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The object of this paper is a study of the relation between the harmonic
measure of a set and its (n— 1)-dimensional Hausdorff-measure, n=2. In this
direction we have obtained the following result.

Theorem 1. Let D= R" be a Lipschitz domain. Then a Borel measurable set Ec 6D
is of harmonic measure zero with respect to D if and only if E is of vanishing (n—1)-
dimensional Hausdorff measure.

The case n=2 has been settled in [10, p. 125], and the situation when D satisfies
various additional conditions has been discussed in [2], [14], [15]. At the same
time, even the case when D is a C!-domain is new when n> 2, as far as we know.

In [6] it is proved that if u is non-negative and harmonic in a Lipschitz domain
D then u has a finite non-tangential limit at each point Q€é D, except for a set
of vanishing harmonic measure. Hence we have the following consequence of
Theorem 1.

Theorem 2. Suppose u is non-negative and harmonic in a Lipschitz domain D.
Then u has a finite non-tangential limit at every point Qe 0D except for a set of
vanishing (n — 1)-dimensional Hausdorff measure.

Let o be the surface measure of 0 D. Since Lipschitz functions are differentiable
almost everywhere (see [12, p. 250]) it follows that for all points Q on d D outside
of a set of vanishing o-measure there is an inward unit normal, which we denote
by ny. If E€R" we denote the harmonic measure of Eng.D with respect to D
by w(:, E). For the basic properties of w, see [5, Chapter8]. We can now formulate
a more precise version of Theorem 1.

Theorem 3. Let D= R", n=3, be a Lipschitz domain and let G denote the Green’s
Sfunction of D. Let Pe D and put g=G(-, P). Then there exists a set EcdD such
that a(E)=0, and for all Qe D —E the limit

lziH)l (0/0ny)g(Q+tny)

exists. If we denote this limit by (8/0n)g(Q), then the following results hold.
(a) If QeOD—E then 0<(0/dn)g(Q) < 0.
(b) Let o, be the surface measure of { PE R" : |P|=1} and define y, =0, (n—2)]*.
If Fc 0D then
(P, F)=1y, | (0/0n)g(Q)da(Q).

F



276 Bj6érn E.J. Dahlberg

(c) There is a number C>0 such that if P'e6D and 0<r<1, then
a(4(P,n) | ) ((0/omg(@)Fda(Q)<C[ | (9/on)g(Q)da(Q)],
)

A(P',r A(P',r
where A(P',r)={QedD:|P'—Q|<r}.

Theorem 3 makes it possible for us to compare the harmonic measure of a
set with its surface measure.

Corollary. Let D be as above and let PeD. Then there are numbers o.>1/2, >0,
and C>0 such that if Fc 0D then

w(P, F)SC(o(F)F and o(F)SC(w(P, F)).

Remark. The results of Theorem 3 and its corollary also hold in the case n=2,
but the proof given here for #=3 must be modified. For other results in the
plane case, see [13].

We say that a bounded domain D < R" is a Lipschitz domain if to each point
Qe d D there corresponds a coordinate system (£, n), e R" 1, ne R, and a function
@ such that [p(&) — @(&,)| £ C|E— &, | forsome Cand DAV ={(&, n):p(&)<n}n}""
for some neighborhood V of Q.

We will, from now on, assume #=3 unless otherwise mentioned. Let L be
the class of functions in R"~! such that

lell=sup [x=y["*lo ) - <0, 9(©0)=0,
support o= {xeR" ™" : |x|<1}.
We define
S@)={(x, () : |x|=1}.
If m>0 we put

L(my={gpeL: |lp||<m} and TI'(m)={(x,y):mlx|<y}.

If peL(m) and (x, y)eI (m)+ (&, ¢(¢)) for some EeR"!, then y>¢(x). Let
A=A(m)=(m+2)"1. Then for all #>0
) {5, 9) x| SAn@=A)nLy} T (m).

From (1) follows the existence of numbers A=A (m) and B=B(m), such that
10471 < B<4 4, with the following property: If g€ L(m) and

D(p, m)={(x,y): |x|<10 and @(x)<y<mA},

then D(¢p, m) is star shaped with respect to P,,=(0, mB).
If Qe R", r>0, we put B(Q, r)={PeR": |P—-Q|<r}.

Lemma 1. Let m=1 and pcL(m). Let G be the Green’s function of D= D (@, m).
Then there are numbers 6, , C,, and C,, which depend only on m, with the following
property. If QeS(p), 0<p<d,, then

(2) C()-lpn_zG(Q'*_(O’ Clp)’ Pm)gw(Pm’ B(Qa p))§C0pn_2G(Q+(O, Clp)7 Pm)
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Proof. Let 0=(¢, ¢(¢))eS(e) and put
CQ, O)={(x,y): |x—¢&|<ie, (1=Ae<y—(&)<(B+2)e}

where 1 and B are as above. Then there is a d=45(m) such that 0<d<1 and
C(Q, &)= D for all QeS(p) and 0<e<d. Suppose |z| <2 and put P=(z, ¢(2)).
For 0<i1<1, let

P=(x,y)=tP,+(1—1)P.
If |z—¢| <1 then |x,—¢] <2t and
(B=2)tm=y,—o(E)S(B+2)im.
Choosing t=¢m™ ' (B—2) ! =ce, we find that P,e C,(Q, &) when |z—¢|<t, where

(@ a={n 0 —ElShe  sSr—0(@)ShB+)

Let G’ be the Green’s function of C(Q, ¢). Then a change of scale shows the
existence of a number C=C(m) such that

Ce" 2 inf {G' (Q+(0, &), P): PeC,(Q, &)} 21.

Now the function u,: P->G(Q+(0, ¢), tP,,+(1—1)P) is superharmonic in D.
Furthermore if P=(z, ¢(z))e S(¢) and |z—¢&|<ce=1 then

Ce"2u(P)2Ce"2G'(Q+(0, ¢), P)21.

The minimum principle now gives w(P, B(Q, ce))< Ce" ?u,(P) for all PeD.
Taking P=P,, gives the right-hand inequality of (2).

Let K(p)={(x, y) : [x|<p/2, —2mp<y<2C,p}. If 0<p<p,, there is a num-
ber C,=C,(m) such that if Q=(¢, @(£))eS(¢) then D(Q, p)<(K(p)+Q)ND,
where D(Q, p) is the ball with center Q + (0, C, p) and radius C,p. Since G(P, P’)
<|P—P'J*7" it follows that

sup {G(P, Q+(0, C,p)) : PedD(Q. p)} SC2 7",

where C only depends on m. Let o’ be the harmonic measure of the set {(x, y) : |x—¢|
<pl2, y=—2m+ (¢ )} with respect to K(p)+ Q. Then the maximum principle
implies that w (P, B(4, p))=w'(P) for all PeD(Q, p). Since there is a number
¢>0 depending only on m such that o' (P)=c for all Pe D(Q, p), the maximum
principle now gives

"G (P, a+(0, C;p)< Co (P, B(Q, p))

for all PeD—D(Q, p), where C only depends on m. Taking p, so small that
P,eD(Q, p), we obtain the left-hand inequality of (2), and the lemma is proved.
We will need the following elementary estimate.

Lemma 2. Let mz=1, pe L(m), and D= D(p, m). Then there is a number c=c(m)
>0 such that (P, So(@))Zc, where So(@)={(x, @ (x)): |x|<3}.

Proof. Put Q={(x, y) : |x|<3, —2m<y<(B+1)m} and let v be the harmonic
measure of {(x, y):y=—2m}n3Q with respect to Q. Then w(-, So())|Q2=v
and hence w(P,,, So(¢))2v(P,)>0; the lemma is proved.
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Lemma 3. Let m=1, pel(m) and D, (e, m)=D(p, m)— B(P,,,m), and put
g=G(, P,). Then there is a constant C=C(m) such that (6/0y)g+C=20 in
D, (@, m).

Proof. Suppose first that ¢ C*(R"~')nL(m). Since we have
0<g(P)<|P—P, ™" forall PeD(p, m)

it follows from the Schauder estimates that there is a constant C=C(m) such
that sup {|(0/0y)g(P)|: PedB(P,,m)}<C. Since g can be extended across
both {(x, 0) : 1 <|x|<10} and {(x, Am) : |x| <10} by reflexion, it follows from
[1, Thm. 7.3] that

sup {[(0/0y)g(P)|: PedD(p, m)—{(x, p(x)) : |x|£2} S C=C(m).

Since (0/0y)g has non-negative boundary values on the rest of the boundary
the lemma follows in this case. If peL(m) and ¢ is not assumed to be of class
C®, we can find a sequence {(pi} such that

0,eCy{xeR" 1 |x|<1}, ¢;z¢, |oll<m,  ¢;—¢ uniformly.

If G, denotes the Green’s function of D(¢;, m) and g;=G(:, P,,), then [3, Theorem
5.15] gi—g uniformly on compact subsets of D(p, m)—{P,}. Hence by the
Poisson representation formula (6/¢y)g,—(8/0y)g uniformly on compact subsets
of D(p, m)—{P,}. Therefore the lemma follows from the previous case.

Let ¢ denote the surface measure of 6 D (¢, m), e L(m). Let E<=S(¢p) and let
E'={xeR""': (x, ¢(x))eE}. Then

o(E)={) 1+|grad ¢|*dx.
S

Therefore there is a number C= C(m) such that

3) C'r" ' <o (B(Q, nndD)SCr"~"  for QeS(g).
If EcR" we define o(E)=0(EndD(¢p, m)).

Lemma 4. Let m=1 and oe L(m). If Ec S(¢) and 0(E)=0, then E has harmonic
measure zero with respect to D(¢@, m).

Proof. From (3) and Lemma 1 follows the existence of a constant C=C(m)
such that

@ lim sup %%@g C lim sup (2/2))g (Q+(0, 1)

From Lemma 3 and the fact that (6/0y)g has finite non-tangential boundary
values except on a set of harmonic measure zero [6], it follows that

lim sup @ (Py> B(Q, 1))/ (B(Q, 1)<

for all Qe S() except for a set of harmonic measure zero. Asin [11, Theorem 14.5],
the conclusion of the lemma now follows at once.
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Lemma 4 implies the existence of an fe L' (S(¢), 6) such that
w(P,, E)=|fdo
E

for all Ec S(¢). We notice that /=0 and

5 { fde<st.

S{e)

We will now show fe L*(S(¢), o).

Lemma 5. Let m=1 and ¢eL(m). Then there is a number C=C(m) such that

(P, E)YSC)/ o(E)
Jor all Ec S(gp).

Proof. Let g=G(-, P, ), where G is the Green’s function of D{(¢p, m). Then there
is a function g; harmonic in D (g, m) such that g(P)=|P—P,[> " +g,(P). From
Lemma 3 it follows that there is a constant C; = C, (m) such that (8/6y) g, +C; =20
in D(¢p, m). Since

sup {|g,(P)|: PeD(p, m)}=max {|P—P,[>"": Ped D(¢p, m)}

there is a constant C,=C,(m) such that h(P,)<C, where h=(0/0y)g, +C;.
Let 0<t<1. Since D(¢, m) is star shaped with respect to P, we have

hP)= | h(tQ+(1—1t)P,)0(P,,dQ)2 ) h(tQ+(1—1)P,)w (P, dQ).
S(e)

oD{(p,m)

Putting

F(Q)=1i£rijonfh ((1 —%) Q+—}1; Pm> . QeS(op),
we see from [6] and Lemma 3 that

F(Q)=lintlﬂ%up h(QO+(0,1) ae [w(P,,)]

By (4) and the definition of / there exists a constant C,=C,;(m) such that
Cy(F+Gy)=f a.e. [w(P,,, -)]. Fatou’s lemma and (5) now gives

(©6) § A(Q)o(P,,dQ)= | fPds<C=C(m).

S(e) 5(o)
If EcS(¢) we have w(P,, E)=[fde<C]/ a(E) by Hélder’s inequality. This
E
proves the lemma.

Lemma 6. Suppose D, and D, are bounded domains which are regular for the
Dirichlet problem. Assume that Ec0D;NdD, is closed and that there is an open
set V with ECV and VD, =VnD,. Let w; denote the harmonic measure of E
with respect to D;. Then w,(-, E)=0 if and only if w,(-, E)=0.

Proof. Suppose w, (-, E)=0, and notice that
Ling w,(P, E)=0 forall QedD,—E.
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Let Q=R"—E; for PeQ define u(P)=w,(P, E) if PEQND, and zero otherwise.
Then u is continuous and subharmonic in Q. Define ¢ (P)=0 if PeE and ¢(P)
=u(P) if PedD,—E. Then ¢ is continuous in D,. Now let v be the harmonic
function in D, with boundary values ¢. Fix a point P,e D, and choose a sequence
{U;} of open sets such that w,(P,, U;)->0 and U;SE. Then the maximum
principle implies that ulD1 Sv+o,.(,, U;). Letting j— oo, we have u|D1 <v. Then
since VNnD,; =VnD, and EcV, we have Il)% w; (P, E)=0 for all Qe Vnd D, and

hence w,(:, E)=0. Since the other direction is analogous we have proved the
lemma.

Let D<= R" be a Lipschitz domain. We say that D is simple if there is a function
@€L(m) and a number >0 such that D is congruent to {$P: PeD(p, m)}. In
this case, for 0 <z <1, we let S(D, t) be the part of the boundary of D correspond-
ing to {(x, (x)) : |x|<¢}. If D is a Lipschitz domain, it follows from the definition
that there are finitely many simple Lipschitz domains D,, 1 <i< N, such that for
each i there is an open set V; with the property that D,nV,=DnV, and

) S(D,,2/3)cV;ndD and ) S(D;,4)=4D.

We can now prove Theorem 1.

Proof of Theorem 1. From (7) and (3) it follows that a set Ec D is of vanishing
(n—1)-dimensional Hausdorff measure if and only if ¢(E)=0, where ¢ is the
surface measure of 0 D.

To prove Theorem 1, we see from (7) and Lemma 6 that it is sufficient to
show that, if peL(m) and E<S(¢), then E is of harmonic measure zero with
respect to D(p, m) if and only if 6(£)=0. By Lemma 4, in order to prove this
equivalence it is enough to show that w(-, E)=0 implies ¢(E)=0. To prove
this, we argue by contradiction.

Suppose there is a number m=1, an element peL(m), and a set Ec S(¢p)
such that ¢(£)>0 but w(P,,, £)=0. Put

E'={(x,0):|x|]<1 and (x, p(x))eE}.

Let |F| denote the Lebesgue measure of a set F<R"~'. Then |E’|>0 and we
may without loss of generality assume 0 is a point of density of F', i.e.

M:l where  B(r)={xeR""': |x|<r}.

lim
r=0  [B()|
Put e,={xeR""':|x|<1/2 and rxeE’}. Pick a Lipschitz function F in R""*
such that F(x)=1 for |x|<2/3 and the support of F lies in {xeR""': |x|<1}.
Define ¢,(x)=r"'F(x)¢(rx). Then ¢,eL and |j¢,|<C||¢|, where C is inde-
pendent of r. Let k& be a number such thatoi‘fgl loll<k. IfE,={(x, ¢,(x)) : x€e,}

then by Lemma 6 the harmonic measure of E, with respect to D(g,, k) is zero.
From Lemma 2 we have

w(Pk’ Sr)gc>os
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where S,={(x, ¢,(x)): |x|<1/2} and C is independent of r. From Lemma 5 we

have
172 ’ 172
¢ (1_M) o

w(Pk’Sr)écl/ G(Sr_Er éC\B(%)_er |B(r)|

as r—0. This yields a contradiction, and hence completes the proof of Theorem 1.

In the next lemma we shall compare the Green’s functions of two Lipschitz
domains with intersecting boundaries. The proof will use a result of Nam, which
was pointed out to the author by Professor PAUL GAUTHIER.

Lemma 7. Let D, and D, be two Lipschitz domains in R", n>2, and let g; denote
the Green’s function of D; with pole at Q;eD,, i=1, 2. Suppose there is a domain
W< D,nD, such that for some open set V we have W<V, VAD,=VnD,, and
QeD,—V, i=1,2.

Then there is a constant C>0 such that

g (P)YSCgy(P) forall PeW.

Proof. Assume the conclusion is false. This means there is a sequence of points
P,e W such that

llm g1 (Pn) —

o gy (Py)

We may without loss of generality assume that lim P,=Q, exists. Since Q;¢ W

for i=1, 2, we must have Q,60 WndD;néD,. From the definition of a Lip-
schitz domain follows the existence of a neighbourhood U of Q, such that U=V
and UnD, is a Lipschitz domain. Let g denote the Green’s function of UnD, .
Since the Martin boundary of a Lipschitz domain coincides with the Euclidean
boundary [7, Theorem 4.2], it follows from the computation in [9, p. 223] that if
QeUnD, then

e gi(P,)

Here K. is the kernel function of D, with pole at Q,, normalized by K, (Q;)=1,
and h; is the harmonic function in UnD, with boundary values equal to K;(Q)
when Qed(UnD,)nD, and zero otherwise. Hence #,<K; in UnD;. Suppose
h(Q)=K,(Q") for some Q'eUnD,. From the maximum principle it follows
then that 4,(Q)=K;(Q) for all Qe UnD,. Hence

Jm K(Q)= lim h(Q)=0.

=K(Q)—hi(Q).

Since éiy}’ K(Q)=0 for all PedD;—{Q,} we obtain K;=0, which is a contra-
diction. This shows that 4,(Q)< K;(Q) for all Qe UnD, . Hence

L8P, 0) o
n= o gl(Pn)
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for all Qe UnD;. This gives
tim &) _ o
nmo g2 (Pn)
which contradicts the assumption in the beginning of the proof.

We shall next compare positive harmonic functions which simultanously
vanish on a part of the boundary.

£l

Lemma 8. Let ¢ : R"' >R, n22, be a Lipschitz function such that ¢(0)=0.
Suppose that positive numbers a, b and ¢ have been chosen such that

(i) a>2sup {|o(x)|: |x|<4b}, and

(ii) the domain D={(x, y) : ¢(x) <y <4a, |x|<4b} is star shaped with respect

to Py=(0, ¢).

Put Dy ={(x, ) : o(x) <y<a, |x|<b}. Then there is a constant C>0 such that
if u and v are non-negative harmonic functions in D which vanish on {(x, ¢(x)): |x|
<4b} and which satisfy u(Py)<v(P,), then u(P)Y< Cu(P) for all P in D, .

Proof. Let D;={(x, y) : ¢ (x) <y<ja, |x| <jb}. By a result of HUNT and WHEEDEN
[7, (2.4)] there exists a constant C, such that

u(P)SC,u(P,) forall PeD,.
Also from Harnack’s inequality there exists a constant C, >0 such that
v(P)=Cyv(P,) forall PeT,

where T={(x, 3a): |x|<3b}. Let g denote the harmonic measure of 8D,
—{(x, (x1)) : |x|<3b} with respect to D;, and let & denote the harmonic
measure of T with respect to D;. Then u<Ciu(Py)g and v= C,v(Py)h in D;.
To prove the lemma it is now sufficient to show that there is a constant C such that
g(P)S Ch(P) for all PeD,.
Define
Y (x)=min (p(x), a—f|x]), xe R"~*.

It is easily seen that we can choose « and f such that ¥ (x)=¢(x) for |x|<2b
and ¥ (x)<@(x) for |x|>3b. With this choice, let
U;={(x,y): y(x)<y<ja, |x|<jb}.

Choose a point Q, €U, — U, and denote by G, the Green’s function of U, with
pole at Q,. We now extend g to U, by defining g(P)=0 if PeU,—D;. With
this extension g is subharmonic in Us. Since inf {G, (P) : PedUsnD,} is positive
it follows from the maximum principle that

g(P)SC,G,(P) forall PeU;.

Let Q,eD;— D, and denote by G, the Green’s function of D; with pole at Q5.
Let B be a ball with center at Q, such that B D;—D,. We now observe that

sup {G,(P): PedB}<oo, inf{h(P): PedB}>0.

Since the boundary values of G, vanish on dDj;, it follows from the maximum

principle that there is a constant C, such that A(P)=C,G,(P) for all Pin D, — B.
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If we now use Lemma 7 to compare G, and G, in D,, we find that g(P)< Ch(P)
for all Pe D,, and as noted above, this proves the lemma.
The next theorem was formulated in [8, Thm. 2.2] but Professor KEMPER has

pointed out to me in a conversation that the proof contains a mistake on page
253, line 1.

Theorem 4. Let D<= R", n22, be a Lipschitz domain and let V be an open set such
that V0D Q. Suppose W is a domain such that W=D and W<V, and let P,
be a point in W.

Then there is a constant C>0 such that if u and v are non-negative harmonic
Junctions in D which vanish on VoD and satisfy u(Py) <v(P,), then u(P)< Cv(P)
for all PeW.

Proof. If Q is congruent to a domain of the type indicated in Lemma 8, we denote
by I'(Q) the part of 0Q corresponding to {(x, ¢(x)): |x| <b}. We notice that
Theorem 8 follows from Harnack’s inequality if 0 Wnd D =¢. Otherwise we can
find finitely many domains Q;, each of them congruent to a domain of the form
indicated in Lemma 8, such that | JI'(2;)> WnéD. The theorem now follows

by repeated application of Harnack’s inequality and Lemma 8.
The proof of Theorem 3 will be based on the following lemma.

Lemma 9. Suppose that Dc R", n23, is a Lipschitz domain and suppose further
that there is an open set V and a function pe L(m) such that

DV=D(p, m)nV
and
S'(@)={(x, o(x)) : |x|£2/3} = VnéD.

Let o denote the surface measure of D, let

So(@)={(x. 9(x)) : |x| =4},

and for Qe S(p) let ny denote the unit inward normal of D, whenever it exists.
For Pe D, define g=G (-, P), where G is the Green’s function of D. Then the Jfollow-
ing conclusions hold.

(@) There is a set Ec S, (¢) such that 6(E)=0,

ljf(l} (0/ong)g(Q+1tny)=(0/0n)g(Q) exists,
and
0<(0/dn)g(Q)<o0  forall QeSy(¢p)—E.

(b) If F<S,(p) then
(P, F, D)=y,,£(a/6n)g(Q)do(Q).

(¢) There is a number C>0, depending on D, and V, such that if P'€ Sy(®)
and 0<r<1, then

o (4 (P, 1)) f)[(ﬁ/an)g(Q)]sz(Q)éC[ J (6/0n)g(Q),d0(Q)]2,

AP, A(P,r)

where A(P', r)=B(P’, \ndD.
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Proof of part (a). Put D'=D(¢p, m), and let G’ denote the Green’s function of
D’. Notice that if we take e€(0, 1) sufficiently small and put

D' ={(x,y): [x|<23+e  @x)<y<o(x)+e),

then D"<DnD’ and {P, P,,} =R"—D". Since g and g’'=G'(:, P,,) are positive
and harmonic in D” and have vanishing boundary values on {(x, y) : y=¢(x),
|x|<2/3+¢} it follows from Theorem 4 that there is a neighborhood U of S'(¢)
and a number C> 0 such that for all Qe UnD

®) C'g(Q)=g(Q)=Cg'(Q).

We may assume this inequality holds for all Qe D", if necessary by making ¢
smaller.
For Q=(x, y)eD, we denote by d(Q) the distance from Q to ¢D, and if
QeD(p, m) we let Q* denote the point (x, ¢(x)). Pick f such that
w(P,, E,D)=|fdo
E
for all EcS(g). If

f*(Q)=sup{r*‘" | f(P’)da(P’):O<r<1},

A@.r)
then it follows from (6) that

©) § (f*(@))de(Q) <.

S(o)

Harnack’s inequality and the Schauder estimates give

(10) |grad g(Q)| < C(d(Q))™'g(Q*+(0, d(2)))

for all Qe D”. Hence from (7) and Lemma 1 we see that if Q€S (¢) and Q'eD”
N(K+Q), then

(11) lgrad g(@N| < C/*(Q),

where K={(x, y) : 2m|x| <y}. From (11)it follows that |grad g|is non-tangentially
bounded a.e. with respect to ¢ at S’(¢). This implies, using [6], that grad g
has a finite non-tangential limit a.e. on S’(¢). Hence part (a) follows from Theo-
rem 1.

Proof of part (b). Extend g to all of R" by putting g =0 outside D. Then g is contin-
uous and subharmonic in R"—{P}. Since

(12) gQ)=|P—QF "= | |P'—QF "w(P,dP', D)
7
for all Qe R"— (6 DU{P}), and g(Q")=0 for all Q'€dD, Fatou’s lemma implies

[ |PP—Q "w(P,dP', D)< forall Q'€dD.
oD
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Let Q'€d D, and let I be a truncated cone with vertex at Q' such that (i) [ — {Q'} = D,
and (if) there is a number C for which d(Q)=C|Q —Q’| for all QeI'. If P'eéD
and QeI then

|P—Q'|S|P'=Q|+|0—Q'|S|P' - Q[+ Cd(Q)S(C+1)
Hence the dominated convergence theorem implies that

g(Q)= |P~Q'|2*"—ajb |P'— Q' "w(P, dP’, D).

P -9

Consequently (12) holds for all Qe R"—{P}. Therefore, if he CZ (R") and P does
not belong to the support of 4,

(13) [ 2(@)4h(Q)dQO=7," | h(Q)w(P, dQ, D),
D oD
where 4 denotes the Laplace operator.

Suppose now the support of £ lies in the set

{, ) x| £2/3, () —e2 <y < @(x) +¢/2.}
Then

(14 If)g(Q)Ah(Q)dQﬂiygD[ g(Q)4r(Q)dQ,

where Dy is defined by the following procedure. Pick a function ye CP(R"™')
and put @g= ys* ¢, where y5(x)=S5"""x(S"'x). Then

los—@llo—0 as S0, sup lgrad o, < oo,
and ;1_% grad @g(x)=grad ¢(x) a.e.

We now define ys=¢5+2|lps—¢||,, +S and put
Ds={(x,y): x| <23+ ys(x)<y<is(x)+2¢/3}.

Notice that if S is sufficiently small then Dg=D”. Green’s formula now gives

Df g(Q)4h(Q)= | h(d/dn)gda— | g(8/0n)hda=A(S)+ B(S),
s As As

where we have put Ag={(x, ¥5(x)), |x|<2/3+¢}. We observe that B(S)—0
as S—0. Put

Fs(x)=(1+|grad ys|)'?,  Hs(x)=(grad g(x, ¥5(x), n,(x)))
where n, denotes the inward unit normal to d D; at (x, y5(x)). Then
A(S)=] h(x, y5(x)) Hs(x) Fs(x)dx.
The proof of part (a) shows that

Hg(x)—(0/on)g(x, p(x)) a.e.
and

Fg(x)—(1+|grad @ (x)[*)'? a.e.
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as S—0. From (9) and (11)

(sup [Hs(x)|>2dx<oo
lx|<2/3+¢ \0<5<é

if ¢ is sufficiently small. The dominated convergence theorem together with (14)
now implies that

lf)g(Q)A H(Q)dQ=y, | h(Q)(8/on)g(Q)da(Q).

S(ep)

Part (b) then follows from relation (13).

Proof of part (¢). Suppose P'eS,(¢p) and O<r<e. Then from (6) the function
Q)= [ (9/omg' (Q)w(Q,dQ’". D)

A(P',r)

is non-negative and harmonic in D’. Since the boundary values of /4 vanish
outside A(P’, r) it follows from [7, (2.4)] and [6, p. 311] that

(15) h(P,) S Co(P,, AP, 1), D'Yh(P'+(0, r)).

Let D, (¢, m) be as in Lemma 3, and let v be the harmonic measure of 8D, (¢, m)
—{(x, @(x)) : |x| <2} with respect to D, (¢, m). Then from Lemma 3 there is
a number C=C(m) such that

©loy)g' @)z | : (0/0y)8' (@) w(Q, dQ', D) — Cv(Q)

S{e

for Qe D, (¢, m). From (4) and part (b) we may find a C= C(m) such that

(0/0y)8'(Q)2 Ch(Q)—Cu(Q).

Theorem 4 implies that v(Q)=<Cg’'(Q) for all Qe D". It now follows from (10)
that

hQ)SCd(Q) ' (Q*+(0.d(Q))) for QeD".
From Lemma 1 we have
h(P'+(0,N)=Cr*"w(P,, D(P', 1), D).

From this estimate and (15) we find

a(4P, ) | [(6/6n)g’(Q)]2do(Q)§C< f (6/8n)g’(Q)do(Q)>2.

AP',r) AP,r)
Part (c) follows now from (8), and the lemma is proved.

Proof of Theorem 3. Covering D by simple Lipschitz domains as in the proof
of Theorem 1, we obtain Theorem 3 directly from Lemma 9.

Proof of the Corollary. We observe the following consequences of Theorem 3.
First, from a theorem of Gehring [4] and part (c)

a{) [(0/0n)g(Q))Pda(Q) <0
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for some p>2. Holder’s inequality now gives the first part of the corollary.
Since w(P, -) and ¢ are comparable in the sense of [3, p. 248], Lemma 5 of
[3] then yields the second part of the conclusion.

We shall now obtain some lower bounds for the exponents appearing in
the corollary. For 0<8<m, let

D(@)={P=(x,y): |x|<1, (x2_;+y*)'?cosb<y<1}

and define v(P)=Re (y+ix,_,¥®, where p(0)=(20) " n. Then v is non-negative
and harmonic in D(6), and » has vanishing boundary values on

a'DO)={(x,y) : y=(x2_1 +)*)""* cos 6}.

Fix a point P,e D(0) and put g=G(:, P,), where G is the Green’s function of
D(#). By Theorem 4 there exists a number C>0 and a neighborhood ¥V of
0" D(0)n{(x, y) : |x|£1/2} such that

(16) C™'o(P)=g(P)sCu(P)
for all PeVnD(8). Now for 0<e<1/2, let
E(e)={(x,»)ed’ D®): |x|£1/2, |x,_|<¢}
and notice that there is a number C= C(f) such that
C'e<o(E(e))=Ce.
From (16) follows the existence of a constant C=C(f) such that
CleP<w(P,, E(e))SCe?.

Let o and f be as in the corollary. Letting 0—»n and 6—0 respectively, we
see that, in general, «>1/2 and > 0.
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