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Abstract  

The entropy of a plane curve is defined in terms of the number of intersection 
points with a random line. The Gibbs distribution which maximizes the entropy 
enables one to define the temperature of the curve. At 0 temperature, the curve 
reduces to a straight segment. At high temperature, the curve is somewhat chaotic 
and "behaves like a perfect gas". 

We attempt to show that thermodynamic formalism can be used for the study 
of plane curves. The curves we discuss have finite length, unlike MANDELBROT'S 
fractal curves [1], yet we feel our approach to the mathematics is not far from 
his. 

1. R a n d o m  l ines  

Consider a plane curve F of finite length and let Y2(F) be the set of  straight 
lines D which intersect F. Denote by M(F) the family of probability measures 
on ~ ( F ) .  Suppose one tosses, in the sense of tossing a coin, a straight line D 
on / ' ;  then we let ] F n  D] represent the number of  intersecting points. It is 
well known that, for large N and randomly chosen lines D, . . . .  , DN, the average 

1 N 

is approximately equal to 2 ]/-']/]bKI, where I F[ is the length of f and 16/'t 
the length of the boundary of the convex hull K o f / ' ,  see [4]. (Notice that for 
all curves, 2 I FI/I 6/'1 ~ 1, with equality occurring if and only i f / "  is a straight 
segment.) 

The usual way to justify this is to endow -Q(F) with the "natural"  probability 
measure defined as follows. Let 

xcos  0 § y sin 0 -- ~ = 0 
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be the Cartesian equation of the straight line D. I f  we identify couples (~, O) and 
(--e,  0 + z 0, the set of all straight lines appears as a M6bius variety on which 
we can define the Lebesgue measure d e dO. The natural probability is then 

dodO 
d p - -  

meas ~ ( F )  " 

A theorem of STEINHAUS [4] (see also SANTALO [3]) asserts now that the expecta- 
tion of the number of intersecting points of  D with F is 

.f I F A Df dpW) 2 l r l  

The underlying assumption in this "p roo f "  is that the natural measure p is 
the only one which mimics reality. We propose to enlarge the situation and to 
consider all probability measures mE M(F)  such that 

f ] F , ~  D] din(D) --  2 I r l  
oe~(r) I 6KI ' 

or more conveniently 

where 

2 I F ]  
kink = 

k=l I6KI ' 

m k = m{D E .(2(/')/] D A / ' 1  = k}. 

We denote by M * ( F )  the set of  all such probabilities. 

2. Entropy 

Let m E M*(F). The m-entropy of F can be defined as 

SIn(F) = -- ~ mk log mk. 
k 1 

Gibb's  equilibrium measure g C M*(F) maximizes the entropy; the determination 
of g is classic. Use of Lagrange multipliers leads to 

g k  ~ C "  e -t3k 

where C is determined by the condition ~ gk ---- 1. Hence 
k=l 

C - l = ~ e  ~k 1 
k=l e ~ -  1' 

this being the partition function. As for/3, we have 

2 1 r l  
kgk --  I~KI k=l 
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whence 

2 f/'l  
fl---- log 2 I/'1 -- 16Kl " (1) 

The g-entropy Sg, which we now denote by S, is then 

, 2 1 r l  /3 
S = - - k = ,  ~ g k l o g g , = ' o g ~ + e ~ Z  1" (2) 

Notice that g~ @ 0 for all k ~ 1 so that, strictly speaking, our computation 
is only valid for the class of curves which can be intersected in a countable number 
of points by a suitable straight line D. Yet the above entropy makes sense for all 
rectifiable curves. We shall agree to extend equality (2) to all rectifiable curves. 

The number S will be called the (intrinsic) entropy o f / ' ;  it plays the same role 
as the topological entropy in dynamical systems. 

It should be underlined at this point that /3 > 0, whence 

0 < / 3 <  1 
~ e  ~ -  1 

We see easily that S ~ O  for all / ' , and S--~O if and only i f / ' i s  a straight 
line. As an exercise, one can verify that i f / '  is a portion of an algebraic curve 
of degree v, then S ~ l + log v. The higher the entropy, the higher the degree, 
so in some sense entropy measures complexity. 

3. Temperature 

Physicists usually identify the exponent fl in Gibb's measure with the inverse 
of the absolute temperature T. (Actually fl = (koT)  -1,  where ko is the Boltz- 
mann constant which fixes the scale of temperature; here we choose ko = I). 
Equation (1) gives the temperature of the curve /', namely 

2 
T ~  (log2 , / ,  ' I / " [~K[) - i .  (3) 

The temperature T is obviously non-negative for all curves, and is 0 if and only 
if 2 I/'1 = I Ogl .  In other words, only straight segments exist at T =  0, and 
then S = 0. (This is in accord with Nernst's thermodynamic assumption.) 

4. Volume and pressure 

To pursue the parallel with thermodynamics, one is led to identify the length 
o f / "  with its "volume" V. The "pressure" P is then defined by [6KI -~. The higher 
the pressure, the more / '  is confined to a small area. Equation (3) becomes 

i 2PV )-l 
T = :~log 2---~Z 1 ' 
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or alternatively 

2 P V  = (1 - -  e - l / r )  -1 . 

This equation of state contains Boyle's law for high temperatures. Indeed, as T 
tends to infinity PV~-~ �89 T, so at high temperatures curves behave as perfect 
gases. 

We are aware of  the limitations of  our presentation. The definition of P and 
V (or of  the product PV)  is obviously artificial and boils down to the fact that 
the partition function depends on one variable only. 

Another way to underline the difference with traditional thermodynamics 
is the following. Define the heat Q by 

Now 

and hence 

dO=rdS.  

2 1 r l  , fl e ~ fi 
S = I o g T ~ -  + e~--~- 1 log ~ + e' - l '  

1 ( 1 )  
d O = - T d S = d  ~ �9 

On the other hand, the total energy U of the curve is by definition 

2 1 / '  I e '  
U = "~ kg k --  = _ . 

~-1 [ ~ K  I e fl 1 

Hence dU = dQ, whereas in traditional thermodynamics dU = dQ --  P dV. 

5. Local temperature and spirals 

Let F be a curve and suppose A E F. Let M N  be a subarc containing A. 
We define the upper temperature T*(A) and the lower temperature T , ( A )  at the 
point A by 

T*(A) = lira sup T ( M N ) ,  T,(A) = lim inf T ( M N ) .  
M-~ A,N-+ A M-> A'N-+ A 

In case of  equality, we say that the temperature is T(A). I f  A is an endpoint of  F, 
the definitions are modified to the form 

T*(A) = l imsup  T(MA) ,  T , ( A )  = l i m i n f  

These last definitions hold whether or not the endpoint A belongs to F. 
We apply these definitions to the particular case of  finite length spirals F 

which converge to the center 0 without ever reaching it. Typically, let 0 = f(O) 
be the polar equation of such a spiral. We assume that f decreases to 0 as 0 in- 
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creases to infinity, that f is continuous and differemiable, and that 

f , l (f2(0) + f 2(0))3 dO < o~. 
0 

Let M E  F have the polar  coordinates  (to,f(~o)). 

159 

M 

Fig. I 

A 

The convex hull o f  the por t ion  M 0  of  the spiral consists o f  an arc M P  and a 

chord MP.  The polar  angle of  P is r + o~, where a = o~(r E (n, 2et). A rather  
tedious computa t ion  then leads to 

where 

r(~o) = 2 

[, r(oO \-~ 
T(M0)---- ~ o g r ( ~  ) _ 1J ' 

f [f2(O) + f ' z ( o ) ] � 8 9  dO 
o) 

o~+ta 
1 t 2  �89 

[ fz(~o)--  2f(~o)f(o~ + to) cos o~ +f2(o~ + ~)]3  + f [f2(0 ) + f  (0)] dO 
o~ 

The tempera ture  at the center is obtained by letting ~o tend to infinity. We give 
three examples.  

Example  1. The  exponential  spiral ~ = a -~ a > 1. Then 

( 2 F T ( 0 ) =  lOgl + c o s ~  ' 

where o~ is the unique solution of  

a -~ = c o s ~  - -  s i n ~ l o g  a, ~ < o~ < 2~.  

In  particular,  for  the spiral Q = e -~  we obtain T(0) = .5296. . .  

Example  2. Let ~ = 0 -~', 2 > 1. The  tempera ture  of  the spiral at its center 
is infinite. This seems reminiscent  o f  galaxies. 

Example  3. The spiral ~ = exp (--02).  The  tempera ture  at the center is 0. 
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6. Nonzero temperature points 

In the previous paragraph we gave examples of curves whose local tempera- 
ture vanishes at all points except one. We shall now show that, for all rectifiable 
curves F, almost all points M E 1" have zero temperature yet the set of  strictly 
positive upper temperature points can be dense and uncountable. This will be il- 
lustrated by an example. Both of these results are mere translations of the follow- 
ing property concerning rectifiable curves. 

Let /" be a planar rectifiable curve. For all points ME /" define 

d(M) ~- lim sup r ~  
P-~M,Q~>MIPQ ] 

PEFQEI" I I 

where PQ and PQ represent respectively the arc and the chord, and where ].l 
denotes length. 

M 

Fig. 2 

Observe that 

2 IPQI < 16K(PQ)I < [PQI + IPQI, 

where 6K(PQ) is the boundary of the convex hull of the arc PQ. Then 

2[PQI <_ 21PQI < IPQI 

IP~--Q] + [ e o l  16K(PQ)I = I ~--~l 

and hence 

2d(M) t d(M) 
lOg d ( M ) _  l ) - l  ~ T*(M) ~ tl~ d ( M ) _  l) - ' '  

Consequently T*(M)-----0 if and only if d ( M ) =  l, and d ( M ) =  oo implies 
T*(M) >~ (log 2) -~. 

Theorem. (i) For almost all M E I" we have d(M) = 1. 
(ii) There exists a rectifiable curve I" for which the set 

{ME F/d(M) = o~} 

is dense and uncountable. 

Remark. The measure involved in this theorem is Lebesgue measure on the 
curve F. We shall assume that all curves under consideration have finite length. 
The first part of the theorem is well-known; see, for example, [2] page 27. 
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P roof  of (ii). We construct  a rectifiable curve F for which the set 

{M ~ F/d(M) = ~ }  

is dense and uncountable.  
Fo r  n ~  l and 1 ~ j ~ 2 " - l ,  we consider the interval 

I.,j = [(2j - -  1) 2 - "  --  4 -"2, (2j --  1) 2 - "  q- 4 -"*) 

and the real continuous function g.,j defined on [0, 1] by 

/~ -- (2j --  1) 2-"[ I+~ sin 2:z g.d(t ) = t -- (2j --  1) 2 - n  for  t E I.,j 

for  t r  Ind. 

The  function 
2 n -  1 

gn = Z gn,j 
j = l  

is obviously continuous on the unit interval and 

sup [g.(t)] =< 4 -"2-~. 
0 ~ t < : l  

The  series 

f = ~ . g .  
n = l  

converges uniformly on [0, 1] and defines a continuous curve 

1"= {(t,f(t))/tE [0, 11}. 

We shall show that  / '  has the desired properties.  
To  this end, we introduce the variation Vh o f  a real function h on an interval I, 

that  is 

Vh(I) = f ]dh[ <= ]I[ sup [h'(x) l (if h is derivable). 
I x~l 

Notice that  the length of  the curve {(x, h(x))/x E I} is bounded from above by 
l lI + Vh(I), a fact we shall use later. 

We first compute  Vg.(I.,j), namely 

v,.(I..j) -- v , . J . j ) -  ~ li-~ �88 _~ Z [i + � 8 8  
i~Z iEZ 

= 4(1 + o(1)) ~ i - ' - ' / "  = 4(1 § o(1)) /X-- I - - I /nax  
i~4 n2 4 na 

= 4-~+ln(1 q- o(1)). 
For  a fixed n, the intervals I .d are disjoint. Therefore,  letting I denote the unit 
interval, we obtain 

Vg.(I) = 2 "-1Vg.(I.,j) = 2-n+ln( l  q- o(1)). 
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Hence 

Vgm([n,j)={O gm'k(ln'j) 

Fur thermore  
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Vf(l) <: ~ Vg.(l) = ~ n 2 - " + ' ( l  + o(1)) < ~ ,  
n - 1  n = l  

which establishes that  / '  is rectifiable. 
In order  to describe the set of  M's  for  which d(M) =- ~ ,  

lower bound for V s . Put  

n- -1  

f n : Z g m ,  r n : ~ g m "  
m = l  m = n + l  

The trivial observation that  f :  g. + f .  -? r .  now implies 

Vf(In,j) >: Vgn(ln,j)- Vfn([n,j)- Vrn(In,j). 
We are therefore led to estimate Vgm(I.,j) in order  to find an upper bound for  

Vfn(Zn,j). 
Suppose m < n ,  For  all j ,  k we have 

1 (2 j - -  1) 2 - "  --  (2k --  1) 2-m[ > 2 - " .  

Hence I .a  intersects at most  one I,~,k (exactly one if 2m 2 < n). Therefore  

if there exists a (unique) k such that  I.d • I,.,k # 0 

if 1.j • Im,~ = 0, for  all k .  

where 

Vgmk(I.j) < 2" 4 -"2 sup [g'~,k(t)[, 
' ' tEJ 

J ( { t / [ t - - (2k - -  1) 2 m l > 2 - " - 4  "2). 

we shall need a 

Vgm,k(I.j ) <~ :r22+"-2'a(1 -}- O(1)) 

where the term o(1) is independent of  m. 

We now look for an upper  bound for Vr.(I.j), that is 

Vrn(l.,j) = Vrzn2_l(I. d) ~ Vr2.2_1(I) 

~< ~_~ mZ-m+l(1 -+- 0(1)) ~ 2-2"2+3n2(1 + 0(1)). 
m ~ 2 n  2 

whence 

But 

Ig'~,k(t)l <= (l ~- l )  lt - (2k - 1 )  2-"l TM 

+ I t - -  (2k --  1) 2-"11+1/". 22~ It - -  (2k --  1) 2-m1-2 

<~ 2Zt" 2"(1 + O(1)) for  t E J ,  
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Finally, collecting the various results, 

Vf( I . j )  >: V'g.(In,.i ) - -  Vfn(I . j  ) - -  V, . ( I . j )  

n 4 - " + ' ( l  + o(1)) - -  4z~n2"-2"'(1 + o(1)) --  8n22-2"=(1 + o(I)) (4) 

n4-"+l(1 + o(1)). 

Let P..jE F be the point with coordinates x = (2j - -  1) 2-n --  4 -"2, y = 0, 
and let Qn,jEI" be the point x = ( 2 j - -  1) 2 - " + 4  -"2 , y = 0 ,  so that P. j  
and Q,,,j are the endpoints of  the interval I.a. We claim that 

lim [ P'JQ"'J-------~[ - co. 
.-~o~ [ P ,  j Q , . j  l 

Indeed, 

Ie.aQ.al ~ ~(I.j) ~ n4-n+'(1 + o(1)) 
from (4). 

On the other hand, since 

we have 

r P,,,JQ.al = 2 . 4  - "~  

n4-n+l 
lim ] P"JQ"'J[ >_ lim - -  

. ~ o  l p,, , jO,,.j[ - .~oo  2 . 4  -~2 - o o .  

The set g2 of points of  P whose abscissae belong to infinitely many I,,j is dense 
and uncountable. We have therefore shown that d(M) = oo for all M 6 -Q. 
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