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1. Introduction 

The questions considered in this note were suggested by a paper by  FINN ~:NOLL 
on the uniqueness and non-existence of Stokes flow [1]. The equations of linear 
isotropic elasticity are only slightly more complicated than the equations govern- 
ing Stokes flow, and it proves possible to extend the t reatment  of FINN & NOLL 
to analogous elastic problems. 

The equations for the displacement field 9 of a linearly elastic body at rest 
and under no body forces may  be written (c]. [2]) in the form 

(t. t)  A 9 = g radp ,  div 9 = -- cp. 

Here c is the positive constant c = t -  2a, where a is PoIssoN's ratio. 

If  we set c = 0  in (t.t) and interpret 9 as the velocity field, then" (1.t) are 
the equations of Stokes flow. The results of [1] may  be phrased this way: Let 
the region of flow be bounded internally by  closed surfaces (curves) ~3. We seek 
solutions of (t . t)  (with c = 0 )  which, in three dimensions, tend uniformly to zero 
at  infinity or, in two dimensions, are bounded at  infinity. There is at most 
one solution 9 of this type which assumes a given constant value 9 = 9 0  at  the 
internal boundary ~3. We note that  this theorem remains~valid also if the pres- 
cribed boundary value 9 = 9 o  is not constant,, although a simple physical inter- 
pretation for 9 as the flow past a rigid body can be given only when 90 is constant. 

In this paper the corresponding theorem is proved for the case when c >  0 
in (t.t).  In  this way, we get three different uniqueness theorems for boundary 
value problems in elasticity: 

(a) Consider an infinite elastic medium bounded internally by  closed surfaces 
~.  There is at  most one displacement 9 of the medium which assumes prescribed_ 
values 9 = qo at the internal boundaries ~ and which tends uniformly to zero 
at  infinity. 

(b) Consider an infinite elastic medium bounded internally by  an infinite 
cylinder ~3 (not necessarily circular). There is at most one plane displacement q 
of the medium in the plane perpendicular to the cylinder which assumes pre- 
scribed values q = 9 0  at  ~ and which is bounded. 
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(c) Consider a thin infinite elastic plate bounded internally by closed con- 
tours ~. There is at most one displacement q in the plane of the plate which 
assumes prescribed values q-----q0 at ~ and which is bounded. All three results 
are special cases of Theorem 1, proved in Section 2. The proposition (b) cor- 
responds to the case of plane strain. (c) corresponds to a state of generalized 
plane stress. In this case, q must be interpreted as the average displacement, 
the average being taken over the thickness of t the plate. As is well known [3, 
p. 208j, q then satisfies the two-dimensional form of the equations (1.t) when 

' ~ Thus, in this case, the constant c must POISSON'S ratio o is replaced by a ---- 2---~i ' 

be given the positive value c = I -  2 a ' =  2 y 3y_. We also prove a uniqueness 
2--a 

theorem for the transverse deflection w of an infinite thin plate bounded 
internally by closed curves ~. The function w is biharmonic: A A w ---- 0. We show 
that, if the plate is clamped in a prescribed way at '~, so that w and ~w/an are pre- 
scribed at ~,  then there is at most one deflection w which is of the orderO (r) as r--~oQ. 

The essential difference between the results obtained here and the uniqueness 
theorems previously known lies in the conditions at infinity. Previously, com- 
plicated regularity conditions at infinity had to be imposed on q or w. We 
merely require simple limit conditions. It  should not be difficult to obtain 
similar results when the surface tractions, rather than the displacements, are 
prescribed at the  interior boundaries. 

As in the case of Stokes flow so also in elasticity we observe the striking 
difference between the situations in two and three dimensions. In three dimensions 
we get a unique solution if we require that q(oo)--0, i.e. that the "boundary 
at infinity" is fixed. If we impose the same condition in two dimensions there 
is, in general, no solution at all. For a physical interpretation consider, for 
example, a very large thin plate with a fixed external boundary. At first glance 
our theorem seems to imply that it is not possible to impose a rigid displacement 
q = q o = c o n s t ,  on the internal boundaries, a result that contradicts physical 
experience. However, the correct interpretation is the following: The gradient 
of the displacement q, and hence the strain, is very small everywhere in the 
plate. In the limit as the external boundary expands to infinity the gradient 
of the displacement tends to zero. The displacement q converges to its internal 
boundary value qo. But this convergence is not uniform, and the condition 
that q----0 on the external boundary is not preserved in the limit. A similar 
explanation must be given in the case of the transverse deflection of a large 
plate. If the external boundary is clamped (w----~w/~n=O) we get a unique 
solution. In the limit, however, the conditions w-----Sw/On=O at the "boundary 
at infinity" get lost. 

If we impose a displacement q = q0 on the boundary of an internal cavity 
in a large elastic body with fixed external boundary, we shall get a displacement q 
which.approximates the solution for the infinite medium determined uniquely 
by the condition q ( ~ )  = O. This solution will be given explicitly in Section 4 
for qo = const, and a spherical cavity. The displacement gradient is not small, 
and the strains and stresses will remain finite in the limit as the body becomes 
infinite. In this case, the boundary condition q-----0 on the external boundary 
is preserved in the limit. 
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2. The  basic lemmas 

Let  q be a vector field defined and three times continuously differentiable 
in a neighborhood of infinity. 

Lemma 1. 

(2.1) 

and 

(2.2) 

In three dimensions, assume that q----qo+o(t). Then 

A (curlq) = 0 implies cur lq  = O(t-t),  

A (div q) = 0 implies div q = 0 (r-t). 

Le mm a  2. In two dimensions, assume that  q is bounded. Then 

(2.3) zl (curlq) = 0  implies cur lq  =O ( r - l ) ,  

and 

(2.4) A (div q) = 0 implies div q ----- 0 (r-x). 

The statements concerning the curl are Lemmas 4 and 5 in [1]. The propositions 
concerning the divergence can be proved in precisely the same manner as these 
lemmas. 

Lenuna  3. Assume that  w is a scalar field defined and biharmonie in a neigh- 
borhood of infinity. Then w=O(r) implies that  grad w is bounded. 

Proof. We denote the mean value of a function w over the circumference 
of a circle of radius r with center at Q by  too(w, v, Q). If w is biharmonic in a 
region containing this circle we have the following mean value theorem (c[. [4], 
p. 3t6, ( t t )* ) :  

(2.5) 3 w (q) = 4m 0 C w, Iv,  Q) -- m 0 (w, r, q) .  

We may replace w by grad w in (2.5) because grad w is biharmonic if w is. If  
we do so, multiply then by r, integrate between r = 0  and r and finally apply 
GREEN'S theorem, we get 

3r grad w(q) = 8ml(w,  i r, q) - -nhCw, r, q ) ,  (2.6) 

where 

We have 

t 

I O)l I (P)I, 
where P varies over the disc of radius r around Q. Hence, by (2.6) 

, I grad w(q) l < max i w(P) l. 

Applying this inequality to circles of incxeasing radius with centers that  tend 
to infinity, we obtain the assertion of the lemma. 

* It  is proved there in the case of three dimensions, but both the proof and the 
result axe applicable in any dimension. The lemma stated here is also valid in highex 
dimensions. 
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3. Uniqueness of the exterior boundary value problems 
Theorem 1. Let  ~ be a region in space (in the plane) exterior  to an internal  

bounda ry  2 consisting of a finite number  of piecewise smooth  closed surfaces 
(curves). Then there is at  most  one vector  field q, defined and twice continuously 
differentiable in ~ ,  with the following properties:  

(a) q is a solution of the equations 

(3.1) Aq = g r a d p ,  d i v q  = -- cp, 

where c is a given positive constant .  

(b) q is continuous up to 2 and assumes prescribed values 

(3.2) q = q0 a t  2 .  

(c) In  three.dimensions q converges uniformly to zero a t  infinity: q ( o o ) = 0  
(in two dimensions, q is bounded).  

Proo/. We observe tha t  (3.t) implies 

(3.3) cuff cuff q ~- - -  (t + c) grad p .  

Operat ing on (3.3) with curl and div yields 

(3.4) A (curl q) = 0, A p = 0. 

Here  we have  made use of the fact tha t  q has continuous third derivatives.  
I t  is shown in [2] tha t  this is a consequence of (a). 

Since the equations (3.t) are linear and homogeneous, it is sufficient to show 
tha t  q 0 = 0  implies q = 0. We do this in the three-dimensional case. 

By  L e m m a  t and (3.4) we have 

(3.5) c u r l q  = O ( r - 2 ) ,  p = - -  ~ d i v q  = O ( r - 2 ) .  
c 

We use the GREEN'S ident i ty  

(3.6) f (curlq)'dV = f (q. curl curl q) d V --  f curl q �9 (q •  dS, 
9~ 91 

valid for any  smooth  vector  field defined in the finite region ~ with piecewise 
smooth  boundary  6 .  

B y  (3-3) we have  

q .  curl curl q = - -  (t + c) q -  grad p 

= --  (l + c) [div(p q) - - p  div q ] .  

B y  use of (3.1)2 and the divergence theorem, the ident i ty  (3.6), applied to the 
region ~ ,  between the internal  boundary  2 and a sphere 6 ,  of radius r containing 
2, gives 

~ - '  +c  (div q)2] d V = - - f  [(t + c) p q .  n + curl q .  (q •  d S .  (3-7) f[(curlq>2 + 
~r ~r 

Here we  have used the ~act that q = q 0 = 0  on 2 .  It  fonows from (3.5) and 
q - - - -o0 )  that the right-hand side of (3.3) tends to zero as r - ~ - ~ .  
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Hence 
f [(curl q)' 4- l--~+c--C" (divq)*] dV ----O. 

Since the integrand is non-negative and continuous, it must  vanish. Hence 
curl q ---- 0, div q = 0 whence A q ---- 0. Since q = 0 on 93 and q = o (t) the max imum 
and min imum principle for harmonic functions implies q =--O, q.e.d. 

The proof for the two-dimensional case is the same as tha t  of Theorem I I  in 
[1] when modified along the lines indicated above. 

T h e o r e m  2. Let ~ be a region in the plane exterior to an internal boundary  
93 consisting of a finite number  of piecewise smooth curves. Then there is at  
most  one scalar field w with the following properties: 

(a) w is defined and biharmonic in ~ :  d d w = O. 

(b) w and its first partial  derivatives are continuous up to 93 and w and 
Ow/an assume prescribed values 

~w 
w = w  o, ~n -- wl at 93. 

(c)  w = 0 (r)  a s  r - +  oo .  

Proo]. We m a y  regard w as the s tream function of a plane viscous flow q. 
Then 

q = (grad w) ' ,  

where _L indicates the operation of rotat ing a vector counterclockwise by a 
fight angle. The condition (b) implies tha t  grad w, and hence q assumes pre- 
scribed values q = q0 at 93. By  Lemma 3 it follows from (c) tha t  q is bounded. 
The results of [1] imply tha t  q,  and hence grad w, is uniquely determined. This 
implies the uniqueness of w because the boundary  values w = w 0 at 93 are given. 

4. A represen ta t ion  f o r m u l a  

The representat ion theorem (Theorem I I I )  of [1] m a y  be extended to the 
case of the three-dimensi0nal equation (t.1) in the following way:  Let  q be a 
solution of ( t . t )  defined in a neighborhood of infinity @ which is s tar-shaped 
relative to a point  Q. Then there is a harmonic vector-field u, defined in @ and 
harmonic at  infinity, such tha t  

q = u + grad ~o, 

(4.2) ~p - -~ (Q  -{-re) - ~ f 4 ( l + c )  r t.  s~divu(Q+se)  ds. 
0 

The proof is identical to the one given in [1]*. Using the representation (4.t), 
we may  obtain the displacement q caused by  a rigid translation q = q0 = const. 
of a spherical cavi ty  in an infinite elastic medium. We t ry  

t + 1 
(4.3) u ( q + r e )  = a r q o  f l ~ - [ q 0 - - 3 ( q o ' e )  e ] ,  

* The equations (4.3), (4.4) and (6.2) in [1] contain a mistake in sign. 
Arch. Rational Mech. Anal., Vol. 2 13 b 

(4.1) 

where 
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which is harmonic  a t  infini ty.  Le t  Q be the  center  of the sphere and a i ts radius.  
W i t h  (4.t) and  (4.2) we can de termine  the cons tants  a and  fl so t ha t  the  
b o u n d a r y  condi t ion  q ( Q  + a e ) = q 0  is satisfied. The result  of the calculat ion is 
(r =re)  

' {  ~ 
(4.4) q----2(2+3c) q ~  r + ( a ) s l + 3 r ( q ~  - " 

F o r  r = 0 this  reduces to  the  classical solut ion of Stokes for the  flow pas t  a sphere.  
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