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Abstract. A predator-prey model is considered in which prey is limited by the 
carrying capacity of the environment, and predator growth rate depends on 
past quantities of prey. Conditions for stability of an equilibrium, and its 
bifurcation are established taking into account all the parameters. 
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I. Introduction 

The system 
1V( t) = e N (  t)(1 - N (  t ) /  K ) - c~N( t )P(  t) 

P( t )  = - y P ( t ) + f l P ( t )  [ '  N ( r ) G ( t - ~ ' )  d~- (1.1) 
J -  c o  

describes the dynamics of  interaction between a predator and a prey species. 
N ( t )  and P( t )  are the quantities of prey and predator, respectively, at time t. 
Dot denotes differentiation with respect to time. The parameter K > 0 is the 
carrying capacity of the environment with respect to the prey, e > 0 is the intrinsic 
growth rate of prey, ce > 0 is the predation rate, ~/> 0 is the mortality of  predator 
in the absence of prey, fl > 0 is the conversion rate. The system has a memory 

o o  

represehted by the weight function G : R + ~ R  § which satisfies also Jo G(s)  ds = 1. 
Thus the predator 's present growth rate is affected by past values of  prey quantity. 
Several authors, among others Cushing [2], Dai [3], MacDonald [8], Farkas [4], 
Farkas, A., Farkas, M., Kajtfir, L. [5], and Szab6 [11] have studied system (1.1) 
under the assumption that 

G(s)  = Go(S) = a exp ( - a s ) ,  a > 0. (1.2) 

(St~pfin [10] has studied the system assuming different weight functions). The 
present authors and Kajt~ir have managed to characterize the bifurcation of the 
equilibrium of the system in case (1.2) when ~ = 1/a was considered as a 
bifurcation parameter. One may consider the value of this parameter as the 
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measure of the effect of the past or, simply, as the delay. The first two authors 
[6] have established an Andronov-Hopf  bifurcation and managed to characterize 
it in the more realistic case when the weight function is 

G ( s )  = Gl (s )  = a2s exp ( - a s ) ,  a > 0. (1.3) 

In this case e was assumed for bifurcation parameter. 
In this paper based on earlier results of the authors a unified treatment is 

given to the two cases, see Fig. 1. In both cases, primarily, the measure of the 
dealy /x = 1/a  and the carrying capacity K will be considered as bifurcation 
parameters. From a biological point of view the most reasonable thing is, probably, 
to vary K and to fix the values of the rest of the parameters. For particular 
species e, y, a, /3 and /~ may be considered as parameters determined by the 
genotype, while the carrying capacity K of the environment may vary. The 
response of the system to the variation of the carrying capacity depending on 
the values of the other parameters is an important and interesting phenomenon. 
The dependence of the phenomenon on the delay/x can be interpreted especially 
clearly. The system exhibits the paradox o f  enrichment (see Rosenzweig [9]) in 
both cases. This means that the increase of the carrying capacity beyond a certain 
value destabilizes the formerly stable equilibrium of the system, the system 
undergoes an Andronov-Hopf  bifurcation and begins to oscillate. However the 
character of the bifurcation and the value of K at which it takes place depends 
on the delay. The larger the delay is the earlier the bifurcation occurs. 

In case the weight function is given by (1.2), i.e. the effect of the past is fading 
away exponentially as we go backwards in time, there is a certain delay under 
which the bifurcation is supercritical and above which it is subcritical. This means 
that in this case if the delay is small then after the destabilization of the equilibrium 
the system begins to oscillate with small amplitude stably. If  the delay is large 
then approaching the critical value of the carrying capacity from below the region 
of attractivity of the equilibrium is decreasing, and the system is becoming 
unpredictable. 

In case the weight function is given by (1.3), i.e. the most important moment 
in the past is/x -- 1/a  units before the present time t (the weight function has a 
hump at ~" = t - l / a ,  and going further backwards in time the effect of the past 
is fading away), the phenomenon is richer. In this case we have to take into 
account the value of the intrinsic growth rate of prey, e too. If  e is small then 
the bifurcation is supercritical for arbitrary large delay, i.e. after the loss of 
stability of  the equilibrium the system exhibits small amplitude stable oscillations. 
If  e is large then the bifurcation is supercritical for small and for very large 

W 

C [  . . . . . .  w= Go(t-'c~ 
t t t-2/a I t-1/a t 

Fig. 1. Weight functions (1.2) 
and (1.3), respectively 
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delays, however, there is an interval of possible delays such that if the delay falls 
into this interval the bifurcation is subcritical. 

Our results, actually, yield three parameter bifurcation diagrams. In the three 
dimensional parameter space e/y ,  K /y  = K~8/y, ytx = y /a  we determine a two 
dimensional bifurcation surface, and characterize the phenomenon at crossing 
the latter. 

Case (1.2) is treated in Sect. 2, case (1.3) in Sect. 3. The bifurcation diagrams, 
Figs. 2, 3, and 4, 5 respectively, hopefully, show the results clearly. 

In case the bifurcation is subcritical we have some computer simulation 
evidence of  how the system behaves. 

2. Exponentially fading memory 

System (1.1) is considered in this section with weight function given by (1.2): 

N (  t) = eN(  t)(1 - N (  t ) /  K )  - a N (  t)P( t) 

P ( t ) = - y P ( t ) + f l P ( t )  f t N ( r ) a  e x p ( - a ( t - r ) )  dr, t~[0 ,  oo). (2.1) 
J -  cO 

Introducing the notation 

Q ( t ) =  [ '  S ( ' r ) a e x p ( - a ( t - r ) ) d r  
J -  a o  

system (2.1) becomes essentially equivalent to the three dimensional system of 
ordinary differential equations 

= eN(1 - N / K  - a P / e )  

ff = P ( - T +  flQ) (2.2) 

O = a ( N -  Q) 

on t ~ [0, oo) in the following sense. If  (N, P)  : [0, ~ )  ~-~ ~2 is the solution of (2.1) 
corresponding to the continuous and bounded initial function ]~r:(-oo, 0]~-->R 
and the initial value Po -- P(0) then (N, P, Q) : [0, oo) ~-+R 3 is the solution of (2.2) 
corresponding to the initial values N(0) -- N(0),  P(0) = Po and 

Q(0) = Qo = jT~ ~r(r)a  exp(ar)  dr, 

and vice versa. (Clearly, if the initial values N(0),  Po and Qo related to system 
(2.2) are prescribed then the function ~r is not uniquely determined). 

The following facts have been established earlier (see, e.g. Farkas, M. [4]). 
System (2.2) has three equilibria: (0, 0, 0) which is unstable; (K, 0, K)  representing 
the absence of predators which is asymptotically stable if y /K f l  > 1, and unstable 
if 

T/KJ3 < 1; (2.3) 

and Eo = (y / f l ;  ( 1 -  y / K , 8 ) e / a ;  y / f l )  which lies in the interior of  the positive 
octant of N, P, Q space exactly when (2.3) holds. Introducing the notations 

/, = l / a ,  i . ~ o ( K ) = K f l / ( K 2 f l 2 - K f l y - y e ) ,  (2.4) 
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S = {(K, IX): K > 7//3, IX > 0, and if IXo(K) > 0 then/z  </z0(K)}, we have that Eo 
is asymptotically stable if (K,/z)  c S and it is unstable if 0 </~o(K) < Ix. As a 
consequence, Eo is asymptotically stable for all IX > 0 if (2.3) holds, and y/K[3 + 
ye/(K[3)2~ 1, i.e. if 

Ko<  K ~ K1 where Ko = y/fl ,  K1 = (3'+ (y2+4ye)a/2)/2fl. 

If K > K1, and the parameters K,/x are varied so that (K, IX) crosses graph Ix0 
from the convex to the concave side then Eo loses its stability. This loss of stability 
is characterised by the following theorem where 

y(e  + 23,) + (3,(e + 23,)(8 e 2 + 9e3" + 23'2)) '/2 
K ~  - ( 2 . 5 )  

2/~(e +23') 

Theorem 2.1. I f  the parameter values K > K1, IX > 0 are varied through graph Ixo 
from the convex to the concave side then at ( K, IXo(K)) the equilibrium Eo undergoes 
an Andronov-Hopf  bifurcation ; if the crossing of  graph tXo takes place in the interval 
K ~ (Kd, ~ )  then the bifurcation is supercritical; if it takes place in the interval 
K c (K~, Kd) then the bifurcation is subcritical (See Fig. 2). 

Proof This follows from Theorem 1 in [4] and from the Theorem in [11] if we 
rewrite the supercriticality (resp. subcriticality) condition of the latter the follow- 
ing way: 

1 - 3 , / K ~ - ( l + e / ( 2 3 , + e ) ) 3 , e / ( K ~ 8 ) 2 > O ,  (resp. <0) .  

This condition holds if K > Ka (resp. K1 < K < Ka). 

As we have already mentioned, the biologically most reasonable standpoint 
is to consider K as the bifurcation parameter. If we introduce the notation 

Ixa = IXo(Ka) = 3,(e + 23,) + (7(e  + 23')(8 e 24- 9ey + 23'2)) 1/2 
282y (2.6) 

we have 

Corollary 2.2. I f #  > 0 is fixed and K is increased through the value/xol(/z) then 
the equilibrium Eo undergoes an Andronov-Hopf  bifurcation; if Ix <ixa (resp. 
tx > Ixa) then the bifurcation is supercritical (resp. subcritical). 

c t p h / % ,  

... UNSTABLE 

>K 
K K, K a 

Fig. 2. Bifurcation diagram for 
system (2.2) in the K,/z plane 
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We may put these results into a generalized context refraining from specifying 
the bifurcation parameter.  In system (2.2) the parameter  a can be transformed 
out by introducing aP as the second coordinate. The bifurcation of the system 
depends upon three independent parameters,  namely: 

u = e / y ,  v = K / y : K ~ / T ,  w = y t z = y / a .  

In the long run, N cannot stay above K, and so the specific growth rate of  
predator cannot stay above K - y. In the positive orthant of  the parameter  space 
u, v, w condition (2.3) restricts consideration to 1 < v, i.e. we have an equilibrium 
Eo in the positive octant of  N, P, Q space if and only if this condition holds. 
Rewriting the conditions based on formulae (2.4) and (2.5) we get 

Corollary 2.3. The equation of the bifurcation surface in the three dimensional 
parameter space is given by 

w(v ~-  v - u) - v = 0 (2.7) 

if this surface is crossed an Andronov-Hopf bifurcation takes place; the bifurcation 
is supercritical, resp. subcritical according as 

2v - 1 - ((8u2+ 9u + 2) / (u  + 2)) 1/2 > 0, (2.8) 

resp. < 0 at the crossing. 

In Fig. 3. the situation is shown in the three dimensional space of u, v, w. The 
surface F is defined by (2.7); this is the bifurcation surface. Behind this, and in 
front of  the vertical plane L: v = 1 the equilibrium Eo is asymptotically stable, in 
front of  F it is unstable. The curve g divides F into two according as (2.8) is 
positive or negative. The bifurcation is supercritical, resp. subcritical according 
as the crossing takes place below or above this curve. Figure 2 may be obtained 
taking an u = e / y  = constant section of F. 

Remark. I f  surface F is crossed at a point of  the curve g we get a degenerate 
A n d r o n o v - H o p f  bifurcation. Generically this bifurcation is of  codimension 1 
and should be of type (3) according to the Golubi tsky-Langford classification 

Fig. 3. Bifurcation diagram for system 
(2.2) in the three dimensional parameter 
space u, v, w 

? 

'I 
J 

v 
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([7] Proposition 3.47, see also Chow-White [1]). Actually, we have obtained 
computer simulation evidence that at parameter configurations where the bifurca- 
tion is subcritical (and near to g) large amplitude stable periodic solutions exist 
close to the critical parameter values. Thus, out of the three independent para- 
meters (any) one can be considered as the bifurcation parameter, another one 
as an unfolding parameter, and the third one is superfluous. However, we cannot 
rule out the possibility that there is a point on g where the bifurcation is of 
codimension two (of type (5) according to the classification quoted). If  this was 
the case this point would be the organizing centre of the bifurcation diagram 
and all three parameters would be needed. 

3. Memory with a hump 

In this section system (1.1) is considered with weight function given by (1.3): 

]V( t) = eN(  t)(1 - N (  t)/ K ) - a N (  t)P( t) 
(3.1) 

P ( t ) = - y P ( t ) + / 3 P ( t ) I  ~ N ( T ) a 2 ( t - ' r ) e x p ( a - ( t - r ) ) d z ,  t e [0, ~) .  

Introducing the notations 

Q(t) = i t  N(T)a2( t -  T) exp(--a(t-- ~')) dr 
d -  oo 

system (3.1) becomes equivalent to the four dimensional system of ordinary 
differential equations 

]V = eN(1 - N /  K)  - o~NP 

P = P ( - Y + f l Q )  (3.2) 
( )=  a ( R -  Q) 

R = a ( N - R )  

on t E [0, m) in the sense analogous to that specified after (2.2). 
We rewrite the results established in [6] for the present purpose. 

System (3.2) has three equilibria: (0, 0, 0, 0) which is unstable; (K, 0, K, K) 
representing the absence of predators which is asymptotically stable if y /K f l  > 1 
and unstable if (2.3) holds; and E1 = (7//3; ( 1 - y / K / 3 ) e / a ;  7//3; 3'//3) which 
lies in the interior of the positive orthant of N, P, Q, R space exactly when (2.3) 
holds. Considering the stability of El, and assuming (2.3) throughout, the part 
of the positive orthant of the u = e / y, v = K / y, w = y/x parameter space character- 
ized by 1 < v can be divided into three regions. 

(i) If w(v - 1) > 2 then E~ is unstable (for all e > 0). 
(ii) If  w ( v -  1)< 1/2 then E1 is asymptotically stable (for all e > 0). 

(iii) If 

1/2 < w(v - 1) < 2, (3.3) 
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and 

> 1 (3.4) 
~f2v(x/2w(v - 1) - 1) 

then E1 is asymptot ical ly  stable; if (3.3) holds and the inequali ty in (3.4) 
is reversed then E1 is unstable. (Note  that in view of  (3.3) both the 
numera tor  and the denomina to r  is positive on the left-hand side o f  (3.4)). 

Theorem 3.1. I f  1 < v, (3.3) holds, and the surface given by 

uw(~/'2- w~-~- 1)) 
= 1 ( 3 . 5 )  

x/2v(42w(v - 1) - 1) 

is crossed transversally the equilibrium El undergoes an Andronov-Hopf  bifurcation. 

Proof This is an immediate  consequence  o f  Theorem 1.1 in [6]. There e is 
decreased th rough  the value determined by (3.5) for the destabilization o f  El .  It 
is easy to see that this direction o f  crossing corresponds to the decrease o f  7, 
resp. the increase of  tz, resp. the increase o f  K = K/3 (keeping the rest o f  the 
parameters  constant  in all these cases). 

The Poincar6 constant  o f  the bifurcat ion has been determined in [6]. Its sign 
is equal to the sign o f  

cb(o, y / K ) =  Y2(O)(1/v)2+ Y , ( O ) l / v +  Yo(O) (3.6) 

where 

0 = ( 2 / ( / t Z  (K -- ,)/))) 1/2 .~_ ( 2 / ( W ( D  -- 1 ) ) )  l /2 

Y2(0) = - 2 0  s + 2304 - 8603 + 13402 - 900 + 20 

YI(0) = 206 - 1005 - 604+ 10203 - 18702+ 1190 - 20 

I1o(0) = 20(0 - 1 ) ( 2 -  0)(03 - 3 0 2 - 4 0  + 10). 

Thus, we have 

Theorem 3.2. I f  1 < v, (3.3) holds and ~(0,  l / v )  is negative (resp. positive) then 
the bifurcation at (3.5) is supercritical (resp. subcritical). 

Condi t ion  (3.3) is equivalent  to 1 < 0 < 2. The third degree polynomial  occurr- 
ing in the expression for  Yo has a single root  in the interval 1 < 0 < 2, namely  

0o = 1 + 2(7/3)1/2 cos((4cr + cos-1( -2(3 /7)3 /2) ) /3)  ~ 1.6027, 

while 1"2 < 0 and II1 < 0 in this interval. Thus, we have 

Corollary 3,3. I f  1 < v, and at (3.5) 

1/2 < w(v - 1) <~ 2/0o 2 ~ 0.7786 

then the bifurcation is supercritical. 

In case 0.7786 < w(v - 1) < 2 the determinat ion o f  the sign o f  q~ is more  tricky. 
Clearly, in this case if v is large then the bifurcat ion is subcritical, if v is close 
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Fig. 4. Bifurcation diagrams for system 
~ (3.2) in the ~, tz plane,  a y = 1, e = 5; 

~:K[3 b y = l ,  ~ = 2 0  

to one then it is supercritical. It can be seen from (3.5) that if, say, w(v-1) is 
fixed in the interval (0.7786; 2) then large v corresponds to large u and small v 
to small u, the correspondence depending on the value of  w, too. Hence,  in 
this case the bifurcation is supercritical (resp. subcritical) according as u is 
small (resp. large). In Fig. 4 7 has been fixed for good, and the bifurcation 
curves are shown in the parameter plane K = K/3,/z for two typical values of  e. 

%q 

" %  . . . . . . .  - . . . . . .  

Fig. 5. Bifurcation diagram for system 
(3.2) in the three dimensional parameter 
space u, v, w 



Predator-prey models with time lag 101 

6  hree dimensional phase b t ii:5-Pill 
space projection of path, and graph 
of P of a solution of system (3.2) 
with initial values (N(0), P(0), Q(0), "~,~., .... 
R(0)) : (2, 13, 2, 2). a (u, v, w) = /::)?~'( t "  '' 
(22, 4, 3/8), the amplitudes of N and ~/. ' " 

R "",ii" \ 
P are 1.5 and 12.5, respectively. '" 

, ............ J ............ b (u, v, w) = (16.5, 5, 3/8), the ~ . ~ g  ..... 
N amplitudes of N and P are 1.7 and 

13.5, respectively 

P 

In Fig. 5 the situation is shown in the three dimensional  space o f  u, v, w. 
The surface F is defined by (3.5); this is the bifurcat ion surface. Behind this 
and in f ront  o f  the vertical plane L: v = 1 the equilibrium El is asymptotical ly 
stable, in front  o f  F it is unstable. The curve g divides F into two according 
as (3.6) is negative or  positive. The bifurcat ion is supercritical, resp. subcritical 
according as the crossing takes place "outs ide  or inside the tongue" .  Figure 4 
may be obtained taking an u = constant  section of  F. I f  u is small then the 
section does not  cut into the tongue  (Fig. 4a); if u is large we get Fig. 4b. 

Remark. We may repeat  here the remark at the end of  Sect. 2. Two of  our  
computer  generated solutions are presented on Fig. 6 where the parameter  
values are fixed at v = 4, w = 3/8. The critical value o f  the parameter  u is then 
21.3, i.e. if u is decreased below 21.3 a subcritical bifurcat ion occurs. The 
initial values are fixed at (N(0) ,  P(0) ,  Q(0), R ( 0 ) ) =  (2, 13, 2, 2). In Fig. 6a 
u = 2 2 ,  i.e. we are still in the region where the equilibrium is locally 
asymptot ical ly  stable. In Fig. 6b u = 16.5. In both  cases the solution spirals 
towards  a closed curve whose  N and P ampli tudes are approximate ly  equal to 
1.5 and 12.5, respectively in the first case, and 1.7 and 13.5, respectively in the 
second case. 

4. Discussion 

We have considered a preda tor -prey  system where prey is limited by the carrying 
capaci ty K of  the environment ,  and predator  growth rate depends on past  values 
o f  prey quantity.  In  the equat ion governing the growth of  predator  quanti ty the 
average o f  prey over the past  with respect to a weight funct ion occurs. Two cases 
have been considered;  in the first case the influence o f  past values o f  prey quanti ty 
u p o n  the present growth of  predator  decreases exponential ly as we go back in 
time; in the second case there is a certain momen t  in the past  at which the quanti ty 
o f  prey influences the present  growth of  predator  the most. In  both  cases the 
strength o f  the delay, the influence o f  the past  can be measured  by a positive 
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parameter /z. The behaviour of the system depends upon the intrinsic growth 
rate of prey e, the mortality of predator y, the delay/z,  and the limiting factor 
of predator K = K/3 where 13 is the conversion rate of prey into predator. 

The system has a unique equilibrium Eo (in the first case), E1 (in the second 
case) with positive coordinates if and only if K > 3/. This inequality determines 
the admissible part of the positive orthant of the four dimensional parameter 
space e, y,/z, K. The meaning of the condition K > 3' is clear: if the mortality of 
the predator is low, and the carrying capacity and the conversion rate are large 
then coexistence is possible; if the converse is true then the predator dies out. It 
is interesting to note that in both cases the increase of  the intrinsic growth rate 
of prey and /or  the increase of the carrying capacity for the prey does not increase 
theprey coordinate of the equilibrium but does increase the predator. The increase 
of the prey coordinate of  the equilibrium can be achieved by the increase of 
predator mortality or by the decrease of conversion rate. In both cases if the 
parameter values lie in the admissible set, and, loosely speaking, the intrinsic 
growth rate of prey e and the mortality of predator y are large, and the delay tz and 
the limiting factor K are small then the equilibrium is asymptotically stable. We have 
determined the equation of the bifurcation surface, (2.7) in the first case, (3.5) 
in the second. If  this surface is crossed by increasing the delay or the limiting 
factor, or decreasing the intrinsic birth rate of prey or the mortality of predator 
(keeping in all the cases the rest of the parameters constant) then the equilibrium 
loses its stability by an Andronov-Hopf bifureation, i.e. periodic solutions, closed 
trajectories occur in the neighbourhood of the equilibrium. The bifurcation surface 
can be crossed, naturally, by varying two, three or all the four parameters 
simultaneously leading to the same consequence. We have determined the part 
of  the surface where the bifurcation is supercritical and the part where it is 
subcritical (Corollary 2.3 and Theorem 3.2). Supercriticality means that we have 
small amplitude, orbitally asymptotically stable, periodic solutions for parameter 
values near to the surface on the side where the equilibrium is unstable. Subcriti- 
cality means that we have small amplitude, unstable periodic solutions near the 
equilibrium for parameter values near to the surface on the side where the 
equilibrium is still stable, and the system behaves unpredictably on the other 
side. However, we have got computer simulation evidence suggesting that at 
parameter configurations corresponding to subcritical bifurcation the system has 
large amplitude stable periodic solutions (see the remarks at the end of  Sects. 2 
and 3 and Fig. 6). 

It is worthwhile to observe the differences between the two cases. In doing this 
we are going to consider "3' more fixed than e which, in turn, will be more fixed 
than/~" ,  and K (or K for fixed/3) will be the easiest variable parameter. 

In the first case if/ZK < 1 then the equilibrium is asymptotically stable for 
arbitrary (small) e and 3'. In the second case the more restrictive /ZK < 1/2 must 
hold for the same effect. On the other hand, in the second case if /z(K - 3 ' ) >  2 
then the equilibrium is unstable for arbitrary (large) e; in the first case we have 
no such subset, i.e. the increase of e can always stabilize the equilibrium. 

In both cases, for fixed values of e, %/z the increase of K destabilizes the 
equilibrium at a certain well determined value; the larger the delay /~ is, the 
sooner this destabilization occurs. This is the phenomenon of the "paradox of 
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enrichment". However, in the first case there is a critical delay (given by (2.6)) 
under which the bifurcation is supercritical, above which it is subcritical. In the 
second case, for small fixed e the bifurcation is always supercritical, for large 
fixed e the bifurcation is supercritical for small and for very large delay, and it 
is subcritical if the delay falls into a certain interval in between. 

Acknowledgement. We would like to thank two reviewers for some valuable suggestions that improved 
the original manuscript. 
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