
KRISTER SEGERBERG 

THE LOGIC OF DELIBERATE ACTION 

1. PRE-FORMAL NOTIONS 

Two stages are discernible in deliberate action, deliberation and 
performance. The agent decides on what to do, then does it. Or with a more 
careful formulation: the agent forms an intention, and then tries to carry it 
out. Deliberation and performance may be complex or not, may take much 
or little time, may be conscious or less than conscious. Some examples will 
illuminate this way of viewing action. 

EXAMPLE I. I want to close the door. So Iget up and close the door. 

This is a typical example of a kind of action that we perform every day; 
actions of this kind make up a considerable portion of our lives. The delib- 
eration involved is minimal: I wish to close the door, there is no overriding 
consideration to the contrary, and so an intention to close the door (some- 
how) forms. Performance is unproblematic - closing doors I know some- 
thing about, especially this door which is the door of my own study and 
which I have closed innumerable times before. One may say that I have a 
routine for closing this door, and whenever I am closing this door in the 
normal way I just did, it is this routine that I am running. The routine is 
not easy to describe, perhaps not even possible to describe. But if you were 
here, it would be easy to show you: this is how I do it. Normally I do it 
without thinking, sometimes without being aware of doing it. Compare me 
with the neighbour’s one-and-a-half-year-old who might also be able to close 
the door but who has not yet developed a routine for doing it: he would go 
about it laboriously, tackling this task with the freshness of a young and 
untried mind, as yet a tabula rasa as far as closing doors is concerned. 

One feature of this example is of particular interest: an intention is 
formed which the agent is able to execute immediately. Let us call such an 
intention operational. Pre-formal theorem: an intention is operational only 
if there is a routine for trying to carry it out. 

Asserting that the performance of my door closing act is in one sense 
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unproblematic is not to deny that it is an extremely complicated thing: a 
human being is a miracle even from an engineering point of view, something 
you would quickly discover if you would try to build a robot in my effigy, 
one that would look like me, walk like me, and designed to get up and 
close the door like me if called upon to do so. This complexity is respon- 
sible for the fact that, strictly speaking, the result of my door closing 
routine varies a little each time it is given a run. That is to say, the sum 
total of my bodily movements is different each time I close the door, even 
though the essential thing, that the door gets closed, is always the same. 
To be certain, these differences are usually of so little importance that it is 
difficult to see them if you are not a philosopher. Under normal conditions 
there is no reason why anyone would be interested in the precise locus of 
my body’s centre of gravity during the seconds it takes to close the door. 
But there are cases when minute differences of this sort matter, differences 
not due to any indeterminacy in the operational intention but to the 
variance or imperfection in the routine called up to execute it. Here is a 
particularly obvious example: 

EXAMPLE 2. lam about to throw a dart. The intention is “to hit the Bull’s 
Eye”, I am not very good at this sort of thing, but I have done it often 
enough, and this is how I do it: I aim carefully, inhale deeply, exhale half 
my breath, keep the rest, hope for the best, 1, 2, 3, and off it goes! 

I never know where the dart will land, have no sense of how the throw 
“feels” (which an expert might have). In this respect the dart example 
differs from the preceding one: I am always confident that the door will be 
closed at the end of my door closing routine (if there is not some anomaly 
afoot). Perhaps one may say that I am an expert at closing doors but an 
amateur at throwing darts. 

The observation I am making is a familiar one, but it is of fundamental 
importance and so will bear repeating once more. In each of the two 
examples it may be said that I am doing the same thing each time I perform 
the action, but also that I am doing a different thing each time. If this is 
difficult to see in the door closing example, it is all the clearer in the dart 
throwing one. In order to see that I am doing a different thing each time I 
throw the dart, just look at the score: now (usually) it is a bad miss, now 
(sometimes) it is a near miss, now (once in a long while) it is the Bull’s Eye. 
But it is also true that I am doing the same thing each time I throw the dart, 



THE LOGIC OF DELIBERATE ACTION 235 

viz., throwing the dart with the intention of hitting the Bull’s Eye. 
Obviously there must be an important distinction waiting to be made here. 
A statistician would say that it is the same experiment that is being repeated 
but that the outcomes differ. Using the vocabulary introduced above, we 
may add to this by saying that the reason that it is the same experiment is 
that it is the same routine that is being used. 

Both Example 1 and Example 2 involve no or little deliberation. Here is 
a more complicated example involving considerable deliberation: 

EXAMPLE 3. I wish to give X a birthday present. What will it be: flowers, 
bottle of wine, a book? Knowing X, I decide: a book. But what book? For 
various reasons, who knows which, I decide: a book by FnYiof Nilsson the 
Pirate. Surveying the contents of my bookstore I see a copy of The book 
dealer who gave up bathing, and I decide: that book. So I buy the copy and 
have it sent to X. 

It is instructive to follow the stages of deliberation in the example. A series 
of, as it happens, strictly monotonically more specific intentions is formed 
until one is reached which can be realized immediately - an intention that 
is operational. Notice that in the chain of intentions formed in the example 
none except the last one is operational: “to give X a birthday present”, 
“to give X a book”, “ to give X a book by Fritiof Nilsson the Pirate” were 
alI intentions of mine, but none of them could be carried out immediately. 
By contrast, the last intention, “to give X The book dealer who gave up 
bathing” could be realized at once and in a simple way. In a generous 
sense of routine, there was a routine which I could associate with this 
intention. There was no compulsion to run this routine, but as a matter of 
fact I did run it. 

A final observation. Looking back on what I did in this example, it 
would be true to say that I have given X a birthday present, that I have 
given X a book, that I have given X a book by the Pirate, etc. But would 
it be true to assert that I have given X a book or a record (in the sense in 
which to give something is to give it intentionally)? In one sense such an 
assertion would seem to be true, for by classical logic, if I have given X a 
book, then either I have given X a book or I have given X a record. But 
there is also a sense in which the assertion would seem to be false, for by 
assumption “to give X a book or a record” was never an intention of mine. 
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The sketchiness of the preceding discussion will no doubt leave philos- 
ophers of action dissatisfied. However, as a pre-theoretical background to 
what follows it will suffice. The main purpose of the paper is to provide a 
completeness result for the intentional logic first defmed in [2]. Actually, 
the logic presented here is slightly more general than the one defined there, 
but the completeness claim made there is an easy consequence of the work 
done here. 

2. FORMAL NOTIONS 

We begin by laying down a formal semantics meant to model deliberate 
action as conceived above. An outcome space U is a non-empty set, the 
elements of which are called outcomes and the subsets of which are called 
events (note that the concepts of outcome and event are both relative to 
a given space). Two events stand out, the impossible event 8 and the certain 
event U. An action in U is a pair (S, x) such that SC-9 U and x E U; that is, 
S is a set of events and x is an outcome. By an intentionalaction structure 
(based on U) we mean any nonempty family of actions in U. 

The intuitive considerations in Section 1 should provide some motivation 
for our choice of formalism. If the defmtion of action appears artificial, let 
the following remarks be added. We think of an intention as an intention 
to bring about an event, and thus it is convenient, in our modelling, to 
identify an intention with the corresponding event. Furthermore, the agent 
(who is tacitly understood and fixed throughout the formal development) is 
thought to have a definite set S of intentions in mind which determines 
“what he does”; Example 3 shows that this set may have more than one 
element. But as shown by Example 2, the agent does not always completely 
control the world around him, hence we need to know the outcome x 
before we know exactly “what he did”. Another way to think about this is 
the following. We wish to find a formal representation of action. If you are 
told that the construct 6, x> models a certain particular action, then you 
know all there is to know about this action per se (within the present con- 
text): knowing S you know what the agent intended by his action, and 
knowing x you know what actually happened. Admittedly, this is a Crude 
theory, and, as will be seen in Section 5, narrowly limited. Yet for the logic 
of action it seems to the author to promise something of a new beginning. 

To fit this semantics with an object language we proceed as follows. First 
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TABLE I 

Category Symbols Appellation 

t 
t’ 
t t.t 

if 

f f.f 

f’ 

f t,t 

n,,n ,,..., nn ,... 

h 

Go, p,, . . .,P,,... 
7 
El 
A 
V 

+ 
* 
Int 
Real 
= 

event letters 
event complement 
event intersection 
event union 
propositional letters 
negation 
necessity 
conjunction 
disjunction 
material implication 
material equivalence 
the intention operator 
the realization operator 
event identity 

we introduce a categorical notation of the kind used by Ajdukiewicz and 
Montague and also used in a similar context by the author in [ 11. Let t 
and f be the two basic categories ( t for “term” and f for “formula”). 
Then we shall have primitive symbols as listed in Table I. We assume of 
course that the intersection of the sets of primitive symbols of any two 
categories, basic or derived, is empty. Notice that the table completely 
determines our syntax. In particular it defmes the class of expressions of 
category f ~onnukzs) and the class of expressions of category t (temzs). 
The simplest terms are the event letters, while any complex term is of the 
form &, a! n /3, or (Y v /3. The simplest formulas are the propositional letters, 
but there are also others that are simple in the sense that they do not con- 
tain any formula as a proper subexpression, viz., formulas of type Int (Y, 
Real (Y, and CY = 0. Every formula that is not simple in this sense is of the 
form -IA, OA, A A B, A v B, A + B, or A ++ B. Meta-logical conventions: 
we will use P for propositional letters; A, B, C for general formulas; K for 
event letters; OL, 0, -y for general terms. Formulas of type (Y = 0 we sometimes 
call equations. We introduce as abbreviatory devices three operators: f, I, 
0 of category f t,t , f t*t , respectively ff : 

“a # 0” for i(o1= p), 
“(y 1. pl’ for (Y- /3=(1! 
“OA” for 1alA. 
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Three of the primitive operators need special comment: 8, lnt and Real. 
As suggested above, cs is seen as a necessity operator in the sense of modern 
modal logic, but it is not logical necessity that is meant. The reading of DA 
favoured in [2] was “it is part of the situation that A”. Both Int and Real 

operate on terms, and Int (Y and Real cx may be read “(Y is intended by the 
agent”, respectively, “(Y is realized”. These suggested readings are of course 
unofficial: the meaning of the operators is given by the truth conditions 
that will now be given. 

Let 6 be an intentional action structure based on some set U. Then we 
say that ‘%I = ((I, 6 , V) is a model (in 6 ) if V is a valuation; that is, if Y is a 
function assigning to each event letter a subset of U and to each 
propositional letter a truth-value, either T (truth) or F (falsity). 

The first thing to notice is that ‘3JI in effect assigns to each term CY an 
event IIcYII~ (we will drop the superscript wherever possible): 

lbll = V(n), 

11111 = u, 

IlOll = 8, 

lb n PII = ll4l n IIPII, 

lb ” PII = lbll u IIPII, 

ll4l = u - lIdI. 

The next thing to notice is that !IR in effect assigns to each formula not 
involving Int or Real or q a truth-value. However, we want a truth-value for 
every formula, and in order to achieve this we have to settle for one that is 
relativized to an action (S, x). In accordance with custom we will write 
6,~) l=* A, if A is assigned T, and 6,x) tfw A, if A is assigned F. As 
before, we drop the superscripts wherever possible: 

(S,x) I= P iff V(P) = T, 

(S,x) t= a = P iff ll4l = IIPII, 

(S, x) /= Int a! iff Ilcull ES, 

LS,x) I= Real (Y iff x E llall, 

‘3,x) I= 1A iff G,x) I# A, 
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(S,x) I= A A B iff 6,~) k A and (S, x) j= B, 

etc. 

239 

(S, x> I= q A iff, for all (T, y) E 6, (T,y) k A. 

Let us say that A is true in Sm if, for all (S, x) E 6, 6, x) kw A; valid in 
6 if true in all models in G ; valid if valid in all intentional action structures. 
We say that a model 902 = Kl, G , V) is a modei for a set X of formulas, or 
that X has !LB as a model, if there is some 6, x> E 6 such that, for all 
A E X,6,x) k* A. 

We turn now to the problem of axiomatizing the set of valid formulas. 
To this end we lay down the following somewhat redundant axiom system: 

AXIOMS 

@A) 

(TF) 

w  

(Nl) 

(El) 

(E2) 

W) 

WI 

WI 

(R3) 

All valid equations of Boolean algebra. 

All instances of truth-functional tautologies. 

All instances of formulas valid in Lewis’ system S5. 

A + OA, if A contains no occurrence of Int or Real. 

a= a. 

(Y = /3 + (A * A’), if A and A’ are similar formulas differing 
only in one place where A has an occurrence of cu and A’ an 
occurrence of 0. 

1 Real 0. 

Real 1. 

Real (ol n P) ++ (Real (Y A Real 0). 

Real (ol v  P) * (Real a v  Real 0). 

INFERENCE RULES 

(Modus Ponens) A, A + B/B. 

(Necessitation) A/MA 

Here (Nl), (El), (E2), (R2), and (R3) - but not (RO) and (Rl) - are axiom 
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schemata, each covering infmitely many formulas. For example, according 
to (N 1) every formula A + q A is an axiom if A is a formula not containing 
lnt or Real, and according to (El) every formula of type a! = a! is an axiom. 

By M.I.L., theMinima Intentional Logic, we mean the smallest set of 
formulas which contains all of the above axioms and which is also closed 
under the two inference rules. We write Ae, . . . , A,-r l- B if the formula 
(A,,A.. , A A,,-,) + B belongs to M.I.L., and I: l- B if Z is a set of formulas 
and there is some n 2 0 such that A,,, . . . , A,-r /- B, for some A,,, . . . , 
Ansl E Z. Furthermore, Z is said to be consistent if there is at least one 
formula B such that not L: l- B. 

Axiom schema (Nl) is very strong. Without the proviso the modal aspect 
of our logic would be trivial. But as the presence of the proviso suggests, 
M.I.L. is not closed under substitution of formulas for propositional letters; 
even though all formulas of type P + q P are theorems of M.I.L., formulas of 
type Int ar + alnt (Y or Real CY + oReal CY usually are not. The latter claim is a 
corollary of the completeness theorem which is stated below at the end of 
this section. 

The strength of axiom schema (E2) is also worth noting. Among its 
consequences are the following observations which we list for future 
reference: 

(EM) a = p t- qa = p), 

@I) cY=/3kIntcY+tInt/3, 

P-9 a! = 0 k Real a! * Real P. 

A logic of this kind was first discussed in [2], where it was also argued 
that such a logic can afford a useful analysis of some notions of agency 
and ability. Thus to express that the agent intentionally does (Y, there are 
the two prime candidates 

Int OL A m(lnt ar + Real (II), 

Int 01 A Real CY, 

and to express that the agent can do (Y there are the corresponding two 
prime candidates 

Olnt (Y A q (lnt CY + Real (Y), 

@(lnt CY A Real a). 
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The differences between the operators Int and Real should be noted. 
Axioms (RO) and (Rl) are syntactic reflexions of the fact that in an inten- 
tional action structure, Real 0 is false and Real 1 true. On the other hand, 
Int 0 and Int 1 can be true or false in models, and accordingly there are no 
counterparts of (RO) or (Rl) among our axioms. This agrees with pre- 
formal intuitions: an agent may well attempt the impossible or the certain, 
even if he usually does not. At the same time it must be noted that our 
modelling is crude and, for one thing, does not do justice to epistemic con- 
siderations. Thus an agent attempting to do the impossible or the certain 
is usually not aware that this is what he is doing, but this nuance cannot be 
rendered in our system. We return to this topic at the end of the paper. 

In the same vein it should be noted that we always have 

cy I P, Real (Y I- Real P, 

but nor in general 

a! I /3, Int Cu k Int /3. 

Again this is in agreement with pre-formal intuitions. 
The scene is now set for the completeness theorem: 

THEOREM. Every consistent set of formulas has a model. 

As remarked before, the main purpose of this paper is to provide a proof of 
this theorem. 

3. THE COMPLETENESS PROOF 

The gist of the proof is a construction which we will now describe. It is 
important to note that it is relative to a maximal consistent set. That is to 
say, given any maximal consistent set Z, the construction yields a certain 
model !I& with a very special property described in Lemma 3 below. The 
construction is yet another and somewhat interesting variation of an age-old 
theme, the L,indenbaum/Stone/Henkin/Tarski/J6nsson Evergreen. 

Let Z be a given f=ed maximal consistent set of formulas. The following 
defmes a binary relation in the set 0 of terms: 

cu-fl(modZ) iff a=/IEZ. 

This relation is called the equivalence relation induced by Z. The 
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terminology is not arbitrary, for with the aid of axioms from (TF), (El), 
and (E2) it is easy to see that - (mod C) is reflexive, symmetric, and 
transitive. Thus we may define 

‘?/z =df {fl: a! - p (mod x)} 

and know that o/Z = P/Z if and only if ar = 0 E X. In the same way it can 
be shown that 

a - a’ (mod Z) and 0 - p’ (mod Xc) 
only if cv fi /3 - 0’ n 0’ (mod Z), 

a! - a’ (mod Z) and 0 - 0’ (mod Z) 
only if a! v /? - Q’ V /I’ (mod Z), 

a - /3 (mod E) only if di - p (mod Z), 

(YNP(modZ) onlyifIntcuEZiffIntPEZ, 

(Y - 0 (mod 2:) only if Real CY E IS iff Real 0 E X. 

We define the Lindenbaum algebra Cfor Z) as the structure 
‘2Iz =(@/2,n ,v,-,O~, iI&, where 

o/x = (a/Z: a E O), 

ap . p/z = a . p/z, 

a/z ” p/z = a ” p/z, 

- (a/Z) = &/Iz, 

OI: = o/z, 

Qz = l/Z. 

Preceding remarks guarantee that the definition is meaningful. Let the set 
U, of all ultrafilters in ‘XL: be called the canonical outcome space and intro 
duce the notation 

This notation is correct, and k~lx = I& if and only if QI - /3 (mod X). We 
define the canonical intentional action structure on Un as the set 6 x of all 
pairs (S, x) where S C_ Sp U, and x E i& that satisfy the following condition: 
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for all natural numbers m, n and terms a,-,, . . . , CY,-~, PO, . . . , Pn+ 7, if 
I~il;r: E S, for all i < m, and Iflilx 4 S, for all i <n, and, furthermore, 
xElrlx,then 

O(lnt cxo/\ . . . ~Inta,~,h7Int/3~h... ~~lntP~-~hReal~)~~. 

The canonical valuation V, is the function defined on the set of all event 
letters and propositional letters such that 

Es@) = Iaz:, 
Vz(P)=T iff PEZ. 

The canonical model, finally, is the triple& = KJz ,G z, Vz>. 
Before proceeding we still need a few technical definitions. We will say 

that two maximal consistent sets I’ and F’ of formulas are staticaZZy equi- 
equivalent if they agree on modalized formulas: 

r * r’ iff VA(@A E r iff q A E r’). 
It is clear that N is an equivalence relation. Note that it follows from the 
definition of N together with axioms from (SS), (Nl) and (EM) that 
statically equivalent maximal consistent sets agree also on propositional 
letters and equations; that is, whenever F N f”, then P E F iff P E f”, and 
(Y = fl E F iff (Y = 0 E I”. In fact, statically equivalent sets disagree only on 
Boolean combinations that involve formulas of type Int cr and Real CY, 

Let us say that a maximal consistent set rfits a pair 6, x> E 6 I: 
(over Z) if the following three conditions are satisfied: 

(9 r=x, 
(ii) I& ES iff Int 0L E r, for all cx, 

(iii) x E Irlz iff Real 7 E r, for all 7. 

It is important to note that the notion of fit is relative to the fured set Z. 
We have now introduced all the conceptual machinery needed for our 

venture. From a heuristic point of view the reader would be well advised at 
this point to look ahead at Lemma 4, including its proof and the subsequent 
remarks. If he does this, he will understand the rationale for our particular 
definition of canonical model and why the untraditional notion of fit was 
developed, and he will also realize why Lemma 1 and 2 below are needed. 
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LEMMA 1. For any pair 6, x> E 6~ there is some maximal consistent set 
r thatfits (S, x) over Z. 

Proof: Define the set Jz = C?e U aI U R2 U ST!3 U S&, where 

Ro={mA:aAEZ}, 

S2,={=B:oB$Z}, 

S22 = {lnt cy: 14~ ES}, 

523 = blnt P: IPIz 4S), 

i-224 = {Real 7: x E Irlz). 

The definitions of &, S& and Sk, are correct, thanks to (Necessitation), 
(SS), (EI), and (ER). We will now show that 52 is consistent. Suppose it 
were not: then for some natural numbers m, n , p, 4, I L 0 there would be 
formulas aA,,, . . .,oA,_,E~~,~oB~,...,~oB~-~E~~, lntcu,,..., 

Int cvpsl E SZ2, lint PO, . . . , ilnt &-I E Si?s, Real To,. . . , Real Trwl E S& 
which are jointly inconsistent. In view of axiom (Rl) there is no Ioss of 
generality if we assume that r > 0 and r. = 1. Let us write C for the long 
conjunction 

Intcwoh.. . A Int ups1 A Ant P0h . . . A dnt &+A Real (‘y. n . . . cI yrml). 

Using, among other things, (R2), we conclude that 

q A~,...,oA,-~,~~B~,...,~~B,-~ j-X. 

By (Necessitation), (S5), etc., 

mAo,.. .,~A,-I,l~Bo,...,l~B,_I FmC. 

Since@Ao,...,~Am-l,i~Bo,.. . , -mB,-, E Z, it follows that 0% E Z. 
But we have assumed that 6,~) E 6~. Therefore, since by construction 
70 n . . . n 77-l is a non-empty term, it follows that @C E Z; a contra- 
diction. Consequently, 8 is consistent. 

As S2 is consistent, it can be extended, by Lindenbaum’s Lemma, to 
some maximal consistent set F. We claim that I’ fits (S, x). This claim is 
easy to prove: the only part that is not entirely straightforward is when it 
comes to proving that, for any term 01, if Real (Y E r then x E I&. Here one 
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must first establish that l- 1 (Real a! A Real 6); but this is easily done with 
the help of (RO) and (R2). n 

LEMMA 2. For any maximal consistent set r = Z there is some pair 
6, xl E 6~ which I’fits over Z. 

Proof: Consider the set T =n{lrl,: Real 7 E I’}. We wish to show that 
T # 0. Suppose, by contradiction, that T = 8. It is well known that the 
topology, the open sets of which are the unions of members of the set 
{lc&: cy E 0}, is compact. Moreover, each set loIn is both open and closed 
in this topology. Therefore, as T is the intersection of a collection of closed 
sets, there must be some terms ro, . . . , ~~-r such that 

(1) Real 70,. . . , Real 7m-r E I’, 

(2) hoiz n . . . n I%n-,IZ = 8. 

Because of axiom (Rl) there is no loss of generality if we assume that 
m > 0. Now, (2) implies that lro n . . . ,. r,,,-ilz = $9, and so 
(70 n . . . * 7m-1 = 0) E Z. Hence, since by hypothesis I’ = Z and so r and 
X agree on equations, 

(3) (70n...n7m-1=o)Er. 
From (1) and axiom schema (R2) it follows that 

(4) Real (-y. - . . . n 7,-J E I’. 

By (3), (4) and (ER), Real 0 E r, contradicting (RO). Thus T# (4. 
Define S = {I&: Int 01 E I’) and pick anyx E T. (It is in order to do this 

that we need to know that T # 8.) We contend that (S,x) E GE. Suppose 
that there are natural numbers m, n and terms oo, . . . , (Y,-r, PO, . . , , /I,,-,, 
7 such that, for alli<m, loilz ES, and for alli <n, l&lx $S, and 
x E 171~. Then 

(5) foralli<m,IntaiEr, 

(6) fOrdli<n,llnt&Er, 
(7) Real -y E r. 

That (7) holds is not obvious, so let us append the following argument. 
Suppose that Real 7 4 I’. Then, by (Rl), (R3), and (ER), Real 7 E I’, and so 
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by the definition of T we have T C lvlI:. But x is an ultrafilter, and a fortion’ 
a proper filter, and so x E Irlx implies that x 4 1712 (for otherwise we 
would have both $Z Ex and s/Z Ex; and so by the filter property 
7 n y/Z: Ex, which is the same as O/Z Ex; and that would contradict 
properness). Consequently x 4 T, which is a contradiction. Hence (7). 

Let us write 

By (5), (6), and (7) C E r. Therefore OC E I’; and so OC E IS, since by 
hypothesis r N I;. This proves the contention that (S, x> E Gx. 

Finally we claim that r fits (S,x). Condition (i) in the definition of fit 
is satisfied by hypothesis, condition (ii) by the definition of S. For con- 
dition (iii), note that, by the definition of T, Real 7 E r implies that 
x E Irlz, while - as above - Real 7 4 r implies Real 7 E r, and so 
x~l~l~:~dx4Irl~. m 

LEMMA 3. For every term CY, Vc(cv) = 1~1~. 
Proof: This is an elementary result which, however, is needed below. An 

inductive argument readily yields the lemma once the following pre-lemma 
has been established: 

(0 Ia n PIZ = I& f-l IPIZ, 

Go IQ” PIZ = blx u IPIZ, 

(iii) Blr, = r/, - 14x. 

This pre-lemma in turn is immediate when it is observed that the elements 
of 17, are ultrafilters. For example, the argument for (i) goes as follows: for 
anyxEU~,~E(cr~PI~iffcw~P/~Exiff~/~~P/~:xiff(bythefilter 
property) o/I: E x and 8/X E x iff x E 101-c and x E I& iff x E Ial= n I/31x. n 

LEMMA 4. Let A beany formula, I’ any maximal consistent set of formulas, 
(S, x) any member of Gz. Suppose that rfits (S, x) over Z. Then 

(S,x) Fm’: A iff A E r. 

&oof: By induction on A. The basic step consists of four cases according 
to whether A is a propositional letter or of the form a! = /3, Int cq or Real (Y. 
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All four cases follow from the assumption that r fits 2, the first case imme- 
diately, the last three mediately via Lemma 3. 

The inductive step consists of several Boolean cases, which are imme- 
diate, and one modal case. The modal case has two parts, and we treat them 
separately. Common to them is the induction hypothesis that the lemma 
holds for A. 

First suppose that (S,x) j# eA. Then (T,y) p A, for some (T,y) EG,. 
By Lemma 1 there is some maximal consistent set A fitting (T,y) over X, 
and so, by the induction hypothesis, A 4 A. Consequently, by (SS), q A 4 A. 
Since I’ 21 Z and A N Z, also r‘ = A. Therefore, @A 4 I’. 

Conversely, suppose that DA 4 r. By an argument familiar from modal 
logic (and used in the proof of Lemma 1 above) it is readily seen that the set 

ii? = (wa3~r)U {lloc:OCqr} U (1A) 

is consistent; to show this, (SS) and (Necessitation) are essential. Linden- 
baum’s Lemma guarantees the existence of some maximal consistent set 
A 3 a. By construction, A 21 I’, and so A z 2:. Therefore, by Lemma 2, 
A fits some (T,y) E GE. By the induction hypothesis, the fact that A@ A 
implies that (T,y) /# A. Hence 6,~) /$ q A, as we wanted. n 

In effect the last lemma establishes the strong completeness theorem for 
M.I.L. stated at the end of Section 2. For let E be any consistent set of 
formulas. By Lindenbaum’s Lemma there is some maximal consistent 
extension E* of Z:. By Lemma 2 there is some (S, x) E 6 E*, such that Z* 
fits (S, x> over itself. Consequently, for every A E Z*, (S, X> l=mz* A. 

4. IS THERE A LOGIC OF INTENTION? 

A conspicuous feature of the axiomatization of M.I.L. is that the operator 
Int plays such a limited role in it. Similarly conspicuous is the absence from 
the formal semantics of any condition on the set S of intentions. Is there no 
logic of Intention? In [2] it was boldly asserted that there is. There the 
axioms included all instances of the schema 

(11) (Int 0 A Int 0) -+ a = /3, 

and a semantic condition was adopted which amounted to the following: 
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(ill for every possible action 6, x> in an intentional action 
structure, S is either a singleton or else empty; that is, either 
S = {A), for some A E U, or else S = 8. 

This might seem like an appropriating modelling if agents always had just 
one intention when acting. However, Example 3 of Section 1 shows that 
this need not be the case. It will be useful at this point to review that 
example. In this paper we have in effect identified an intention with an 
event - the idea is that an intention can always be depicted as an intention 
to bring about a certain event. On this identification the following account 
of Example 3 can be made. The agent has decided to give X a birthday 
present. It seems perfectly acceptable to say that he has formed an intention 
to give X a birthday present even before he has made up his mind exactly 
how to implement his decision. This first intention is identified here with 
the event that the agent gives a birthday present to X. The agent then goes 
on to form other intentions: on our identification they are more specific or 
(if you think of their set theoretic representation) less inclusive events. In 
sum, the deliberation that the agent goes through can be described as a 
deliberation walk in the space of possible events - not outcomes! - which 
proceeds from more inclusive to less inclusive events and stops when an 
operational intention is reached. If one accepts this way of viewing things, 
then one will want a weaker axiom schema than (11): 

(12) (Intcuh IntP)+(cx</?v/3ia). 

The corresponding semantic condition would be 

W for every possible action 6, x) in an intentional action struc- 
ture, if A, B ES, then either A C_ B or B C_ A. 

Example 3 has two features which make it less than general. One is the 
fact that the deliberation walk stops as soon as an operational intention 
has been reached. Let us call an intention operative if it is the intention on 
which the agent finally acts. Every operative intention is operational, but 
there seems to be no reason to assume that the converse must hold. Accord- 
ing to the theory presented here there is a unique operative intention in 
every case of simple intentional action. In a deliberation walk the operative 
intention would presumably be the one to be added last in time to the 
agent’s set of intentions. Whether it must also be the most specific - most 
inclusive - intention would remain to be discussed; cf. below. 
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The other feature that makes Example 3 less than general is that the 
deliberation walk yields a set of intentions that is linear with respect to the 
superset relation. But there is no logical reason why a deliberation walk 
must be linear, and it may well be argued that there are examples to the 
contrary. Changing Example 3 slightly, let us assume that the agent first 
decides to give X a birthday present, and then decides to give X a book and 
also decides that the gift must not cost more than $10. According to this 
revamped example, the agent has three intentions: A = “to give X a birth- 
day present”,B = “to give X a book”, C = “to spend at most $10 on X”. 
The set {A, B, C} is not linear under the superset relation, as B and Care 
incomparable. While this is no objection to the set {A, B, C} as a set of 
intuitions, it is in a sense objectionable that it is n-incomplete: it does not 
contain the further possible intention B n C = “to give X a book costing at 
most $10”. The sense in which it is objectionable is this: it would be odd 
if the agent were to end his deliberation walk without taking at least one 
more step and add B fl C to his set of intentions. He might of course give 
up his intention to give X a birthday present; this would not be odd, for 
people often change their mind. Or he might be prevented from carrying 
his deliberation to a conclusion so that his intentions A, B, C are left 
floating, as it were. But under normal conditions we would certainly expect 
an agent who holds both intentions B and C to work his way to intention 
B n C as well: it would be unreasonable of him not to do so. This is an 
interesting point, and we shall return to it below. (Even this step may not 
be enough, of course: if B n C is not operational, the agent will want to 
continue his deliberation walk.) If this is accepted, then (12) is too strong 
as an axiom schema. On the other hand we should need the weaker 

(13) (Int ~3 A Int B) -+ Int (a - 0). 

Similarly, the semantic condition (i2) would be too strong and should be 
replaced by the weaker condition 

03) for every possible action (S, x) in an intentional action struc- 
ture,ifA,BES,thenA nBGS. 

One may ask if (13) and (i3) are not also too strong, and one might go on 
and try to think of ways to weaken them. For example, if in the revised 
Example 3 the agent were to acquire a non-empty intention strictly more 
specific than B n C, still without acquiring B I? C itself, then the charge of 
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unreasonableness would itself be unreasonable (or would we now say that 
B (I C is somehow implicit in his set of intentions?). That is to say, it may 
be worth considering the even weaker condition 

W for every possible action (S, x> in an intentional action struc- 
ture, if A, B ES, then C C_ A fl B, for some CE S. 

However, this condition is more difficult to characterize syntactically, and 
we will not pursue this discussion further here. 

5. THREE OBJECTIONS 

We will now consider some objections to the theory presented in this paper 
which serve to point out some important limitations to it. The first 
objection was raised in conversation by David Lewis (although Lewis must 
not be held responsible for any detail in the following discussion; the two 
examples below are the author’s). This objection is directed against (13) and 
is based on instances in which the agent’s intentions are based on error: 
where he acts on mistaken belief and therefore, without realizing it, 
attempts to do the impossible. This is a favourite ingredient in fiction and 
legend. Perhaps Oedipus provides the most famous example of this kind. 
With his background Oedipus must have been very particular in what men 
he would kill and what women he would marry. Laius he killed in hot 
blood, and so it may be argued that he momentarily forgot his normal 
caution and that his standing intention “to avoid killing my father” for a 
few fateful seconds failed to be an intention of his. But his marriage to 
Jocasta must have been a carefully considered mariage de convenance, and 
so among Oedipus’ intentions must have been A = “to marry this woman” 
as well as the standing intention B = “to avoid marrying my mother”. As 
Oedipus found out later, those two intentions were incompatible in the 
sense that they could not both be realized: A n B is impossible, that is, 
A rl B = 6. But if (13) is correct, then A n B is an intention of Oedipus, 
and so we must conclude that the impossible is also an intention of Oedipus 
Now we can see what the objection is, for 8 was surely never an intention 
of Oedipus. 

Before trying to deal with this objection, let us first have another 
variation on the same theme. Not only (13) but M.I.L. itself is too strong 
to pass.as a logic of intention, it may be argued, for it contains the theorem 



THE LOGIC OF DELIBERATE ACTION 251 

(EI), whence OL = /l l-- Int (Y * Int @. The event that Electra greets the 
stranger in front of her is the same as the event that she greets Orestes, 
since unbeknownst to her Orestes is the stranger in front of her and we have 
defined events in terms of outcomes. Yet her intention C = “to greet the 
stranger in front of me” cannot be identified with the possible intention 
D = “to greet Orestes” - she had the former but not the latter. 

Yes, this is true: we need a more sophisticated theory to deal with 
Oedipus and Electra. In possible worlds language, Oedipus mistook some 
possible world w1 and Electra some possible world w2 for the actual world 
we. In w1 the intentions “to marry this woman” and “to avoid marrying 
my mother” relativized to Oedipus, are compatible, while in w2 the stranger 
in front of Electra is nor Orestes. In order to handle examples of this kind 
we evidently need a richer theory than that developed so far. On the 
syntactic side we might enrich the object language with an operator 0 (of 
category ft ) expressing universal necessity (truth in all possible worlds). 
On the semantic side we would add possible worlds. Moreover, we would 
no longer base Intentional action structures on single outcome spaces but 
on sets of outcome spaces, say - this may turn out to be too simple - one 
for each possible world. Events would now be something like functions - 
total, say, for simplicity’s sake - from possible worlds to sets of outcomes, 
and if we would continue to identify intention with intention to bring 
about an event, then intentions too would become functions from possible 
worlds to sets of outcomes. Giving up (EI) we would still insist on a weaker 
principle, viz., 

@I’) q (o=fl)l-Inta!*Int/3. 

Within a theory thus enriched it would seem possible to accommodate the 
Electra example. Even though in our world the possible intentions C and 
D come to the same thing, as C(w,) = D(w,,), yet in w2 they do not, for 
C(w,) # 8 while D(wz) = 8. Thus C # D, and so Electra may well have had 
the intention C without having had the intention D. 

In a similar way it would seem possible to accommodate also the Oedipus 
example within the enriched theory. If “this woman” is thought of rigidly, 
we can account for the tragedy in set theoretic terms: what explains 
Oedipus’ behaviour is that fl #AA C B(w,), and what brings about his 
fall is that A(w,) n B(wc) = 8. It seem reasonable to define A n B as the 
function 9 such that, for all possible worlds w, @(w) = A(w) n B(w). 
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Furthermore, let 0 be the intention that is absurd in the sense that it picks 
out the empty set of outcomes in every possible world. Then A n B # 0, for 
(A r-l B)(w,) # $4, and so it is possible that Oedipus should have had A n B 
but not 0 among his intentions. 

Problems attach to the working out of such an enriched semantics which 
are passed over in silence for now. But it seems that even the preceding 
sketch would support the contention that Oedipus and Electra type 
examples are really arguments against (EI) and not against (13). 

The second objection is directed against M.I.L. itself. It was made by an 
anonymous referee who pointed out, in his report on the penultimate 
version of this paper, that in M.I.L. 

~Inta*Int(a-@,fi)). 

This, he argued, is unsatisfactory: “It doesn’t seem plausible that if I intend 
to close the door, then I intend to close the door and to visit Japan or not.” 
A first reply to this objection is to emphasize that the following are four 
different formulas: 

(9 Int (a 0 (P - h), 

w Int a A Int (0 v  j), 

(iii) Int a A (lnt P v  Int fl), 

(iv) Int ~2 h (Int fl vllnt 0). 

In the recommended jargon of Section 1 they read, “Q n (0 V p) is intended 
by the agent “, “cr and fl V fi are both intended by the agent”, “CY and either 
fl or fl are both intended by the agent”, and “a is intended by the agent, and 
p is either intended or not”. The referee’s objection depends on two circum- 
stances, that Int (Y is logically equivalent to (i) and (iv), but not to (ii) or 
(iii), and that an English sentence of type “I intend to close the door and 
visit Japan or not” may perhaps be taken to be ambiguous between (i), (ii), 
(iii), and (iv). Thus, according to this line of defence, the air of paradox will 
disappear if proper care is taken when one translates between English and 
formulas. 

The objectionable feature is deeply grounded in the semantics presented 
here. It depends on two Important principles that have guided our analysis: 
that intention is to be understood as intention to bring about an event, and 



THE LOGIC OF DELIBERATE ACTION 253 

that an event is determined by its instantiating outcomes. If one would like 
to develop a system escaping the referee’s objection, at least one of these 
principles will have to be given up. Notice that also the enriched system 
sketched in preceding paragraphs fails to escape it: in every possible world 
the functions llczll and 11~~ o (0 v /?)I1 single out the same set of outcomes, 
and so they are (almost) the same function. How to develop an interesting 
system without this property is not clear to the author. For one effort to 
solve what seems to be virtually the same problem, see von Wright [3]; but 
even there the objection survives in a weakened form. 

However, before defeat is conceded one may also try a second, more 
aggressive line of defence: is the referee’s objection really an objection? The 
author, for his part, is inclined to accept the referee’s “paradox”. The logic 
of action presented here does at least not seem to be in a worse position 
than possible worlds type intensional logic generally. In most epistemic 
logics we have 

t- KA * K(A A (B v -IB)), 

and it may appear odd that I cannot know that the door is closed without 
knowing that the door is closed and that Japan beat Sweden in football in 
the 1936 Olympics or not. A related and better known version of this diffi- 
culty is the paradox of the logically omniscient subject: in most epistemic 
logics, an agent who knows one logical truth knows them all. Should one 
wish to develop an epistemic logic which does not suffer from this defect, 
then one should first try to make it clear what limitations one should like 
to attribute to the knowing subject. As there are limitations of different 
sorts, different logics may ensue. But even so there will always be a residue 
of paradox: just as the logically omniscient subject suffers from perfection, 
so any logically limited subject is likely to suffer from perfection within his 
limits. What is meant by this assertion wilI be made clear in our discussion 
of the third objection, to which we now turn. 

The third objection is that not only (13) but any proper extension of 
M.I.L. will be too strong if one has the logic of intentions of real people 
in mind; for real people are free to do all sorts of things, and there are real 
life situations that cannot be modelled in even the weakest of the three 
extensions of M.I.L. that we have discussed in this section. According to this 
objection it is enough to consider Example 3 as revamped above. It Is all 
right for us to say, as we did, that it would be unreasonable of the agent to 
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intend B and intend C, yet not intend B fl C. But however loudly we say 
this, it is nevertheless possible to imagine exactly this kind of situation. That 
is to say, the set {lnt rro, Int rrl, lint (no - nr)}, where noand ITS are event 
letters, would seem to be logically consistent, and thus rule out (13). 

This objection is of a different kind from the previous two, and much 
more far-reaching. The present objection could hardly be met by strength- 
ening the expressive power of our theory. On the other hand, if the 
objection is accepted, trying to meet it would lead to a logic of intention 
so weak as to be void of content. The dilemma is solved by reflecting on the 
theoretical status of our theory. The logic of intention and action is not 
different from many other kinds of philosophical logic. Many of the diffi- 
culties and unsolved problems of intensional logic (with an ‘s’) are going to 
be problems also for our intentional logic (with a ‘t’). Among other things 
there is the problem of applicability. Lewis’ system S4 and related systems 
are not much use in a study of what people actually know or believe. For 
example, knowledge or belief operators cannot be depended upon to 
distribute over conjunction where actual knowers or believers are con- 
cerned. But this does not necessarily mean that the usual systems of 
epistemic and doxastic logic are uninteresting! We encounter the same 
problem in game theory and decision theory, disciplines whose claim to 
interest does not lie in their ability to describe actual behaviour. In other 
words, examples that tell against a certain theory seen as a descriptive 
modelling need not tell against that very same theory seen as a normative 
modelling. Therefore, notwithstanding the last objection, if one is asking for 
a logic of rational action, the extension of M.I.L. by (13) looks like a 
possible candidate. 

University of Auckland 
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