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Abstract. A discrete-time population model with two age classes is studied 
which describes the growth of biennial plants in a randomly varying environ- 
ment. A fraction of the oldest age class delays its flowering each year. The 
solution of the model involves products of  random matrices. We calculate 
the exact mean and variance of  the long-run geometric growth rate assuming 
a gamma distribution for the random number of offspring per flowering plant 
after one year. It is shown, both by analytical calculation and numerical 
examples, that it is profitable for the population to delay its flowering, in the 
sense that the average growth rate increases and the extinction probability 
decreases. The optimal values of the flowering fraction depend upon the 
environmental and model parameters. 
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I. Introduction 

Strictly biennial plants are characterized by the fact that they flower only in the 
second year of  their existence after which they die. Many biennial species, 
however, show the phenomenon of delayed flowering, meaning that they flower 
only in the third year or even later [8]. 

The biennial life strategy in a deterministic environment was discussed by 
Hart [6] and Van der Meijden and Van der Waals-Kooi [15]. Due to the fact 
that biennial plants reproduce only once every two years, a biennial has to 
produce four times as many seeds as a perennial and twice as many seeds as an 
annual plant to attain the same rate of increase, even in the most favourable 
situation. Thus it would seem that a biennial with an extended life span due to 
delayed flowering will be even worse off (unless the population was already in 
a state of  decline before the delay). 

The situation changes when the population grows in a randomly varying 
environment, especially when the average rate of increase of  the population is 
low and the environmental fluctuations are large. This was shown by simulation 
studies of Klinkhamer and de Jong [8], who considered a model of a biennial 
species growing in a single, isolated habitat patch, without dispersal and without 
a seed bank, with all individuals dying after flowering. Their model, which applies 
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to the case of density-independent population growth, consists of the following 
pair of difference equations, where t is a time just before flowering: 

NI,,+~ =fdptN2,, (1.1a) 

N2,,+~ = sN~,t + (1 - f)sN2,, (1.1b) 

for t=O, 1, 2 , . . .  ,with: 

NI,, the number of  individuals which are one year old at time t; 
N2,, the number of individuals older than one year at time t; 
s suryival rate per year of individuals older than one year, 0 < s < 1; 
f fraction of individuals older than one year that flowers in a given year, 

O~<f<~l; 
&, the number of offspring per flowering plant after one year, &, i> 0. 

In the simulations all parameters were constants except {qS,} which was assumed 
to be an independeht identically distributed (i.i.d.) sequence of random variables, 
with ~bt = a exp by,, a and b positive and % uniformly distributed on [0, 1]. It 
was found that in a wide parameter range delayed flowering is profitable in two 
ways, 

(i) by increasing the long-run geometric growth rate; 
(ii) by reducing the extinction rate. 
It is the purpose of the present paper to support these simulation results by 

presenting a number of exact analytical calculations pertaining to the model 
(1.1), based on the theory of random products of nonnegative matrices, see e.g. 
Cohen [3, 4], Heyde and Cohen [7] and Tuljapurkar [10-14]; for more general 
matrices see [2, 9]. In particular we study how the distribution of age-structure 
(or the ratio N~.,/N2,,), the mean and variance of the geometric growth rate and 
the probability of reaching an arbitrarily imposed extinction boundary depend 
upon the flowering fraction f The exact results are used as a test of a number 
of commonly used approximations as discussed in [11]. 

The organization of the paper is as follows. In Sect. 2 we treat the growth of 
the average population. Section 3 summarizes the required results from the theory 
of random matrix products and contains the solution for the stationary age- 
structure distribution, assuming a two-parameter gamma distribution for ~b,. The 
mean growth rate is studied in Sect. 4. Also the behaviour of the variance of the 
growth rate is discussed. In Sect. 5 we give an asymptotic analysis of  the mean 
growth rate, expressing the latter in terms of Kummer functions, for values of 
the flowering fraction near unity. The analytical approximations mentioned above 
are considered in Sect. 6. Section 7 contains a brief discussion of extinction 
probabilities and we summarize our results in Sect. 8. 

2. Growth of the average population 

By introducing the population vector nt = (N~,,, N 2 , t ) '  , where the prime denotes 
transposition, Eq. (1.1) assumes the form 

nt+  1 = Xtn, (2.1) 

where X, is the nonnegative matrix 

X, = (i - f ) s / "  
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Hence, denoting the initial population vector by no, 

n t ----- X t X t _ l . . .  X lno  (2.3) 

so that the long-term properties of n, depend on the behaviour of  the random 
matrix products X ~ X , _ I . . . X 1 ,  t = l , 2 , . . . .  We assume {qS,} to be an i.i.d. 
sequence with a common distribution to be specified below (Sect. 3). 

Growth of the average population is easily studied, since 

~:(n,) = {~z(X)}'no (2.4) 

because of the i.i.d.-property of the matrices {32,}. Here E denotes the mathematical 
expectation with respect to the probability distribution of the random variable 
~b,. The matrix 

F(X) = (1 - f ) s  ' q~=E(~b,) <oe (2.5) 

is primitive for 0 < f <  1, assuming 4~ to be positive. Hence each of the components 
of the average population vector grows geometrically for large t, 

~_(Ni,,)~Cihto ( t ~ o o ) i =  1, 2 (2.6) 

where the constants {C,-} depend upon the initial conditions and 

ho(f)  = l[s (1 - f )  + {s2(1 _ f ) 2  + 4f~s}a/2] (2.7) 

is the largest eigenvalue of  ~(X). For f =  0 or f =  1 the matrix (2.5) is no longer 
primitive, but one easily verifies that (2.7) still describes the growth of  the total 
population in those cases. 

If & is identified with the number of offspring per plant in a deterministic 
environment it follows that the randomness of qS, does not affect the growth of 
the average population. Furthermore it can be readily shown that 

0h~  if 4~> s (2.8a) 
of 

0A--2 < 0 if 4~ < s. (2.8b) 
of 

Hence in the first case the average population grows at its largest rate when f =  1. 
Thus in a deterministic environment it is not profitable for a growing population, 
i.e. a population with Ao(1)= ~/q~s > 1 (hence q~> s), to delay its flowering. This 
confirms the conclusions of [6, 15]. 

To summarize, we have seen that in a random environment the average 
population grows fastest w h e n f  = 1, as long as 0~ > s. However, it is characteristic 
of multiplicative systems of  the type (2.1) that almost all solutions have a growth 
rate which in general is strictly smaller than the growth rate of the average 
population [10]. The study of this so-called geometric growth rate is the subject 
of the next sections. 
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3. The stationary age-structure distribution 
2 First, we introduce some notation. For any vector x ~ R+ = 

{(Xl, x2) e R2: Xl f-- 0, x2>~ 0} we define the norm 

2 
Ixl = Y~ Ixll (3 .1 )  

i=l 

and a corresponding unit vector in the direction of x, 

x = x / I x l .  (3.2) 

So )7 ~ C, where C is the simplex 

c = {x c R~+: Ixl = 1). (3 .3)  

I f  n is a population vector, In] equals the total population number and ~ is the 
age-structure. 

Throughout the rest of  the paper  we assufne that the distribution of qSt in Eq. 
(2.2) is a two-parameter  gamma distribution with the density, 

g(49)={k~/F(a)}4,  a-' e -k6, a > 0 ,  k > 0  (3.4) 

where 

/ ~ ( a )  m_ q~a-1 e - ~  d~b (3.5)  

is the gamma function [1].  Mean and variance of this distribution are given by 

~=E_(4~)=a/k; ~ = V a r ( 4 ~ ) = a / k  2 (3.6) 

so that by choosing appropriate values of  a and k we can vary 4~ and 
independently. This enables us to make a comparison with the numerical simula- 
tions in [8]. By the particular choice (3.4) we are able to utilize earlier results of  
Dyson [5] in the context of  random harmonic chains and obtain the exact 
stationary distribution of age-structures. The applicability of Dyson's  method to 
population models with two age-classes was first noted by Tuljapurkar [13, 14]. 

Under  the condition 0 < f <  1, which is assumed in the sequel unless indicated 
otherwise, a product of any two matrices of the form (2.2) is positive with 
probability one. Hence we can use the theory of random products of nonnegative 
i.i.d, matrices with contractive properties, see e.g. [3, 4, 7, 10, 14] and the results 
in [2] (in particular Corollary III.3.4, Theorem III.4.3 and Theorem V.5.1; the 
additional irreducibility and moment  conditions are satisfied in our case). 

We list the following properties, which are needed in the sequel: 

(i) lira 1 in ]n,] = z, (3.7) 
t->co t 

for any initial vector no ~ 0 and almost all sequences of matrices {Xt}. 
The constant y, also called the upper  Lyapunov exponent, is the average 
long-run growth rate of the population. 1 

t The natural logarithm is denoted by "In" 
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(ii) 
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the process  {tT,} is a Markov  chain  on the space  C of  age-structures;  for  
any  initial age-s t ructure  ~o the age-structure  distr ibution converges  to a 
un ique /x - inva r i an t  measure  v on C, where /x  is the c o m m o n  distr ibution 
o f  the matr ices {X,} induced  by the dis tr ibut ion (3.4). 

(iii) the logar i thm of  total  popu la t ion  n u m b e r  obeys  the central  limit theorem,  
i.e. for  some tr > 0, 

d 
(~r~/t)-a{ln[n,]- 7t} ~ N(0 ,  1) (t  ~ oo) (3.8) 

d 
where  ~ denotes  convergence  in distr ibution,  N(0 ,  1) is the s tandard  
no rma l  distr ibution and 3' is the same as in (3.7). 

(iv) the mean  3' and  var iance  ~r 2 of  the long-run growth rate can be calculated 
as follows, 

y= f I ln,X~l dtx(X) dv(~) (3.9a) 

2=_~,2 f f {lnlX<}2 d~(X) du(a). (3.9b) o- + 

Thus it appears  that  we need the invar iant  age-structure distr ibution v(g)  in 
order  to calculate t he  integrals (3.9). This can be obta ined  as follows. F rom Eq. 
(1.1) we have 

N,.t+J N2.t+I = fqSt{sNa,t/ N2,, + (1 - f)s}-}. (3.10) 

Ins tead of  age-structure  we consider  the ratio 

r,= N,.,/ N2,,. (3.11) 

Defining, 

(3.10) leads to 

~', = (1 -f)- 'r , ,  r / = f { ( 1  --f)2s}-1, (3.12) 

rt+l = r/th,/(1 + r,). (3.13) 

By demand ing  the invar iance  of  the age-structure  d is t r ibut ion  under  the act ion 
of  (2.1), Dyson  [5] showed  that  the s ta t ionary distribution, or ra ther  its densi ty 
h ( r )  co r responding  to (3.13), obeys the l inear  integral equat ion 

h(r )=f ;h(~ ' )g ( ( r '+ l ) r ] I r '+ l  1 -~ / t ~ - - J  dr' (3.14) 

with the unique normal ized  solut ion e 

h(r) = g- l 'FaT- l (1  -t- T) -a e -z" (3.15a) 

K= dr ra-l( l + "r)-a e-Z:- (3.15b) 

where  

2 In fact Dyson considered the case a = k = n, n 6 N, but the solution (3.15) is easily verified 
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Fig. lab. The stationary probability density of the fraction of old plants for various values of the 
flowering fraction, s =0.9; a 4S=2, ~ = 1; b 4J =2, ~ =5 

and 

z = k~ n = ks(1 _ f ) 2 / f  (3.16) 

The corresponding stationary density /~(p) of  the fraction p = N2/(N~ + N2), 
0 <~ p ~< 1, of  old plants is 

~(p) = K,-~p-2(p-l_ 1)a , (p  1 _f)-ae-ZO-f)-~p-1 (3.17) 

with K '  the appropriate normalization constant. 
In Fig. 1 we show some curves of  /~ versus p fo_r different values of  the 

flowering fraction f, with (a) f = 2, 4~ = 1, (b) ~ = 2, ~ = 5, the value of s being 
0.9 in both cases. In case (a) the density is unimodal with the peak shifting 
towards larger values o f p  as the flowering fraction decreases. In case (b) however, 
the density diverges as p + 1 with the local maximum near the origin disappearing 
as f decreases. This difference in behaviour in environments with large versus f 
small variance of offspring number  is reflected in the properties of  the long-term 
growth rate, which is to be discussed in the following. 

4. M o m e n t s  o f  the g e o m e t r i c  growth rate 

The expression (3.9a) for the average growth rate 7 specializes in our case to 

y=f fin / (;) dt~(X) dv(r) 

f o f o  ~ (foS+sr+(1-f)S)g((a)f~(r)drdcb (4.1) = In 
r + l  

where 

/~(r) = (1 _ f ) - i  h((1 - f ) - i r ) .  (4.2) 
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We n o w u s e  the fact that for an arbitrary random matrix X = ( ~  d b)  with 

corresponding distribution/x(a, b, c, d) and/x-invariant measure z, on R and for 
any bounded Borel function F on N, (compare [2], Sect. 2.5.2), 

(ar+b~ 
f fF\c-~r-r-r~/dl~(a,b,c,d) du(r)=fF(r)du(r ). (4.3) 

Using (4.3) with F(r)=ln(r+l), r>~O, we can reduce (4.1) to a single integral 
as follows: 

fo~f0'~{ ( f05 +l)+ln(sr+(1-f)s)-ln(r+l)}g(05)f~(r)drd05 3, = In sr+(1-f)s 

= ln(sr + ( 1 - f ) s ) h ( r )  dr (4.4) 
0 

or, transforming again to the variable r (see (3.12)), 

io ~/(f) = ln{s(1 - f ) }  + K -1 {ln(1 + ~')}r"-l(1 + r ) -a  e -=  d~'. (4.5) 

Here K is the integral defined in Eq. (3.15b), and we have explicitly indicated 
the dependence of y on the flowering fraction f (note that z and K also depend 
upon f ) .  

The above formula (4.5) is valid for 0 < f <  1. For f = 0  or f =  1 the matrix Xt 
in (2.2) is reducible. If f =  0, NI,, = 0 for t I> 1 and N2,, has a negative growth 
rate (assuming N2,o> 0) given by 

y(0) = Ins. (4.6) 

I f f  = 1 it is more natural to consider time averages over two periods, and we find 

lim 1 ln(N~,,+2/N~.,):= 2y(1), i = 1, 2 (4.7) 
, ~  t 

where 

y(1) = �89 {lns + ~:(ln 05)} = �89 + tp(a)} (4.8) 

and O(a) = d/da In F(a) is the digarnma function [1]. The proof  that the function 
y(f) as defined on the closed interval [0, 1] by (4.5)-(4.8) is continuous at the 
endpoints of  the interval will be given in Sect. 5 (that 3' is continuous on (0, 1) 
is clear from (4.5)). 

We are especially concerned with the behaviour of  y as a function of the 
flowering fraction f Particularly interesting is the question whether y can have 
a maximum for a value f *  < 1 (indicating the profitability of delayed flowering) 
and, if so, for which values of the environmental parameters this occurs. 

To answer this we have numerically evaluated the integrals in (4.5) by 
quadrature routines from the NAG-library. 3'4 Again fixing s at the value 0.9 we 

3 NAG-library, Fortran. Numerical Algorithms Group. Mayfield House, Oxford, U.K. 
4 Because of the poor convergence of the integrals for small z we use the expansion (5.11) when f 
approaches unity 
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considered the following cases for the mean and variance of offspring number: 

(a) ~ = 2 ,  ~ = 1 ;  (b) ~ = 2 ,  ~ = 5 ;  (c) ~ = 3 ,  ~ = 5  (4.9) 

The results are shown as solid curves in Fig. 2. There is a clear maximum for a 
value f *  < 1 in case (b), which corresponds to the parameter range for which a 
similar effect was found in the simulations of Klinkhamer and de Jong [8]�9 Notice 
the very steep decrease of 3' near unity (in fact y ' (1)=-Go, as will be shown 
below). For comparison we also plotted the growth rate In Ao of the average 
population for this case, which increases monotonically with f. The maximum 
on (0, 1) apparently tends to disappear when q~ increases (case c) or when the 
variance ~ decreases (case a). That this conclusion is premature is demonstrated 
in the next section. 

We also computed the variance 0 -2 of the growth rate as defined in Eq. (3.9b) 
by numerically evaluating 

 o~ ( )} ~r2(f)=-y2(f)+ In fdp+sr+s(1-f)  2 l + r  g(~b)h(r) drdfb (4.10) 
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Fig. 2 a-e. The average geometric growth rate 
vs. the flowering fraction, s = 0.9. Solid line: 
exact result (4.5); dotted line: small noise 
approximation (6.1); broken line: lognormal 
approximation (6.14). a 4~=2, ~ =  1; b t~=2,  
~ = 5 ;  e t~=3 ,  t~=5.  The curve marked 
. . . . .  in case (b) is the growth rate In ;t o 
of  the average population 
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for a number of values f on [0, 1], where the values at the endpoints of the 
interval are given by 

~r2(0) --- 0 (4.1 la) 

and 

~r2(1) : �89 ~b) 2} - {~:(ln ~b)} 2] : �89 (4.1 lb) 

where 0 ' (a )  is the trigamma function (derivative of the digamma function). The 
results are shown in Fig. 3 (solid curves) for the cases (4.9). It is seen that in all 
cases the variance decreases steeply as the flowering fraction decreases from unity. 

The tentative conclusion is that there exists indeed a parameter range, charac- 
terized by large fluctuations and /o r  small average of the offspring number, for 
which delayed flowering is profitable. The question arises as to the extent of this 
parameter range. To get an answer we will look at the derivative of y( f )  at f =  1. 
This analysis will decide about the conditions for the presence of a (local) 
maximum at or below the value f =  1, respectively. 
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Fig. 5. The average geometric growth rate vs. the flowering fraction in a neighbourhood of unity, 
s = 0.9, $ = 8 ,  ~ = 1  

We end this section with a remark about  the rate of  convergence to the 
s ta t ionary age-distribution. As shown in [14] the difference between initial age- 
structures goes to zero at least as fast as e x p ( - R t ) ,  where 

R = Yl - "Y2. (4.12) 

Here Yl and Y2 are the largest and second largest Lyapunov exponents of  the 
sequence {Xt}. Since the sum of the Lyapunov exponents is determined by the 
relation 

Yl + Y2 = ~={ln([det XI)} = ln(sf)  + ~=(ln ~b) (4.13) 

and the exponent Yl equals y ( f )  as given in (4.5), it follows that 

R(f) = - I n  f +  2{y( f )  - y(1)}, (4.14) 

where we have used (4.8). 
It is seen that R(0) = oo and R(1) = 0: convergence is very fast f o r f  close to zero 
and extremely slow for f close to unity (see Fig. 4). 

5. Asymptotic analysis 

In this section the asymptotic behaviour of  y ( f )  as f ->  0 or f -~  1 is analyzed. 
The first case is easy. As f -~  0, z ~ ~ ,  hence it is convenient to introduce the new 
variable x = zz in (4.5), yielding 

'- oo 

Y(f)=ln{s(l'f)}+I~-I Io {ln(l+ex)}xa-l(l+ex)-ae-Xdx (5.1a) 

where 

/~ = xa-l(1 + e x )  - ~  e - x  d x  (5.1b) 
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and 

e = Z -1 =f{ks (1  _f)2}-1. (5.2) 

Expanding the second term in (5.1a), temporarily denoted by S(e), in powers 
of e, 

S( s )  = s r ( a  + 1 ) / r ( a )  + 6(e 2) (e ~ 0) (5.3) 

we find 

y ( f )  = In s + (-1 + a / k s ) f +  if(f2) ( f o  0). (5.4) 

Thus 3' is indeed continuous at f =  0 (compare Eq. (4.6)) and the slope at the 
origin is 

3"(0) = -1  + a /k s  = -1  + f / s  > 0 (5.5) 

under the assumption ~ > s (see Sect. 2). 
Next we look at the behaviour of 3' near f =  1. To facilitate the analysis, 3' is 

first expressed in terms of special functions as follows. 

3'(f) = ln{s(1 - f ) } +  ~ U(a, b, z) U(a, 1, z) (5.6) 
b = l  

where 

f; F ( a ) U ( a ,  b, z )=  Ta-l ( l+~')  b-a-1 e-ZTdz. (5.7) 

U(a, b, z) is one of the independent solutions of Kummer ' s  confluent hyper- 
geometric differential equation, see [1], Chap. 13. It can be expressed as 

rrzr b [ F ( l + a - b ) F ( b ) ~ M (a, b_, z ) ~ _ b M ( l + a - b , 2_~)b , z ). ~ f.  ~ U(a, b, Z)=si  n z (5.8) 

where M(a,  b, z) is the regular solution of Kummer's equation, having the 
convergent expansion (for a > 0, b > 0), 

oo F ( a +  m ) F ( b ) z  m 
M(a ,  b, z) = m = O  • F ( a ) F ( b + m ) m ! "  (5.9) 

For b = 1 one finds from (5.8) and (5.9) the logarithmic solution (see [1], Sect. 
13.1.6, or the appendix), 

- F ( a ) U ( a , l , z ) = M ( a , l , z ) l n z +  ~ F ( a + m ) z m  
m = o F ( a ) F ( l + m ) m !  

x {O(a + m) - 20(1 + m)} (5.10) 

The evaluation of the derivative with respect to b occurring in (5.6) is straightfor- 
ward but tedious. For the details we refer to the appendix where the following 
final expression for 3'(f) is obtained, 

F(a  + m)z  m 
1 Y~=o F(1 + re)m! T,,, 

y ( f )  =�89 (5.11) 
F ( a + m ) z "  

2Y,~=O F( l  + m)m ! Nm 
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where 

with 

and 

Tm= {2q,(a) - ~O(a + m)} In z+{2~O(a)(qJ(a + m) - 0(1 + m)) 

+20(1  + m)(O(a + m ) -  ~ ( a ) ) -  a ( a  + m)} (5.12) 

A(a) = r"(a)/  r (a )  (5.13) 

Nm = In z+  qJ(a + m) - 2~b(1 + m). (5.14) 

From (5.11) one obtains the following asymptotic behaviour of y( f )  as f ~  1, i.e. 
Z ---). 0~ 

y(f)=�89189 (5.15) 

with ~' the derivative of  the digamma function. 
First, we note that the limiting value of  y( f )  as f ~  1 which follows from 

(5.15) coincides with the value given in Eq. (4.8), confirming the continuity of y 
at f =  1. The derivative of y for f~-  1 is also easily found from (5.15), 

y'( f)  ~- -[{2 ln(1 - / )}2(1 -/).]-l~O'(a) ( f ~  1) (5.16) 

and, taking into account that ~0'(a)> 0 for a > 0, we find 

y'(1) = -oo. (5.17) 

This remarkable result implies that, independent of the values of the par.ameters 
a and k or, equivalently, of the mean and variance of tht, a decrease o f f  starting 
from unity will always lead initially to a larger growth rate y(f) .  From the 
continuity of 3' and the signs of the derivatives at f = 0 and f = 1 it follows that 
y( f )  has an absolute maximum at an interior point f * ,  that is 0 < f * <  1 and 
y ( f * ) >  7(1). The numerical results in Fig. 2 suggest that there are no other 
(local) maxima on (0, 1). It is clear that for very large values of the mean of the 
offspring number or for small values of its variance, f *  lies very close to unity 
and the occurrence of a maximum at f *  < 1 can no longer be visually discerned 
on the scale as used in Fig. 2. For the case q~ = 8, q~ = 1, we have calculated y( f )  
numerically for a number of values o f f  in the interval [0.99, 1.0], based on the 
expansion (5.11). The result is shown in Fig. 5. In this case there is a maximum 
at f *  -~ 0.9995 with y( f*)  = 0.9838, whereas y(1) = 0.9831. 

6. Approximations 

In this section we discuss some approximations to the moments of the growth 
rate and compare to the exact results. 

6.1. The small noise approximation 

If the variance of the offspring number is small compared to its mean one can 
perform a perturbation expansion of the moments of the growth rate in powers 
of a small parameter measuring the size of the fluctuations. Such an analysis has 
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been given by Tuljapukar [11] and we quote here the results for the i.i.d, case 
up to second order: 

y = In a o -  r2/(2A 2) (6.1) 

cr 2 = rZ/A~ (6.2) 

where Ao is the largest eigenvalue (2.7) of the average matrix ~:(X) and 

r 2 = {(v0| Vo)'Co(uo| u0)}/T 2 (6.3) 

with 

To = V~Uo. (6.4) 

Here Vo and Uo are the left and the right eigenvectors of ~:(X) corresponding to 
the eigenvalue ao, primes denote transposition, | denotes the Kronecker product 
of vectors or matrices and Co is the autocovariance matrix, 

Co = ~(X | X)  - {W(X)} 2. (6.5) 

In our case these formulas specialize to 

u~ = (1, ho/fqS), v~ = (1, ao/S), (6.6) 

hence 

and 

To = 1 + h2( f f s )  -1 (6.7a) 

10) (00 ;)} 
Inserting (6.6)-(6.7) in (6.3) we find 

r 2 = Ao2g[~2{1 + A2(f~s)-a}2] -1. (6.8) 

The small noise approximation (6.1) for the mean growth rate is plotted in Fig. 
2 as the dotted line. The accuracy of the approximation depends on 05, 05 and 
on f As a measure of  the fluctuations one may take the quantity 

,/llCov(X)ll f x / 7  
e -  [IE(X)II - ( 2 _ f ) s + f d ~  (6.9) 

where we used the matrix norm ]IX II = Y,,j Ig~jl. The figures show that the approxi- 
mation is accurate as long as s~<0.3: i n t h e  cases (a) and (c) the agreement is 
close over almost the whole interval, whereas in case (b) the approximation 
becomes increasingly inaccurate as f approaches unity. The corresponding 
approximation for the variance o -2 is plotted in Fig. 3, also showing increasing 
deviation from the exact result as f increases. 

6.2. The lognormal approximation 

The central limit theorem (3.8) can be loosely interpreted as saying that for large 
time the probability density P(I n I, t) of  total population number is approximately 
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lognormal, 

where 

p(lnl, t )=  q(ln], t) 

{ln(x/xo)73"t}2] 
q(x, t) = (2zr0-2t)-l/2x-' exp 20-2 t j .  

The mean and variance of the lognormal distribution (6.10) are 

nZ(x,) = Xo exp{(3' +10-2)t} 

Var(x,) = x~[exp{2(3' + �89 t}][exp(0-2t),  1] 

and its median is 

(6.10) 

(6.11a) 

(6.11b) 

Med(x,) = Xo exp(yt).  (6.12) 

Hence if In,[ was exactly lognormal, the average geometric growth rate 3' would 
coincide with the growth rate of the median population. In terms of  the asymptotic 
growth rates/Xo and/Zl of the mean and variance of total population number, i.e. 

lim 1 In ~(In, I) :=/Zo, lim 1 In Var(Intl) :=/Xl, (6.13) 
t + ~  t , - ~  t 

one arrives at the following approximations to 3/ and 0-2 by comparing (6.11) 
and (6.13), 

1 0.2 3' = 2/Xo- ~/.z1 , /-~1 - 2go. (6.14) 

The argument just given is essentially reproduced from Tuljapurkar [11]. 
It is easy to calculate/Xo and/zl  in our case of independent fluctuations. In fact, 

/~o = In Ao (6.15) 

where )to is the largest eigenvalue (2.7) of the average matrix u:(X). The second 
moment of In, I grows asymptotically as 

E(ln,[ 2) - const. X'l 

where h~ is the largest eigenvalue of the 4 x 4 matrix n : (X|  Since h~ t> h~ by 
positivity of the variance, we thus have from (6.13) 

tzl =In  hi.  (6.16) 

We have numerically computed ;tl for various values of the flowering fraction 
f and thus constructed approximations to 3' and 0.2 via (6.14)-(6.16). The results 
are indicated by the broken lines in Figs. 2 and 3. The approximations to the 
average growth rate deviate from the exact ones as f approaches unity, especially 
in ease (b). In contrast with the small noise approximation, the lognormal 
approximation does yield a local maximum for a flowering fraction below unity. 
Notice however that in case (b) it fails to reproduce the steep decrease of 3' 
towards a negative value at f = 1. The results for the variance are only accurate 
for small f, although they are better than those of the small noise approximation. 
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Fig. 6 a b. Extinction probability vs. the flowering fraction for initial population numbers [no[ = 2  
(solid line) and I nol = 20 (broken line), s = 0.9. a 0~ = 2, ~ = 1; b f = 2, ~ = 5 

7.  E x t i n c t i o n  

To discuss extinction for the model (2.1) it is customary to impose an extinction 
boundary at an arbitrary low level of  total populat ion number, say at [n, I = 1. 
Using the asymptotic lognormality of  the total population one can derive the 
following approximate  results for the probabili ty Q(co) that the population will 
be eventually extinct [10], 

Q(oo)  = 
exp ----5 Inl no ] y>O.  

(7.1) 

By making use of  the numerical results for y and o -2 discussed earlier we have 
plotted Q ( ~ )  in Fig. 6 for two initial population numbers, viz. ]no] = 2 and [no[ = 20, 
respectively. The results give an indication about the behaviour of  the extinction 
probabili ty as a function of the flowering fraction. Notice the steep decrease of  
Q(co) as f falls just below unity after which a plateau value is reached which 
extends over a considerable region. From a comparison of Figs. 2 and 6 it is also 
evident that the value of  the flowering fraction maximizing the growth rate 3' will 
in general be larger than the value which minimizes the extinction probability. 

The conclusion is that delayed flowering not only increases the geometric 
growth rate of  the populat ion but also decreases its extinction probability, in 
agreement with the simulation results of  [8]. 

8.  S u m m a r y  a n d  c o n c l u s i o n s  

A model of  biennial plant population with two age classes growing in a random 
envi ronment  is studied. The first class is formed by the individuals up to one 
year old who cannot flower, whereas the second class consists of  individuals 
older than one year of  which a fraction f flowers each year. I f  f <  1 one speaks 
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of delayed flowering and the question is whether such a delay can be profitable 
for the population. 

To answer this question we calculate the mean y and variance 0-2 of the 
geometric growth rate of the population exactly in terms of definite integrals, 
assuming a two-parameter gamma distribution for the randomly fluctuating 
number of offspring per flowering plant. From a numerical evaluation of the 
integrals it is found that for various values of the mean 4~ and variance 4~ of 
offspring number the mean growth rate y has an absolute maximum for a value 
of f smaller than unity. An asymptotic analysis reveals that actually such a 
maximum for a value f *  strictly smaller than unity always occurs, although for 
large values of the ratio 4S/~ the value f *  is for all practical purposes identical 
to unity. Thus delayed flowering increases the geometric growth rate of the 
population. The results of some common approximations to 7 and 0 -2 are 
compared to the exact results. Finally it is shown that delayed flowering decreases 
the extinction probability of the population. 

Acknowledgements. We thank Peter Klinkhamer and Tom de Jong for extensive discussions on the 
biological aspects of the model and Nico Temme for helpful advice concerning the numerical 
computations and the special functions occurring in this paper. 

Appendix 

The starting point in the derivation of Eq. (5.11) is Eq. (5.6). Define 

W(b) := F(a) U(a, b, z) = rrR(b)/sin ~rb 

with (see (5.8)), 

and 

(A.1) 

M(a, b, z)F(a) M(1 + a - b, 2 -  b, z) 
h ( b ) = F ( l + a _ b ) F ( b )  , g ( b ) -  F ( 2 - h )  (A.3) 

Noting that both the numerator and the denominator in (A.1) are zero as b = 1, we compute the limit 
of W(b) as b ~  1 by l'H6pital's Rule with the result, 

W(1) = -R ' (1 )  = -{h'(1) - g'(1) + g(1) In z}, (A.4) 

primes denoting differentiation w.r.t.b. The next quantity to be computed is W'(1). From (A.1) one 

has 

W'(b) = ~r{ - cos ~rbW(b) + R'(b)}/sin rrb. (A.5) 

Again the numerator and denominator of (A.5) are zero as b = 1, so another application of l'H6pital's 
Rule yields 

[Tr{ - ~" sin ~rbW(b) - cos 7rbW'(b)+ R"(b)}l 
W'(1) (A.6) 

L ,z- cos 7rb ~ b=l 

from which it follows that 

W'(I) = -�89 = -�89 - g"(1) + 2g'(1) In z - g(1)(ln z)2}. (A.7) 

From (A.4) and (A.7) we see that the second term in (5.6) is singular as z ~ 0, i.e. f ~  1. The same 
holds for the first term in (5.6) and in fact the two singularities cancel to give a finite result as f = 1. 

R(b)=h(b ) - z ' - bg (b )  (A.2) 
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To show this we first deduce from the definition (3.16) of z that 

In z = In(ks~f) + 2 ln(1 - f ) .  (A.8) 

Inserting this in (5.6) and using (A.4) and (A.7) we obtain 

y ( f )  =�89 ln(sf /k)+I In z+�89 
(A.9) 

=�89 ln(sf/k)+~ r,,,,~l~ + g,(1)} ln z+ h"(l) - g"(1) ] 
L h'(1)-g '(1)+g(1)lnz J" 

It remains to evaluate the derivatives of h and g. Tedious but elementary calculation yields 

~o F(a+m)z  m 
g(1)={F(a )}  i ~ M(a , l , z )  (A.10) 

m=o F( l + m )m! 

F(a+m)z  m 
h'(1)+g'(1)={F(a)} -1 • {2tO(a)-tp(a+m)} (A.11) 

m=0/'(1 + re)m! 

h'(1)-g'(1)={r(a)} -1 ~ F(a+m)z~{-ZO(l+m)+~b(a+m)} (A.12) 
,,=oF(l+rn)m! 

F ( a  + m ) z  m 
h"(1)-g"(1)={['(a)} I ~ - - { - 4 ~ ( a ) 6 ( l + m ) + 2 t p ( a ) 6 ( a + m )  

,~=0 F( l + m)m! 

+ 2qJ(a + m) ~b(1 + m) - A (a + m)} (A.13) 

where ~p(a) = d/da In F(a) and A(a) is defined in (5.13). Insertion of  (A.10)-(A.13) in (A.9) yields 
the desired results (5.11)-(5.14). 
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Note added in proof. S. D. Tuljapurkar correctly pointed out to the author that Eq. (3.9b) is not an exact 
expression for the variance. All results based upon this equation are therefore of limited validity. 


