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In~oducfion 

Existence of weak solutions of the three-dimensional Navier-Stokes problem 
was first proved by J. LERAY in the case of the Cauchy problem, cf. LERAY (1934). 
As is well known, these solutions are important in that they are the only solutions 
which, so far, are known to exist for all times, without restriction on the data. 
Unfortunately, however, the question of whether they are classical, in an ordinary 
sense, is still open, even though partial conclusions regarding regularity are avil- 
able: LERAY (1934), SCHEFFER (1976, 1980), CAFFARELLI, KOHN, & NIRENBERG 
(1982). Subsequently, E. HOPF (1951), using a different technique, constructed 
weak solutions for a general initial-boundary value problem. However, HOPF'S 
solution (even for the Cauchy problem) has weaker properties than LERAV'S 
solution. Among others, we refer to the "energy inequality" for the velocity field 
u(x, t), i.e. 

(I) f 
t 

f u=(x, t) dx - f u~(x, s) dx ~ --2 f vu : Vu dx dz 
s $2 s g~ 

for  s = O, for  almost all s > 0 and for  all t >= s. 
Actually, unlike those of LERAY, the solutions constructed by HOPF satisfy (I) 
if,(2 is a bounded domain, while if /2 is unbounded, they obey the following weaker 
relation 1 

(II) 
t 

f ua(x,t)dx-- f u=(x,O)dx<~-2 f f Vu:Vudxdv 
D 12 0 12 

for  all t >= O. 

1 Notice that if u(x, t) is a regular solution in the ordinary sense, it certainly verfies 
(I) with the equality sign. So far, regular global solutions are known to exist only for 
"small" data: LADYZHENSKAYA (1969). 
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On the other hand the validity of the inequality (I) has several remarkable impli- 
cations. In particular, it ensures that the kinetic energy (1/2) f u2(x, t) dx is a 

~2 
monotonically decreasing function of time, which is what has to be expected on 
physical grounds. This should be contrasted with (I1), which does not rule out 
the possibility of an (unacceptable) increasing energy. Moreover, the existence of  
weak solutions with decreasing kinetic energy allows one to formulate asymptotic 
stability theorems in a very large class of perturbations: GALDI (1975), MASUDA 
(1975), HEYWOOD (1980), MAREMONTI (1984). In this respect, it is worth noticing 
that the authors of the above papers suppose that HOPE'S solutions satisfy (I) in- 
stead of (II), in the case of an exterior domain 2. Because of this oversight, the 
results of GALDI (1975), MASUDA (1975), HEYWOOD (1980), MAREMONTI (1984a, b) 
remain formal for such domains. Finally, we observe that the validity of (I) is 
intimately related to the regularity of weak solutions through the fundamental 
uniqueness teorem of  LERAY-SATHER-SERRIN (see SERRIN (1962)). 

This paper concerns some properties of solutions to Navier-Stokes equations 
in exterior (three-dimensional) domains. Our motivation is twofold. On the one 
hand, the aim is to prove the existence of global (weak) solutions verifying the 
energy relation (I). On the other, we wish to study the asymptotic behavior in 
time of their kinetic energy. Precisely, employing a method introduced by LERAY 
(1934) and with the aid of some estimates for solutions to the linear Navier-Stokes 
equations given in SOLONNIKOV (1977) (see Section 1), in Section 2 we prove 
the existence of global solutions corresponding to arbitrary initial data from a 
Sobolev space of suitable fractional order. These solutions, which are more regular 
than HOPE'S solutions (having time derivatives and second-order spatial derivati- 
ves) satisfy the Navier-Stokes equations almost everywhere and possess a kinetic 
energy which decreases monotonically in time. We note that for the Cauchy 
problem their existence was established by LADYZENSKAYA (1969). Thereafter 
we study the asymptotic behavior in time of the kinetic energy of a weak solution 
satisfying ([). As is known, this problem was set by LERAY (1934, p. 248) a long 
time ago, and only recently has it begun to receive satisfactory answers: KATO 
(1984), MAREMONTI (1984b), MASUDA (1984), GALDI & RIONERO (1985), SCHONBEK 
(1985). In Section 3 we prove that the kinetic energy tends to zero and, what is 
more, we conclude that the order of decay is related to the summability of  the 
initial data. These results, which rely on those of MAREMONTI (1986) and on a new 
estimate for weak solutions in exterior domains (cf Lemma 3.1), show that if 
the initial data belong to the Lebesgue space LE(f2) f'~ Lq(,.Q), 1 ~ q ~ 3/2, the 
kinetic energy decays like t -2~ where fl = (2 --  q)/4q. This behavior is further 
improved if -(2 is the whole space. We notice that our results either improve or 
contain as particular cases those of KATO (1984), MAREMONa'I (1984), MASUDA 
(1984), SCHONBEK (1985), MAREMONTI (1986). 

2 The validity of (I) in unbounded domains has been recently explicitly questioned 
in MASUDA (1984). 
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1. Pre l iminar ies  and notat ions  

Let ~2 be a domain of the three-dimensional Euclidean space R 3, exterior 
to ~, ( ~  0) C2-smooth, compact subregions, We designate by Ro the diameter 

of  ~2 '. For  -Q' C_ O and s > 0 we set O's ~- O' • (0, s). By LP([~ )') p E [1, oo] 
we denote the Lebesgue space of  functions on $2'. The symbol LP(..Q~) has an 
analogous meaning. The norm in LP(O) [respectively, in LP(ff2s)] will be indicated 
by] . ]p  [respectively, by ].]p, Os]. W'~'P= W"P(Q) m ~ 0 denotes the Sobolev 

space of order (m, p) of functions on ~2, and [. ]m,p is its associated norm. Further- 
more, ~/'p(/2s) is the space of  functions u on s having pth power summable 
(generalized) derivatives of the first and second order with respect to x E-Q 
and of  the first order with respect to t E (0, s). An equivalent norm [SoLoNNIICOV 
(1977)], in ~u is 

~u [ ~u L I ul%(..~---lulp, .s  + ~ ~x, ~xjt~,~s + -b-7 ,~" 

For  an open set A in B n we let C~(A) be the set of  indefinitely differentiable func- 
tions of compact support in A. Moreover, denoting by c~( /2)  the class of  solen- 

oidal functions from C~(.C2), we indicate by J(.Q) the completion of  cg~(12) in 

L2(~) and by j2--2/p,p, (,.Q) the completion of  (~(.Q) in the norm 

[lUlp + (u} (2-2/p) for p =~ 3/2 

It u112-2:~,~ --- ~ (u}(~_~/~) -2 2 
[lul. + + luo ~ Ip for p = 3/2 

where ~ = ~(x) is the distance from x to ~ and 

d l l _ yl+2p dx  dy  f o r p < 2  

(:: 1 ( u ' ;  2-2:"  =-- I Vu(x) -- Vu(y)10 T 
r~---yTi- ~ dx dy for p > 2 

IVul~ for p = 2. 

For  the elementary properties of  the space introduced above, we refer the reader 
to MmANDA (1978) and SOLONNIKOV (1977). Finally, if X is a Banach space, 
by LP(O, s; X) we denote the class of  functions u from (0, s) in X such that 

S 

f [ u  [~. d~ < cx~, where I" Ix is the X-norm. We remark explicitly that, depending 
0 
on the context, we shall use the same symbol for a space of scalar, vector or 
tensor-valued functions. Also, by the symbol C we denote a generic constant whose 
numerical value is inessential to our aims; it may have several values in a single 
computation. Typically, we may have 2C < C in the same line. 

Now, for T > 0, consider in .Q and during the time interval [0, T] the motion 
of  a viscous, incompressible fluid, governed by the Navier-Stokes equations. 
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If u(x, t), ~(x, t) represent velocity and pressure fields of that motion, they 
must satisfy the system 

8 u  
8----f + u .  7 u  = - - 7 ~  + A u  

(1.1) 
7 . u = 0  in Or ,  

where the kinematic viscosity has been set equal to one, without loss of generality. 
Along with (1.1) we shall consider the following initial conditions and boundary 
conditions: 

u(x, o) = Uo(X) x c s 
(1.2) 

u(y, t) = 0 (y, t)E 8s • (0, T).  

In this section, however, we will be interested in giving some results concerning 
the linearized version of  problem (1.1)-(1.2), which we shall write in the following 
form: 

81o 
- -  A w  - -  V p  + y ,  

8t 

(1.3) 
7 . w = 0  in s 

w(x ,  O) = Wo(X) x E s 

w(y, t) = 0 (y, t)E 8s • (0, T),  

where f = f (x ,  t) is a given "body force". We have the following results. 

Lemma 1.1. For any JE Lq(g2r), Wo E JZ-2/q'q(ff2), q > 1, problem (1.3) 
admits for all T > 0 a unique solution in ~/'4(s satisfying the following estimate: 

(1.4) ] w I~ q( ~T) + [ V p Iq, e~T ~ C( T) {lYlq, OT + I[ w01h-=/q,q), 

where C depends only on T. 

Proof. It is a consequence of Theorem 4.2 and Remark 2 on p. 495 of the 
paper of  SOLONNIKOV (1977). 

Lemma 1.2. Assume f E C~(s and w o E ~ ( s  Then there exists a unique 
(smooth) solution 1o(x, t) o f  (1.3) which is in ~q(s and satisfies the estimate: 
(1.4) for all q > 1. 

Proof. In the light of Lemma 1.1 the proof  is reduced to show the following 
uniqueness result. Let w~, pt  and 1o2, P2 be two solutions of  (1.3) corresponding 
to the same d a t a f  and Wo and satisfying (1.4) with exponents ql and q2 respectively; 
then, wl ~ l u  2 and Vpl = Vp2.  Assume ql < q2 and set w l -  w2 = w, 
Pl -- P2 = P. We thus conclude that w, p is a solution of the problem (1.3) with 
J = Wo = 0. Denote by co a smooth neighborhood of 8s obviously Vp, 
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~2'IW 

8xjELql(o, T;Lq~(~2f~ to)) for all i , j  ---- 1, 2, 3. Moreover, since p satisfies 
8xi 

d p = O  in (s --  to) • {t), 

dp 
~nn= A w ' n  on cq(.q -- to) • {t}, 

from SOLONNIKOV (1977) [lemma 2.1], we conclude that I Vp Iql,f2T< C, Uniquenes, 
therefore, follows as a paricular case of the theorems proved by GALDI & MARE- 
MONTI (1984), GALDI & MAREMONTI (1986). 

We end this section by proving an inequality of Sobolev type. 

Lemma 1.3. Let f :  [2 --, R with V f  E LP(~Q), p < 3. Then there is a constant 
fo such that V ) = f - - f o  satisfies the following inequalities: 

(1.5) R 3-~ f I w(R, 90 [P dg, ~ C f Ivy[ p dx, 
S(1) [xl >R 

(1.6) [~Plq ~ c IWI~, 

where 1 < p < 3, q = 3p/(3 -- p) and S(1) is the unit sphere. 

Proof. The first part of the lemma and the estimate (1.5) are a generalization 
of an analogous result proved by PAYNE & WEINBERCER (1957) for p = 2. However, 
the proof given by these authors remains unchanged in our case 1 < p < 3 
and therefore, it will be omitted. As far as (1.6) is concerned, we proceed as follows. 
Denote by ~ a smooth "cut-off" function such that ~v(x) = 0 for I xl =< R and 
~v(x)= 1 for I x l : > 2 R  ( R > R 0 ) ,  and set 1 P = ~ -  For v~ we have the repre- 
sentation 

(1.7) ) zP(x)=4--~j=~I x . O-'-~j e--Qj x - -  Yl d y - - - -  
I - -yl_e 

, y 0 ( 1 )  
4~ ~P~nn ~ 7 - 5 7  da, 

Ix--Yl =e  

for 9 > R .  In virtue of (1.5), (1.7) furnishes in the limit as 9-~  oo 

By well known estimates on Riesz potentials, cf. MIRANDA (1978), we thus obtain 
the Sobolev inequality for ~, 

3p 
(1.8) L~Iq~ C IV~lp, q - - 3  --p" 

From (1.8) we easily have 

(1.9) (xtf2e]*p[qdx)~ <= C {IVfl, q- (R<tfz2R]~p[Pdx)~ } . 
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Applying PoincarCs inequality, ef. MIRANDA (I978), to the second integral on 
the right-hand side of (1.9), we deduce 

(1.1o) ([xlf2R l~)[q dX)~ ~ C {IVfl p Mr_ ((,xI~R}kjf{ixI=2R} I~I)]P d(~)~l " 

Therefore, from (1.10) and (1.5) it follows that 

(1.11) i~,1 ~ 7 ~  cIWI,. 
Ixl R 

To complete the proof of the theorem we now choose another smooth "cut-off" 
function~(x) such that ~(x)~-- 1 for [ x [ ~ 2 R  and ~ ( x ) = 0  for Ix I ~ 3 R .  
Since ~p is of compact support in ~ we can apply the results of SOLONNIKOV & 
SCADILOV (1973) [Lemma 1 and the remark following it], to obtain 

from which it follows that 

.x)' I, "x)'/ (1.121 iw l  ~ 7__<c vf l ,+ 1~,1" 7 <clvfl,,,  
Ixl R 2R~l 3R 

where in the last step we have used the H61der inequality (recall that q > p) 
and (1.11). Therefore, estimate (1.6) is a consequence of  (1.11) and (1.12). 

Remark. We notice that lemma 1.2 remains valid whatever be the number n 
of space dimensions, provided p < n and q ---- np/(n -- p). 

2. Existence theorem 

The aim of this section is to prove a theorem of existence of global (weak) 
solutions to the problem (1.I). Precisely, denoting by H9/l~ the completion 
of  cg~(.Q) in the norm of wg/I~ we have 

Theorem 2.1. Assume Uo E H9/l~ Then there are functions u(x, t),  
p(x, t) enjoying the following properties for all T > 0 

(i) u c L~(0, T; )(.q)) C~ Z:(0, T; ) '%q));  
U E ~'/:5/4(~'2/'); 7p  E L5/4(ff2T); 

(ii) U, p satisfy (I.1) a.e. in Or; 

(iii) u, p satisfy the "energy inequality" in the following form: 

t 
I,,(t) I~ --< lu(s)12 - 2 f ] 7u(v)122 d~ 

s 

for s = O, for almost all s ~ O and for all t ~ s; 
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(iv) u(x, t) can be redefined on a set of  zero t-measure in such a way that 
lim l u ( t ) -  u(s)]2 = 0 for all sE [0, T]. 

t---~S+ 

Before proving the theorem, we wish to make the following remarks. 
(a) The solutions provided by theorem 2.1 are more regular than HoPF's 

solutions [HOPF (1951)], and, in particular, their kinetic energy decreases mo- 
notonically with time. To our knowledge, this is the first example of global 
solutions which enjoy this property in an exterior domain .Q =VR a without 
restrictions on the "size" of the data. For the Cauchy problem, solutions satisfying 
(iii) were constructed by LERAY (1934). 

(b) In the case ~2 ---- R a and ~2 bounded, theorem 2.1 has already been proved 
by O. A. LADYZHENSKAYA (1969). 

(C) The regularity of the initial data can be weakened to Uo E Y(.Q) -- )2/5'5/4(~2) 

A J(sC2), provided one can prove that c4~(.Q) is dense in Y(.Q) (endowed with its 
natural norm). 

(d) As far as the smoothness of our solutions is concerned, we can give only 
results of partial regularity. In fact, on the one hand, because of the validity of 
(iii) and of the results of HEYWOOD (1980)concerning existence of classical solu- 
tions (local in time or global for small data), it is possible to prove a "th6or6me 
de structure" in the sense ofLERAY (ef. HEYWOOD (1980)). On the other hand, by 
suitably modifying the construction, one can show that our solutions verify a 
"generalized energy inequality" in the sense specified in CAFFARELU, KOHN & 
NIRENBERG (1982). Therefore they would have further (partial) regularities along 
the lines of CAFFARELU, KOHN & NIRENBERG (1982) (Theorem B). 

The method we shall employ to prove theorem 2.1 is that introduced by 
J. LERAY (1934, chapter V), to construct his "solutions turbolentes". We thus 
begin to consider for all n ---- l, 2, . . . ,  the following initial-boundary value prob- 
lem 

~U 
a--7 + u~.) v u  = A u  - v r ,  

(2.1) 

where 

V �9 U = 0 in ~ r ,  

U(x, O) = Uo.(X) x ~ r 

U(y, t) = 0 (y, t)E eD • (0, T), 

U(,)(x, t) ~ f J~i.(x - y) U(y, t) dy 
R3 

is a (spatial) "mollification" of U, and {U0,(x)} is a sequence of functions from 
~O(.Q) converging to Uo(X) in the space H 911~ For the system (2.1)it is not hard 
to prove the existence of a global regular solution. In fact, recalling that 

(2.2) sup I U(,~(x, t)t <= c(n) l U(t)l 2 
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where c(n) depends only on (c(n)-+ oo as n---> oo), we may show that U(x, t) 
obeys the following (formal) a priori estimates 

d 
v(t)[ -- - I V  v( t ) lL 

d IVU(t)l~ < ~U2 (2.3) d-'t : --  --~ 2 + c2(n) I U(t)12 IV U(t)12, 

d 
d-'7 1V U(t)]2' ~ - I P  A UI 2, + eZ(n) l U(t)]~ [7U(t)r~ 

P being the orthogonal projection of L2(/2) onto J(/2) (LADYZHENSKAYA (1969)). 
Relations (2.3) are easily obtained after multiplication of (2.1) by U (estimate 

0U 
(2.3)), by ~ (estimate (2.3)) and by - - P A U  (estimate (2.3)) and employing 

inequality (2.2). Using (2.3) and the method of HEYWOOD (1980), one thus proves 
the existence of classical solutions U(x; t, n), z(n; x, t) of (2.1) satisfying (in 
particular) the following properties for all n: 

UE r~(0,  T; J ) /5  L~176 T]; ),,2), 

~U 02U 
- - ,  7~ E L2(/2r) 

~t ' Ox i OXj 

and the estimate (2.3). 
We now wish to obtain estimates of the solution U, ~" which hold uniformly 

in n. To this end, let us consider the linearized problem (1.3) with J(n; x, t) = 
U(.). VU and w o = Uo.. It is well known that (c f  LADYZHENSKAYA (1969)), 

5 

(2.4) [115/4,o r ~ I/4-I V0. ]~; 

therefore, the system (1.3)will admit a (unique) solution w = w(n; x, t) satisfying 
the estimate (1.4) with q = 5/4. Let us prove that w = U. To this end, we shall 
follow an argument of LADYZHENSKAYA (1969). Setting v = w -- U, one readily 
proves that v satisfies the following identity: 

(0o ) 
v " + A 4, dx dt = O (2.5) o; T/- 

04, 824, 

a t '  
for all solenoidal 4, such that 4,, Oxi OxjELq(/2T) for all q > 1, 4, 

vanishes on 0/2 and 4,(x, T) = 0. In virtue of lemma 1.2 we may choose 4,(x, t) 
as a solution of the adjoint problem of (1.3) corresponding to a "body force" 
F(x, 0 6  C~~ x2 • (0, T)) and zero data at time T. Evidently, from (2.5) follows 

f v(x, t ) .  F(x, t) dx dt = 0 
t2 T 

which, by the arbitrariness of F, implies v ~ 0. From what we have just proved, 
we deduce that for all n, U(n; x, t) satisfies the estimate (1.4), which by (2.4) can 
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be written as 

[ U[r247 I V~ 1514,0 r ~ C(T){1 Uo, I~ z + II UOnN215,5/4) 
(2.6) 

<= c(r) (1 Uo,19flo.514 + I Uo, 19/,0,,/4), 

where C depends only on T. In the last step of the inequality (2.6) we have used 
the embedding H9/1~ ) (cf. MIRANDA (1978)). 

We wish now to derive an estimate which, along with (2.3), will allow us to 
prove the energy inequality (iii) of the theorem. Following LERAY (1934), we intro- 
duce the "cut-off" function g E C~176 g(~) = 0 for 1~1 < 1 and g(~) = 1 for 
I~] ~ 2, and set gg(X) =g(x /R) (R  > Ro). Multiplying (2.1) by gRU and 
integrating by parts, we obtain 

d 
�89 I g~/2 U(t)[2 <= _ i gL/2 V u(t)II + 1 [lAg R I,/z U(t)12 

(2.7) + f Vg=- u(.) I u 12 dx § f Vg=. Uv dx. 
g2 

T 

- -  f IV U(t)13/2 I U(t)[312 dt < T'I4 I Uon 13 
- - R  0 

C 
(b) f [[dgR [~/2 V(t)lz dt ~ -~ T 1Uo,[2. 

0 
In the preceding inequalities we employed the following facts: [VgR[<= C/R, 
[AgRI <= C/R 2, the embedding WL2(S2) ~ L3(O) (cf. MmANDA (1978)) and the 
relation (2.3)1. We wish now to estimate the last integral on the right-hand side 
of (2.7). Since V~ E LS/4(Or), because of lemma 1.3 we can redefine z (without 
loss of generality) by adding a suitable function of t, in such a way that 
l" E L4/5(0, T; LIs/7(~Q)). We thus obtain 

(c) f VgR Uz dx dt ~_ C ( /  5[4517 )4/5 ( /  )1[5 or -- "-~ I'c(t) dt ] U(t)1~5/8 dt 

C I '5 ~ - k - z '  (I Uo.19/,o.5/4 + ! u0.lgz,o.sz4){ 'T ,11/~ 2 'JOn [9/10,5/4 "~- I Uon 19/10,5/4) 

where in the last step we have used (2.6), L p interpolation and the embedding 
n9/l~ c_~ L2(~Q) (cf. MIRANDA (1978)). Integrating (2.7) with respect to time, 
recallingthat f [ Uo,(X)12 dx and l Uonlg/,o,5/4 can be increased by f l Uo(X)12dx 

Ixl~R [xl~R 
and [Uo19/lO,5/4, respectively, and using (a)-(c), we deduce 

(2.8) f IU(n;x,t)[2dx<= f lUo(X)lZdx § O/R, 
[xl~R+l Ixk>R 

where D depends only on I Uo]9/lo,5/4. 

The following inequalities hold: 

C 
(a) f Vg R �9 U(n) [ UI 2 dx dt <= --~ 

t2 T 
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Thanks to the estimate (2.6) it is now routine to show that from the sequence 
(U(n; x, t)) it is possible to select a subsequence {U(n/,; x, t)) converging to a func- 
tion u(x, t) verifying the statement (i) of theorem 2.1. In particular one shows that 
U ~ u weakly in L2(0, T; fl,2) and weakly in J(s uniformly with respect to t. 

This last fact in turn implies that u is weakly continuous in time in J(s Moreover, 
since U satisfies (2.1) it also follows that u and ~r satisfy statement (ii). For the 
details, we refer the reader to LERAY (1934), HOPF (1951), LAOYZHENSKAYA (1969). 
We shall, however, briefly sketch the deduction of the energy inequality (iii). 
To this end, we shall again follow an argument of LERAY (1934). First of  all, 
employing, for example, FRIEDRICHS' inequality (el MIRANDA (1978)), one proves 
that U(nk; x, t) converges strongly in L2(0, T; L2(s for any compact subdomain 
~2' ~ s This implies that we can select another subsequence, again labelled nk, 
which converges in L2(s ') for almost all s E [0, T]. Now, multiplying (2.3) by 
U = U(ng; x, t) and integrating over s215 t), we obtain 

(2.9) 
t 

2 f IV U(#)12 de + I U(t)12 = f I U(x, s)12 dx + f I U(x, s)I = dx 
s O R O D R 

where OR ---- s {I x l ~ R} (R > Ro). Furthermore letting nk -+ c,o in (2.9) 
by the weak convergence of  U to u in L2(0, T; )1,2(s and in L2(s we obtain 

t 

(2.10) 2 f IVu(~)lZ de + [u(t)12 ~ 1Tin 
S nk-~ oo 

I f  [ U(X, S ) [ 2  d x  ~- o--fo~ I U(x, s)? dx 1 . 

But, by (2.8) and the strong convergence of U to u in L 2 on compact sets, the 
right-hand side of (2.10) tends for almost all s to lu(s)]2 which, implies the validity 
of  (iii). Finally, the validity of  (iv) is a consequence of (iii) and of  the weak con- 
tinuity with respect to time of u in J(s The theorem is therefore completely 
proved. 

3. Decay of the kinetic energy 

In this section we will prove the following theorem. 

Theorem 3.1. Assume that u(x, t) is a suitable weak solution of  (1.1)-(1.2): 
namely, it enjoys the following conditions for all T >  O: 

(a) u E L2(0, T; f,,2(s ,% LOO(0, T; J(n))  ; 

(b) 

) l f - u  +A4, + u . v u . 4 ,  dxat=fu.4, (x ,O)dx-- fu(x ,r)4 , (x ,r)ax 
DT ~ D D 

e4, 
for alt 4, ~ L~(0, T; J"~(~) A W~,~(~)) with -Tf~ L~(&-). 
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(c) The energy inequality (iii) of theorem 2.1 holds. 

Then, i f  u o E Ji~2) f~ Lq(g2) for some 1 <~ q <= 3/2, the kinetic energy 
E(t) = �89 u(t)12 (is non-increasing and) decays in time according to the following 
law: 

(3.1) E(t)---- O(t -2~) 

where f l ~ - ( 2 - - q ) / 4 q .  In particular, i f  ~ 2 ~ R  3, f l = 3 ( 2 - - q ) / 4 q  for qE 
[4/3, 3/2] and f l = 3 / 8  i f  qE[1,4/3].  Finally i f  q = 2  we have E ( t )=o(1 ) .  

Before giving a proof of the theorem we make some remarks. To this end we 
denote by J the class of weak solutions satisfying the assumptions of the theorem. 

(a) The hypothesis J =~ 0 is basic to several results on behavior asympto- 
tic in time in exterior domains: GALDX (1975), MAStJDA (1975), HEYWOOD (1980), 
MARE~iONT1 (1984a). However, as already noticed in section2, remark (a), 
J Jr 0 was known to happen, so far, either when (2 = R 3 [LERAY (1934)] 
or for (smooth) arbitrary ~Q but for initial data whose amplitude is suitably 
small: LADYZHENSKAYA (1969), MASUDA (1975), HEYWOOD (1980). On the other 
hand, theorem 2.1 proves J ~= 0 for a C2-exterior domain without further 
restrictions; and so it allows us to extend the results of GALDI (1975), MASUDA 
(1975), HEYWOOD (1980), MAREMONTI (1984) to such a case. 

(b) As observed in the previous remark, LERAY proves J ~= 0 with data 

u E f (R  3) only. Thus, if u E J(R 3)/5 L1(R a) theorem 3.1 furnishes, as a parti- 
cular case, for LERAY'S solutions E(t) ~-- O( t  -314) which improves on the estimate 
given in SCHOENBEK (1985), which shows that E ( t ) =  O(t-m).  

To prove theorem 3.1 we need some preliminary lemmas. 

Lemma 3.1. Assume a o E )1'2(s Lq(~Q), q E [1, 2) with ]a o 12 ] Vao(a0) ]2 ~ M, 
for a suitable numerical constant M. Then there is a unique regular solution a(x, t), 
~o(x, t) of  (1.1)-[1.2)with a(x ,O)= a o such that ]a(t)l 2 = O(t -~) where fl = 
(2 -- q)/4q. In particular i f  s ~ R 3 we can choose fl = 3(2 -- q)/4q for q E 
[4/3, 2) and fl ---- 3/8 i f  aE [1, 4/3]. Finally, i f  q ----- 2, la(t)]~ = o(1). 

Proof. See MAREMONT! (1986), Teorema 1.2 and n.5. 

The next result is interesting in itself and concerns an estimate of the L~ 
of any weak solution satisfying (a) and (b) of theorem 3.1. This estimate becomes 
trivial when /2 is a bounded domain. 

Lemma 3.2. Let u, p be two functions verifying (a) and (b) of theorem 3.1. Then 
i f  u o E Lq(f2), we have u E L~(0, T; Lq(~Q)) for all T ~ 0 and for all q E (1, 3/2]. 

Proof. Let 4,(x, t ) ~ p ( x ,  ~ -  t), where ~ is a solution of problem (1.3) 
with f (x ,  t) --~_ 0 and ~po(X) = ~p(x, 0) E ~(Y2).  On the strength of lemma 1.2, 
such a 4) can be substituted into (b) of Theorem 3.1 to obtain 

(3.2) f u(x ,  ~), ,co(x) dx = f u . V u  . 4, dx dt Jr f Uo(X ) �9 ~p(x, T) dx. 
t2 g2~ 12 
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From a result of SOLONNIKOV (1977, Theorem 5.1, relation (5.6)), it follows that 
the solution ~p obeys the estimate 

(3.3) sup I ~p(s) lr ~ C(z) I~'0 Jr, for all r > 1, 
sE [O,r] 

where COO is an increasing function of ~- only, which is bounded on every compact 
set. Now, by the H61der inequality we have 

(3.4) 
T 

f u .  Vu .  4~ dx dt ~ f I - ( t )  l 2~, [Vu(t)[214,(t) Is' dt 
O r 0 q ' - - 2  

where q ' =  q/(q-- 1). On the other hand, since qE (1, 3/2], we know that 
2q'/(q' -- 2) E (2, 6] and thus from the Sobolev inequality we have (el M)RANDA 
(1978)), 

(3.5) [u] 2q' ~ ClVu]~ tulT,-aa = 3 / q ' .  
q ' - -2  

Substituting (3.5) into (3.4), recalling that u E (L~(O, T; j(D)) and employing 
(3.3), we obtain 

T 

(3.6) f l u .  Vu .  ~[ dx dt <~ C(T) sup [u(t)[~-" ] ~0 [q' f l Vu l; +~ dt, 
D r tE[0,T] 0 

where C(T) depends only on T. Moreover, using (3.3) again we deduce 

(3.7) f Uo(X). q,(x, v) dx ~ C(T) I Uo 1~ ] U'o Is'. 
f2 

Therefore, collecting (3.6) and (3.7) and recalling that a < 1, from (3.2), we ob- 
tain 

(3.8) f u(x, ~). U'o(X) dx < C I q'o I~' 

where Cdepends on Tand on the norms of u in L~ T; f (~) )  andL2(0, T; J~ 
The arbitrariness of  ~'o in cg~((2) and the Helmholtz decomposition theorem 
of Lq(~) [see SOLONNIKOV (1977)] allow us to conclude from (3.8) that u E 
L~176 T; Lq(~)), which completes the proof  of the lemma. 

We are now in a position to prove theorem 3.1. By assumption (c) it is easy to 
prove the existence of a time t >  0 such that lu(i)12 IVu(fil2 < M and 

t 

(3.9) l u(t) I~ =< lu(t)122 -- 2 f IVu(s)I~ as for all t => t-. 
t 

Moreover, since Uo E Lq(,Q), by lemma 3.2 we also know that [ uO)]q < oo. 
Therefore, if we take t as the initial time, the hypotheses of lemma 3.1 are satis- 
fied and, consequently, there is a regular solution u*(x, t), p*(x, t) having u(x, {) 
as initial data and satisfying the estimate (3.1). On the other hand, since the weak 
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solution u(x,  t) satisfies (3.9), by a well known uniqueness theorem of  SATHER 

and SERRIN [SERRIN (1962)], we conclude that  u*(x ,  t) = u(x ,  t) for  all t ~ t. 
The theorem is therefore completely proved. 
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