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I. Introduction 

This paper analyzes the dynamical behavior of a four parameter family of 
planar vector fields: 

/c = y ,  
(1) 

jP = - - ( x  3 -b r x  2 + n x  + m)  + y (b  - -  x2 ) .  

Our motivation for studying this problem is threefold: 
(i) When one fixes r = m = 0, the resulting two parameter family is a normal 

form for a codimension two bifurcation within the class of planar vector fields 
equivariant with respect to rotation by ~r. This nilpotent codimension two bi- 
furcation with rotational symmetry occurs frequently in applications and was 
studied by TAI(Ln,~s [12]. Our analysis describes the effect of small deviations from 
symmetry in the system. It provides the type of analysis needed to give a theoreti- 
cal interpretation of experimental data like those of REI-mER~ & AI~I.ERS [10]. 
These authors study codimension two bifurcations in convection of fluid mixtures, 
but are unable to prevent heat flow through the side wails of the fluid container. 
The heat flow through side wails is a symmetry breaking bifurcation. However, 
it is probably appropriate to change the sign of the coefficient of x 3 in (1) to obtain 
the normal form for the codirnension two bifurcation relevant to their study. 
Thus, our analysis is likely to be only illustrative of the techniques which can be 
brought to bear on their problem and does not form the basis for a direct compari- 
son. 

(ii) The system (1) and its various subsidiary bifurcations occur in simple mo- 
dels of chemical reactors. In particular, the system (1) is closely related to the 
"cross-shaped diagram" model of BOISSONADE & DE KEEPER [3] for designing oscil- 
lating reactors. It also extends the analysis of degenerate bifurcations occurring in 
the model CSTR equations [5, 6, 14]. Note, however, that the bifurcation we label 
the Takens-Bogdanov loop occurs in a different form in the CSTR equations and 
has an unfolding which differs somewhat from the one shown in Figure 3 [b]. 
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(iii) There is a class of bifurcation problems for planar vectorfields which can 
be studied rigorously by means of perturbation theory for systems which are al- 
most divergence free [2, 8, 13]. System (1) provides one of the most general ex- 
amples of such problems that can be analyzed with elliptic integrals. By rescaling 
the variables and parameters in (1) according to the scheme X---- ~x, Y---- ~2y, 
R = ~r, N = ~2n,  M = ~ 3 m ,  B ~- ~2b and T = ~-1 t, one obtains the system 

dX 
-d-~= Y, 

dY 
----- --(X 3 -k RX 2 -}- NXq-  M) q- 8(BY--  X2y).  

(2) 

The limit ~ ---- 0 of (2) is a Hamiltonian vector field with trajectories that are 
level curves of the function 

y 2  X 4 R X  3 N X  2 

E(X, Y ) - - T + T + T + T +  MX. (3) 

For small values of 8, the perturbation theory for planar vector fields gives 
criteria for the existence of periodic orbits and simple bifurcations of the system 
(2) in terms of integrals over domains bounded by the level curves of (3) [1]. 
The bulk of this paper involves these calculations, with special attention to the 
singular values of E because these yield the homoclinic solutions of (2). 

II. Background and Results 

This section describes our results in terms of a set of stability diagrams that 
show the regions of the four dimensional parameter space near the origin which 
correspond to specific phase portraits. The boundaries of these regions give para- 
meter values at which bifurcations occur. The locus of bifurcations constitutes a 
stratified set with strata consisting of submanifolds of codimensions one, two, 
three, and four. The boundary of the strata of codimension k consists of the strata 
of higher codimension. There are several different types of bifurcations which 
occur, and we give names to each of these subsidiary bifurcations occurring in 
the system (1). This section describes the codimension one and two bifurcations, 
all of which were known previously, and postpones a detailed description of the 
codimension 3 bifurcations to Section 5. 

Given a vector field V, such as the system (1) with all parameters zero, one can 
seek a family of vector fields containing V which satisfies a structural stability 
criterion. Such a family is called a versal unfolding of V. The specification of struc- 
tural stability criteria is more subtle in these problems than the analogous ques- 
tions in the singularity theory for smooth mappings. Here we seek to establish 
a weak form of a structural stability statement for the family (1), namely that the 
qualitative structure of its stability diagram remains unchanged under perturba- 
tion. Some aspects of a theorem establishing structural stability for the family 
(1) remain unproved, so we formulate the following: 
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Hypothesis. Let F be the family of  vector fields defined by (1). In the space of  
smooth (C*), four parameter families of  vector fields on B 2, there is a neighbor- 
hood U of F such that if G is a family of vector fields in U, then there is a homeo- 
morphism between the parameter spaces of F and G which sends vector fields to 
topologically equivalent vector fields. 

There are relatively few points which remain to be proved in establishing the 
above hypothesis as a theorem. From a computational point of  view, it would 
suffice to have accurate evaluations of the elliptic integrals (near their singular 
values) which are involved in calculating the location of certain bifurcations. 
Additionally, we have not calculated all of the nondegeneracy conditions associat- 
ed with some of the codimension three bifurcations in the problem. One general 
issue which arises involves the singular dependence of the elliptic integrals de- 
scribing the location of periodic orbits as they become homoclinic. To contend 
with this situation, one would like to have an extension of the singularity theory 
for smooth functions to functions whose asymptotic expansions involve logarith- 
mic terms in the parameters. 

Let us turn from the abstract discussion above to the description of the sta- 
bility diagram for the system (1). We need a dictionary that establishes the nomen- 
clature for bifurcations of codimension smaller than four which occur in the 
example. For codimensions one and two, the bifurcations are known and have 
been described previously. Accordingly, we give here the list of these which occur 
in the system (1). Diagrams showing unfoldings and phase portraits of the co- 
dimension two bifurcations are given by GUCKENHEIMER [5], and GUCKENHEIMER 
& HOLMES [7] discuss the codimension one bifurcations more fully. 

Codimension 1 : 
Saddle Node: SN. The normal form for a saddle node bifurcation in the plane is 

~ = 2 - - x  2, 

y = a y ,  ( a . O ) .  

This bifurcation describes the simultaneous birth of a pair of equilibrium points 
as the parameter varies. One equilibrium is a saddle and the other is a stable 
or unstable node. In terms of singularity theory, the saddle-node is a fold singu- 
larity for the set of equilibria. 

Hopf Bifurcation: H. The normal form for Hopf bifurcation in the plane is 

Jr = - - y  -~- X(,~ Jr a (x  2 + y2)), 

= x + y(~ + a(x ~ + y~)), (a 4: 0). 

A family of periodic orbits emerges from an equilibrium as the eigenvalues of  
the equilibrium cross the imaginary axis at 2 = 0. 

Saddle Loop: SL. Saddle loops occur where there is a saddle equilibrium with 
a homoclinic orbit. Because the system (1) never has more than one saddle point, 
heteroclinic orbits that connect two saddles do not occur. The unfolding of a 
saddle loop involves the  termination of a family of  periodic orbits as its period 
becomes infinite. There are two topologically distinct saddle loops that occur 
for planar vector fields, depending upon whether the remaining separatrices lie 
inside or outside the loop. 
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Double Cycle: D. Double cycles, or saddle nodes of periodic orbits, occur 
where there is a periodic orbit whose return map has a simple eigenvalue 1. One 
then imposes upon the return map conditions like those o f  the discrete version 
of  the saddle-node. A normal form for the return map is 

f (x ,  2) = 2 + x -  x 2. 

Pitchfork: P. Some of the vector fields in the family (1) are symmetric with 
respect to rotation of the (x, y) plane by z~. In the subfamily of symmetric systems 
defined by r = m ---- 0, the bifurcation of equilibria occurs through a pitchfork 
bifurcation in which a pair of new equilibria emerges from an existing one. A 
normal form for the pitchfork in a family of two dimensional vector fields is 

= 2 x  + x 3, 

j , = a y ,  ( a # O ) .  

Codimension 2: 
Cusp: C. The cusp occurs when there is an equilibrium with eigenvalue zero. 

Additionally, one assumes that in the direction of the zero eigenvector, that a 
second derivative of the vector field vanishes. A normal form for a family of 
vector fields with a cusp in the plane is 

= 2t + 22x • x 3, 

p = ay, (a ~= O). 

Degenerate Hopf Bifurcation: DH. The degenerate Hopf  bifurcation occurs 
when a system can be transformed into the normal form for the Hopf bifurcation, 
but the coefficient of (x 2 q- y2) (x ~x q- Y By) in the Hopf normal form is zero. 
I f  the coefficient of a corresponding fifth degree term (x 2 q- y2)2 (x 0x + y 0~) 
is nonzero, then one has the (codimension two) degenerate Hopf bifurcation [13]. 
In the (2t, 22) plane there is a region in which the system has a pair of limit cycles. 
A normal form for the degenerate Hopf bifurcation can be given in polar coordina- 
tes as 

k = 21r -q-- 22 r3 -~- ar 5 q- .... (a =]= 0), 

0 = 1 + . . .  

Takens-Bogdanov Bifurcation: TB. The Takens-Bogdanov bifurcation [12] 
occurs in planar vector fields which have an equilibrium with a nilpotent lineariza- 
tion. A normal form is 

Z----y, 

j~ = 21 + 22x + x 2 + xy. 

As 21 and 22 are varied around a circle surrounding the origin, one successively 
meets a curve of saddle-node bifurcations, a Hopf bifurcation curve, a saddle 
loop bifurcation curve, and another saddle-node bifurcation curve. The analysis 
which yielded the stability diagram for this bifurcation is a prototype for the 
calculations reported later in this paper. 

Neutral Saddle Loop (NL). The stability of the cycles which appear in the 
saddle-loop bifurcation is determined by the sam of the eigenvalues at the saddle 
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point in the loop. When a saddle loop occurs at a saddle point having eigenvalues 
of  equal magnitude, we describe the situation as a neutral saddle loop. In a generic 
two parameter family, the "Melnikov function" describing the separation be- 
tween stable and unstable manifolds of a saddle along a transversal to the flow 
and the sum of the eigenvalues at the saddle are quantities which vary in a non- 
singular manner. From this one can infer the existence of a curve of double loops 
which terminates at a neutral saddle loop in a generic two parameter family. The 
perturbation calculations of Section 5 include a proof of this fact. 

Double Saddle Loop (DL). The double saddle loop occurs when there is a 
saddle point for which both branches of the unstable manifold are homoclinic 
trajectories. In a generic two parameter family, the Melnikov functions of the 
two loops form a nonsingular mapping from the system parameters to R 2. By 
using the divergence criterion for the existence of periodic orbits and saddle- 
loops, it follows that there are three curves of saddle loop bifurcations which 
pass through a point of parameter space when a double loop bifurcation takes 
place in a generic two parameter family of flows. 

Saddle Node Loop (SNL). At a saddle node bifurcation there are three separa- 
trices, two of which bound a region of trajectories asymptotic to the equilibrium. 
If  two of the separatrices coincide as a homoclinic trajectory, then we say that 
there is a saddle node loop. There is a smooth curve of saddle nodes in the para- 
meter space of a generic two parameter family containing such a point, and there 
is a curve of saddle loops which terminates there. SCHECHTER [11] analyzes 
this bifurcation and shows that the curve of saddle loops meets the curve of saddle 
nodes with quadratic tangency. Thus saddle-node loops and Takens-Bogdanov 
bifurcations are the two possible termination points for a curve of saddle loops in 
a generic two parameter family. 

Triple Cycle (T). The triple cycle occurs when the return map for a periodic 
orbit has a cusp. The analysis of this bifurcation is given by applying singularity 
theory to the difference between the return map and the identity on a one dimen- 
sional transversal to the flow at a point of the cycle. 

Transversal Intersections. There are vector fields in the family (1) which have 
two different degeneracies in different regions of the (x, y) plane. Near the para- 
meter values giving this behavior, there are two transversally intersecting subma- 
nifolds in the stability diagrams that describe the loci of codimension one bifurca- 
tions. In Section w 3 below, we have calculated those transversal intersections which 
involve two Hopf bifurcations (called Hopf-Hopf), the simultaneous presence of 
a Hopf  and saddle-node bifurcation (Hopf-Saddle Node), and the simultaneous 
presence of a Hopf  bifurcation with a saddle loop (Hopf-Saddle Loop). 

Symmetric Nilpotent Bifurcation (SNB). In addition to the codimension two 
bifurcations described above, there is a codimension two bifurcation of  systems 
with a symmetry that plays a central role here. In the space of vector fields which 
are equivariant with respect to rotation by z~ in the plane, there is a codimension 
two bifurcation of a vector field with an equilibrium having a nilpotent lineariza- 
tion. The normal form of this bifurcation is 

5c ----- y ,  

j~ = --21X "-f- 22y "iF ax 3 + bx 2 y, (a de O, b =~ 0). 
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By rescaling the variables in this system, one can set a and b to have magnitude 
one. Reversing time and reflecting one of  the variables changes the signs of 22 
and b. The two cases a < 0 and a ~> 0 are thoroughly distinct. Here we examine 
only the case a = - - 1 ,  and set b = - - I  so that orbits near infinity spiral to- 
wards the origin. 

The stability diagram of  this family is depicted in Figure I [12]. The main 
task of  this paper is the computation of  the stability diagrams for perturbations 
of  this family which occur when the symmetry condition is dropped. We treat 
this problem in terms of  the four parameter family of  vector fields (1) by fixing 
the values of  r and m, and then describing the stability diagram of  the family 
depending on n and b. Different regions near the origin in the (r, m) plane lead to 
different stability diagrams. Thus we present a picture of  the (r, m) plane divided 
into sectors when we plot r 3 versus m. For  each of the sectors, there is a stability 
diagram for a two parameter family in which the only bifurcations occurring are 
the codimension one and two bifurcations described above together with transver- 
sal coincidences of  codimension one bifurcations that do not interact with one 
another. Along the boundaries of  the sectors in the (r 3, m) plane, there are values 
of  (b, n) which give codimension three bifurcations of  various types. These are 
discussed more fully in Section 6. 

Double Q 
cycle 

Pitchfork 
blfureotion 

Hopf 
Bifurcation 

Fig. 1. Stability diagrams for the two parameter symmetric family of vector fields. 
Phase portraits are coded as follows: stable equilibria are solid dots, unstable equilibria 
are broken dots, stable limit cycles are unbroken curves, unstable limit cycles are broken 
curves, unstable separatrices are curves broken into long segments, and stable separatrices 

are curves broken into long-short segments. 

Figures 2a -g  present the stability diagrams discussed above. These diagrams 
should be compared with the stability diagram for the equivariant codimension 
two bifurcation. Note that three of  the bifurcations in the stability diagram for the 
equivariant family are degenerate when the symmetry is dropped: (1) pitchfork 
bifurcations perturb to one or three saddle-node bifurcations depending uport 
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M 

T B Loop 

Bif of ~o 

TB Cusp 

- -  Degenerate TB 

Neutral TSL 

1 6 16 

2 7 12 17 

3 8 13 18 

4 9 14 19 

5 10 15 

Fig. 2 a-b 

Fig. 2a-g. Stability diagrams for the four parameter family of vector fields (2). The 
diagrams are presented as follows. Figure 2a shows the (R, M) plane divided into regions 
that are bounded by curves along which codimension three bifurcations occur. Codimen- 
sion three bifurcations involving only transversal crossings of lower codimension bifur- 
cations are not displayed. Figures 2c-2g show the stability diagrams in the (N, B) plane 
for values of (R, M) in the corresponding region of Figure 2. The numbers correspond 
to phase portraits shown in Figure 2b. The curves of saddle nodes are thin solid lines, 
double cycles are heavy solid lines, saddle loops are lines broken in short segments, and 
Hopf bifurcations are lines broken into long segments. The coding of phase portraits 

is the same as in Figure 1. 
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whether there is hysteresis [5]; (2) the coincident Hopf bifurcations at the non- 
zero equilibria occur at different parameter values; (3) the double saddle loop 
splits into three separate saddle-loop curves as shown in the stability diagram 
of the double saddle loop codimension two bifurcation. These observations give 
one information about what the perturbed stability diagrams look like far from 
the origin. Near the pitchfork curve will be one or three curves of saddle-nodes. 
There will be two curves in the (n, b) stability diagrams for the family (1) which 
extend to infinity on the left and represent Hopf bifurcations of the left and right 
equilibria. Below these Hopf bifurcation curves in the (n, b) plane will be three 
curves of saddle-loops, and below these will be a curve of parameter values cor- 
responding to double cycles. There will be a single curve of Hopf bifurcations ex- 
tending to infinity on the right. 

The connections among all the bifurcation curves near the origin in the (n, b) 
stability diagrams is quite intricate. Our main result is the following. 

Theorem. From the assumption of  the structural stability hypothesis formulated 
above for the family of  differential equations (1), the stability diagrams of  Figures 
2a-g give its unfolding. 

Part of the proof of this theorem is based upon numerical computation. In 
several places, which we have been careful to specify, we have relied upon numeri- 
cal integration of the equations. Some of the algebraic manipulations in our cal- 
culations are rather long. Therefore, we have used the symbolic manipulation 
programs SMP and MACSYMA to help us complete these calculations which 
would have exceeded our stamina and accuracy with pencil and paper. The next 
four sections describe the calculations which yield the stability diagrams of the 
theorem. 

III. Elementary Function Calculations 

In this section, we consider the bifurcations of system (2) that can be deter- 
mined by means of calculations involving elementary functions. There are three 
calculations that fall within this category, each yielding the locus of one type of 
codimension one bifurcation: (1) saddle-node bifurcations, (2) Hopf bifurcations, 
and (3) saddle-loop bifurcations. Combinations of these and degeneracies yield 
several types of higher codimension bifurcations 

Saddle-nodes. The saddle-node bifurcations of (2) are given by parameter 
values for which the cubic polynomial X 3 +  R X 2 +  NX + M has a double 
root. If the double root is S and the simple root is P, these give a parametric 
representation of the bifurcation locus via 

R(& P) = - ( 2 s  + P), 

N(S, P) = S 2 + 2SP, 

M(S, P) = --S2p. 
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Expressed in terms of  S and R, we have 

N = - - 2 R S -  3S 2, 

M = R S  2 -k 2S  3, 

o r  

4N 3 + 27M 2 - -  1 8 R M N -  R 2 N  2 + 4 R 3 M  = O. 

The saddle-node is nondegenerate in singularity theory terms whenever P @ S. 
In terms of  (R, N, M), P = S implies 3N = R 2 and 27M = R 3. In presenting 
the stability diagrams, it is convenient to set R = 1 or, equivalently, to work 
with the scale invariant parameters N / R  2 and M / R  3 (and B/ R  2 which plays no 
role in the occurrence of  saddle-nodes). 

H o p f  Bifurcations. H o p f  bifurcation occurs at an equilibrium (Xo, Yo) of  (2) 
if it is not a saddle and if B = X 2. Thus the loci of  H o p f  bifurcations are easily 
characterized in terms of  the root h of  the cubic X 3 + R X  2 + N X  + M at which 
the bifurcation occurs. One has the equations 

h 3 + Rh 2 + Nh + M =  O, 

B - - h 2 = 0 ,  

which imply that  

B(B + N) 2 = (RB + M) 2 . 

There is the additional condition that 

3h z + 2Rh + N =  3B + N +  2Rh > O. 

Thus, when h 3 + Rh-" + Nh + M has 3 real roots, only the smallest and largest 
yield Hopfbifureat ions.  Note that when R = M =  0, we have B ---- 0 or B ---- - -N ,  
the first case occurring when N > 0 and the second when N < 0. 

Placing the equation (2) into normal  form at a point of  H o p f  bifurcation is a 
straightforward exercise. I f  the H o p f  bifurcation occurs at x = h, we set U = X - - h ,  

obtaining 

~)=Y, 
J"---- --(3h 2 + 2Rh + N)  U -  (3h + R)U  2 --  2 ~ h U Y -  U 3 - -  ~ U 2 y .  

With ~ ---- (3h 2 q- 2Rh + N)  II2 and U = ogV, Y---- o~2W and a rescaled time 
S = o~T, we have 

V ' =  W, 

W'  = - - V - -  q V  2 --  p V W - -  V 3 --  a V 2 W ,  

where the prime indicates differentiation with respect to S and 

q = (3h + R)/~o, p --  2~h, a = ~o~. 
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Introduce next the nonlinear change of  coordinates 

V :  v - -  l q(v 2 + 2w 2) +_~pvw + (-~ q2 _ ~p2 _ �88 v 3 

+ ~-~pq -+- -~ a) v2w + (5  q2 + ~p2  _ 3) vw 2, 

W =  w - -  ~ p(v 2 -- w 2) + ff qvw -- (-~ pq + �88 a) v 3 

1 a) vw 2, + (3 + �88 q2 _ ~p2) v2w + (~pq  + 

which transforms the system for (V, W) to the normal form for the Hopf bifurca- 
tion 

v' : w + (Av + Pw) (v 2 + w 2) + O(5), 

w ' : - - v + ( A w - - P v ) ( v  2 + w  2 ) + O ( 5 ) ,  

where 

A y ( p q - - a ) ,  p = 3  ~q2  ~ p 2 .  

The coefficient A of (v 2 + w 2) (v ~v + w ~w) determines the stability of the 
limit cycle created at the Hopf  bifurcation. In terms of the original variables, 

A = ~ -  (3h 2 -- N). In particular, the sign of A is the same as that of 3B -- N. 

If  N = 3B (or a ----pq), the Hopf  bifurcation is degenerate. In that case, it is 
appropriate to calculate the normal form up to fifth order. M. Neveling has im- 
plemented this calculation for a general class of systems using SMP. We do not 
write down the (lengthy) expression of the coordinate transformation for our sys- 
tem, but note that the calculations give C = --5a/48 in the normal form 

v ' : w + P w ( v  2 + w  2 ) + ( C v + Q w ) ( v  2 + w 2 )  2 + O ( 7 ) ,  

w' : - - v - -  ev(v 2 + w 2) + ( C w - -  Qv) (v 2 + w 2) + 0(7). 

Therefore, the coefficient of (v 2 + w2) 2 (v Sv + w Ow) that determines the sta- 
bility of the cycles in the degenerate Hopf  bifurcation is always negative in our 
system. 

Saddle-loops. The calculations which characterize saddle loops involve tri- 
gonometric functions. Assume that there is a saddle point of (2) at X = S, 
Y = 0. The polynomial 

2R 3 
P(X) = �89 X 4 + T X + N X  2 + 2 M X -  2E 

has S as a double root when 

2E = �89 S 4 + ~ S 3 + NS  2 + 2MS. 

In addition P has two additional real roots L < S < K. The saddle-loops of 
(2) approach the zero level curve of P ( X ) +  y2 as ~--~ 0 and they satisfy 



332 G. DANGELMAYR 8~; J, GUCKENHEIMER 

the divergence criterion of ANDRONOV, LEONTOVICH, GORDON, & MAIER [1]: 

Aa 
f (~  - x~ )  r  d X  = 0 

AI 

where A1, A2 E {L, S, K}. For fixed R, N, M, this gives three equations for differ- 
ent choices of the Ai. Thus 

S 
f (B -- X 2) 1~if(X) dX = 0 

L 

determines left saddle loops that lie to the left of the saddle point, 

K 
f (B - -  X 2) C P ( X )  d X  : 0 

s 

determines right saddle loops that lie to the right of the saddle point, and 

K 
f (B - x 2) I/-~(x) dX = o 

L 

determines concave saddle loops which contain saddle separatrices in their in- 
terior. 

To compute the saddle-loops, it is convenient to make an affine change of 
coordinates which sends L to -- 1 and K to 1. Using the quasihomogeneity of the 
problem, it suffices to consider the case K -- L = 2, so that the coordinate change 

L + K  
is a translation by d -- - - ~ - - .  We set u = X -  d and s = S -- d. Then the 

left, right and concave loops are given by the zeros of the integrals 

/ (B -- (u + d) 2) (S - -  U) I/1 -- U 2 du, 
--1 

--1 

f (B --  (,, + d) ~) (u --  s) I/i - -  ~,~ d,,, 
,5 

1 

f (B - (u + d) 2) lu - s[ I/1 - u ~ du, 
--1 

respectively. Note the absolute value in the third integral. The values of (R, M, N) 
are given in terms of (s, d) by 

3s 
R =  - 3 e - -  T ,  

S 2 
N = - - � 8 9  3d 2 + - ~ - ,  

d s ds 2 3d2s 
d 3 

M = ' T +  2 2 2 " 
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Nex t  c o m p u t e ,  

a n d  

I ~r s t /1  - -  s 2 f 1/1 -- u 2 du ---- - -  - -  s in - I  s 
4 2 ' 

s 1 

f u 1 / 1 - - u 2 d u = - - � 8 9  a a n d  f u 1 / 1 - - u 2 d u = � 8 9  a, 
- - 1  s 

and 

1 

f u a 1 / 1 -  u 2 du---- - - - ~ ( 1 / 1  - -  s2 )  s + ~ (1 /1  - -  s2 )  a. 
$ 

Let  Q(u) = (u --  s) ((u + d) 2 - B) = u 3 + azu 2 + axu + ao. T h e n  

ao = s(b --  d2),  

al = b -- 2ds + d 2, 

a2 = 2 d - -  s. 

W i t h  these  values ,  left, r ight  a n d  concave  loops  are  g iven  b y  

w I - -  1 / 1 - - s  2 J = O 

where  
1 1 I---- ~ s - -  T d  + ~ - s d  2 -- ~-sB, 

1 a d + . ~ s Z d 2  ( ~ + _ ~ s 2 ) a  J =  + + 

f ~ s in -1  s s t/1 - -  s 2 s 3 1/1 - -  s 2 
u 2 1 / 1 - - u  2 d u = ~ - ~ +  8 8 +"  4 

- - 1  

I ~r sin -1  s s 1/1 - -  s 2 s 3 ~/1 - -  s 2 
f u21 /1 - -  u2 d u = 1 6  ----if---+ 8 4 

$ 

s 

t __ 1 ( 1 / 1 - - s 2 )  a, f u 3 t / 1 - - u : d u = T ( l / l - s 2 )  s ~- 
- - 1  

a n d  

- ~ - -  sin -1  s for  r ight  l oops ,  

- -  -~- - -  s in -1  s for  left  l o o p s ,  

- -  s in -~ s for  c o n c a v e  l o o p s .  

Th i s  e q u a t i o n  c an  be  read i ly  so lved for  B. 

s z~ s 1/I - -  s 2 f t / 1  - -  u 2 d u  = - ~ -  + s i n  - 1  s + 
- t  2 

a n d  
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Codimension Two Calculations 

There are a number  of  codimension two bifurcations whose location can be 
computed in terms of  algebraic calculations and the evaluation of  elementary 
integrals. These are enumerated here: 

Takens-Bogdanov bifurcation. When there is an equilibrium with nilpotent 
linearization, Takens-Bogdanov bifurcation occurs. For  the system (2), we have 
already computed the locus of  saddle-node bifurcations as being given by 

4N 3 q- 27M 2 - -  1 8 R M N -  R 2 N  z + 4 R 3 M  =- 0 

9 M -  R N  
with the double root of  the cubic at X = 

2R 2 - -  6N" 
equilibrium has zero trace if B = X 2. Using 3X 2 § 2RX-}- N = 0 
equilibrium, we have 

R ( 9 M  --  R N )  q- (R z - -  3N) (3B q- N) = 0 

o r  

3 R M  -~ R2B - -  3 B N  - -  N 2 = 0 

(N z - -  3 R M )  
B =  

(R 2 - -  3N) " 

or 

The linearization at the 

at the 

At  a Takens-Bogdanov bifurcation, we would like to compute the normal 
form. This is a simple matter, since a translation along the x-axis leaves the system 
(2) in the normal form of Bogdanov. Setting 

we have 

9M0 --  RNo 
and U =  X - -  s, 

s - -  2R~ --  6N0 

b ~  Y, 

I? = - ( u  3 + (g  + 3s) u 2) + ~ Y ( B  - s 2 - 2 s U -  u 2 ) .  

Provided (R § 3s) and s are non-zero, the bifurcation is non-degenerate. I f  
R q- 3s is zero, there is a codimension three bifurcation which is the occurrence 
of  a cusp in the locus of  equilibria with a nilpotent linearization. When s ~- 0, 
there is a codimension three bifurcation in which the degree two expansion at 
the bifurcating equilibrium is divergence free.The unfoldings of  these codimension 
three bifurcations are discussed later. 

Coincident H o p f a n d  Saddle-node. I t  can happen that there is a H o p f  bifurcation 
at one equilibrium and a saddle-node at another. I f  the saddle-node bifurcation 
is at X = s and the H o p f  bifurcation is at X = h, then, combining the equa- 
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tions derived earlier, we have 

B ~ h 2 , 

R = --(2s + h), 

N = s 2 + 2sh ,  

M = - - s 2 h .  

As in the previous examples, one can eliminate s, h from these equations to 
obtain a pair of  equations for the simultaneous occurrence of  a Hopf  bifurca- 
tion and saddle-node. Of special interest to us are situations in which one or the 
other of  these bifurcations is degenerate. If  the Hopf  bifurcation is degenerate, 

M 
_ 9 If  the saddle-node is a point of  Takens- then 3 B =  N and R3 125 

M 
Bogdanov bifurcation, then s---- --h and R---- 3 = --1. 

H o p f - H o p f  b i furca t ion .  For  two Hopf  bifurcations to occur simultaneously, 
the equilibria of  the system must occur at X = --h, s, h with Is] < h. This 
yields the equations 

B = h z ,  

R : - - s ,  

N : - - h  2, 

M = sh  2 . 

Thus the locus of  Hopf-Hopf  bifurcations is given by B + N----- 0 and M -- 
N 

R N = 0. Since ] s I < h, we have ~ < -- 1 at the Hopf-Hopf  bifurcation and 

M 
R---5 < --1. 

Cusps .  We have already observed that the set of  equilibria has a surface of  
M 1 cusps in the four dimensional parameter space defined by the equations ~ ---- ~ ,  

N 1 
R 2 - -  V "  

D o u b l e  saddle- loops .  By use of  the notation introduced to discuss saddle loops, 
the simultaneous occurrence of  right and left saddle loops is given by the simul- 
taneous solutions of  the equations 

v l _  : J _ - 0  

- - - ~ - - - s i n  - I s  I - - t / 1 - - s  2 J = 0 .  
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This pair of  equations is equivalent to I = J = O. Solving 

d 
B =  � 8 8  2 , 

and substituting this expression into J yields 

J = - ~  + = 0 .  

3s  
Therefore, d = -  m 

10 

I = 0 for B gives 

and we obtain a parametric representation of  the locus 

of  double saddle loops as 

B 10 
R 2 - -  �88 -]- ~$2 '  

N 25 13 
R2 - -  - -  ~ 1882 ' 

M 175 7 
= -- 36 10882, 

with sE [--1, 1]. As s2---~ 1, the limiting value of M/Ra is --49/27. Therefore, 

M 49 double saddle loops occur in the stability diagrams for - ~ E  [-- r -- ~]. 

Trace 0 Saddle-loops. The calculations of the location of saddle-loops at 
saddle points where the trace is zero do not produce simple rational expressions 
like those for the double saddle-loop though the procedures are similar. The 
condition that the saddle-point have a linearization with trace 0 is 

B ~  S 2 . 

Therefore we want to find the zeros of  the integrals 

and 

K 
f ( s  2 - x ~) ( x  - s )  I / ( x  - L)  ( ~  - -  X )  a x  

S 

K 

f ( s  2 - x 2) I x - s l r  - L)  (r~ - x )  d X  
L 

for the appearance of  trace 0 loops to the right of the saddle artd for the concave 
saddle loops, respectively. Ortce again, set K -  L = 2, d----�89 (L q - K )  and 
s = S -- d. Then the two integrals can be readily computed, yielding d as a func- 
tion of  s E [--1, 1]. Substituting these values for d, we obtain long expressions 
for M/R 3, N/R 2, B/R 2 along the trace 0 saddle-loop loci in terms of  s E [-- I, 1 ]. 
Numerical tables of  (M/R 3, N/R z, B/R 2) are given in Tables 1 and 2. The final 
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Table 1. Calculated derivatives giving stability of  concave saddle loops 
with trace zero 

M / R  3 N / R  2 .B/R 2 Derivative 

--1.81481 --1.75 1.36111 --1.25664 
--1.70467 --1.65521 1.28539 --0.649234 
--1.60087 --1.56514 1.21363 --0.408559 
--1.50303 --1.47954 1.14564 --0.22825 
--1.41077 --1.39815 1.08121 --0.0792208 
--1.32371 --1.3207 1.02013 0.0497853 
--1.24147 --1.24691 0.9622 0.164531 
--1.1637 --1.1765 0.907235 0.268428 
--1.09006 --1.1092 0.855053 0.363691 
--1.02021 --1.04473 0.805484 0.451846 
--0.953846 --0.982838 0.758366 0.533994 
--0.890688 --0.92325 0.713551 0.610954 
--0.830462 --0.865705 0.670901 0.683354 
--0.772922 --0.809949 0.630289 0.751682 
--0.717842 --0.755731 0.591598 0.816323 
--0.665016 --0.702807 0.554725 0.877584 
--0.614265 --0.650939 0.519577 0.935712 
--0.565432 --0.599901 0.48607 0.990906 
--0.518386 --0.549478 0.454135 1.04333 
--0.473024 --0.499468 0.423713 1.0931 
--0.429272 --0.449692 0.394755 1.14034 
--0.387082 --0.399993 0.367224 1.18511 
--0.34644 --0.350249 0.341092 1.2275 
--0.307361 --0.300374 0.316342 1.26753 
--0.269888 --0.25033 0.292965 1.30526 
--0.234093 --0.200136 0.270959 1.34071 
--0.200071 --0.149876 0.250332 1.37389 
--0.167934 --0.0997102 0.231092 1.40482 
--0.137809 --0.0498808 0.213253 1.4335 
--0.109825 --7.19340"A--4 0.196831 1.45993 
--0.0841059 0.047352 0.181838 1.48411 
--0.0607627 0.0938221 0.168288 1.50602 
--0.0398836 0.138099 0.156187 1.52567 
--0.021528 0.179526 0.145539 1.54303 
--0.00572383 0.217402 0.136343 1.55811 

0.00753222 0.25101 0.128591 1.57089 
0.0182701 0.279651 0.122273 1.58136 
0.0265378 0.302686 0.117378 1.58951 
0.0323905 0.319565 0.113892 1.59533 
0.0358786 0.329869 0.111806 1.59883 
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Table 2. Calculated derivatives giving stability of  fight saddle loops 
with trace zero 

M/Ra N/  R 2 B / R 2 Derivative 

--1.81481 --1.75 1.36111 --1.25664 
--1.60092 --1.56518 1.21365 --0.851681 
--1.41127 --1.39862 1.0814 --0.706483 
--1.24339 --1.24873 0.962934 --0.604341 
--1.0949 --1.11401 0.856879 --0.524612 
--0.963653 --0.993013 0.761982 --0.459271 
--0.847673 --0.884396 0.677094 --0.40418 
--0.745203 --0.786933 0.601173 --0.356868 
--0.654671 --0.699508 0.533282 --0.315717 
--0.574683 --0.621108 0.472577 --0.279593 
--0.504009 --0.550817 0.418304 --0.247667 
--0.44156 --0.487815 0.369787 --0.219309 
--0.386376 --0.43136 0.326422 --0.194025 
--0.337614 --0.380789 0.287671 --0.17142 
--0.294531 --0.335506 0.253053 --0.15117 
--0.256471 --0.29498 0.222141 --0.133009 
--0.222859 --0.25873 0.194551 --0.11671 
--0.193187 --0.22633 0.169941 --0.102082 
--0.167008 --0.197395 0.148008 --0.0889583 
--0.143929 --0.171582 0.128479 --0.0771953 
--0.123601 --0.148581 0.111111 --0.0666667 
--0.105718 --0.128116 0.0954859 --0.0572608 
--0.0900074 --0.109939 0.0820091 --0.0488784 
--0.0762305 --0.0938257 0.0699063 --0.0414305 
--0,0641747 --0.0795763 0.0592212 --0.0348368 
--0.0536517 --0.0670102 0.0498136 --0.0290246 
--0.0444948 --0.0559652 0.0415578 --0.0239278 
--0,0365559 --0.0462949 0.0343406 --0.0194857 
--0.0297034 --0.0378676 0.0280606 --0.0156422 
--0.0238204 --0.0305646 0.0226263 --0.0123458 
--0,0188027 --0.0242785 0.0179554 --0.00954824 
--0,0145576 --0.0189126 0.0139738 --0.00720437 
--0.0110025 --0.0143794 0.0106146 --0.00527175 
--0.00806349 --0.0105997 0.0078175 --0.00371004 
--0,00567479 --0.007502 0.00552802 --0.00248068 
--0.00377749 --0.00502137 0.00369696 --0.00154642 
--0.00231892 --0.00309911 0.00227981 --8.70767*^--4 
--0,00125197 --0.00168196 0.0012363 --4.17389"~--4 
--5.34402 * A - 4  --7.21611"A--4 5.29991*^--4 --1.49083"^--4 
--0.563075 --1.74321"^--4 1.27866"^--4 --2.59475*^--5 
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columns of these tables are the values of the integrals 
K 

S + X  
r  - L) (K--  X) dX, 

K 

(s - x)  (s + x)  dX, 

Is - xl  r  L) (g  -- X) 

which give the derivative of the divergence with respect to the Hamiltonian. This 
determines the stability of the homoclinic orbits. 

For the purpose of drawing qualitative pictures of the stability diagrams, we 
use the numerical calculations in Tables 1 and 2 to make the following assump- 
tions. First, we assume that the left and concave trace 0 saddle-loops occur for 
M M 

" ~ E  [--49,0] and - ~ E  [ _ ~ , 1 ]  respectively. The loops which occur to 

the right of the saddle are all unstable, while the concave loops are neutrally 
M M 

stable for a value of-R-g ~.--1.358. For larger values of-~--g, the loops are 

M _ _  49 stable, while for smaller values, they are unstable. The limit value R3---- 27 

corresponds to the codimension three bifurcation with a loop formed from the 
two separatrices of the degenerate singular point. This bifurcation is discussed 
in detail in Section 5. Some additional information and details of the numerical 
calculations are presented in the Appendix. 

Saddle-loop and Hopf bifurcations. Calculations similar to those for finding 
trace 0 saddle-loops locate the occurrence of saddle-loops which occur simul- 
taneously with Hopf bifurcations. One merely fixes B at the value giving Hopf 
bifurcation rather than the value giving trace 0 at the saddle-point. These are 
independent phenomena happening in different parts of the phase plane, so 
stability diagrams associated with this codimension two bifurcation have merely 
transversal intersections of the Hopf and saddle-loop loci. The computation of 
these bifurcations indicates that there are parameter ranges of M/R 3 for which 
some bifurcation curves have multiple crossings. These multiple crossings are 
not implied by the topology of the stability diagrams near other points of co- 
dimension two or three bifurcation. 

IV. Elliptic Integral Calculations 

This section describes the elliptic integral calculations that yield the locations 
of periodic orbits and their bifurcations in the system (2) for small values of ~. 
Due to the length of the expressions that need to be evaluated and the difficulty 
of obtaining accurate evaluations of the elliptic integrals near their singular values, 
the numerical determination of the bifurcation curves for double loops is much less 
complete than the results of the previous sections. Both SMP and MACSYMA 
have been used for calculations in this section. 
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The divergence criterion ofANm~ONOV, LEONTOVICH, GORDON & MAIER [1] 
states that a necessary condition for the existence of a continuous family of periodic 
orbits of (2) depending on 8 and approaching F as 8 ~ 0 is that F be contained 
in a level curve of E and that 

f (B - x 2) dX d r  = o. 
Int r 

Integrating with respect to Y gives 

A, 

2 f ( B - - X  2) Y d X = 0  (Ex) 
At 

where Y = 2E -- 2 M X  - -  N X  2 3 and At and A2 are the inter- 

sections of F with the X-axis. The integral (Ex) is an elliptic integral and can be 
reduced by the classical procedure of Legendre to a linear combination of 

d X  X X 2 
= J - - ~ -  d X  whose coefficients are polynomials I o = f T , l l . ; f y e x ,  and *2 

in (B, E,  M ,  N,  R) .  Further (fractional-linear) changes of coordinates place the 
roots of Y at ::t: 1 and -t-k to yield the standard elliptic integrals. 

The stability of the periodic orbits determined by solving the equation (Ex) 
is found by differentiating this equation with respect to E. Derivatives which are 
negative yield stable cycles for ~ > 0 in (2), while positive derivatives give un- 

0Y 1 
stable cycles and zero derivative indicates neutral stability. Since OE-- Y '  
the equation yielding neutrally stable cycles is 

/ * B - -  X 2 
i" a x  = 0 (NS) 

A, 

or BIo ~ 12 in terms of the elliptic integrals introduced above. 
Working with the roots Ai of the polynomial 

P ( X )  ---- --�89 X 4 - -  X 3 - -  N X  2 - -  2 M X  + 2 E  = --�89 I ~  ( X  - -  A i ) ,  
i=1 

we derive explicit expressions that parametrize the solutions of the pair of equa- 
tions (Ex) and (NS). To accomplish this, we perform an affine change of coordi- 
nates that sends (A1, A2) to (--1, 1) and use the location of the remaining two 
roots in the new coordinate system as parameters. By exploiting the quasihomo- 
geneity of the system (2), these calculations are simplified by assuming A 2 -- A ,  = 2. 
Additionally, the two roots of P not equal to -4-1 can be transformed to lie at 
-q-k. Using k and a parameter q of this coordinate transformation, we express 
the condition for double cycles to exist in terms of standard elliptic integrals. 

Take now As -- A, = 2 and define 

d = �89 (A1 + As), 

X = U + d .  
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Let st and s2 be the roots A3 -- d, A, -- d of the polynomial P(X) translated 
to the U coordinate system. Substituting into P, (Ex), and (NS) we obtain (1) 
a system of equations expressing (E, R, N, M) in terms of (d, st, s2) and (2) a 
pair of equations for giving the location of double cycles as polynomial expres- 
sions in (B, d, sl, s2) and the integrals 

I U i  

J ,=  fyav, i=0 ,1 ,2 .  
--1 

Now consider the dependence of (NS) and (Ex) on (B, d). Since P = yz is 
independent of (B, d), both equations are linear in B and quadratic in d. Closer 
inspection shows that the equations depend linearly on the parameters B + d 2 
and d. Therefore, this pair of equations can be solved explicitly for B and d in 
terms of the si and elliptic integrals Ji- In principle, the outcome is (approxi- 
mately) a parametrization of (E/R 4, M/R a, N/R 2, B/R 2) along the surface of 
double cycles in terms of (sl, s2). However, the accurate evaluation of the Ji's 
is complicated by the presence of poles of the integrand near the interval [-- 1, 1 ] 
for many parameter values of interest. 

A fractional linear transformation which has fixed points at --1 and 1 has 
u+q v--q 

the form v - - 1  + q------u or u - - 1 -  qv To parametrize the locus of double 

cycles in terms of standard elliptic integrals, we want to express sl, s2 of the u 
coordinates as the transforms of i k  in the v coordinates for a suitable value of 
q. In other words, starting with (k, q) we associate to it the polynomial P (in u 

( ~-k2-~-q~ Next one uses the Legendre transfor- coordinates) with roots ~-4-1, 1 q: qk ]" 
mations to express the elliptic integrals Jo, J1, J2 in terms of standard elliptic 
integrals. The results of these computations when the roots are • are 

/ du  ]/l+__.k2q z ~ d r  
J o =  . y = [  1 - - q  2 y 

--1 --1 

J1 
f u du 1 1 -[-kZq 2 dv 
1 Y q 1 - -  q2  - -'1 y 

+ 
],/(1 4- kZq 2) (1 -- q2) 1 

f (1 - -  q 2 0 2 )  y ' 
- 1  

/ u2du  ]/1.-q2_kZq2 ~ d r  V 1--qZ / dv 
. /2=  -y- - - V  l - - q 2  ~----(1 + k  2) 1 + k 2 q  z (1--qZvZ) 

- - I  - - I  - -  

+k2(1 + k  2) 1 / (1_q2)(1  + k 2 q  2) 
1 dv 

f (v z + k 2) y' 
--1 

y2 = (1 - v ~) (v  = + l d ) .  
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The expression of (E/R 4, M/R a, N/R 2, B/R 2) in terms of q, k and the three 
complete elliptic integrals appearing above is long. The results of SMP calcula- 
tions are available from us on request. Our efforts at evaluating these expressions 
numerically have not been successful yet. The "interesting" regions in which 
triple and quadruple cycles occur apparently lie very close to parameter values 
for which the elliptic integrals are singular ([ q l ~ 1 or k ~ 0). Further efforts 
to deal with the resulting numerical difficulties will be described elsewhere. We have 
also used MACSYMA t6 compute the equations which describe triple and qua- 
druple loops in terms ofs~ and s2 when these are complex s-4- it. The expressions 
produced by MACSYMA are very long (hundreds of terms), making it impracti- 
cal to seek a solution of these equations directly. Consequently, the existence of 
the quadrupole cycle and the location of the curves of double cycles in the sta- 
bility diagrams have been determined by a combination of direct numerical 
integrations of (2) and arguments based upon the unfoldings of the codimension 
two and three subsidiary bifurcations. This is the weakest part of the analysis in 
our study. 

V. Codimension 3 Bifurcations 

This section describes several of the codimension three bifurcations and their 
unfoldings which occur in the family of vector fields (1). We concentrate attention 
on those codimension three bifurcations which involve more than the transversal 
crossing of lower codimension bifurcations in different regions of the phase plane. 
There are five situations of this type that we examine. These are 

(1) Takens-Bogdanov loop: the separatrices at a point of Takens-Bogdanov 
bifurcation are homoclinic. 

(2) Neutral trace 0 saddle: a homoclinic orbit of neutral stability occurs when 
the saddle point has trace zero. 

(3) Degenerate Takens-Bogdanov bifurcation: one of the quadratic coeffi- 
cients in the Takens-Bogdanov normal form vanishes. 

(4) Takens-Bogdanov cusp: the other quadratic coefficient in the Takens- 
Bogdanov normal form vanishes. 

(5) Bifurcation at Infinity: some points of codimension two bifurcation tend 
to infinity. 

Takens-Bogdanov Loop 

The Takens-Bogdanov bifurcation for the system (2) occurs near the para- 
meter values M/R s = --49/27 when ~ is small. At a Takens-Bogdanov bifurca- 
tion, there is one stable and one unstable saddle separatrix. The codimension 
three bifurcation described here occurs when these separatrices coincide as a 
homoclinic orbit. To compute the parameter values at which this occurs, we nor- 
malize by setting the Takens-Bogdanov equilibrium point at --I.  Then B = 1, 
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and we need to solve the equation 

1 

f (1 --  X 2)r l) 3 ( g - -  X)) dX ~- 0 
-1 

for K to find the intersection of the homoclinic loop with the X-axis. We calculate 
K = ~, so that R, N, M are the coefficients of 

d 
� 8 8  1) 3 ( x - ~ ) ) = ( x +  1) 2 ( x -  78-)=X 3 - ] - 6 X 2 - 9 X  8 7- 

The unfolding of the Takens-Bogdanov loop is quite complicated. There are 
two cases which give rise to topologically different stability diagrams, and the 
more complicated opposite case to the one occurring here can be found in model 
equations for a stirred tank reactor [6]. Figure 3 gives the stability diagram for 
our case. To begin the description of the unfolding, we compute the normal form 
of the Takens-Bogdanov point and the stability of the homoclinic loop. With 
V = X q- 1, at the parameter values used above, we have 

~r y~ 

= + ~- V 2 q- 2 V Y  - -  V 3 - -  V 2 y .  

It follows that the small periodic orbits generated from the unfolding of the Ta- 
kens-Bogdanov bifurcation are unstable. The stability of the homoclinic loop is 
given by 

13 13 
-7- -y 

f 1 - - X  2 f 1 - - X  4~ d X  = d X  = - -  
_~ l/(1 + X ) 3 ( ~ - - X )  _~ ]/(1 + X ) ( ~ - - X )  7 "  

2 

Fig. 3. Stability diagram for a two dimensional sphere in the parameter space surround- 
ing the curve of Takens-Bogdanov loop bifurcations. The numbers correspond to the 

phase portraits in Figure 2b. 
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Consequently the homoclinic loop at the Takens-Bogdanov bifurcation is un- 
stable. 

The bifurcation locus near the Takens-Bogdanov loop has the topological 
structure of a cone, so it is determined by its intersection with a small sphere 
surrounding the point of codimension three bifurcation. Figure 3 illustrates the bi- 
furcations occurring in a two-dimensional sphere which surrounds the locus of 
the Takens-Bogdanov loop bifurcation in the parameter space. We describe how 
this diagram was determined. Observe that all four types of codimension one 
bifurcation occur. The saddle-node locus forms a smooth closed curve because 
the equilibrium of the Takens-Bogdanov bifurcation is a fold from the singularity 
theory point of view. The Hopf bifurcations occur along a smooth curve with end- 
points of Takens-Bogdanov bifurcation. From the computation of the normal 
form, we know that the saddle point has positive trace in the region in which small 
periodic orbits born at these Hopf bifurcations occur. 

The saddle-loops represent small homoclinic orbits, large homoclinic orbits 
lying to the right of the saddle point and large concave homoclinic orbits. The 
small saddle loops occur along curves which end in saddle node loops. The three 
curves of saddle node loops must intersect in a double saddle loop since saddle 
node loops with positive and negative trace at the saddle are possible. Therefore 
a Takens-Bogdanov bifurcation occurs in each arc of the saddle node locus ending 
at its intersection with a curve of large saddle loops. 

To complete the stability diagram for the Takens-Bogdanov loop, the double 
cycle bifurcations must be located properly. From each curve of large saddle 
loop bifurcations, a curve of double cycle bifurcations will begin at points where 
the saddle point has trace zero. Since the region of small periodic orbits lies be- 
tween the curve of small saddle loops and the arc of saddle-nodes at which the 
degenerate equilibrium has a positive eigenvalue, the points of trace zero saddle 
loops occur on the opposite sides of the double saddle loop point from the Hopf 
bifurcation curve. 

As one crosses the arcs of saddle node bifurcations between the large saddle 
node loops from the region of one equilibrium to the region of three equilibria, 
a periodic orbit disappearswhose stability agrees with that of the saddlenode. Since 
the Takens-Bogdanov loop is unstable, the arc of negative eigenvalue saddle 
node bifurcations between large saddle node loops must lie adjacent to a region 
of parameter space with one equilibrium and three periodic orbits near the Takens- 
Bogdanov loop. The stable periodic orbit between two unstable ones disappears 
as the saddle-node curve is crossed. Consequently, the curves of double cycles 
emanating from the saddle loop curves lie outside the region between the large 
saddle loops. These curves cross the saddle node bifurcation locus and then 
separate regions in which there are one and three periodic orbits near the Takens- 
Bogdanov loop. Since one of the double cycle curves represents the coalescence 
of the inner periodic orbits and the other double cycle curve represents the co- 
alescence of the outer two of the three periodic orbits, the two curves of double 
cycles meet in a triple cycle at which all three periodic orbits coalesce. 

The discussion above gives the simplest location for the double cycle curves 
in the stability diagram in the sense that there are the fewest possible structurally 
stable regions in the stability diagram and the fewest possible periodic orbits. 
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We have not rigorously established that the stability diagram of Figure 4 is the 
correct one for the unfolding of  the Takens-Bogdanov loop, only that it is the 
simplest diagram consistent with all of the information about codimension one 
and two bifurcations known to occur in the unfolding. Note finally that in the 
system of equations (1) and (2), when a Takens-Bogdanov loop occurs, there is a 
large stable periodic orbit which plays no role in the unfolding of the Takens- 
Bogdanov loop. The region of parameter space in which there are four nested 
periodic orbits appears to be very small, so that it is a delicate numerical compu- 
tation to exhibit a phase portrait with the four limit cycles. 

Neutral Trace 0 Saddle Loop 

For parameter values M/Ra ~ --1.358, there is a point along the curve of 
outer saddle loops at which the saddle point has trace zero and the saddle loop 
is neutrally stable, i.e., its return map has derivative tending to one as the homo- 
clinic orbit is approached. To analyze the behavior of periodic orbits near this 
codimension three bifurcation, it is necessary to compute the first few terms in 
the asymptotic expansion of divergence integrals near a homoclinic orbit. In 

R N 2 
terms of the Hamiltonian H(X, Y) = �89 y2 + �88 X4 + - f  X 3 + -~  X q- M X  ~- E 

whose level curves approximate the trajectories of (2), the asymptotic expansions 
are polynomials in (E -- Eo) and In (E -- Eo), E0 being the value of H at the 
saddle point. The presence of the logarithmic terms prevents the direct applica- 
tion of results from singularity theory to determine the stability diagrams. Thus we 
discuss here the "singular singularity theory" appropriate to this example. 

Recall the procedure for locating periodic orbits. A family of periodic orbits 
of (2) approaches a level curve of H(X, Y) as ~ ~ 0. If  the level curve has X" 

2R 3 
intercepts A1 and A2 and P(X) = 2E -- 2 M X  -- N X  2 -- -~--X -- �89 X 4, then 

A2 

I(E) = f (B -- X 2) CP(X) dX 
A~ 

has a zero at the value E of H(X, Y) on the level curve. Stability of the periodic 
orbits is determined by the sign of  

OI ~" B - -  X 2 

AI 

We want to calculate how the zeros of I depend upon (N/R u, M/R 3, B/R 2) when 
we regard I(E) as a family of functions depending upon these parameters. When P 
has simple roots, I is an analytic function of E and the singularities are folds, cusps 
and swallowtails. However, when P has a double root, E is a singular value of H 

and ~-diverges with a logarithmic singularity. This reflects the well known fact 

that the stability of  a homoclinic trajectory is determined by the trace at the saddle 
point when this trace is non-zero. 
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In the case of  a trace zero saddle point, the coefficient of  the lowest order log- 
0I  

arithmic term in the expansion of  I (E)  vanishes. Then ~ is finite and gives the 

stability of  the homoclinic orbit if  it is non-zero. In the case of  the neutrally stable 

trace 0 saddle loop, ~-~ is zero and the lowest order non-zero term in the asymp- 

totic expansion has order (E - -  Eo) 2 In (E - -  Eo). We now verify that  these are 
indeed the orders of  the lowest order terms in the asymptotic expansion and show 
that perturbations in the family (2) lead to an unfolding. 

Consider the asymptotic expansion of  the integral I near a saddle point. By 
translating coordinates so that the saddle point is sent to zero and e 2 = [ E - -  Eo 1, 
we obtain integrals of  the form 

c2(e) 
J ( e ) =  f ( b j . + b 2 u + b a u  2 ) ] / - e  2 + a 2  u 2 + a 3 u  3 + a 4 u  4du  

cl(e) 

where cj.(e) and c2(e) are roots of  the polynomial - - e  2 + a2u 2 --}- a3u 3 + a,u 2 
and c~(0) = 0. To obtain the asymptotic expansion of  J(e) in terms of  e, we change 
variables once more  with u = ev and substitute into J to obtain 

c2(e)/e 

J(e) = f e2(bl. -}- b2ev -}- bae2132) v r -}- a3ev + a4e2v 2 --  1/v 2 dv. 
cz(e)le 

Next approximate the square root in this expression by 

V a 2 + a 3 e v - } - a ,  e2v 2 -  
2v 2 l/a2 + a3ev -4- a ,  e2v 2 

as v becomes large and note that cL(e)/e tends to a non-zero limit as e --~ 0. From 
this expansion, it follows that J(e) has an expansion in powers of  e z and In e. 
The constant term in the expansion is zero at a saddle loop. The coefficient of  
e 2 In e is zero if b t  = 0, and this occurs when the saddle point has zero trace 
(b t = B --  S 2 where X = S is the location of the saddle.) In this case, the coeffi- 
cient of  e 2 is given by an integral 

K 
( s  + x )  

I / ( x  - I_.1 ( r  - x )  
dX  

as described in Section 3. Note that this is an affine function of  S, so that the 
coefficients of  e 2 In e and e 2 vary in a non-singular way as B and S are varied. 

From these asymptotic calculations, it follows easily that the zero sets of  J(e) 
as functions of  the parameters are homeomorphic to those of  the family of  func- 
tions 

l l  + 12 e2 In e + 13 e2 + e* In e 

near the neutrally stable trace zero saddle loop provided that the coefficient 
of  e 4 In e in the asymptotic expansion is non-zero. The function l~ + lze 2 In e 
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+ 13e2+ e* In e has a triple zero along the curve in parameter space given 
parametrically by 

(,1) /elnee / 
12 = [ - - 4 e  2 In e -- 3e 2 

13 \ 4e 2(lne) 2 + 3 e  2 1 n e + e  2/  

This corresponds to a cusp on the surface of double loops in the stability diagram 
and yields a region of parameter space where there are three nearby periodic 
orbits. 

Degenerate Takens-Bogdanov Bifurcation 

When M ---- 0 in the system of equations (2) but R @ 0, a degenerate Takens- 
Bogdanov bifurcation occurs. This case has been analyzed by DUMORTmR, 
ROUSSAIRE & SOTOMAYOR [4] and also been called a "cusp" by them. At the origin 
when N ----- 0, the term which is X 2 0x or XY O r in the normal form of the Ta- 
kens-Bogdanov bifurcation of the system (2) has zero coefficient, giving rise to 
the bifurcation considered here. We described the intersection of a small sphere 
which surrounds the line R = 0 in the parameter space with the bifurcation locus. 

The origin is a fold from the point of view of singularity theory, so the locus 
of saddle-nodes forms a closed smooth curve. In the parameter space, this curve 
lies approximately on the surface N 2 ---- 4M and is entirely in the region M :> 0. 
For  fixed M > 0, there is a strip bounded by two vertical saddle node lines in 
the B -- N plane for which there are three equilibrium points of the vector 
field with the same sign of X. One of the saddle-node lines represents the merging 
of  the two equilibrium points closest to the origin and the other represents the 
coalescence of the equilibrium points farther from the origin. On each of the 
saddle-node lines a Takens-Bogdanov bifurcation occurs. The saddle loops and 
Hopf  bifurcations associated with these are well separated. The saddle loop 
curves terminate in saddle-node loops and the Hopf  bifurcation curves extend 
across the opposite saddle-node line from their origination of Takens-Bogdanov 
bifurcation points. As always, there is a third curve of saddle-loops lying between 
the other two. The trace of the saddle point changes sign along this curve because 
its endpoints lie below the point of  Takens-Bogdanov bifurcation on one of the 
saddle-node curves and above the point of Takens-Bogdanov bifurcation on the 
other. Consequently, there is a trace 0 saddle-loop along the curve, and the double 
loop curve terminates there. 

To complete a picture of the intersection of a sphere surrounding the line 
M ---- 0 in the parameter space with the bifurcation locus, we observe that when 
N is near the line of saddle-nodes far from the origin, the saddle loops surrounding 
the equilibrium point at the origin are stable. Therefore, when M/Ra is slightly 
smaller than zero, there is a point with a trace zero saddle loop that occurs near 
N = B ---- 0. The branch of small double loops emanating from this point ter- 
minates at the degenerate Hopf  bifurcation which is also close to zero. 
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Takens-Bogdanov Cusp 

For the parameter values M/Ra --- 1/27, there is a cusp of equilibrium points 
from the point of view of singularity theory. In addition, there is a value of B 
for which the cusp point has a nilpotent linearization. If  one computes the Takens- 
Bogdanov normal form at this point, the term X 2 Or has zero coefficient. This type 
of codimension three bifurcation occurs in the CSTR model for chemical reactors 
and has been analyzed in GUCKENHEIMER [5]  and MEDVED [9]. We describe here 
the results of this analysis which yields a picture of the intersection of a small 
sphere surrounding the curve M / R  3 = 1/27 in the parameter space with the 
bifurcation locus. 

First the locus of saddle-node bifurcations contains two cusp points which 
are the intersections of the sphere with the line of cusps in B -- N plane for 
M / R  3 ---- 1/27. The non-zero eigenvalue is positive at one cusp and negative at 
the other, so along each of  the arcs of saddle nodes joining the cusps there is a 
Takens-Bogdanov bifurcation. The Hopf  bifurcations occur along a curve whose 
endpoints are the points of Takens-Bogdanov bifurcation. The branches of saddle 
loops emanating from the Takens-Bogdanov bifurcation do not intersect, and they 
end at saddle node loops. The remaining branch of saddle nodes lies between these 
and ends in saddle node loops. The trace of the saddle changes sign. Thus there 
is a curve of double loops; it has ends at the trace zero saddle loop and at a de- 
generate Hopf bifurcation. 

Bifurcation at Infinity 

The transition which occurs in the system (2) as R passes through zero in the 
parameter space is relatively simple. The points of intersection of the two Hopf  
curves and the double saddle loop points tend to infinity. Otherwise the stability 
diagrams on the two sides of the surface R ---- 0 are similar to one another. 
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Appendix : Additional Calculations for Trace-O-saddle loops 

The condition B = (s + d )  2 for the trace at a saddle being zero in the per- 
sistence condition for saddle loops allows us to solve the resulting equation for d, 
giving 

15w(s - -  4 s  3) - -  ]/1 -- s 2 (16 -- 47s 2 -- 14s 4) 
10d ---- 

3w(1 + 4 s  2 ) - ] / 1 - s  2 ( 1 3 s + 2 s  3) 

The region in (M, R)-plane in which saddle loops with trace zero exist is deter- 
mined by the values of 

M 4(d + s) (2d 2 + ds -- 1) 
R 3 27(s + 2d) 3 ' 
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evaluated along d = d(s) when s varies between --1 and 1. Consider first the 
case of  right loops. The asymptotic behavior of  d near s = --1 and s ----- 1 has 
the form 

3 I / ~  + 0 + o(1 + ~) aN~0-  ~ (s -+ - 1) 

d,-.~ - 1  + 5o7z (1 - s) + o((1  - s )  2) ( s - ~  1). 

We note that near s = 1 the leading terms of  the numerator and denominator 
of  d(s) are of  order (1 -- s) a; hence the asymptotics of  d require expansions up 
to fourth order. Using this result in M/Ra gives 

R-T'~ -- ~ q- 1 - - 6 ~ M  49 1575 1/2-~- ~ + s) q- O((1 -[- s)) 

M 727911 
R - -r  ~ 3 8402 (1 --  s) 2 + O((1 --  s) 3) 

(s ~ - 1 )  

(s ---~ 1). 

Thus, M/R3E [--~, 0] for s near the boundary values -4-1. 
Next consider the case of  concave loops. Since w = --sin -1 s, d(s) is an odd 

M 
function and - ~  is an even function of  s. Consequently it suffices to investigate 

the asymptotic behavior near s = 0 and s = 1. We find 

1 3s 
d ~  10-S 20 + O(s~) (s-+ O) 

d N ~o + ~3' (1 - -  s) + 0((1 --  s) 3~2) (s -+  1), 

so that d diverges as s ~ 0. Substituting these expansions into M / R  3 yields 

M ~-~ N 6 _ v5~ s 2 + o ( s ' )  (~ ~ 0) 

M 49 245 ~-Y ~ -- ~ + -3~ (1 - -  S) --~ O ( ( 1  - -  S) 3/2) (s--~ 1). 

Again, M / R  3 E [ - ~ , ~ 7 ]  when s i s  near the boundaries s = 0  and s 2 =  1. 
d 

I f  we can show that the derivative ~ ( M / R  3) does not vanish for s E (0, I) 

and for s 2 < 1 in the concave and the right case, then saddle loops with trace 

M [ 49 1]respectively. Aca l cu l a t i onus ingSM P 0 exist only in the regions-~-~ E 26 '27 

d 
shows that ~ ( M / R  3) = 0 for some s if and only if the function 

g(s) ~- (1 -- s2)3/2 pl(s)  --  3(1 - - s  2) wsP2(S) --  45 l/1 --  s 2 wZp3(s) q- 675sw3 p4(s) 
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has  a zero, where  

pl(s)  = 2048 + 18148s 2 - -  3127s 4 + 13618s 6 + 2588s s - -  200s 1~ 

p2(s) = 3688 + 15591s 2 + 6176s* + 7316s 6 + 336s 8 - -  32s 1~ 

p3(s) = 1 2 -  247s 2 -  1 4 1 0 s * -  432s 6 -  128s 8, 

p,(s) ---- 3 - -  12s 2 - -  4s4. 

Consequent ly ,  i f  M /R  3 encounters  an  ex t remum,  then the equal i ty  

1/1 - -  s 2 (1 ~ s 2) p2(s) - -  225w 2 p4(s) 

3sw - -  q0(s) ~ (1 - -  s 2) p l ( S )  - -  4 5 W  2 p 3 ( s )  

mus t  be satisfied for  some s. Simple es t imates  show tha t  bo th  the  n u m e r a t o r  and  
the d e n o m i n a t o r  o f  9(s) are  posi t ive  i f  s 2 < 1. F r o m  this we conc lude  tha t  the  
equal i ty  canno t  be satisfied for  the  concave case because  here sw -< O. In  the  
case o f  r ight  loops ,  the equal i ty  canno t  ho ld  for  s =< 0, bu t  we were n o t  ab le  to  

give an  analyt ic  p r o o f  tha t  I/1 - -  s2/3sw :~= qg(s) for  0 < s < 1. Ins tead,  we have  
c o m p u t e d  numer ica l  values which are  presented in Table  3. This  tab le  suggests 

tha t  ]/1 - -  s2/3sw > 9(s) for  0 <-- s _< 1. 

Table 3 

l / 1  - -  s 2 
~(s) 

3sw 

0.1 2.25524 1.85965 
0.2 1.19245 1.15551 
0.3 0.83716 0.81332 
0.4 0.65883 0.62420 
0.5 0.55133 0.50551 
0.6 0.47929 0.42484 
0.7 0.42754 0.36748 
0.8 0.38850 0.32573 
0.9 0.35794 0.29495 

F o r  de te rmin ing  the loci o f  concave  neu t ra l  t race 0 saddle  loops  we use again  
the  pa rame t r i za t ion  a long  saddle  loops  in te rms o f  the pa rame te r s  d and  s in t ro-  
duced  in Subsect ion  III .3.  Recal l  tha t  for  concave saddle  loops  wi th  t race  0 we 

have 

lOd - -  
15(s - -  4s 3) sin -x  s + 1/1 ~ s 2 (16 - -  47s 2 - -  14s 4) 

3(1 + 4s 2) sin -1 s + [/1 - -  s z (13s + 2s a) 
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The derivative o f  the divergence integrals, evaluated at the loci o f  concave trace 
0 saddle loops, is given by 

~E _ ]//1 - -  u 2 

: 2 ( s  + 2d) sin -1 s - -  I / 1  - -  s 2 . 

Solving OI[OE = 0 for d and substituting this into the expression for  d above 
leaves us with a single equat ion for s, 

5s(1 - -  s 2) (13 + 2s 2) - -  ]/1 - -  s 2 (1 - -  42s 2 - -  4s*) sin -1 s - -  30s (sin -1 s) 2 = 0. 

Inspection shows that  this equat ion has a unique solution in [0, 1], given by s = 
0.8850 with corresponding value for  d: d = --0.2283. The result M / R  3 = - -  
1.358 follows f rom the expression for  M / R  3 as 

4(d + s) (2d 2 + ds -- 1) 

27(s + 2d) 3 
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