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1. Introduction 

In this paper we shall derive some properties of  solutions of  the equation 

/lu + �89 x" Vu + f(u) = O. (1.1) 

This equation arises in the study of  similarity solutions of the parabolic equation 

u t = d u + 2 1 u l p - l u  in R N •  + 

where N ~  1 , 2 E R  and p >  1. In that context, we find 

k 
f(u) -~ -~-u + 2 ]ulP-' u (1.2) 

with k = 2/(p -- 1). More information about the background of  equation (1.1) 
can be found in [1, 4, 5]. 

We shall be mainly interested in radial solutions of equation (1.1) in R ~  
with f given by (1.2), leaving k E R+ arbitrary, but setting 2 = 1. Thus we 
are led to the problem 

u " +  + @-~-u + I u = O ,  r > 0  
(I) r (1.3) 

u ( 0 ) = a ,  u ' ( 0 ) = 0  

in which a E R \ {0}, and r ----- Ix] denotes the radial variable. 
Problem I has been analyzed extensively in [4, 8, 9]. We recall (Propositions 

3.1, 3.4 and 3.5 in [4]) that for every a E R  there exists a unique solution 
uE C2([0, oo)) of  Problem I, and that u has the properties 

(i) lu(r)l ~ a for all r ~ 0; (1.4) 

(ii) L(a)de=_r lim rku(r) exists and is finite; (1.5) 
r - + O O  
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(iii) if L ( a ) =  0, then 

lim rmu(r) ---- 0 for every m > 0. (1.6) 

(By a solution we shall always mean a solution of class C2([0, co))). 
Solutions for which L(a) ~- 0 will be of particular interest. In view of (1.5) 

we shall refer to them as rapidly decaying solution whilst the other solutions 
will sometimes be called slowly decaying. One would like to know for which values 
of the parameters N, k and p, rapidly decaying solutions exist, and--more  specif- 
i ca l ly -when  a positive rapidly decaying solution exists. 

Also, given a solution of Problem I, one would like to have a more precise 
estimate of  its asymptotic behaviour as r - +  oo than that given by (1.5) and 
(1.6). 

Finally one is interested in the question of uniqueness particularly of positive 
rapidly decaying solutions. 

Some answers to these questions have been given in [4, 8, 9]. In terms of the 
set ~ of rapidly decaying solutions it was found that 

(a) i f  N/2 < (p + 1)/(p -- 1) there are infinitely many solutions uE ~ ;  
(b) i f  N/2 ~ (p + 1)/(p -- 1) and k ~ N there exists at least one positive 
solution u E ~ ;  
(c) i f  k > N there exist no positive solutions of  Problem I; 
(d) i f  N ~ 1 and k ~ 1 there exists only one positive solution u E ~ ;  

N p + l  
(e) i f  -~  < p - -  l '  there exists an infinite family of  solutions u E ~ such that 

u(r) = O(r(U-l)/Ze -r2/8)) as r---~oo. I f  k < N this family includes a positive 
solution. 

Properties (a), (b) and (c) were proved in [8, Theorem 1] and [9, Theorem 1], 
(d) was proved in [8, Theorem 2] and (e) was proved in [9, Theorem 1]. 

The method used in [4] and [8] to prove the existence of a solution u E 
is based on a shooting argument, using the fact that L(a) is a continuous func- 
tion of a. In [9] variational methods are used. 

This paper has several objectives. We shall begin by deriving precise asymptotic 
estimates for all solutions of  Problem I. Then we derive two Pohozaev-type in- 
equalities for the partial differential equation, which can claim some interest 
in their own right. As a corollary to one of these inequalities, we prove that for 
a certain range of values of k, N and p, solutions of Problem I can have but one 
sign, and must be slowly decaying. 

Finally, more as a curiosity, we present an explicit solution of Problem I. 
The motivation for obtaining more precise asymptotic estimates comes from 

the analysis in [1] of the problem 

u" + + +--;-u -- lu l ' - l  u = O, r > O 
(II) r z ' ' (1.7) 

u ( 0 ) = a > 0 ,  u'(0)=0 

derived from (1.1) and (1.2) with 2---- --1. Again, rapidly, decaying solutions, 
i.e., solutions for which xku(x) --~ 0 as x--~ oo were of particular interest. It 
was shown in [1] that 
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I f  k ~ N, there exists a unique positive rapidly decaying solution of  Problem H. 

Recall that we must have k < N for Problem I to have a positive rapidly decaying 
solution. 

The basic method used in [1] to analyze equation (1.7) is geometrical, regarding 
the set ((u(r), u'(r)) : r >~ 0) as an orbit in the phase plane, and we shall adopt 
this approach in our analysis of  equation (1.3). Many of the arguments used in 
[1] apply very easily to (1.3) and the asymptotic behaviour in the two cases turns 
out to be strikingly similar. 

Theorem 1. Let u(r) be a solution of  equation (1.3). 

(i) I f  lim rku(r) ---- O, there exists a constant .4 =~ 0 such that 
r ---~ o o  

u(r) : .4e-r2/4r k-N [1 § (N -- k) (k -- 2) r-2 + o(r-2)] 

(ii) I f  lim rku(r) : L :t: 0, then, as r-+ oo, 
r---~ o o  

Lr-k[1 § k(k -- N § 2) r -2 § o(r-2)] 

u ( r ) :  Lr-k[1 § 2 4 7  2) r - 2 §  ILl p - l r  - 2 §  

Lr-k[1 § (2 IL l ' -~ / (p  - l) k) r- t ' -~)k  + o(r-~'-l)k)] 

a s  r - - >  o o .  

i f ( p - -  1 ) k > 2  

i f ( p - -  1 ) k = 2  

i f  (p - 1 ) ~ <  2. 

Theorem 1 will be proved in Section 2. 
In Section 3 we derive the two Pohozaev-type inequalities for solutions u of  

equation (1.1) in star-shaped domains ~ Q R N, which vanish on the boundary 
8Y2. The first of  these inequalities is a direct generalization of POHOZAEV'S in- 
equality for the equation Au + f ( u )  = 0 [6]. The second one differs from the 
first, in that weight functions e +rz/4 and r2e +rz/4 are introduced in the integrands. 
This identity was motivated by an analogous identity proved in [3], where the 
equation 

k 
du- �89 lu l  p - I  u = 0 

was studied. 
By use of the asymptotic estimates of  Theorem 1, these inequalities can be 

generalized to solutions of  radially symmetric, rapidly decaying solutions of  
equation (1.1) in R N. From the second inequality thus obtained we can draw 
the following conclusion. 

Theorem 2. Suppose k <= N/2 and N/2 >= (p + 1)/p -- 1). 
of  Problem I with a ~ 0 has the properties 

u(r) > 0 for r E [0, oo) and L(a) > O. 

Then any solution 

Remarks 1. Theorem 2 generalizes Theorem 5(c) of  [4] which gives the same 
result, but under more restrictive conditions. They are (i) N should be an integer 
such that N/2 >= (p § 1)/(p -- 1) and (ii) k = 2/(p -- 1), and reflect the fact 
that the proof of Theorem 5(c) uses results of  the corresponding parabolic equa- 
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tion. Note that 2/(p -- 1) < N/2 in view of  the first condition. 
2. Since by property (c) there exist no positive solutions if k ~ N, and 

by Theorem 2 there are no rapidly decaying solutions if k <= N/2 and 
N/2 >= (p + 1 ) / ( p -  I), the question as to the existence of  positive rapidly 
decaying solutions when 

N N p + l  
~ - < k < N  and - - ~  

2 - - p - - 1  

remains still unanswered. (See Note added in proof). 
In the final section we give an explicit solution r of Problem I when 

4 N p + l  
k -- - -  and > ~ .  

p - 1  T p - 1  

This solution proves to be slowly decaying. 
In [4, Proposition 3.6] it was shown that if k < N, and p > 1 arbitrary, 

any solution of  Problem I is positive and slowly decaying provided that 

1 

0 < a < a* : =  {�89 (U -- k)}T z-i-I . 

It is interesting to observe that if k E (N/2, N), 49(0) > a*. 

2. Proof of Theorem 1 

We shall prove Theorem 1 by analyzing the solution u(r) of Problem I in the 
phase plane. Thus we write Problem I as a first order system: 

r 

v' (N--r 1 

together with the initial condition 

(2.1.a) 

,) 
- -  +-T v - - T u -  lul'-l u (2.1.b) 

(u(0), v(0)) = (a, 0) ,  

We proceed in two steps. First we show that there exists a number ~ ' (a)> 0 
such that u does not change sign on (~(a), ~ )  and then we establish the asymptotic 
estimates in a manner similar to the one used in [1]. 

For  each 2 > 0 we define the following sectors in the phase plane 

Le+ = {(u, v): u > 0, v < 0, v _-> -~u}  

s = {(u, v) : u < 0, v > 0, v ~< - 2 u }  

and we introduce the number 

~e(a, 2) = ~ + 2 + 22. (2.2) 
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Fig. 1. The sets ~ +  and -~j-. 
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Proposition 2.1. For any 2 > O, the sets . ~  and . ~ -  are positively invariant 
for  ro >: ~(a, 2). That is, i f  ro >= ~(a, ~) and (u(ro), v(ro)) E La+(Aea-), then 
(u(r), (vr)) E .~+(~LPs for  all r ~ ro. 

+) 
r 

Proof. We give only the proof  for So+ since for Laa it is similar. 
It suffices to prove that if x > ~(a, 2), then on the boundary of  La+ the 

vector field determined by (2.1.a, b) points into La+, except at the critical point 
(0, 0). 

On the top ( u > O , v = O ) :  

k 
v - - i - u - l u l " - ~  u <  o 

for all r > O, while on the line 

l + = {(u, v ) :  u > o, v = - ~ t u } ,  

o 
U V 

(N--1 + ) k ] u [ ~  -1 

= - r + + ~ +  
r k l a l  p -1  

< -- T + ~ +--7--- 
because I u(r) l ~ a. Therefore, if r > ~(a, 2) we obtain 

/./t 

7 <  --2 

which is what we wanted to show. 

Proposition 2.2. Fix 2 ~ O. Then u(r) can have at most one zero on (~(a, 2), o,~). 

Proof. If  u(r) has no zeros on (~, c~) the proposition is plainly true, so suppose 

ro ------ inf {r > ~ : u(r) = O} 
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exists. Then, by a uniqueness a rgument  we may  conclude that  either v(ro) ~ 0 
or v(ro) < 0. We assume that  v(ro) > 0; the other  case is similar. 

Note  that  on the coordinate  half  line 

11 : ((u, v): u : O, v > 0}. 

we have u' : v > 0. This implies that  after crossing 11 at  r = ro, the orbit  
(u(r), v(r)) must  enter the first quadran t  

Q1 : {(u, v): u > 0, v > 0}. 

In  this quadran t  u' > 0 by (2.1.a). Hence,  in order  to return to the v-axis, the 
orbi t  (u(r), v(r)) must  first leave QI. I t  can do so only through the ha l f  line 

lz = {(u, v ) : u  > 0, v = 0}, 
on which 

k 
v ' - -  2 u - - [ u l P - l u < O "  

Therefore,  (u(r), v(r)) must  enter the four th  quadran t  

Olv : {(u, v): u > 0, v < 0} 

for  some r l  > ro. But upon  entering Qtv, (u(r), v(r)) enters s Since 
ri > ro > ~, (u(r), v(r)) must  remain in ~ +  for  all r > ri by Proposi t ion 2.1. 

Remark 2.3. Since u(r) cannot  have infinitely m a n y  zeros in (0, ~(a, 2)) it follows 
f rom the previous Proposi t ion that  u(r) can have at  mos t  finitely m a n y  zeros. 

For  the solution u(r) of  Problem I we define the number  ~(a) E R+ as follows. 
Let  

~o = inf  (r > 0: u has one sign on (r, r 

I f  ~ o = 0 ,  we set ~ ' = 0 .  
I f  s  we choose ~ so that  

> ~o and v(~) : u'(~) = 0. 

I t  follows f rom the p r o o f  of  Proposi t ion 2.2 that  this n u m b e r  exists, and is unique. 
Plainly we have:  

Proposition 2.4. On (~, r either u > O and v < O or u < O and v > O. 

Having  proved that  u(r) is eventually of  one sign, we now proceed in a manne r  
similar to [1], where only positive solutions were considered. 

Proposition 2.5.  Either l im v ( r ) / u ( r )  : - -oo or l im v ( r ) / u ( r )  : O. 
r - ->  o o  r - + o o  

Proof.  Because of  Proposi t ions  2.1 and 2.4 the proofs  o f  L e m m a s  6 and 7 in [1] 
are valid with only minor  modifications.  
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Proposition 2.6. I f  l im v(r)/u(r) = 0, then 
r--> or 

rv(r) 
~i~rnoo u(r) = - - k .  

Proof. Define for  r > ~" the function z(r) = v(r)/u(r). Then 

where 

k 
z'(r) + �89 rz(r) --  2 o(r) 

N - - 1  
0(r) = lu(r)l p-1 + z(r) + z2(r). (2.3) 

r 

Since z'(~) = r162 = 0, mult iplying (2.3) by e r2/4 and integrating f rom 
to r > ~  yields 

r 

Consequently,  for  r ~ ~, 

u(r) r - l e  r214 (2.4) 

The  desired result now follows f rom l 'H6pi ta l ' s  rule applied to the right hand  
side of  (2.4). Note  that  ~o(r) ~ 0 as r - +  0o since u(r) ---> 0 and, by assumpt ion,  
z(r) -+ 0 as r --> ~ .  

Proposit ion 2.7. Let  u(r, a) be a solution o f  Problem I. Then 

l im v(r) 
r~ ~ u(r) = --  cx~ ~ L(a) = O, 

v(r) 
!irn ~ = 0 ~ L(a) @ O. 

Proof .  I f  l i rn  v(r) /u(r) - -  - -e~,  then u(r) decays faster than any decreasing ex- 

ponential  e ~r, 2 > 0. Hence  L(a) = lim r~u(r) = O. 
I "  ---> o o  

On the other  hand,  if  lira v(r)/u(r) = 0, then by  the previous Proposi t ion ,  
given e > O, ,~oo 

u'(r) > k + e 

u(r) = r 

for  r sufficiently large. Thus  lu(r) I ~ c r  - k - ~  for  r sufficiently large and some 
c > 0. I t  now follows f rom (1.5) and (1.6) tha t  L(a) ~ O. 
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Following the terminology in [1] we call orbits which enter the origin along 
the u axis { lim v(r)/u(r) : O) slow orbits and orbits which enter the origin 

\ r  -->- cx~ 

along the v-axis ( l i m  v(r)/u(r) = --oo) fas t  orbits. We have shown that fast 

orbits correspond to rapidly decaying solutions of  equation (1.3) and slow orbits 
to slowly decaying solutions L((a) ~- 0). 

We are now in a position to prove Theorem 1 by the methods used in [1]. 
For  fast orbits the proofs of Lemmas 13, 14 and 15 and Theorem 2 apply to solu- 
tions of (1.3) with only trivial modifications. Similarly, the proofs of Lemmas 18, 
19, 20 and 21, and Theorems 3 and 4 can easily be adapted to the present situation. 

It is interesting to observe that the asymptotic behaviour of  slow orbits 
(L(a) @ 0) can also be derived by extending the methods of [4]. We shall do this 
below. 

Let w(r) : rku(r). Then (3.16) in [4] states that for 0 ~ r < s, 

w(s) -- w(r) = w'(r) r~e r~/4 f r-%-~/4 dr -k f t~e '214 r -~e  -~/4 J(t, w(t)) dr, 
r r 

(2.5) 
where 

J(t, w) = fl t-2w -- t-k(~-l)  lwlU-1 w, 

o ~ = N - -  1 - - 2 k ,  

fl = k ( U - -  k -- 2). 

Letting s -+  oo in (2.5), we obtain 

L --  w(r) = r- lw'(r)g(r)  + ~ g ( t ) t - l J ( t ,  w(t)) dt, (2,6) 
r 

where 

g(r) : r~+le r=14 ? t - %  -t214 dt. 
F 

By l'H6pital's rule it follows that 

lim g(r )  : 2 .  
r---~ o o  

Moreover, since rku(r) -+ L and rv(r)/u(r) -+ - - k  as r -+ oo, 
2.6 and 2.7, we conclude that 

rw'(r) : rk +lu'(r) + krku(r) 

(rv(r) ) 
: \ - ~  + k rku(r) --~ 0 as r -+ oo. 

Therefore 
lim rw'(r)g(r) : 0. (2.7) 
r - + o o  

Finally, consider for m > 0 

~30 

lim r m f g( t ) t  "1 J(t, w(t)) dt. (2.8) 
r - - ~ o o  �9 

by Propositions 
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By l'H6pital's rule (2.8) is equal to 

g(r) r - ' { f l r -  2w(r) - -  r - k (p - ' )  I w(r) I p- '  w(r)} 
lim ,-+ oo m r - m -  l 

if this latter limit exists. Recall that g(r) -+ 2 as r @ oo. Therefore 

(2.9) 

(i) if k > 2 / ( p - - 1 ) ,  we set m ~ - 2  in (2.9) to conclude that 

{3O 

lim r 2 f g ( t ) t  -1 S(t ,  w( t ) )  dt = ilL; (2.10) 
r---~ o o  

r 

(ii) if k = 2 / ( p - -  1), we set m = 2  in (2.9) again to deduce that 

lim r 2 f g ( t )  t -1 J( t ,  w( t ) )  dt = ill, - -  ILl p - '  L ;  (2.11) 
F--~ O0 

r 

(iii) if k < 2 / ( p - -  1), we set m = k ( p - -  1) in (2.9) to obtain 

~ 2 
~i~rn~176 r f g ( t ) t - '  J( t ,  w(t))  ds k(p -- 1)ILI'-1L" (2.12) 

Combining (2.6), (2.7), (2.10), (2.11) and (2.12) we obtain 

lim r2{w(r) - -  L}  = - - i lL  if k > 2/(p  - -  I), 

lim r2{w(r) - -  L} ---- - - i lL  + ILIP-' L if k = 2/(p  - -  1), 
T--~ O0 

2 
l im  rkcP-l){w(r) -- L} -- k ( p  - -  1) ]LI'-Z L if k < 2 / (p  - -  1). 

These are precisely the desired asymptotic estimates. 
One feature of the second derivation of the asymptotic estimates is that the 

three cases emerge in a very straightforward fashion. 

3. Poho~aev Formulae 

Let ,C2 be a bounded domain in R N with a smooth boundary 092. 
We begin by establishing two identities for solutions of the problem 

[ A u  + �89 x .  V u  + f ( u )  = O in s 
(III) / u = 0 on 0~Q. 

We shall denote by v the outward normal on ~s and by F the primitive o f f :  
8 

F(s)  = f f ( t )  dr, 
0 

where f : R - - ~ R  is continuous. Also, by B we denote the differential operator 

N 
Bu :=  -~-u + x"  Vu. (3.1) 
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In deriving the formulae it turns out to be both computationally and conceptually 
easier to use Bu rather than the more obvious term x .  Vu. 

Proposition 3.1. Let  uE C2(~2) f~ C1(~)  be a solution o f  Problem I lL  Then 

N f f u 2  (a)  N f F(u) N --  2 .f uf(u) - -  -~- 
t~ 2 t~ 

= �89 f (Bu) ~ + �89 f I Vu I ~ (x .  7,), 

(B) N f ~F(u) N - -  2 N z 

- k frZeuf(u) - t~ frZeu ~ = ~ f~ IVul 2 (x. ~), 
s D 012 

where 9(x) = exp (rZ/4), r = [ x I. 

Remark.  Recall that POHO2AEV proved in [6] that if uE C2(s C~(~) is a 
solution of the problem 

IAu +f lu )  = 0 i n  .(2 

(IV) / u = 0, on as 

then 
N - - 2  

(c) N f F(u) ,~ f uf(u) --  �89 f I Vul ~ (x. ~). 

Formulas (A) and (B) can both be considered as analogues of  (C) for Problem III. 
The relationship between (A) and (B) is not completely clear. 

We shall see below that for 

k 
f(u) = -~- u + [u I v ' l  u, (3.2) 

both (A) and (B) yield the same non-existence result for rapidly decaying solutions 
of Problem 111 (Theorem 2). 

We shall begin by proving (A), this being the simpler one to establish, and 
then prove (B), mimicking the proof  of (A) as much as possible. Interestingly, 
as an intermediate step in the derivation of  (B), we shall arrive at a formula which 
includes (C) as a special case. 

Before proving the formulae (A) and (B), we collect some information about 
the operator B. 

Lemma 3.2. I f  uE C~(g2), then 
N 

Bu = --  "-2 u + V �9 (xu),  (3.3) 

uBu = �89 V .  (xu2), (3.4) 

N 
BF(u) = ~ (F(u) -- uf(u)} + f (u )  Bu.  (3.5) 
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I f  u E C2(f2), then 
V B u  = Vu 47 B(Vu), 

where B(Vu)  is the vector whose jth component is B(ux) .  

(3.6) 

Proof. These are all straightforward exercises in calculus. 

Lemma 3.3. I f  u E C1(f2) A C(~) ,  then 

fBu-- N 7 a 2 u 47 oa f u(x" v), 

f uB,, = �89 J u2(x "~), 
D 0~2 

Ef f f  f ( u  ) Bu = 2 a {uf(u) --  2F(u)} 47 of  F(u)(x"  r). 

I f  uE CZ(Q)/'h C I ( ~ )  and u =  O on 8Q, then 

j (A,,) = - j lVul + �89 tv'l  (x. 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

Proof. Integration of (3.3) and (3.4) immediately yields, respectively, (3.7) and 
(3.8). 

To prove (3.9), we integrate (3.5) and then use (3.7) with u replaced by F(u). 
The proof of (3.10) takes a little longer. We start by using (3.6) as follows: 

f (~) B. = - f Vu. V(~u) + f (B.) (Vu. ~) 
.Q Q cOD 

= - f IVul = - f Vu. B(Vu) 47 f (Bu) (Vu. ~). 
D .Q @gt 

We evaluate the middle integral on the right hand side by means of (3.8) in which 
we replace u by Uxj, j =  1 . . . .  , N. This yields 

f (A.) gu = -- f IVul 2 - -  �89 f [Vui 2 (x.  ~) + f (nu)(V. . , , ) .  
.Q $2 cOO 0 0  

Finally we observe that on 0f2, u = 0 and so Bu = x .  Vu  and v = q-Vu/[Vu[ 
whenever ]Vu I q= O. Thus on &Q 

(Bu) (Vu " v) = (x " Vu) (7u  " r) = (x " v) (Vu " Vu) .  

Substituting this above, we arrive at (3.10) completing the proof of Lemma 3.3. 

Proof of (A). The equation for u can be rewritten as 

N 
Au 47 �89 Bu --  --~-u 47 f (u )  ----- 0. (3.11) 

We successively multiply (3.11) by u and by Bu, integrate over ~ and use the 
results of Lemma 3.3, keeping in mind that u ----- 0 on 0f2. Thus, multiplying 
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(3.11) by u yields 

_ flV,,l~ N -- --4- / uZ -k f uf(u) = O" 

and by Bu: 

N 

Subtracting (3.13) from (3.12) we obtain formula (A). 

(3.12) 

= 0. (3.13) 

Remark. The technical convenience of  using the operator B stems from the fact 
that, except for a boundary integral, f (du)Bu and f (Au)u are equal. 

t2 

Conceptually, B is the generator on Lz(W v) of the unitary dilation group given 
by ua(x) = 2S/2u(2x), 2 > 0: 

d 
-~ u~(x)14=, = (au) (x). 

Indeed, formula (A) was really derived by multiplying (3.11) by Bu -- u, which 
corresponds to the scaling used in the proof  of  Theorem 1 in [1]. We are grateful 
to J. G1NIBRE for pointing out the utility of  the operator B. 

Before turning to the proof of formula (B), we derive a generalization of  
Lemma 3.3 involving a weight function ~ in the integrals. 

Lemma 3.4. I f  ~, u E Ct(~) • C(~), then 

N 
f ~Bu -- f 9u -- f f  u(x. V9) + f r v), (3.14) 

f euBu = -- �89 f u2(x "re)  + �89 f eu~(x �9 O, (3.15) 
D Og~ 

N 
for(u) Bu = T f f  0{uf(u) -- 2F(u)} -- f F(u) (x . VO) + f oF(u) (x .  v). (3.16) 

D D OD 

I f  e E Ca(f2) F~ C(~2) and u E C2(f2) F~ C'(~) with u = 0 on 00, then 

f v. (e v~)8~ = - f~lVul 2 + & flVul 2 (x .vQ)+~  f~  IVul 2(x.O. 

(3.17) 

Proof. To obtain (3.14) we multiply (3.3) by O, integrate over ~ and use the 
divergence theorem. 

Likewise, if we multiply (3.4) by r and use the identity 

7 �9 (qxu 2) = ~ 7  �9 (xu 2) + u2(x  �9 7e) 
we obtain (3.15). 

To prove (3.16) we multiply (3.5) by ~, integrate over .Q and then use (3.14) 
with u replaced by F(u). 

Finally, the proof of (3.17) follows the same steps as the proof of  (3.10), 
with (3.15) playing the r61e of (3.8). 
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Proof of (B). The equation for u can be rewritten as 

V .  (e Vu) + 9f(u) ---- 0, (3.18) 
where 

9(x) = exp (] x l~/4). (3.19) 

For  the moment, however, we think of u as satisfying (3.18) and only assume that 

9 6 Ct(~2)f~ C(~)  is an arbitrary weight function. 
We proceed exactly as in the proof  of  (A). Multiply (3.18) respectively by u 

and Bu, integrate over .(2, use the results of  Lemma 3.4 keeping in mind that 
u = 0 on O~, and subtract the two resulting equations, one from the other. 
Since Lemma 3.4 already contains all the technicalities, this calculation is now 
completely straightforward. The result is 

N - - 2  
N f 9F(u) 2 f ~uf(u) 

~9 g2 

+ f{-- �89 VO=�89 .fqlVul~(x.~). (3.20) 
f~ Os9 

Note that if O ~ 1 on s (3.20) reduces to formula (C). 
At this point it is necessary to use the fact that e is given by (3.19) and hence 

x .  V e = �89 (3.21) 

where r ~- Ix[. Thus (3.20) contains only one undesirable term, the one on the 
left involving Vu. To eliminate it we multiply (3.18) by r2u and integrate over 12. 
Remembering that u = 0 on 012, we obtain 

o = - f e Vu. V(r=u) + f rZeuf(u) 
n, g2 

-- - free ]Vul 2 - 2 f eu(x. Vu) + f r2euf(u) 
ga ~ Ct 

------ f r2o [Vu[ 2 + N f eu 2 -  2 f euBu + f r29uf(u). 
F~ FJ f~ 

Therefore, using (3.15) and (3.21) we find that 

f r=e ]Vul = = N f e. ~ + �89 f r29u 2 + f r2~uf(u). 
.(2 g~ g2 ..9 

Substituting this into (3.20), again using (3.21) we arrive at formula (B). 

Remark. In the case of radially symmetric solutions of  Problem Ill,  equations 
(3.1 l) and (3.18) become ordinary differential equations involving the dimension 
N as a parameter. Using these equations, one can derive analogues of  formulas 
(A) and (B). Note that N now need not be an integer. 

Proof of Theorem 2. Let u be a solution of  Problem I with a > 0. 
first that u(r)>O for all r~>0 .  

Suppose to the contrary that u(r) = 0 for some r > 0, and set 

We show 

R = s u p { r > 0 : u > 0  on [0, r)}. 
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We regard u as a radial solution of Problem III, choosing for .Q the centered 
ball B n of radius R in R N, and for f the function given by (3.2). Then 

k lul "+' 
F(u) = T uz § p § (3.22) 

Formula (A) now yields, because lu'(R)l = I Vu(R)[ =~ 0: 

p ~ N -- 
, 

which is impossible if 

N N p + l  
k _< -~- and - -  ~ - -  

- -  2 - - p - -  1 "  

(3.23) 

Next, suppose u is a positive, rapidly decaying solution of Problem I. Then, 
because of (1.6) and Lemma 3.2 of [4], u satisfies formula (A) in which .(2 ---- R N 
and the boundary integrals have been set equal to zero. Substitution o f f  and F 
yields (3.23) again, and, as before, a contradiction. 

Thus u can only be a positive, slowly decaying solution. 

Remark. One can carry out the above proof, using (B) instead of (A). However, 
because of  the rapidly growing weight function O(x) ---- exp ([x12/4), passing 
from g2 = BR to R N requires the more precise decay estimates for u of  Theorem 1. 

Finally we wish to compare the results of this section with some results of  [3] 
where the equation 

k 
A u - -  �89 x .  Vu --- -~u + Iu[ p-I u = 0 (3.24) 

is studied. Using the function 

O(x) = exp (--[xlZ/4), (3.25) 

we can also write (3.24) in divergence form: 

V . ( o V u ) + ~  - - - ~ - - u + l u l  p - l u  -----0. (3.26) 

In Section 3 of [3] the following formula was derived for bounded solutions u 
of (3.24): 

(D) p + l  2 f [Vu o dx + �89 �89 p + l f lxlZ lv"12 o dx 

§ k(p -- 1) -- 2 
8 ( p §  ( f l x l Z [ u [ 2 o d x - - Z N f u Z o d x ) = O '  

the integrals being taken overR N. (Indeed, it is this formula in [3] which motivated 
the work in this section.) 
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By following the procedure we used to prove (A) and (B) we can derive anal- 
ogous formulae (A*) and (B*) for (3.24). We obtain, when u = 0 on 8g2: 

(A*) N f F(u) N -- 2 N 
~ 2 , f  uf(u) + v f u~ 

+�89 f (Bu) ~ = �89 f lVul~(x' , ,);  
12 O f  2 

(13") 

U f ~ F ( u )  U -  2 U 2 
o u 

- �89 f rZoF(u) + k f rZeuf(u) -- ~ f r~eu ~ = �89 f e I Vul z (x. ~), 
O J2 O~  

where e(x) = exp (--1x12/4). 
I f  we consider bounded solutions of  (3.24) in R N, we can take ~ = BR in 

(D) and (B*) and let R - + o o .  In this case ~(x)-+ 0 as ]x[---~ co very rapidly, 
whence the boundary terms now disappear. 

As in Theorem 2, one can try to use (D), (A*) and (B*) to deduce nonexistence 
theorems for solutions of  (3.24), i.e. when 

k 
f (u)  = - - - ~ ' u  Jr [u] p - '  u. 

Thus, one can deduce from (A*) that if 

N N p + l  
k --< - -  and - -  < - -  

- - 2  2 = p - - l '  

equation (3.24) cannot have any nontrivial solutions in R N, which vanish rapidly 
enough at co. On the other hand, (B*) gives no result, but from (D) one can con- 
elude [3] that if 

2 N < p +  1 
k = and 

p - - I  2 - - p - - 1  

then the only bounded solutions of  (3.24) are the three constant solutions 

1 

u = 0 and u = ~z(k/2)a--'~. 

4. An Explicit Solution 

In tiffs section we give a family of  explicit solutions of  Problem I, and use 
it to illustrate the results in [3, 4, 5] and the previous sections. 

Proposition 4.1. Suppose N/2 > (p + 1)/p -- 1). Then the function 

2 

~b(r) ~- A(p, N){1 + B(p, N ) r  z) P- '  (5.1) 
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in which 

12(p + I) 

is an exact solutions o f  Problem I i f  

4 
k = and 

p - - I  

"+'l)' 
- -  - ( 5 . 3 )  p - -  

a ~-- A(p, N) .  

The proof of Proposition 4.1 consists of a lengthy but elementary computation. 
We shall omit it. 

It is interesting to recall here that if N/2 = (p + 1 ) / ( p -  1), the equation 

Au + lul  ~ - '  u = 0 (5.4) 

also has a family of explicit radial solutions defined on R N. It is given in [2] by 

[{N(N -- 2) 2}�89 ] u2z 
v ( r ) = L  ~-aF J ' 2 ~ R + .  

Note that, whereas p is completely determined in this case, yJ(0) can be chosen 
entirely arbitrarily by adjusting the parameter 2. This is a consequence of the 
homogenity of equation (5.4) in x and u. 

Observe that if k =- 4/(p -- l), then 

i)}' r k ~(r) ---=/32(p + 1) (. P + ~ > 0. L lim 
r - ~  ~ ( p  - 1 )  2 \ p - 

Therefore, the family of explicit solutions (h given in Proposition 5.1 consists 
of slowly decaying solutions. Their asymptotic behaviour is given by Theorem 1 (ii), 
where the case (p -- l) k = 4 > 2 applies. 

In Theorem 2 we have seen that when N/2 ~ (p + l ) / (p - -1 ) ,  then if 
k ~ N/2, any solution of Problem I with a > 0 is positive and by property (c) 
we know that if k ~ N, then none is positive. The family of explicit solutions 
obtained above reveals that for any k < N -- 2, there exists a positive solution, 
provided we choose p = 1 -]- (4/k). 

Acknowledgement. The authors are grateful for financial support from the National 
Science Foundation (FBW, grant number DMS-8 201639) and the Institute for Mathe- 
matics and its Applications of the University of Minnesota. 

Note added in proof. The existence of positive rapidly decaying solutions when 

N < k ~ N  and N ~> p-l- 1 
2 2 - - p - - 1  

has been proved in [10] and [ll]. It was foimd that 
(i) if N ~ 4, rapidly decaying solutions exist when N/2 ~ k ~ N [1 l] ; 

(ii) if N ---- 3, rapidly decaying solutions exist when 2 ( k ~ 3 [ll] and they do 
not exist when 3/2 ~ k _--< 2 [10]. 
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