lemma 3 that 

F(Q) =l im sup h(Q+(O, t)) a.e. [co(P.,, .)]. 
t~0  

By (4) and the definition of h there exists a constant C3 = C3 (m) such that 
C3 (F+  C3)>=f a.e. [co(Pro, ")]. Fatou's lemma and (5) now gives 

(6) ~ f(Q)co(P, , ,dQ)= ~ f2da<C=C(m) .  
s(~o) s((o) 

If  EcS((o) we have co(P,,, E ) = ~ f d a < C  ~ - ~  by H61der's inequality. This 
E 

proves the lemma. 

Lemma 6. Suppose D1 and D z are bounded domains which are regular for the 
Dirichlet problem. Assume that EcODlnOD 2 is closed and that there is an open 
set V with E c  V and V~D 1 = VnD2. Let col denote the harmonic measure of E 
with respect to D i . Then col (', E) = 0 if and only if (~ (', E) = O. 

Proof. Suppose col (., E ) =  0, and notice that 

lira CO2(P, E)=0 for all Qe~D 2 - E .  
P-~O 
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Let f2 = R " -  E; for Per2 define u(P) = co 2 (P, E) if Pe Q ~ D  2 and zero otherwise. 
Then u is continuous and subharmonic in ~2. Define ~o(P)=0 if PEE and ~o(P) 
=u (P )  if PeOD1 - E .  Then ~o is continuous in 0D1. Now let v be the harmonic 
function in D1 with boundary values (p. Fix a point PoeD~ and choose a sequence 
{Uj} of open sets such that col(Po, Uj )~0  and Uj=E. Then the maximum 
principle implies that u]D 1 < v + ~o~ (., Uj). Letting j--* de, we have ulD 1 < v. Then 
since VnD~ = Vc~D z and E c  V, we have lira co2 (P, E) =0  for all Qe Vc~?D 1 and 

P~Q 

hence m2 (', E ) =  0. Since the other direction is analogous we have proved the 
lemma. 

Let D c R" be a Lipschitz domain. We say that D is simple if there is a function 
qgeL(m) and a number fl>O such that D is congruent to {tiP: PeD(q~, m)}. In 
this case, for 0 < t < 1, we let S(D, t) be the part of the boundary of D correspond- 
ing to {(x, ~p(x)) : Ix[ __< t}. I fD  is a Lipschitz domain, it follows from the definition 
that there are finitely many simple Lipschitz domains Di, 1 <_ i<_ N, such that for 
each i there is an open set Vi with the property that D~c~ V i =Dc~ V~ and 

N 

(7) S(D~, 2/3)c  VinOD and [_) S(D,, �89 
i=1 

We can now prove Theorem 1. 

Proof of Theorem 1. From (7) and (3) it follows that a set E c  gD is of vanishing 
(n-1)-dimensional Hausdorff measure if and only if a(E)=O, where a is the 
surface measure of c~D. 

To prove Theorem 1, we see from (7) and Lemma 6 that it is sufficient to 
show that, if (peL(m) and EcS(~o), then E is of harmonic measure zero with 
respect to D((p, m) if and only if a(E)=O. By Lemma 4, in order to prove this 
equivalence it is enough to show that w(., E)=O implies a(E)=O. To prove 
this, we argue by contradiction. 

Suppose there is a number r e > l ,  an element ~oeL(m), and a set EcS(~o) 
such that a ( E ) > 0  but m(Pm, E ) = 0 .  Put 

E '={(x,  0) ' [x l<l  and (x, (p(x))eE}. 

Let IF[ denote the Lebesgue measure of a set F c R  "-1. Then [E'[>0 and we 
may without loss of generality assume 0 is a point of density of E', i.e. 

[E'c~B(r)[ 
lira ~ iB(r)l =1 where B(r )={xeR"- l  " lxl<r}. 

Put er={xERn-X'[x]<]/2 and rxeE'}.  Pick a Lipschitz function F in R "-a 
such that F (x )=  1 for [x[ < 2/3 and the support of F lies in {xeR"-a : [x[ < 1}. 
Define ~o,(x)=r-lF(x)q~(rx). Then ~oreL and [[~orl[--_C[[~o[], where C is inde- 
pendent of r. Let k be a number such that sup [ko[[ < k. If  E~ = {(x, ~o~(x)): xe  e~} 

0 < r < l  
then by Lemma 6 the harmonic measure of E~ with respect to D(~or, k) is zero. 
From Lemma 2 we have 

o)(Pk, S~)~ C>0,  
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where S t=  {(x, q~r(x)): Ixl < 1/2} and C is independent of r. From Lemma 5 we 
have 

' / 1 ~  '1/2 = C  ( ' E ' c ~ B ( r ) [ )  1 / 2 1  
1/ i - /  ~ 0  a ~ ( P R ' S " ) < C v ~ ( S r - E " ) < C B \ 2 , I - e "  IB(r)l j 

as r--*0. This yields a contradiction, and hence completes the proof of Theorem 1. 
In the next lemma we shall compare the Green's functions of two Lipschitz 

domains with intersecting boundaries. The proof will use a result of NAIM, which 
was pointed out to the author by Professor PAUL GAUTHIER. 

Lemma 7. Let D~ and D 2 be two Lipschitz domains in R", n>2 ,  and let gi denote 
the Green's function of D i with pole at Qi6Di, i=1,  2. Suppose there is a domain 
W ~ D x ~ D  2 such that for some open set V we have W c  V, Vc~D 1 = V ~ D  2 ,  and 
Qie D i -  V, i= 1, 2. 
Then there is a constant C > 0  such that 

ga(P)<=Cg2(P) fora l lPEW.  

Proof. Assume the conclusion is false. This means there is a sequence of points 
P, ~ W such that 

lira gl (P,) = ~ .  
,~o~ gz(p, ) 

We may without loss of generality assume that l im P, = Qo exists. Since Q, r w 

for i=1,  2, we must have Qoed W n O D I ~ D : .  From the definition of a Lip- 
schitz domain follows the existence of a neighbourhood U of Q0 such that U ~  V 
and Uc~D1 is a Lipschitz domain. Let g denote the Green's function of Uc~D 1 . 
Since the Martin boundary of a Lipschitz domain coincides with the Euclidean 
boundary [7, Theorem 4.2], it follows from the computation in [9, p. 223] that if 
Qe U~D~ then 

lim g(P"' Q) -Ki(Q)-h~(Q) .  
.~o~ g , ( p . )  

Here K~ is the kernel function of D~ with pole at Qo, normalized by Ki(Qi) = 1, 
and hi is the harmonic function in Uc~D~ with boundary values equal to Ki(Q) 
when QeO(UnD1)c~D ~ and zero otherwise. Hence h~<K i in Uc~D a. Suppose 
hi(Q')=Ki(Q' ) for some Q'eUc~D 1. From the maximum principle it follows 
then that hi(Q)=Ki(Q) for all Qe Uc~D 1 . Hence 

lim K,(Q )= lin~o hi(Q )=O. 
t2 ~ Oo 

Since lim KI(Q)=O for all Pet~Di-{Qo} we obtain Ki-O, which is a contra- 
Q ~ P  

diction. This shows that h~(Q)<Ki(Q) for all Qe UnD 1 . Hence 

lim g(P"' Q) >0 
,~o~ gi(p, ) 
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for all Q~ UnDo. This gives 

lira gl (P,.) < oo, 
,-~| g2 (P,) 

which contradicts the assumption in the beginning of the proof. 
We shall next compare positive harmonic functions which simultanously 

vanish on a part of the boundary. 

Lemma 8. Let q) : R"~I--*R, n>2, be a Lipschitz function such that ~0(0)=0. 
Suppose that positive numbers a, b and c have been chosen such that 

(i) a > 2  sup {ko(x)[: ]xl<ab}, and 
(ii) the domain D = {(x, y) : q~ (x) < y < 4a, Ix[< 4b) is star shaped with respect 

to eo = (0, c). 
Put D1 = {(x, y) : ,p (x) < y  < a, fx I < b}. Then there is a constant C> 0 such that 

if u and v are non-negative harmonic functions in D which vanish on {(x, q)(x)): [xl 
<4b} and which satisfy u(Po)<v(Po), then u(P)< Cu(P) for all P in D 1 . 

Proof. Let D~= {(x, y) : q)(x) < y  <ja, Ix] <jb}. By a result of HUNT and WHEEDEN 
[7, (2.4)] there exists a constant C 1 such that 

u(P) < C1 u(Po) for all PE/33 . 

Also from Harnack's inequality there exists a constant C2 > 0 such that 

v(P)> C2v(Po) for all PeT,  

where T={(x,  3a):  Ixl___3b}. Let g denote the harmonic measure of •D 3 
-{(x ,  q~(Xl)): Ixl<3b} with respect to D3, and let h denote the harmonic 
measure of T with respect to D 3 . Then u<Clu(Po)g  and v>-C2v(Po)h in D 3 . 
To prove the lemma it is now sufficient to show that there is a constant C such that 
g ( P ) < C h ( P )  for all P~D 1. 

Define 
i ( x )  =min  (~0 (x), ~ - f l  [xl), x~R "-1. 

It is easily seen that we can choose a and fl such that i ( x ) =  ~p(x) for Ix[ _-< 2b 
and i(x)<q~(x) for ]x[>~b. With this choice, let 

Us= {(x, y) :  if(x) < y  <]a, Ix I <jb}. 

Choose a point Q1 ~ U4-  u3 and denote by G 1 the Green's function of U 4 with 
pole at Q,.  We now extend g to /-/3 by defining g ( P ) = 0  if P E U 3 - D  3. With 
this extension g is subharmonic in U3. Since inf {G, (P) : PE~ U3nD4) is positive 
it follows from the maximum principle that 

g(P)<=C3GI(P) for all Pe  U 3 . 

Let Q2~D3-/)2 and denote by G 2 the Green's function of D 3 with pole at Q2. 
Let B be a ball with center at Q2 such that B c D 3 - D  2. We now observe that 

sup {G2 (P) : Pe3B} < 00, inf {h(P) : PE OB} > 0. 

Since the boundary values of G 2 vanish on 63D3, it follows from the maximum 
principle that there is a constant C a such that h (P )>  C4 G2 (P) for all P in D 3 - B .  
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If we now use Lemma 7 to compare G1 and Gz in Dx, we find that g (P)< Ch (P) 
for all Pc  D1, and as noted above, this proves the lemma. 

The next theorem was formulated in [8, Thm. 2.2] but Professor KEMPER has 
pointed out to me in a conversation that the proof contains a mistake on page 
253, line 1. 

Theorem 4. Let D c R", n > 2, be a Lipschitz domain and let V be an open set such 
that VnOD~: O. Suppose W is a domain such that W ~ D  and l ~ c  V, and let Po 
be a point in W. 

Then there is a constant C> 0 such that if  u and v are non-negative harmonic 
functions in D which vanish on Vn8 D and satisfy u ( Po ) <~ v ( Po ), then u ( P ) < C v ( P ) 
for all Pc  W. 

Proof. If f2 is congruent to a domain of the type indicated in Lemma 8, we denote 
by F(f2) the part of ~3g2 corresponding to {(x, ~p(x)) �9 Ixl <b}. We notice that 
Theorem 8 follows from Harnack's inequality if 8 Wc~OD=O. Otherwise we can 
find finitely many domains f2i, each of them congruent to a domain of the form 
indicated in Lemma 8, such that UF(f2 i )= WnSD.  The theorem now follows 

by repeated application of Harnack's inequality and Lemma 8. 
The proof of Theorem 3 will be based on the following lemma. 

Lemma 9. Suppose that D c R", n> 3, is a Lipschitz domain and suppose further 
that there is an open set V and a function qg~ L(m) such that 

D n  V= D(~o, m)c~ V 
and 

s'(~o)= {(x, ~o(x)) . lx[<=2/3}c V n ~  O. 

Let cr denote the surface measure of D, let 

�9 Ixl_-__�89 

and for Qe S(~o) let nQ denote the unit inward normal of D, whenever it exists. 
For Pe D, define g = G(., P), where G is the Green's function" of D. Then the follow- 
ing conclusions hold. 

(a) There is a set EcSo(q9 ) such that cr(E)=O, 

lim (8/~no )g(Q +tno)  = (8/Sn)g(Q ) exists, 
t~O 

and 
O<(8/On)g(Q) < ~ for all QeSo(~o)-E.  

(b) I f  F ~  S O ((o) then 

o~(P, F, D)=7 ,  , ~ (O/Sn)g(Q)da(Q). 
F 

(c) There is a number C>O, depending on D,(o and V, such that if  P'~So(qg) 
and 0 < r < 1, then 

a(A(P' , r ) )  ~ [(O/Sn)g(Q)]2da(Q)<C r ~ (8/Sn)g(Q),da(Q)]2, 
A(P,r) LA(P,r ) I 

where A(P',  r)=B(P' ,  r)nSD. 
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Proof of part (a). Put D'=D(q), m), and let G' denote the Green's function of  
D'. Notice that if we take ~e(0, 1) sufficiently small and put 

D"={(x,y)" lxl<2/3+e, ~p(x)<y<~p(x)+~}, 

then D"cDc~D' and {P, P,,} c R" -  D". Since g and g'=G'(., P,,) are positive 
and harmonic in D" and have vanishing boundary values on {(x, y ) ' y  = q~(x), 
Ix] <2 /3+e}  it follows from Theorem 4 that there is a neighborhood U of S'(~0) 
and a number C > 0  such that for all QE U~D 

(8) C-' g'(Q)<=g(Q)<__ Cg'(Q). 

We may assume this inequality holds for all QeD", if necessary by making 
smaller. 

For Q=(x,y)eD, we denote by d(Q) the distance from Q to ~D, and if 
Q~D(q~, m) we let Q* denote the point (x, (p(x)). P i c k f  such that 

,~(~, E, z~') =S/d~ 
E 

for all E c  S(q~). If 

f * ( Q ) = s u p ~ r  1-" ~ f (P')da(P') 'O<r<l~,  
t A(Q,r) ) 

then it follows from (6) that 

(9) ~ (f*(Q))2da(Q)< 0o. 
s(~o) 

Harnack's inequality and the Schauder estimates give 

(lo) ]grad g(Q )] < C(d(Q ))-~ g(Q * + (o, d(Q ) )) 

for all QeD". Hence from (7) and Lemma 1 we see that if QeS'((p) and Q'eD" 
c~(K+ Q), then 

(11) ]grad g(Q')] < C f* (Q ), 

where K =  {(x, y) :  2m Ixl <Y}. From (11)it follows that ]grad gl is non-tangentially 
bounded a.e. with respect to a at S'(~o). This implies, using [6], that grad g 
has a finite non-tangential limit a.e. on S' ((p). Hence part (a) follows from Theo- 
rem 1. 

Proof of part (b). Extend g to all of R" by putting g -  0 outside D. Then g is contin- 
uous and subharmonic in R " - { P } .  Since 

(12) g(Q)=IP-Q] z - ' -  ~ IP'-QlZ-'oJ(P, dP', D) 
OD 

for all Q~R'-(ODu{P}), and g ( Q ' ) = 0  for all Q'e~?D, Fatou's  lemma implies 

S I P' - Q,]2-,co (P, dP', D) < ov for all Q'e cqD. 
8D 
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Let Q'e  ~ D, and let F be a truncated cone with vertex at Q' such that (i) F - { Q'} c D, 
and (ii) there is a number C for which d ( Q ) > C [ Q - Q '  I for all QeF. If P'E~D 
and Q ~ F then 

[P'- Q'[ <= [P'- QI + IQ- Q'[ < I P ' -  Q] + ca(Q)  < ( c +  1)I e ' -  Q[. 
Hence the dominated convergence theorem implies that 

g ( Q , ) = f  _Q,[2- ,_  ~ [p,_Q,12-,~(p, dP', D). 
OD 

Consequently (12) holds for all Q e R" -{P} .  Therefore, if h ~ C~ (R") and P does 
not belong to the support of h, 

(13) ~ g(Q)Ah(Q)dQ=7;  1 ~ h(Q)~(P,  dQ, D), 
D t~D 

where A denotes the Laplace operator. 
Suppose now the support of h lies in the set 

{(x, y)" Ix [ < 2/3, ~0 (x) - e/2 < y < q~ (x) + e/2.} 

Then 

(14) g(Q)Ah(Q)dQ=l im ~ g(Q)Ah(Q)dQ, 
D S~ O Ds 

where D s is defined by the following procedure. Pick a function z~C~(R "-t) 
and put ~0 s -- Zs* q~, where Zs (x) = S 1 -" Z (S- 1 x). Then 

[[q~s-q~[[o~0 as S-*O, sup Hgrad ~OsN ~ < o% 
S > O  

and lim ~ grad q~s (x) = grad ~o (x) a.e. 

We now define Cs=q~s + 2 H~ps-~O[[~ + s and put 

D s = {(x, y)" Ix[ < 2/3 + qJs (x) < y < Cs (x) + 2 e/3}. 

Notice that if S is sufficiently small then Ds c D". Green's formula now gives 

g(Q)Ah(Q)= ~ h(tt/On)gda- ~ g(O/(~n)hda=A(S)+B(S), 
Ds A s  A s  

where we have put As={(x, $s(X)), We observe that B(S)oO 
as S-,0.  Put 

Fs(x) = (1 + [grad r 1/2, Hs(x) = (grad g (x, t#s(X), ns(x))) 

where ns denotes the inward unit normal to ~D s at (x, Cs(X)). Then 

A (S) = ~ h (x, Os (x)) H s (x) F s (x) dx. 

The proof of part (a) shows that 

H s (x)--* (0/0 n) g (x, q~ (x)) a.e. 
and 

F s (x) ~ (1 + [grad ~0 (x)[2)1/2 a.e. 
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as S--+0. From (9) and (11) 

S ( s u p  [Hs(x)O2dx<oo 
Ix[ <2/3 +e \ 0 < S < 6  

if 6 is sufficiently small. The dominated convergence theorem together with (14) 
now implies that 

g(Q)AH(Q)dQ=7, ~ h(Q) (~?/On)g(Q)da(Q). 
D S(r 

Part (b) then follows from relation (13). 

Proof of part(c). Suppose P'6So(~p) and 0 < r < e .  Then from (6) the function 

h ( Q ) =  ~ (O/On)g'(Q')oo(Q, dQ', D') 
A(P',r)  

is non-negative and harmonic in D'. Since the boundary values of  h vanish 
outside A(P', r) it follows from [7, (2.4)] and [6, p. 311] that 

(15) h(Pm)<C~O(Pm, A(P', r), D')h(P' +(O, r)). 

Let D 1 ((o, m) be as in Lemma 3, and let v be the harmonic measure of #O a (q), m) 
-{ (x ,  (0(x)): [xl<2} with respect to Dl(q~, m). Then from Lemma 3 there is 
a number C =  C(m) such that 

(g/c~y)g'(Q)> ~ (~/c?y)g'(Q')cn(Q, dQ', D')-Cv(Q) 
s(~) 

for QeD x (~0, m). From (4) and part (b) we may find a C =  C(m) such that 

(~?/O y)g' (Q ) > Ch (Q ) - Cv (O ). 

Theorem 4 implies that v(Q)< Cg'(Q) for all QeD". It now follows from (10) 
that 

h(Q)<Cd(Q)-*g'(Q*+(O, d(Q))) for QeD". 

From Lemma 1 we have 

h(P' + (O, r))<<-Cr*-"co(P m, D(P', r), D'). 

From this estimate and (15) we find 

a(A(P',r)) A(P',~)5 [(Ofl?n)g'(Q)]2da(Q) < (A(P',r) C ~ (O/On)g'(Q)da(Q)) 2. 

Part (c) follows now from (8), and the lemma is proved. 

Proof of Theorem 3. Covering ~?D by simple Lipschitz domains as in the proof 
of Theorem 1, we obtain Theorem 3 directly from Lemma 9. 

Proof of the Corollary. We observe the following consequences of Theorem 3. 
First, from a theorem of Gehring [4] and part (c) 

[(c~/c~n)g(Q )]p da(Q ) < oo 
OD 
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for some p > 2 .  H61der's inequality now gives the first part of the corollary. 
Since co(P, .) and a are comparable in the sense of [3, p. 248], Lemma 5 of 
[3] then yields the second part of the conclusion. 

We shall now obtain some lower bounds for the exponents appearing in 
the corollary. For  0 < 0 < 7z, let 

D(O)={P=(x,y) '[x[<l,  (x2_l+y2)l/EcosO<y<l} 

and define v (P) = Re (y + i x,_ 1 )o c0), where p (0) = (2 0 ) - 1 ~. Then v is non-negative 
and harmonic in D(O), and v has vanishing boundary values on 

0'D(0)---{(x, y) 'y=(x2_l  +yZ),/2 cos 0}. 

Fix a point PonD(O) and put g=G(., Po), where G is the Green's function of  
D(O). By Theorem 4 there exists a number C > 0  and a neighborhood V of  
?'D(O)n{(x, y) ' lx[< 1/2} such that 

(16) C- 1 v (P) < g(P) < Cv (P) 

for all PeVcnD(O). Now for 0 < e < l / 2 ,  let 

E(e)={(x,y)6?'D(O)" [xl<l/2, [x ._l l<e} 

and notice that there is a number C--C(O) such that 

C-1 ~____ o (E(e))____ Ce. 

From (16) follows the existence of a constant C-- C(O) such that 

C -  1 ~o(o) ~ co (Po, E(e)) < C~ ~176 

Let ~ and fl be as in the corollary. Letting 0~7~ and 0 ~ 0  respectively, we 
see that, in general, ~ > 1/2 and fl > 0. 
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