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1. Introduction 

The purpose of  this paper is to derive some inequalities of  the form 

(1.1) /Zk+R < 2k for k ---- 1, 2 . . . .  

between the eigenvalues 2L < ;t2 ~ ...  of  the Dirichlet problem 

A u q - 2 u = O  in D Q R  N, 
(1.2) 

u = 0 on OD 

and the eigenvalues 0 =/~1 < #z < --. of  the Neumann problem 

A v q - # v = O  in D,  

(1.3) __~v ~_ 0 on ~D 

for some classes of  N-dimensional domains D. Here O/& denotes the outward 
normal derivative. 

It  is an immediate consequence of the variational formulation of the eigenvalue 
problems that 

/Zk =< ;tk for k ---- 1, 2, .. .  

P6LYA [6] proved that 
/~2 < 21. 

PAVNE [5] showed that when N = 2 and D is a convex domain whose boundary 
8D is twice continuously differentiable, 

/~k+2 < 2k for k = 1, 2 . . . .  

Convexity in two dimensions is characterized by the fact that the curvature, 
which is a scalar defined on the boundary 0D, is nonnegative. In higher dimen- 
sions there are N --  1 principal curvatures at each point of  ~D, and hence there 
are a number  of  possible generalizations of  PAVr~E'S result. 
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In Section 2 we shall derive a generalization of the form (1.1) for each integer R 
on the interval [1, N] under conditions which depend upon the principal curvatures 
of 0D. The most important of  these results is the fact that the inequality 

#k+N < 2k for k = 1, 2, ... 

is valid for all smooth bounded convex domains. 
We also obtain the inequality 

#k+l < 2k for k = 1, 2 . . . .  

when 8D has nonnegative mean curvature, which is a recent result of AVILES [1]. 
In Section 3 we show that the conditions on the principal curvatures can be 

stated in terms of their symmetric functions, which are the coefficients of the 
characteristic polynomial of  the curvature matrix. A simpler but more restrictive 
set of such conditions is also presented. 

The above results are derived under the hypothesis that the boundary c~D 
has H61der continuous second derivatives. In Section 4 we establish a semi- 
continuity result for the Neumann eigenvalues, which allows us to obtain the 
nonstrict version of the inequality (1.1) for some classes of domains whose boundary 
is not smooth. 

In particular, we shall establish the inequality 

[,Zk+N~,~k for k---- 1,2 . . . .  

for all bounded convex domains. 

2. Inequalities for smooth domains 

If  D is a bounded domain in R N with smooth boundary, the curvature matrix 
of a point P of the boundary 0D is defined as follows: Let r(x) be a continuously 
differentiable vector field defined in a neighborhood of P with the property that 
when x lies on 0D, v is an outward unit normal vector to 0D at x. The matrix 

N 
(2. l ) g i j  : ~i,j - -  E ri,k~krj 

k=l 

evaluated at x in called the curvature matrix of of ~D at x. It has the eigenvalue 0 
with the eigenvector v. The N -- 1 other eigenvalues of Kij are called the principal 
curvatures 

~I ~ ~2 ~ ' ' '  ~ ~N--1 

of 0D at x. (The symbol ,i denotes differentiation with respect to xj.) 
It is easy to see that the matrix Kij is symmetric and that the ij entry is a 

tangential derivative of vi. 
Our results are based on the following proposition: 

Proposition 2.1. Let D be a bounded domain whose boundary 8D is o f  class 
C 2'~ for some a E (0, 1). 1f for some integer R E [1, N] the principal curvatures 
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of  bD at each o f  its points have the property that the sum of  any N -- R + 1 of  
the set of  N numbers 

(2.2) 

is nonnegative, then 

(2.3) 

N--I  1 

j = l  ! 

/~k+R < 2k for k = 1, 2, ... 

Proof. We recall that [3, p. 399] if ~ is continuously differentiable and 

(2.4) f d p v ~ d x = O  for i =  1 , 2 , . . . , k + R - - 1 ,  
D 

where vl, v2, . . . ,  is an orthonormal set of eigenfunctions of (1.3) corresponding 
to the Neumann eigenvalues 0 ----- #1 < #2 ~ . . . ,  then 

(2.5) f [Vcb[ ~ dx =>-tZk+R f&dx .  
D D 

We consider the set of functions 

k N 

( 2 . 6 )  ck = Z aiui -~ Z bpUk,p 
i ~ l  p = l  

where {ul, u2, ...} is an orthonormal set of  eigenfunctions of  (1.2) corresponding 
to the Dirichlet eigenvalues 0 < 21 < ;tz ~ ... Because the u i are orthonormal 
and satisfy (1.2), integration by parts shows that 

(2.7) 
k ~W 

f I v4~ ? dx -- & f 4: ax = Z a~(;t, -- 2k) + ~ w ~ dS, 
D O i=1 ~D 

where we have defined 

N 

W ~ Z bpUk,p" 

The sum on the right of (2.7) is clearly nonpositive. In order to see whether 
the integral is also nonpositive, we note that 

cow N 
- -  ~ bqUk, qr~ r (2.8) &' q,,~1 

b 
= • b q  V r ~ - - V q  

t3Xq O~rr) uk'r --2kUkz~'bqvq" 

Since u k vanishes on the boundary, the last term is zero and 

(2.9) 
c311 k 

Uk,r=rr  ~'--~- for 1 =  1 . . . .  , N .  
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Because the directional derivatives which appear in (2.8) are in directions tangent 
to 0D, we can apply them to both sides of (2.9). Then (2.8) yields 

W ~"~ = p,q,r=l 

or  

W - - ~  �89 S bpbq v r -- Vq I I 

O 

( o)] 
-- ~p ~ r -  ~r " Oxq 

We see from the definition (2.1) of the curvature matrix Kpq that since Iv[ = 1 
on OD, 

Vr V~ Vp--~'p ~-~Xq % Vr = ~ X q  - -  'gq - -  g p q  @ S g r r  'gp'pq. 

The divergence theorem shows that the integral over ~D of the first sum in (2.10) 
is zero. Thus 

~W N 
fw--~dS=--�89 Z bpbq fJ, q(x)dS 

?,D p,q = 1 OD 
(2.11) 

where 

(2.12) JPq = \ Or/  [Kpq + ( S  K, r)VpVq]. 

We recall that the vector r lies in the null space of the curvature matrix. It 
follows that Jpq has the eigenvalues 

l 
(2.13) [ X O'/,' ] 241 . . . .  ' t ''~-~ ) NN--I' ~--~'-~ ] r=l •r J" 

We rotate the x-coordinates so that the matrix 

(2.14) f 4~ as 
0D 

on the right of (2.8) is diagonal, with its diagonal elements arranged in non- 
decreasing order. By the first montonicity principle [8, p. 58] the ordered eigenvalues 

of  the (N -- R q- 1)• (N -- R + 1) matrix J(x) defined by 

Y~(x) = J~,~(x) for 0~, fl = !, . . . ,  N -  R + 1 

are upper bounds for the N - -  R + I lowest eigenvalues of the matrix J. We 
add these inequalities and use the hypothesis that the sum of any N - -  R + 1 
of  the numbers (2.2) is nonnegative to see that 

N - - R + I  

(2.15) t r ( J ) =  ~ J p p ( x ) ~ O .  
p=l 
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Since this is true at each boundary point, we have 
N - - R + I  

(2.16) ]Fa ~ Jpp dS >= O. 
p :  1 ~D 

To show that this inequality is strict, we apply the Gauss-Bonnet formula 

~ 94 d S  : ~ON_ 1 
aD* 

to the convex hull D* of D. Here 

94 : 941 - . .  94N--1  

is the Gaussian curvature of  OD*. 
I t  is easily seen that u = 0 on OD* \ OD. Since the area O~N_ 1 of the unit 

sphere is positive, there must be an open subset S of  OD* f) OD on which u > 0. 
Since D* is convex, all the uj must be positive on S. We therefore see from (2.12) 
and (2.16) that the inequality (2.16) is strict unless ~uk/O~' ~ 0  on S. In this case, 
the Green's  function representation shows that the solution of Au + 2kU : 0 
in a sufficiently small ball B centered at a point of  S with boundary values uk 
in D F~ OB and zero outside D coincides with uk in B F~ D and vanishes out- 
side D. Because solutions of  A u - k  2ku-----0 are analytic, this would imply 
that u k ~ 0 in D. Since this would contradict the definition of an eigenfunction, 
we conclude that equality cannot hold in (2.16). That  is, 

N - - R + I  

Z  J..dS>O 
p :  1 8D 

This clearly implies that the largest of  the terms in this sum if positive. Because 
the elements of  the diagonal matrix (2.14) appear in nondecreasing order, we 
conclude that 

(2.17) f JppdS>O for p =  N - -  R + l , N - -  R + 2 . . . . .  N.  
~o 

We now choose the k + N numbers ai and bp so that they are not all zero 
and that they satisfy the k + R --  1 conditions (2.4) and the N --  R conditions 
bl . . . . .  bN--R = 0. We then see from (2.11) and (2.17) that the integral on 
the right of  (2.7) is nonpositive. The sum on the right is also nonpositive. Thus we 
have 

(2.18) f ]Vdpi2 d x ~ 2 k  f dp2 dx. 
D D 

I f  q~ ~ 0, equality holds, so that the integral in (2.7) must vanish, which, in 
turn, implies that b = 0. Since the u i are orthonormal,  q~ : E aiu i ~ 0 would 
imply that a as well as b is zero, contrary to our construction. Therefore r ~ 0, 
and (2.5) and (2.18) imply that 

(2.19) /~k+R :< 2k. 

Equality holds if and only if both (2.5) and (2.16) are equalities. Equality in 
(2.5) is valid only if qb is an eigenfunction of the Neumann problem, so that 
Aqb +/tk+Rqb ----- 0 in D and 0qb/Sv = 0 on 8D. As we have already seen, equality 
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in (2.18) implies that b = 0 so that q~ = 0 on 0D. As we showed in the derivation 
of  (2.17), these conditions imply that q~ ~= 0, which contradicts what we proved 
above. Therefore equality cannot hold in (2.18), and the statement (2.3) of  the 
Proposition is proved. 

There are two important  cases in which the conditions of  Proposition 2.1 are 
easily verified. 

Theorem 2.1. Let D be a convex domain in R u whose boundary has Hb'lder- 
continuous second derivatives. Then the Neumann and Dirichlet eigenvalues satisfy 
the inequalities 

(2.20) ~k+N < 2k for k : 1, 2 . . . .  

Proof. Since D is convex, all the principal curvatures xj are nonnegative at 
each boundary point. Hence each of the numbers in the set (2.2) is nonnegative, 
so that the hypotheses of  Proposition 2.1 hold with R = N. Thus Proposition 2.1 
implies (2.20). 

The sum of the N numbers in (2.2) is 
N--I 

2 ~ ~ j =  2 ( N - -  1) H ,  

where H is called the mean curvature. Hence for R = 1 Proposition 2.1 yields 
a result which is contained in a recent paper  of  AVILES [1]. 

Theorem 2.2 (AvILES). Let the boundary ~D of  the domain D be of  class C 2'~ 

and let its mean curvature be nonnegative at all its points. Then 

(2.21) /~k+l < 2k for k : 1, 2 . . . .  

The conditions of  Proposition 2.1 can also be simplified for other values 
of  T. 

Theorem 2.3. I f  the inequalities 
N 1 

(2.22) 2 Y] ~r - -  ~j ~ 0 

are satisfied and ODE C 2'~, then 

(2.23) ?t~,+2 <~ 2k 

for j =  1 , . . . , N - -  1 

for k =  1,2 . . . .  

Proof. By adding the inequalities (2.22) we find that 
N--1 

(2.24) Y~ x i ~ 0. 

The left-hand side of  the latter inequality is the sum of the first N --  1 elements 
of  the set (2.2). The left-hand side of  (2.22) is the sum of  all the elements of  (2.2) 
except for ~.i. Thus (2.22) implies the hypotheses of  Proposition 2.1 with R ~- 2, 
and the Theorem is proved. 
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Theorem 2.4. I f  R ~ 2, i f  every sum o f  N --  R -[- 1 members o f  the set 

(2.25) ( ~ ,  ~2 . . . . .  Us- l}  

is nonnegative, and i f  ~D E C 2'~, then 

(2.26) #k+n < 2k for k : l, 2 . . . .  

Proof. Since zl :< ~2 ~ ... ~ Zg--1, the above condition is equivalent to 

N - - R + I  

(2.27) ~] ~ > 0. 
i : l  

At least one of the terms in the sum must be nonnegative, so that 

Therefore 
N--1 

i=1  

and the set (2.2) is ordered. Thus the hypotheses of  Proposition 2.1 follow from 
(2.27). This proves the Theorem. 

Remark .  I t  is easily seen that each of the Theorems 2.1 through 2.4 implies 
Proposition 2.1 for the corresponding values of  R. 

3. Conditions involving curvature invariants 

The eigenvalues of  the curvature matrix Kij are the zeros of  the characteristic 
polynomial 

N--1 

(3.1) det(2 6ij - -  Kij) = ~] (--1)  k Sk (ul . . . . .  nN-1) 2n-k .  
k - 0  

Sk(n~ . . . . .  tiN_l) is the k th elementary symmetric function, which is defined as 
the sum of all products o f k  distinct elements of  the set (ul, . . . ,  nN 1). By definition 

So(~1 . . . . .  ~n-i) = 1. 
At least in principle, these symmetric functions can be found from the equa- 

tion 3.1 without computing the eigenvalues ~j. The hypotheses of  Theorem 2.1 
are easily seen to be equivalent to 

(3.2) Sl(u~, " "  " ,  ~N--1)  ~ 0 for l : 1 . . . . .  N - -  1. 

The condition of  Theorem 2.2 is, of  course, just 

(3.3) $1(~I . . . . .  UN-I) ~ 0. 

We may restate Theorem 2.3 in a similar fashion. 
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Theorem 3.1. Let 8D E C 2'=~. I f  (3.2) /s valid then 

(3.4) 

I f  (3.3) is valid, then 

ttk+N < 2~ for k : 1, 2, ... 

(3.5) /~k+l < 2~ 

If 

(3.6) 

N - - I - - j  ( N - - j - - l )  
Y, ( - 1 ) '  . s , ( ~ , . .  

l=0  

then 

for k =  1 , 2 , . . .  

�9 , 9 r  [2S1(~q, . . . ,  xN_I)] N - l - j - t  ~ 0, 

for j----0, . . . , N - -  2, 

/tk+ z < 2 k for k = 1, 2, ... 

Proof. We have already shown that (3.2) and (3.3) imply (3.4) and (3.5), 
respectively. 

The conditions of  Theorem 2.3 are that the ( N - -  1 ) •  1) diagonal 
matrix whose eigenvalues are 2S1(~ . . . .  , XN-I ) - -~ j  has nonnegative eigen- 
values. This is again equivalent to the condition that the coefficients of  its 
characteristic polynomial have alternating signs. It is easily seen that this char- 
acteristic polynomial can be obtained from the characteristic polynomial of  the 
( N - -  1 ) •  1) matrix with eigenvalues ~j by replacing the variable 2 by 
2S~ (~1, . . . ,  ZN-1) -- 2. The characteristic polynomial of the latter matrix is just 
(3.1) divided by 2. In this way we obtain the conditions (3.6) and the Theorem is 
proved. 

For  other values of R we can use similar reasoning. The conditions of Theo- 
rem 2.4 are equivalent to the nonnegativity of the symmetric functions of  the ') 2 sums of  N - -  R + 1 distinct elements of ( ~  . . . .  , XN-1}- 

(3.7) 

then 

Theorem 3.2. I f  R ~ 3, 8D E C 2'~, and 

Sj~t  ~ l  ~ t i : l t < 1 2 < ' " < l N - R + l  > 0  

/~a+R < 2k for k ---- 1, 2 . . . .  

for j---- 1, . . . ,  

We remark that because the left-hand sides of  (3.7) are symmetric in the hi, 
they can be written as polynomials in the elementary symmetric functions 
Si(• . . . .  , ~N-O. When R ~ 3, the sums are all of  the form 
S~(~1 . . . . .  ZN-l) -- • and there are N - -  I of them. By a derivation like that 
of  (3.6) we find the following result: 
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Theorem 3.3. If 
(3.8) l_,) 

( - -1)  t . Sl(ux, . . . ,  ~-N-0 [Sl(~-l,-.., UN-OI N - l - t - j  > 0 
I=0 J 

for j =  1,2 . . . . .  N - - 2 ,  
then 

/~k+3 < 2k for k = 1, 2 . . . .  

We can now write down the conditions for the important  case of  3 dimensions 
in terms of the mean curvature H = (st  + ~2)/2 and the Gaussian curvature 

= ~xuz. We see that 

(3.9) n ~ 0 

implies 

(3.10) /zk+l < 2~. 

The conditions 

(3.11) H ~  0, ~ ~ 0 

imply that 

(3.12) /tk+ 3 <~ 2~. 

Finally, the intermediate conditions 

(3.13) H ___> 0, 8H 2 -l- ~ ~ 0 

imply that 

(3.14) #k+2 "(  )]'k. 

It  is easily seen from the proofs that for a fixed R, Theorem 3.1 or 3.2 is equi- 
valent to Proposition 2.1. While it is therefore clear that the conditions of  Theo- 
rem 3.2 for a larger R imply those for a smaller R, the number 

of  these conditions is not monotone in R. 
We shall provide a partial remedy for this situation by establishing a slightly 

weaker result in which the number of  conditions increases with R. We begin with 
the following algebraic lemma. 

Lemma 3.1. Suppose that for  some (not necessarily ordered) set o f  numbers 
t q  . . . . .  #~ and some positive integer 1 ~ v 

(3.15) Sj(/zl, . . . ,  #,) => 0 for j -= 1 . . . . .  1. 

Then 

(3.16) Sj(/q . . . .  , / ~ - i )  ~ 0 for j = 1 . . . .  , l - -  1. 
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Proof.  It  is easily seen that  

(3.17) Sj(/~I, ...,/z~) = Sj(t~I, ...,tz~ 1) + #~Sj-1(tq . . . .  ,/~,-1) 

where, as always, we define So(#1 . . . . .  /z, ~) : 1. By using this identity, we find 
that 

Sj ([g l ,  . . . ,  [zr) S j ( [ z l  . . . . .  [Z~_l )  - -  S j a _ l ( ~ l ,  . . .  , ~tv) S j - l ( [ 2 1  . . . . .  t z~_1)  

= s j @ , , . . . ,  m _ , )  ~ - s j + l ~  . . . . .  / , ~ _ , )  s j _ ~ ( ~ ,  . . . .  , m-~) 

= ( j +  1)(~ - - j )  Sj(#I . . . .  '/z~-1)2 

( j ( r  - -  j - -  1) 
+ ! 

Sj(/~I //Zv_ 1) 2 
[ ( j  + 1) (v - - j )  

- sj+l(~l . . . . .  # ~ _ ~ )  s j_l(~, . . . , /~3} .  
1 

Newton 's  inequality [4, p. 104, Theo. 144] states that  the term in braces is non-  
negative. Therefore 

sj(/~l . . . .  , m )  sj(/~l . . . .  , m - l )  => s j+~(#~ . . . .  , m )  S j_ l ( / , ,  . . . .  , m - , )  

-~- ( j  -~- 1) (~' - -  J )  SJ(~l  . . . .  ' ~v -1 )2"  

We now see from the hypothesis (3.15) that  if j ~  l - - 1  and if 
Sj_l(/zl ...,/z~_1) ~ 0, then Sj(/zl . . . . . .  /~-1)  ~ 0. (Note that Sj(#~ . . . . . .  /~,) = 0 
implies that  Sj(l~ ~ . . . .  ,/z, ~) = 0.) Since So(# ~ . . . . .  /~ ~) = 1 > 0, the Lemma 
is proved by induction. 

Theorem 3.4. I f  OD~ C z'~, R ~ 3, and at each point of  OD 

Sj(~l . . . .  , ~ N - I )  ~ 0 for j : 1 . . . . .  R - -  1, (3.18) 

then 

(3.19) /z~+R < 2k for k = 1, 2 . . . .  

Proof.  Apply  Lemma 3.1 R --  2 times to find that  

S l (z l  . . . . . .  /~N-R+1) ~ 0. 

Since nl ~ n2 < .. .  ~ ZN-1, this give the conditions o f  Theorem 2.4, and the 
Theorem is proved. 

When R = 2 we find the following simpler result. 

Theorem 3.5. I f  ~D E C 2'~ and i f  

S I ( ~  . . . .  , ~N-1) >: O, 
(3 2 0 )  

S2(~1 . . . . .  ~N-1)  I t- S1(~1 . . . .  , ~N_I )  2 ~ 0 ,  
then 

/t~+2 < 2~ for k : 1, 2 . . . .  
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Proof .  Clearly 

& ((~... N I ) 
"' ~N--2' Z ~i'~N--1 281(gl . . . .  , ZN_I) ~ 0 

i~l  

while by (3.17) and (3.20) 

$2(~1 . . . . .  ~N--2' ~V'~i' ~N--1) = $2(~1 . . . .  , ~ N - I )  -~ Sl(~l  . . . .  , ~N_I)  2 ~ 0.  

Thus L e m m a  3.1 shows that  

S l ( ~ l  . . . . .  ~N-2, S 74i) ~ 0,  

and the result follows f rom Theorem 2.3. 

We note  that  when ~-1 = - -2 ,  ~2 . . . . .  ~n--2 : 0 ,  ~N- - I  : 5,  the condit ions 
(3.6) are satisfied while the condit ions (3.20) are not, which shows that  T h e o r e m  3.5 
is strictly weaker  than  Theorem 3.1. Similarly, the example ~1 = - -2 ,  z2 = . . .  
�9 . .  - -  ZN--R = O, ZN--R+I . . . . .  Z N - - I = 3  shows that  when 3 < R ~ N - -  1, 
Theorem 3.4 is strictly weaker  than Theorem 3.2. 

4. Extension to nonsmooth domains 

We shall extend the inequalities (2.3) to more  general domains  by means  of  
a limiting process. We will have to give up the strictness of  such inequalities in 
the process. 

We begin with an elementary lemma.  

Lemma 4.1. L e t  a, b > O. I f  v is a C 1 f u n c t i o n  on [0, a + b], then 

a+b aq-b 
(4.1) f v 2 d t ~ 2 b  c o t h a  f ( v 2 +  v ' 2 ) d t .  

a 0 

Proof .  A s tandard variat ional  a rgument  shows that  the m a x i m u m  # o f  the 
ratio of  the integral on the left to the integral on the right is the largest roo t  o f  
the equat ion 

(4.2) ( # - 1  __ 1)1/2 tan (#-1 _ 1)I/2 b = tanh a .  

The  well known estimates 

sin ~ ~< O, 

show that  

cos ~o ~ 1 - -  �89 0 2 

b (1  + � 8 9  
/~ < < b coth a 

= tanh a + b (1 + �89 b t a n h a )  = 

which yields (4.1) o f  the Lemma .  
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As usual, we define the Minkowski distance d(A, B) between the two point 
sets A and B to be the infimmum of numbers 6 such that every point of A is with- 
in distance 6 of B and every point of B is within distance ~ of A. 

We shall impose the following conditions on the domain D: 

Condition sg'. The boundary OD can be covered by a finite collection of open 
sets Zv such that 

a) For  some 0 > 0 

L) (zv) ~ {x: d(x, ~D) < 0}. 

b) Each Z. is the image of the cylinder BN-1 • (0, 1), where BN_ 1 is the open 
unit ball in R u - l ,  under an invertible differentiable mapping x = ~,"(~/, t) whose 
Jacobian is bounded above and below by positive numbers. (Here r/E BN-1, 
t E (0, 1)). 

c) There is a continuous function g" on Bu-1 such that 

(4.3) D/5  Z, = {x = y"(~], t): ~ E ON_ 1, 0 < t < gV(~/)}, 

~D A Z, = {x = y"(~], t): "1C ON_I, t = g"(r/)}, 

0<o~_</~< 1 
and 

d) There is a positive constant s such that if x E Z,  \ D, d(x, D) is the Eucli- 

dean distance from x to D, and x = y~(r], t), then 

t -- g~(rl) ~ s d(x, D). 

Our conclusions on convergence will be based on the following semicontinuity 
lemma. 

Lemma 4.2. Let the domain D satisfy the conditions siP. Let D n n == 1, 2, ..., 
be a sequence o f  domains, each o f  which satisfies a cone condition, and such that 

(4.4) Dn ~ D 

and 

(4.5) l i jn  d(D., D) = O. 

I f  ttl(D.) is the l th  Neumann eigenvalue of  D~ and pt(D) is the corresponding 
eigenvahte o f  D, then 

(4.6) lirn ~f/~,(Dn) ~/z , (D) .  

Proof. We see from (4.3 a) and (4.5) that when n is sufficiently large, D, lies 
in the union of D and the Zv. For  such an n we shall derive a bound for the 
difference in the integrals of 7, z over D and over D, for any smooth function 
defined on D, in terms of the integral of ~/)2 -t- IV 012 over D~. 
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(4.7) 

In order to do this we note that 

f w ~ dx = f [~p(y~(t, ~))12 J dt d~ 1 
( D n - - D ) A Z  v ~,- '[(Da-- D)fhZr] 

gv(~)+r(r~) 

< f  f 
BN- I g(~) 

[~(~"(t, ~))12 Jdtd~.  

(4.9) 

satisfies 

(4.10) 

Then 

(4.11) 

f I vw] 2 dx < (m(D.) + ~) f W ~ dx. 
Dn D n 

Select the constants in (4.9) so that they are not all zero and 

f ~pvi dx=O,  i =  I . . . . .  1-- 1. 
D 

re(D) f W 2 dx ~ f ]V~plz dx. 
D D 

We observe that 

(4.12) f 177,15 dx ~ f IVv, I ~ dx ~ (t~t(D,) + e) f w~ dx, 
D D n D n 

while by (4.8) and (4.10) 

(4.13) f~p2 d x ~  (1 - -  cd(D., D) [1 +/zz(D.) + el) f~p2ax. 
D D n 

Since J i s  bounded above and r(~) ~ s d(D,, D) by (4.3d), Lemma 4.1 shows that 
there is a constant c, such that 

gV(~) +rOD gV + r 

f ~2j dt <= ct d(D,, D) f (W z + ~ozt) dt. 
gV(O 0 

We substitute this in (4.7), transform back to the x-coordinates, and use the 
fact that J has a positive lower bound to see that there is a constant c2 such 
that 

f w 2ax<=c2d(D~ f ( w  2+[vwl ~)dx. 
(O n -- D)(SZ v DntqZ  v 

We add these inequalities to find that 

(4.8) f ~p2 d x - -  f ~p2 d x ~  cd(D,,D) f (w2 + lVv, lZ)dx, 
D n D D n 

where c = Lc2 with L the number of  sets Z,. 
Let w~, . . . ,  Wl be a set of  infinitely differentiable functions which are ortho- 

gonal on D, and which approximate the first l Neumann eigenfunctions of  D, 
so well that any linear combination 

1 

W(x) = Y~ ciw,(x) 
, =1  
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Since the Dirichlet  eigenvalue 2t(D) decreases as D grows [3, p. 409, Theorem 3], 
we see that  

[Zl(Dn) ~ ).t(D.) ~ / t l ( D ) .  

Thus,  if n is so large that  cd (D , ,  D) [1 + 2t(D ) + e] < 1, we see f rom (4.11), 
(4.12), and (4.13) that  

m(D.) + 
#l(O) < 

= 1 - -  c d ( O . ,  S O )  [1 + ~q(O) + e]" 

Since this is true for  any positive e, we have 

/~l(D,) 
#l(D) < 

= 1 --  e d(Dn, D) [1 + ~.l(D)] " 

We now let n - -+oo  through a sequence to obtain  the s ta tement  (4.6) o f  the 
Lemma .  

Remarks  1. I f  D is bounded  and convex and 0 is any of  its points,  then a closed 
ball o f  some radius R1 centered at 0 lies in D and an open ball o f  radius R2 cen- 

tered at 0 contains D. I f  (r, o~) are polar  coordinates  centered at 0, we can divide 
the annular  region between the two balls into finitely m a n y  "cyl inders"  with the 
coordinates  t = (r --  R1)/(R2 - -  R1) and ~ = ~/(~o). Thus any bounded convex 
domain satisfies condition ~AF. 

2. I f  D and D,  are any convex domains  with d(D,, D) small, there are dilations 

of  D with constants  near  1, one of  which takes D inside Dn while the other  makes  

contain D n. The  above p roo f  then shows tha t  for  bounded convex domains 
d(D n, D) --~ 0 implies that 

ttl(D,,) --> ~ul(D ) . 

3. We recall [3, p. 423, Theo rem l l ]  that  the Dirichlet  eigenvalues are con- 
t inuous in the sense tha t  d(D~, D)--+ 0 implies that  2j(D~)--> 2t(D). 

We can now obtain  limiting forms  o f  Proposi t ion 2.1. 

Theorem 4.1. Let  the domain D satisfy the condition JV" and suppose that there 
is a sequence o f  domains D n ~ D such that each Dn satisfies the hypotheses o f  
Proposition 2.1, and let 

lim d(D,, D) ~ O. 
t t - ~  o o  

Then the eigenvalues o f  D satisfy the inequalities 

/~k+R <: ~t~ for  k = 1, 2, . . .  

Proof.  Apply  l emma 4.2 to the inequalities 

~Uk+R(D,,) < 2k(D,,) ~ 2k(D). 
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A theorem of MINKOWSKI [2, p. 35ff.] states that a convex domain D can be 
approximated in the sense of set distance by smooth convex domains D, ) D. 
This and Remark  1 after Lemma 4.2 yield the following result: 

Theorem 4.2. I f  D is any nonempty bounded convex domain, then 

(4.14) /Zk+N ~ 2k for k = 1, 2 . . . .  

It  is not known whether there is a convex domain in N > 1 dimensions for 
which equality holds in (4.14). 

It  is easy to find nonconvex domains for which the condition sV" can be veri- 
fied, but it is difficult to determine whether a nonconvex domain is the limit of  
a sequence of larger domains which satisfy the conditions of  Proposition 2.1 
for some R < N. We present one class of  domains where this can be done. 

Let N = 3 and let D be obtained by rotating a two-dimensional domain 
Do about a coplanar line which does not intersect the closure of  D o. Suppose 
that the boundary of Do is of  class C z'~ with the exception of a subset of the interior 
of  aD f~ aD* where D* is the convex hull of  D. By the Minkowski construction 
we construct a smooth convex domain D O ) Do which is arbitrarily close to the 
convex hull D* of Do. We then construct a convex domain Do' with smooth bound- 
ary such that aD o' coincides with aDo on the part  of  aDo A aD* near the closure 
of  aD o \ aD*, and with aD o near the set where aDo is not smooth. Let Do" be 
the subdomain of D o' whose boundary consists of  aDo \ aD* and a part  of  afro'. 
Let D ' "  be obtained by rotating Do". Then D'" contains and is arbitrarily close 
to D, and it has nonnegative mean curvature if this is true of  aD \ aD*. It  is 
easily verified that D satisfies Condition d .  

The same reasoning also works when D is obtained by rotating Do about  a 
line of  symmetry. 

We conclude from Theorem 4.1 that i f  D is a domain of  revolution and if  
aD \ aD* is smooth and has nonnegative mean curvature, then 

/tk+ 1 ~ 2 k for k = 1, 2 . . . .  

The same result follows for an N-dimensional domain which is obtained by 
rotating a two-dimensional domain about  an ( N -  2)-dimensional hyperplane. 

It would be interesting to find a larger class of  domains to which Theorem 4.1 
can be applied. 

It  was observed by JOSEPH HERSCH that if a domain D'  is obtained from a 
domain D by removing a set of  measure zero, then 2k(D') >~ 2k(D) while tZk(D ') 
<=/~k(D). Therefore if D satisfies the conditions of  Proposition 2. l, then the eigen- 
values of  D' still satisfy the inequalities (2.3). Since the boundary of  D' may not 
even have nonnegative mean curvature, this observation makes one wonder 
whether the inequalities (2.3) are not, in fact true for all domains. 

However, numerical computation shows that [23 ~> 21 for the two-dimensional 
annular sector 

D = ((r, 0): 1 < r < 2, 0 < 0 < 3x/2}. 
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By Lemma 4.2 one can find smooth domains containing this D for which the same 
inequality is valid. Thus the inequality (2.3) is not true for all smooth two-dimen- 
sional domains. 

Computation shows that #3 ~ 21 ~ / ' 4  for a disc and that /z, ~ 2t ~/*5 
for a three-dimensional ball. Thus #N+k cannot be replaced by #N+k+t in the 
inequality (2.20). On the other hand, one can show that there are constants 
a > 0  and c >  1 such that for the N-ball 

/~N < 21. 

This suggests that perhaps (2.20) can be replaced by a better inequality of the form 

/ZCfN,~) <~ 2g 

for convex N-dimensional domains. 
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