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Introduction 

The flow of the classical linearly viscous fluid between two infinite parallel 
planes rotating with constant (but different) angular velocities about  a common 
axis has received a great deal of attention during the past 60 years (cf. PARTER 
[12]). However, until recently the assumptions which have been employed to 
study this problem have always led to solutions which are axisymmetric. Recently 
BERKER [3] in his study of the flow between parallel planes rotating with the same 
constant angular velocities about a common axis exhibited a one parameter  
family of solutions that are not axisymmetric. In this study we prove that when the 
planes rotate with different angular velocities about a common axis or distinct 
axes there is a one parameter family of  solutions (for "large" viscosities). 

Let/-I1 a n d / I 2  be two infinite planes parallel to the (x, y) plane, say H1 is 
the plane z = - -  1 while H 2 is the plane z ~ 1. Let a > 0 be a fixed constant 
and suppose H1 rotates about a point (x = 0, y - -  --�89 z ~- --1) with constant 
angular velocity Y2_ 1 while H2 rotates about  the point (x ~-- 0, y --  �89 z ~ 1) 
with constant angular velocity -Q+I (el  Figure 1). We suppose that a classical 
incompressible fluid fills the infinite space between these planes and we seek 
steady solutions of  the Navier-Stokes equation which describe such a flow. 

�9 ~ "Q +1 

~y 

Fig. 1. Flow domain 
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Finally, we make the basic assumption that 

Uz = - - H ( z ) ,  (1.1) 

that is, the component of velocity in the z direction is a function of z alone. 
If  a = 0 and we also assume that the flow is axisymmetric then the basic 

theory of YON K~RM~.N [9] and BATCHELOR [2] leads to the following conclusions: 

1 
Ur = l r H' (z ) ,  r = (x  2 --  yZ),7 (1.2) 

Uo = l r  G(z), (1.3) 

where the functions (G(z), H(z ) )  are solutions of the boundary-value problem 

e H  iv + H H ' ' '  + GG' = O, - - l < z <  I,  (1.4a) 

and 

e G " + H G ' - - H ' G = O ,  - - l < z <  1 

H ( - - 1 ,  e) = H(1, e) = 0 (no penetration), 

(1.4b) 

(1.5a) 

H'(- -1 ,  e) ---- H ' ( I ,  e) = 0 (no slip), (1.5b) 

G(--1, e) = 2-(2_ 1, G(I, e) = 2~2+1, (1.5c) 

where the positive parameter e > 0 is related to the bulk viscosity. 
This boundary-value problem has been studied at great length. There are 

many numerical studies and many formal asymptotic studies. There are also 
rigorous existence theorems 

(i) for e N 1 by HASTINGS [8] and ELCRAT [6], 

(ii) for O _ 1 = O + 1 = ~ 0  and all e > 0  by McLEoo & PARTER [11], 

(iii) for 0 < e ~ 1 by KREISS & PARTER [10]. 

The recent survey article [! 1] contains a reasonably up-to-date discussion of this 
problem. 

When .(2 ~ = .Q+~ ~ 0 there is one special solution (not the only solution-- 
see [3]): the rigid body rotation given by 

H(z,  e) ~ O, a(z ,  e) = 2,(2_ 1 . (1.6) 

It is not difficult to verify ([5], [18]) that this solution is "stable" and "isolated" 
relative to the yon K~irmfin equations (1.4), (1.5). By "isolated" we mean there 
ts a neighborhood of this solution wherein there are no other solutions and by 
"stable" we mean there is no bifurcation from this trivial solution; in particular, 
the linearized problem at this solution is non-singular. On the other hand, BERKER 
[3] has constructed a one-parameter family of solutions of the general steady 
Navier-Stokes equation which includes the rigid body motion. The rigid body 
motion is the only axisymmetric solution that belongs to BERKER'S [3] family. In 
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Cartesian coordinates his solution takes the form (we have set ~2_ 1 ----- ~2+1 = 1) 

Ux = - D '  - g(z)], Uy = [x - f(z)], U2 -= O, (1.7) 

where 

with 

-- 95(1) _ _ ~  [Z(z) X(1)]} ' 
] ( z )  = l {l_.___if____ [95(z) - -  95(1)] 

g(z) = t  { ~1___~)[95(0 - 95(1)] + - -  

(1.8a) 

1--  95(1) } 
A [Z(z) - -  x(1)] ' (1.8b) 

95(z) = cosh m z "  cos m z ,  

Z(z)  ~ sinh m z  . sin m z ,  

m ---- l~2e]  ' 

A = [1 - -  95(1)] 2 + [Z(1)] 2 = (cosh rn - -  cos rn) 2 , 

(l.9a) 

(1.9b) 

(l .9e) 

(1.9d) 

where I is an arbitrary positive constant. Observe that (1.7) shows that this solu- 
tion satisfies the basic assumption (1.1). 

The case a 4= 0 and ~ - 1  ---- -Q+I = ~ relates to the flow in the orthogonal 
rheometer, an instrument that is employed in determining the material moduli 
which characterize non-Newtonian fluids. Recently RAJAGOPAL [13] has studied 
the flow of general simple fluids in such a domain and RAJAGOPAL & GUPIA 
[15] and RAJAGOPAL & WINEMAN [17] have found exact solutions to the problem 
for certain non-Newtonian fluids.* RAJAGOPAL & GUPTA [16] have also established 
a one-parameter family of  exact solution for an incompressible homogeneous 
fluid of second grade when a = 0 and -Q-I = g2+l = .(2. 

When a----0 and .c2_~ = ~+~, the solution corresponding to the usual 
yon Kfirm~in assumption leads to exactly one of the solutions in BERKER'S [3] one- 
parameter  family, namely the rigid motion which is axisymmetric. In the case 
a 4= 0, and -62_ 1 = -(2+1, an exact solution has been obtained for the classical 
incompressible fluid by ABaOr & WALTERS [1]. The existence of such a solution 
is motivated in an earlier analysis by BERKER [4]. That motivates us to look for a 
more general class of  solutions to the von K~irm~in problem (and to the corres- 
ponding problem when a 4- 0) which would reduce to the class of  solutions 
exhibited by BERKER [3]. Thus, we seek a solution such as to have the following 
form in Cartesian coordinates: 

Ux = �89 H ' ( z )  - -  �89 y + g(z), 

Uy = �89 H ' ( z )  + �89  x - - f ( z ) ,  

U~ : - - H ( z ) .  

(I.103) 

(1.10b) 

(1.100 

* More recently, GODDARD [7] has published results which are similar to those in 
[13]. 
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In cylindrical coordinates this velocity field takes the form 

Vr = �89 H'(z) § g(z) cos 0 - - f ( z )  sin 0, 

Vo = �89 G(z) -- g(z) sin 0 - - f ( z )  cos 0, 

v~ = - t t ( z ) .  

(1.11 a) 

(1.11b) 

(1.11c) 

Observe that, if H = 0 and G = 2.Q we have a velocity field of the form de- 
scribed by BERKER, while if f =  g ---- 0 we have a velocity field of the form de- 
scribed by YON KARMAN. 

As we show in section 2, there is a solution of the Navier-Stokes equations 
of  the form (1.10) [or (1.11)] if and only if the function H(z), G (z), g(z), f ( z )are  
solutions of the boundary-value problem 

eH iv + HH'"  + GG' = 0, --1 ~ z ~ 1, (1.12a) 

eG" + HG' -- H'G = 0, - - '  ~ z ~ 1, (l.12b) 

ef '"  + H f "  + �89  �89  + �89 = O, (1.13a) 

eg'" + Hg" + �89 -- �89 -- �89 = 0, (1.13b) 

H(--1,  e) = H(1, e) = 0, (no penetration), (l.14a) 

H ' ( - -1 ,  e) = H'(1, e) = 0, (no slip), (1.14b) 

G(--1, e) = 2-Q-l, G(I, e) = 2/2-+1, (1.14c) 

f ( - -1 ,  e) = f ( l , e )  = 0, g(--1, e) = --af2_l/2, g(1, e) = aI2+l/2. (1.15) 

We note that equations (1.12) with boundary conditions (1.14) are exactly 
the nonlinear yon K~irm~,n equations for axially symmetric swirling flow for 
functions <H(z, e), G(z, e)> while the equations (1.13) with boundary conditions 
are linear equations for <f(z, e), g(z, e)> with coefficients depending on <H(z, e), 
G(z, e)> which reflect the lack of symmetry and the possible displacement of the 
centers of rotation of the bounding planes. Moreover, given <H(z, e), G(z, e)> 
the equations (1.13) are a system of two third order equations with only four 
boundary conditions. Whenever there is a solution of the yon K~irmfin equations 
one can ask two questions: 

(i) In the case when a =- 0, is the axisymmetric flow imbedded in a con- 
tinuous one parameter family of  more general solutions? 

(ii) When a =l= 0, does this axisymmetric flow form the basis for a one para- 
meter family of solutions of the problem for rotations about different 
centers ? 

In case (i) this is a homogeneous underdetermined system and the answer is yes! 
We need merely consider the additional condition 

f ' ( - - 1 )  = g ' ( - - l )  = 0. (1.16) 

If  this augmented homogeneous problem has a non-trivial solution {f(z, e), 
g(z, e)> + (0, 0>, then <lf(z, e), Ig(z, e)> is also a solution for every real number 1. 
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On the other hand, if the system (1.13), (1.15), (1.16) does not have a nontrivial 
solution; then the problem given by (1.13), (1.15) and 

f ' ( - - 1 )  = l, g '(--1) = 0, (1.17) 

yields a unique solution Qf(z, e, l), g(z, e, l))  of the form 

(f(z,  e, 1), g(z, e, l)) = (lf(z, e, 1), lg(z, e, 1)). 

This simple result has the following important consequence. In the classical case 
of two infinite parallel planes rotating about a common axis, (i.e., a = 0) when- 
ever there is a solution of the von K~irm~in equations (12), (14), this axisymmetric 
flow is imbedded in a one parameter family of solutions of the full Navier-Stokes 
equations. Thus, despite the intense interest in the yon K~irm~in problem, within 
the class of all solutions of the Navier-Stokes equations, these special solutions 
are "unstable". Such a simple argument does not suffice for case (ii). 

In either case one can ask a more subtle question: can we find a family 
( f(z ,  e, l), g(z, e, l)) which is continuous in both e and 1 and (at the same time) 
has the geometric significance of the Berker solution for the special case 
-O-i = -Q+I = f27 In other words, can we find solutions of (1.12), (1.13), (1.14), 
(1.15) and 

g(0, e, l) = 0, f(0, e, l) ----- l. (1.18) 

Since the system (1.13), (1.15) is linear, the answer is 'yes' for problem (i) 
if and only if it is also 'yes' for problems (ii). 

In section 3 we answer these questions in the affirmative for large e. While 
this result is an immediate consequence of the implicit function theorem (applied 
at e ----~) we will give a complete proof. 

Equations of  Motion 

In this discussion we follow the outline of the argument given in [12, section 2]. 
A velocity field of  the form (1.10) satisfies the constraint 

div U = �89 + �89 -- H'(z) = O. (2.1) 

We now turn to the equation: 

# A u - -  ~u.  Vu = 7p ,  (2.2) 

where # denotes the viscosity, ~ the density, and p is the pressure. We eliminate 
the pressure by taking the curl of both sides of (2.2) and obtain 

/,AoJ --  e ( o x  U) = 0, (2.3a) 

where 

co = curl U. (2.3 b) 

A detailed calculation now yields 

Aco = --i{�89 H 'v q- �89 G"' --  �89 --F j{�89 H ,~ -- �89 G'" q- �89 q- k{G"}, 

(2.4) 



310 S .V.  PARTER & K. R. RAJAGOPAL 

while 

o~ • U : --i( �89 -- (G'H)'] -- �89 + HH" ' ]  

-}- [�88 -- �88 q- �89 + j(--�89 + HH'" ]  

+ �89 -- (GH')'] q- [�88 q- �88 -- �89 

q- k ( G H ' - -  HG') .  

On equating the coefficients of k in (2.3a) we obtain 

(2.5) 

tz G" + HG' --  H '  G = O. 
9 

On equating the coefficients of ix  we obtain 

(2.6a) 

tz G"" + (HG') '  --  (H'G) '  = O, 
9 

which is the same as (2.6a). On equating the coefficients of iy we obtain 

[Z H i  v ~- H H " '  § GG' = O. 

Finally, the zeroth-order terms in the coefficient of i yield 

(2.6b) 

~ f " '  + (H'T')' --  �89 + �89 = o, 

and the coefficients of.ix, j y ,  and j yield the final equation 

(2.6c) 

~---g"' q- (Hg') '  -- �89 q- �89 = O. 
9 

Thus we have established the equations (1.12) and (1.13) where 

(2.6d) 

We now turn our attention to the boundary conditions. Equation (1.11c) 
and the "no penetration" condition imply that 

H(--1,  e) = H(1, e) = 0. (2.7a) 

Equation (1.11 b) and the conditions 

vo(r, 0, :h l )  ---- (rzh �89 s177 

yield 

Hence 

1 
L i m - - v o ( r ,  O,-F-l) ---- f f ~ + l  = �89177 
r -+e~  r 

G(--1, e) ----- 212_1, G(1, e) ---- 212+1. (2.7b) 



Swirling Flow between Rotating Plates 311 

Thus we have obtained the boundary conditions (1.14). Now, using ( l . l l b )  
and letting r ~ 0 with a judicious choice of 0 we obtain the boundary conditions 
(1.15). 

Existence for large e >> 1 

In this section we present what is essentially a standard argument for regular 
perturbation problems. The argument is given in some detail because we wish to 
emphasize the following facts. 

(i) There is an eo '~ 1 and, for all e ~ eo there is a solution of the von K~irm~in 
problem (1.4), (1.5). Moreover, this solution is continuous in e. Hence there is 
a curve of solutions and there is no local bifurcation of solutions of the von 
K~irm~in equation from this curve. Again, within the set of solutions of  the von 
K~irm~in equations, for fixed e => Co, each of these solutions is isolated. 

(ii) In this same range of  e there is a solution of the full system (1.12)-(1.15): 
a one parameter family of solutions (H(x,  e), G(x, e),f(x,  e, l), g(g, e, l)) which 
includes (for l = 0) the axisymmetric von K~irm~in solution. Moreover, if e 
and l are both fixed, this solution is an isolated stable solution. Of course, with 
a > 0 these problems provide a one parameter family of solutions of the problem 
of  rotation about different centers. 

Our first goal is to show that in the case of the von K~irm~in equations a 
relatively simple Picard iteration scheme converges for e >> 1 and --in the nature 
of things-- the solutions so obtained are continuous in R = 1/e. 

Definition. Let fC  Ck[--1, 1], k ~ 0. Then 
k 

IlflP~ -- ~ Max (!f(J)(x) !: -- 1 ~ x --< 1}. 
j=0 

Lemma 3.1. Consider the two boundary value problems: 

0 (4) ~-f~ --1 _<_ x ----- 1, 

0 ( + l )  = 0 ' (+1)  = 0, 

~o" = g ,  --1 ~ x _ <  1, 

~p(--1) = 2Q_1 ,  ~p(l) = 2-Q+I. 

There is a constant Ko >= 1 such that 

I1011, _-__ go Ilfllo, 

I[~Ollz ~ K0 [llgllo + 2 t.Q_x [ + 2 Jf2+~ ]1. 

(3.1 a) 

(3.1 b) 

(3.2a) 

(3.2b) 

(3.3a) 

(3.3b) 

Proof. Direct integration. 
Let -Q-I and I2+1 be given. Let 

,r = 20Ko[[O_~ I + I-Q+, I] + 1, 

1 1 
R = - - < R o  - - - - .  

e = 16Ko a 

(3.4a) 

(3.4b) 
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H o ~ 0 ,  

Go = 2[/2-1 + �89 q- 1) (/2+i - -  ~ Q - I ) ] ,  

and consider the iterative scheme 
�9 t t t  t 

Hff+ 1 : --R[HkH'k q- GkGk], 

Hk+l(-q- 1) = H~+l(-q- 1) = 0, 
r r  r 

Gk+I = R[H~,Gk -- Hkat~], 

Gk+l(--1) : 2s Gk+l(1) = 2~2+1. 

Lemma 3.2. If 

Then 

II nkll4 ~ ~, II 6k  112 ~ ~ ,  

I[ Hk§ 114 ~ ~ and II Gk§ ~ ~. 

Proof. From the definition of Ko we have 

2Ko 
HHk+IlI4 ~ 2K~ ~ 16Koa 

and 

That is 

Ilak+llh ~ Ko[2Ra 2 + 2 lg2_ll -t- 2 [s~+ll] 
2Ko 

--  16Koa a z q- 2Ko [1~-i I  + IO+111. 

[I Gk+llh ~ T + ~ <  ~. 

Lemma 3.3. Suppose 

II nkll4 = ~r, 

Then, for k >= i 

II Gkll2 ~ a, k = 0, 1 . . . .  

( l ln~+1 - -  nkl[4 + I lak+l  - -  a k l l 9  ~ k ( l ln k  - -  HK-I[[4 + IIGk - -  a k - l l h ) .  

Proof. 

(/~+1 -/4~Y ~ --R{(/4k- / t k - 0 / C ' +  ~/k-I(HU3 
t t 

q- Gk(Gk -- Gk-1) q- Gk-l(Gk --  Gk-0}, 

I lnk+l  - -  nkll4 =< 2 g o R o  - -  { l ink  - -  n k - 1 1 h  + IIGk - -  a k - l l h }  
1 

: ~ { l i n k -  nk-l[14 + l l G k -  Gk-lll2}- 

(3.5a) 

(3.5b) 

(3.6a) 

(3.6b) 

(3.7a) 

(3.7b) 

(3.8a) 

(3.8b) 

(3.9a) 

(3.9b) 

(3 .1o)  

(3.11) 
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Thus 

Also 

Hence 

IIH~+~ --  Hkll4 ~ &{ll gk --  Hk-al[4 + IIGk --  Gk-~I[2}. (3.12a) 

(G,+~ --  Gk)" -~ R[H'k - -  H;_l) G k 31- (Ga --  Gk- , )  H~- , I  

+ ( H  k - -  Hk_~) G'~ --  (G'k --  G'k_,) Hk_~]. 

[IGk+l - -  Gkl[Z • 2goRa[l[nk - -  nk-l l l4  -t- I[Gk --  Gk-l[[2] (3.12b) 

=< ~ [ l l n ~ -  n ~ , - l l [ 4 - q - I I a ~ -  ak-aH2l. 

Adding (3.12a) and (3.12b) gives the desired result. 

1 1 
Theorem 3.1. I f  R = - -  < R ~ --  - -  

e = 16Koa ' 

= 20Ko[lO_, l  + I~+,1]  + 1, 

then the iterative procedure (3.5)-(3.7) converges to an isolated solution (H(x ,  e), 
G(x, e)) which is continuous in e f o r  e >= 1/Ro. 

Proof .  The p roo f  is now a s tandard argument  based on the estimate of  lemma 3.2 
and lemma 3.3. 

We now turn to the linear equations (1.13) with boundary  conditions (1.15). 

Lemma 3.4. Consider the multi-point problem 

v '"  = F, --1 _< x s 1, (3.13a) 

v(--1) = A, v(1) = B, v(0) = c. (3.13b) 

Let  (x) be the triple integral o f  F, i.e., 

x f , (x) = f dy dt f F(s) ds. 
--1 --1 --1 

Then the solution o f  (3.13a), (3.13b) is given by 

v(x) = A + o~(x q- 1) q- fl-~-(x q- 1) 2 q- ~- (x),  (3.14a) 

where 

or = 2c --  3 A --  �89 --  2,~ -I- �89 

fl = (B q- A - -  2C) --}- 2,~(0) - -  ,~ 

(3.14b) 

(3.14c) 

Proof.  direct verification. 
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Corollary 3.4. There is a constant K~ such that 

lvl-<_ Kx[[At + ]B[ + ICl + IIFIIo]. 
Given (H(x ,  e), G(x, e)) for  e >: eo, let us consider the iterative procedure 

f'~+l = 4R[--(Ggk) '  + �89 --  Hf'k' - -  1-H'f'k], (3.16a) 

f ( - - 1 )  = 0, f(0) = l, f ( l )  = 0, (3.16b) 
I l l  t l  

gk+l = R[(Gfk)' + � 89  - -  Hgk - -  �89 (3.17a) 

g(--1)  : --�89 g(0) = 0, g(1) = �89 (3.18a) 

Quite clearly, the arguments above show that there is an et ~ to and, f o r  all 
e >: el >: to this multi-point problem possesses a unique solution which is con- 
tinuous in e and l. Thus we have verified all the opening remarks o f  this section. 

Remarks  

We conclude this analysis by making a few observations on the significance 
of the result established in the previous section. 

We have studied special solutions of  the Navier-Stokes equations for a fluid 
contained within two infinite parallel planes each rotating with a constant angular 
velocity f2g (k = • 1). The axis of rotation may be the same or distinct. In either 
case we are led to a system of ordinary differential equations which contain (as a 
subset) the classical equations of  YON KARMAN [9] and BATCHELOR [2] for special 
axisymmetric flow about a common axis. In particular, in the classical case studied 
VON K.~RM.~N and BATCHELOR, if there are such special solutions, they are never 
isolated solutions when considered within the scope of the full Navier-Stokes 
equations. In the case of  rotation about distinct axes there are many unanswered 
questions. However, we have shown that (contrary to most intuitive ideas) in the 
case of  "large" viscosity, there are solutions and they are never isolated. While 
the underlying basis for these anomalies is not completely understood, we believe 
it is related to the fact that in this unbounded domain the velocities at large r 
are great. 

It  is also worth observing that similar results can be established in the case of  
the flow of a Newtonian fluid between rotating porous disks when e >> 1 (cf. 
RAJAGOPAL [14]). The only change in the problem is in the boundary condition 
(1.14a) and it is an easy matter to modify the arguments of  Section 3 for this case. 
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